Xiaodong Lin

Introductory
Computer
Forensics

A Hands-on Practical Approach

N Springer

Introductory Computer Forensics

Xiaodong Lin

Introductory Computer
Forensics

A Hands-on Practical Approach

@ Springer

Xiaodong Lin

Department of Physics and Computer Science
Faculty of Science

Wilfrid Laurier University

Waterloo, ON, Canada

ISBN 978-3-030-00580-1 ISBN 978-3-030-00581-8 (eBook)
https://doi.org/10.1007/978-3-030-00581-8

Library of Congress Control Number: 2018957125

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-00581-8

In deep appreciation and endless memory,
this book is dedicated to my dear forever
beloved grandmother Xiulin Li who
raised me up.

Preface

Internet technology is advancing at a speed beyond comprehension. With ever-
advancing Internet technology, we truly are living in a digital age. It will certainly
improve our quality of life, as it can offer the speed, the capabilities, to handle
endless different types of transactions at relatively low cost. Things we take for
granted in our daily activities are an excellent example: transferring money, surfing,
emailing, sharing information, etc. On the other hand, we will become handicap in
our daily life if without Internet. Simply put it, we all depend on the capabilities of
Internet technology to run our daily errands more efficiently, even when we do not
directly notice it.

Unfortunately, one of Murphy’s more applicable axioms becomes apparent with
this technology: “with every solution comes a new set of problems.” This marvelous
new technology will also provide golden opportunities for organized crime groups,
as well as other individuals who want to abuse the technology and maximize their
profit illegally. Activities like denial of service attacks, website vandalism, online
fraud, money laundering, and more have surfaced. We have all read headlines from
around the world about companies being hacked and losing personal information;
cybercrimes have become a rampant reality that we must all face, and according to
the forecast, the cybercrime trends will worsen globally, and billions of dollars will
be lost every year in the global conflict against it.

In order to fight against cybercrime effectively, public prosecutors need to be able
to do more than simply match a crime to a suspect; they must be able to produce
convincing digital evidence in a court of law, before a judge who may not even know
what a USB drive is, in order to put the criminals behind bars. This evidence may
include all computer log files, corresponding emails, accounting information,
spreadsheets, and other related records, regardless of whether or not these files
were deleted or not. According to the study, the majority of digital evidence
presented in court is obtainable from all sorts of the daily used electronic devices
such as computer, digital camera, BlackBerry, and 3G cell phones.

In one case, former Alaska Governor Sarah Palin’s e-mail account was hacked by
a Tennessee student. After the suspect reset Governor Palin’s e-mail account

vii

viii Preface

password and posted the new password on a forum, the FBI was able to trace the
suspect’s digital footprint or trail, particularly his email address, leading to the
suspect’s apartment. This evidence was vital in helping the federal prosecutor to
acquire further necessary digital evidence and arrest the suspect, even while the
suspect removed, altered, concealed, and covered up files on his laptop computer.

No individual alone can effectively fight with online criminals, and technology is
evolving much faster than the law can adapt. Traditional forensic science, while still
invaluable, will not be able to deal with this new wave of cybercrimes. As a result, an
exciting new branch of forensic science—digital forensics—is emerging.

Digital forensic investigation is a sequence of interdependent and linked pro-
cedures, employing technology to study and recreate chains of events that lead to the
current state of digital objects. Digital objects may include (but are not limited to)
computer systems, such as software applications and databases; data storage devices,
such as hard disks, CDs, DVDs, and USB drives; electronic document such as
spreadsheets, documents, emails, and images. Digital objects could be as large as
an entire network or as small as a single byte. By using technology to examine the
digital objects, the investigator can present trustworthy, satisfactory, and legally
acceptable evidence to a court of law and provide answers to the questions raised
about criminal events.

Unlike established traditional forensic analysis, digital forensics, as a new sub-
ject, must overcome many challenges before it becomes widely acceptable in courts
of law internationally. The major challenges include the following:

(a) The process of collecting the digital evidence may alter the evidence itself, as it
can easily be deleted or altered and become inadmissible to the court; hence, the
prosecutor must preserve it in the state it was collected in and provide proof that
the digital evidence has not suffered any alteration between the time of collection
and the time of admission to the court.

(b) As the complexity of digital forensic analysis techniques continues to increase
and the size of forensic target grows rapidly, you will experience the need for
hundreds of gigabytes, or even terabytes of hard drive space to store all the
necessary evidence.

(c) As technology is always advancing more quickly than the law can compensate
for, there is no shortage of new opportunities for online criminals to take
advantage of “holes in the legal system” and use new technology to perform
activities that are clearly immoral; however, technically speaking, these activi-
ties may be “legal,” as the law does not, or there is no law to deal with the new
situation/environment created by the new technology and that may become a
stumbling block between the prosecutors and the lawyers.

As a new subject, digital forensics is not well known to the general public, but
interest in it is booming, as more companies and individuals seek the truth about
what has happened to their network infrastructure. Even as a growing number of
court cases (civil, criminal, and otherwise) involve digital evidence (or electronic
evidence), trained digital forensic professionals are in short supply, and cybercrime

Preface ix

can be committed anywhere in the world. It has become essential for universities and
colleges to offer digital forensics to their students so that the students are well
prepared with the proper tools to fight against cybercrime.

I am a strong believer in active learning. A Chinese proverb says: “Tell me, I will
forget. Show me, I may remember. Involve me, and I will understand.” I strongly
believe that theoretical knowledge and practical hands-on experience are necessary
to function independently to reach each individual student’s full potential, particu-
larly in computer security education. Also, they should be integrated into a coherent
whole. Such kinds of educational excursions have been proved very attractive and
informative to students in my computer security and forensics classes. It is crucial to
let students know why they need to study one subject, what they need to know about
the subject, and most importantly, how they can apply knowledge and skills learned
in classes to some real-life situations. I am trying to tie the theory with the practical,
real world through case studies and practice exercises to help the students learn the
material better, because they literally make more connections as opposed to only
learning theory and how to apply a formula to get a result. Holistic learning
including hands-on experience and theory is what is needed more. For example,
man-in-the-middle (MITM) attacks using address resolution protocol (ARP)
spoofing in the switched network environment are classic but complicated network
attacks. A decent theoretical illustrations help, but may not gain enough classroom
attention or cooperation. Thus, in order to improve student learning and encourage
cooperation among students, after a theoretical explanation of ARP spoofing and
man-in-the-middle attacks, a live demonstration of ARP spoofing and man-in-the-
middle attacks can be conducted in class to show students how ARP protocol works
before and after the attacks through captured network traffic and how the participat-
ing computers will behave as attacks proceed by showing their ARP tables at
different stages of the attacks. By doing so, students are able to reflect on knowledge
that they just have learned in the classroom. Hence, gaining hands-on experience
through live lab experiment is as vital to a student as one is to a medical student. I
have taught courses on computer forensics, cyberattack and defense techniques, and
software security in several Canadian universities over the past decade. In my
teaching, I developed a lot of hands-on practice exercises to enhance understanding
of concepts/theories of information security and forensics introduced in my classes
and increase student interest in information security and forensics. This book is the
first edition of an experience-oriented textbook that stems from the introductory
digital forensics course I developed at the University of Ontario Institute of Tech-
nology (UOIT), Canada. The objective of this book is to help students gain a better
understanding of digital forensics, gaining hands-on experience in collecting and
preserving digital evidence by completing various practice exercises. This
experience-oriented textbook contains 20 student-directed, inquiry-based practice
exercises to help students better understand digital forensic concepts and learn
digital forensic investigation techniques. This hands-on, experience-oriented text-
book is a great way to introduce people to the world of computer forensics, a fast-
evolving field for solving crimes.

X Preface
Practice Exercise Environment

While all the practice exercises in this book can be conducted in a physical computer,
we use virtualization and build a forensics workstation using a publically available
Kali Linux virtual machine for your use while working on the exercises in this book.
Virtualization is a technology to use a computer hardware to run operating system
(s) within an operating system, and it has the potential to be within an operating
system within an operating system. It is a way to run multiple operating systems at
the same time on one computer hardware, and each operating system runs separately
and could do something completely different.

In virtualization, there are two main components, the first being the host machine,
the physical machine on which the virtualization takes place, and the second being
the guest machine, i.e., the virtual machine (VM).

The benefits of using virtualization or a preconfigured Kali Linux virtual machine
include the following:

First, we can save a lot of time from configuring the devices and software. If thing
does not work out, we can always roll back to a snapshot and start over again until
it works. In other words, we can have an environment that can be saved, deleted,
backed up, etc., on demand. By using virtualization, we can always have a copy
of clean and workable image, which is very good for the purpose of teaching.

Second, all students have the same practice exercise environments, which can be
well controlled. As a result, it could become easy to troubleshoot and diagnose
problems in the exercise environments of students.

Book Organization

The book consists of 21 chapters, which are organized into 6 parts. Chapter 1
discusses basic concepts of computer forensics. As for the rest, each of them is
composed of two parts, background knowledge and hands-on experience through
practice exercises. Each theoretical or background section concludes with a series of
review questions, which are prepared to test students’ understanding of the materials,
while the practice exercises are intended to afford students the opportunity to apply
the concepts introduced in the section of background knowledge.

The below flowchart illustrates the chapter organizations that instructors can
follow to achieve their course plans. The arrow means the order of chapters and
sections which the instructors are suggested to follow. The dashed lines indicate that
the pointing-to parts are optional for an introductory computer forensics course. For
an introductory course, the instructors are suggested to cover the first three parts.
Depending on course length and level, the instructor will be able to choose and
determine the order of the rest parts, as each of them is self-standing and does not
require knowledge from the other sections.

Preface xi

Part 1.

Chapter 1: Introduction to Computer Forensics

Chapter 2: Introduction to Computer Organization
Chapter 3: Building a Forensics Workstation

Part I1.

Chapter 4: Volume Analysis

Chapter 5: Examining FAT File System
Chapter 6: Deleted File Recovery in FAT
Chapter 7: Examining NTFS File System
Chapter 8: Deleted File Recovery in NTFS
Chapter 9: File Carving

Chapter 10: File Signature Searching Forensics

Chapter 11: Keyword Forensics
Chapter 12: Timeline Analysis
Chapter 13: Data Hiding and Detection

Part I11.
[Chapter 14: Log Analysis |
4 N
/ I \
/ l AN
/ [Part V. N N
apter 18: Introductory Malware Analysis
7 |[Chapter 18: Introd I lysi
/ [Chapter 19: Ransomware Analysis | N
/ 7 < N
/ / N AN
Part1V. A AN
- - - Part VI.
Chapter 15: Android Forensics l—) |Ch 70 T T Detect |
Chapter 16: GPS Forensics IChapterZI-S[tnage orge;y ede;mn o |
: Steganog
Chapter 17: SIM Cards Forensics Apler 27 1epanography and Slesanayss

The summary of the book parts is given below:

The first part, or Part I (Chaps. 1-3), is focused on basic computer skill required
before studying computer forensics and completing practice exercises in the book. In
Chap. 1, we will introduce you to the fundamentals of computer forensics and why
computer forensics skills are important to our society. In Chap. 2, we will review
some basic concepts in computer organization, which are essential for you to know
how computer forensics techniques work. If you are familiar with computer organi-
zation, you can skip ahead to the next chapter. In Chap. 3, you will build your own
forensics workstation using some open-source digital forensics tools.

Part I (Chaps. 4—-13) discusses file system forensics analysis. It is concerned with
the most common source of digital evidence, computer storage devices such as hard
drives, which can be divided into multiple sections known as partitions. Then each
partition is formatted with a file system such as FAT and NTFES before data can be
stored into it. It is worth mentioning that this part can be used in conjunction to File
System Forensics Analysis by Brian Carrier. File System Forensics Analysis is an
excellent reference for anyone that studies analysis techniques of file systems for
investigative purposes. However, this part of our book can be used as extra hands-on
exercises to enhance student learning and improve skills and knowledge for file
system forensics, thereby helping them gain a more detailed understanding of file

Xii Preface

system analysis for investigative purposes. In Chap. 4, we will discuss the concept of
disk partitioning and study volume analysis techniques. Chap. 5 describes analysis
of FAT file system. In this chapter, we also provide an introduction to the concepts of
file system. Then in Chap. 6, the discussion focuses on how to recover deleted files in
FAT file system based on remaining file system metadata. Chapter 7 describes
analysis of NTFS file system. Then in Chap. 8, the discussion focuses on how to
recover deleted files in NTFS file system based on remaining file system metadata.
Chapter 9 describes file carving techniques, which can recover deleted files when file
system metadata is missing. Chapter 10 covers keyword searching forensic tech-
nique. Chapter 11 discusses file signature searching forensic technique. Chapter 12
discusses timeline analysis. In Chap. 13, we discuss data hiding and detection
techniques.

Part IIT (Chap. 14) covers log forensic analysis. Chapter 14 is concerned with
forensic analysis of log files in computer systems, which are another important
source of digital evidence.

Part IV (Chaps. 15-17) covers mobile device forensics. Chapter 15 discusses
android-based device forensics. Chapter 16 studies Global Positioning System
(GPS) forensics. Chapter 17 covers forensic analysis of SIM card data.

Part V (Chaps. 18 and 19) is concerned with the study of malware analysis.
Chapter 18 provides an introduction to malware analysis. Then in Chap. 19, the
study of ransomware, a new breed of malware, is considered.

The last part, or Part VI (Chaps. 20 and 21), is focused on multimedia forensics.
In Chap. 20, we will introduce you to the fundamentals of digital image forgery and
detection techniques. In Chap. 21, we discuss the principles of image steganography
and steganalysis.

Supplements

An Instructor’s Solutions Manual

Solutions for all questions in the end of background knowledge section, as well as
the textbook practice exercises, are provided. The solutions can be downloaded from
the publisher.

Data Files

Data files are provided for the practice exercises, which are required in most of the
chapters to complete these hands-on exercises. They are available for download from
the publisher.

Waterloo, ON, Canada Xiaodong Lin

Acknowledgments

After several years of teaching an introductory digital forensics course, particularly,
receiving positive feedback in extensive lab exercises for hands-on experience, an
idea just came to my mind: why not put together the course materials I developed as
a textbook, an experience-based textbook in particular.

I realized how much work was involved only after I started to write the book.
Finishing the book would be impossible without the help, advice, and support of
people. I am greatly grateful to many of my former students and particularly to Corey
Knecht, Khalid Alharbi, Muhammad Ali Raffay, Zhenxing Lei, and Aiqing Zhang
for their invaluable feedback and suggestion for improvement, especially from their
points of view as students, after carefully reviewing parts of the manuscript.

Xiii

Contents

Part I Fundamentals of Computer Systems and Computer Forensics

1 Introduction to Computer Forensics.
I.1 Introduction............... ...
1.1.1 YoungHistory. i,

1.1.2 AFeldontheRise..............

1.1.3 Challenges.c.ii ..

1.1.4 Privacy Risk with Digital Forensics.

1.1.5 Looking Ahead

1.2 What Computer Forensics Is and Why It Is Important.
1.3 Digital Evidence.
1.4 Computer Forensics Procedures and Techniques.
1.4.1 Preparation Stage.

142 InCrimeScene Stage.ooo..

1.43 In Digital Evidence Lab Stage

1.5 Types of Computer Forensics.
1.6 Useful Resources.
17 EXEICISES . . vttt e e e e e e
References.
2 Introduction to Computer Organization.
2.1 Computer Organization.ovv vt ti e,
2.2 DataRepresentation.uieiineineenna..
2.3 Memory Alignment and Byte Ordering
24 Practice EXercise.
24.1 Setting Up the Exercise Environment.

242 EXEICISES.t
Appendix A: How to Use GDB to Debug C Programs.
References.

XV

XVi

3

Contents

Building a Forensics Workstation. 53
3.1 The Sleuth Kit (TSK) and Autopsy Forensic Browser. 53
3.1.1 The Sleuth Kit (TSK). 53
3.1.2 Autopsy Forensic Browser. 56

3.1.3 Kali Linux Sleuth Kit and Autopsy 58

3.2 Virtualization. 58
32.1 Why Virtualize?. 59
3.2.2 What Are the Virtualization Options?. 60

3.2.3 Why VMware Virtualization Platform?. 60

3.3 Building Up Your Forensics Workstation with Kali Linux. 61
3.4 First Forensic Examination Using TSK. 76
3.5 Practice Exercise. 80
3.5.1 Setting Up the Exercise Environment. 81

352 EXEICISeS.ttt 81
Appendix A Installing software in Linux. 87
Appendix B dcfldd Cheat Sheet. 88
References. 89

Part II File System Forensic Analysis

4

Volume Analysis. 93
4.1 Hard Disk Geometry and Disk Partitioning. 93
4.1.1 HardDisk Geometry.......................... 94
4.1.2 Disk Partitioning 97
4.1.3 DOS-Style Partitions. 98
4.1.4 Sector Addressing in Partitions 104
4.2 Volume AnalysiS. 105
42.1 Disk Layout Analysis.oine... 105
4.2.2 Partition Consistency Check 106
423 Partition Extraction. L ... 107
4.2.4 Deleted Partition Recovery. 107
4.3 Practice EXercise.o 110
4.3.1 Setting Up the Exercise Environment. 110
432 EXEICISES. . . ottt 110
44 Helpful Tips. . . . oo oo 112
References. o 114
Examining FAT File System 115
5.1 File System OVerview 116
5.2 FATFile Systems oo vttt e 123
5.2.1 The Partition Boot Sector. 124
5.2.2 The File Allocation Table 128
5.2.3 Addressing in FAT File Systems 129
5.2.4 The Root Directory and Directory Entry 130

525 TheLongFileName.......................... 133

Contents Xvii

5.3 LabEXercises.o.iuiii i 138
5.3.1 Setting up the Exercise Environment. 138
532 EX@ICISES. . .ottt 138

54 Helpful TipS. . . oo 140

Appendix A: Data Structure for the FAT12/16 Partition

Boot Sector. 142

Appendix B: Data Structure for the FAT32 Partition Boot Sector. 143

Appendix C: Checksum Algorithm for LEN Entry 144

References. 144

6 Deleted File Recoveryin FAT 145

6.1 Principles of File Recovery 145

6.2 File Creation and Deletion in FAT File Systems 148
6.2.1 FileCreation................ . ..o, 149
6.22 FileDeletion.............. 150

6.3 Deleted File Recovery in FAT File Systems. 151

6.4 Practice Exercise. i 154
6.4.1 Setting Up the Exercise Environment. 154
6.4.2 EXEICISeS. 154

6.5 Helpful TipS. . . . oo 157

References.o 161

7 Examining NTFS File System 163

7.1 New Technology File System. 163

7.2 TheMaster File Table., 165

73 NTFSIndexing.ooiiiiiuinn.. 174
731 B-Tree. ... 174
7.3.2 NTFS Directory Indexing 176

7.4 NTFS Advanced Features 185
7.4.1 Encrypting File System (EFS). 186
7.4.2 Data Storage Efficiency 191

7.5 Practice EXercise. 194
7.5.1 Setting Up the Exercise Environment. 194
7.5.2 EXEICISeS.ot 194

7.6 Helpful Tips. e 195
7.6.1 Locate the Master File Table (MFT)

inan NTFS Volume 195
7.6.2 Determine the Address of the Cluster
Which Contains a Given MFT Entry 196

References. e 197

Xviii

8

10

11

Contents

Deleted File Recovery in NTFS. 199

8.1 NTFS Deleted Files Recovery 199

8.1.1 File Creation and Deletion in NTFS File Systems. 200

8.1.2 Deleted File Recovery in NTES File System. 206

8.2 Practical Exercise. 208

8.2.1 Setting Up the Exercise Environment. 208

8.2.2 EXEICISES . . . v vv ettt 208

References. 210

File Carving. 211

9.1 Principlesof File Carving. 212

9.1.1 Header/Footer Carving. 212

9.1.2 Bifragment Gap Carving (BGC). 216

9.2 FileCarving Tools. 221

9.2.1 Foremost............ 221

922 Scalpel...... 223

9.2.3 TestDisk and Photorec. 223

9.3 Practical Exercise. 231

9.3.1 Setting Up Practical Exercise Environment. 231

9.3.2 EX@ICISeSttt 232

References. 232

File Signature Searching Forensics. 235

10.1 Introduction., 235

10.2 File Signature Search Process 236

10.3 File Signature Search Using hfind 238

10.3.1 Create a Hash Database Using mdSsum. 239

10.3.2 Create an MD5 Index File for Hash Database 240

10.3.3 Search Hash Database for a Given Hash Value. 240

10.4 Practice EXercise, 241

10.4.1 Setting Up the Exercise Environment. 241

1042 EXEICISES . . v v v e e e e e e e 241
Appendix A: Shell Script for Generating Files for File

Hash Database. 242

References. 244

Keyword Forensics. 245

11.1 Forensic Keyword Searching Process. 246

11.2 Grep and Regular Expressions. 247

113 CaseStudy. 248

11.4 Practice EXercise 252

11.4.1 Setting Up Practical Exercise Environment. 252

11,42 EXEICISES . . v v vt e e e e e e e 252

Appendix: Regular Expression Metacharacters. 254

References. e 255

Contents

12

13

Timeline Analysis.
12.1 Principle of Timeline Analysis.
12.1.1 Timeline.
12.1.2 Timeline Event.
12.2 Timeline Analysis Process.
12.2.1 Timeline Creation.
12.2.2 Timeline Analysis.
12.2.3 MAC Timeline Creation and Analysis
with TSK. ...
12.3 Forensic Timeline Analysis Tools.
12.3.1 Log2timeline.,
1232 EnCase.t
124 Case Study.t
12.5 Practice EXercise.
12.5.1 Setting Up the Exercise Environment.
1252 EX@ICISES . . v v e e e e e e e
References.
Data Hiding and Detection
13.1 Data Hiding Fundamentals.
13.1.1 Hidden Files and Folders.
13.1.2 Masks and Altering Names.
13.1.3 Volume Slack.
13.1.4 Slack Space........ i
13.1.5 Clusters in Abnormal States.
13.1.6 Bad MFT Entries.
13.1.7 Alternate Data Streams
13.2 Data Hiding and Detection in Office Open XML
(OOXML) Documentsvv ittt it et
13.2.1 OOXML Document Fundamentals.
13.2.2 Data Hiding in OOXML Documents.
13.2.3 Hidden Data Detection in OOXML
Documents. i
13.3 Practical Exercise.
13.3.1 Setting Up the Exercise Environment.
1332 EXEICISES . . v vttt ittt e e e
References. o

Part III Forensic Log Analysis

14

Log Analysis.
14.1 System Log AnalysiS. v,
14.1.1 Syslog. ...
14.1.2 Windows EventLog.

14.1.3 Log Analytics Challenges.

Xix

XX

Contents

14.2 Security Information and Event Management

System (SIEM) 313
14.2.1 Log Normalization and Correlation. 316
1422 LogData Analysis. 318
14.2.3 Specific Features for SIEM 320
14.2.4 Case Study of Log Correlation. 321
143 Implementing SIEM. 322
143.1 HowOSSIMWorks. 322
14.3.2 AlienVault Event Visualization. 324
144 Practice Exercise. i 328
14.4.1 Setting Up the Exercise Environment. 328
1442 EXEICISES . . . v vttt e e e e 331
References.o 331

Part IV Mobile Device Forensics

15

16

Android Forensics. i il il 335
15.1 Mobile Phone Fundamentals. 336
15.2 Mobile Device Forensic Investigation. 338
15.2.1 Storage Location. 339
15.2.2 Acquisition Methods 341
1523 DataAnalysiS.iiiinn... 349
1524 CaseStudies............... 352
15.3 Practice EXercise. 362
15.3.1 Setting Up Practical Exercise Environment. 362
1532 EXEICISeS . . . vttt e 368
References. 370
GPS Forensics. i 373
161 The GPS System.......... 374
16.2 GPSEvidentiary Data. 377
163 Case Studyo 377
16.3.1 Experiment Setup............................ 378
16.3.2 Basic Precautions and Procedures. 378
16.3.3 GPS Exchange Format (GPX)................... 379
1634 GPXFiles. 384
16.3.5 Extraction of Waypoints and Trackpoints. 385
16.3.6 How to Display the TracksonaMap.............. 386
16.4 Practice Exercise. 389
16.4.1 Setting Up Practical Exercise Environment. 389
1642 EXErCiSes.uuiiiiiinninnn... 389

References. e 397

Contents XXi

17 SIM Cards Forensics. 399

17.1 The Subscriber Identification Module (SIM). 399

17.2 SIM Architecture. vt 401

17.3 Securityttt 403

17.4 Evidence Extraction. oo, 405

1741 Contactsov vttt 405

1742 Calls. ..o 405

1743 SMS 406

17.5 Case Studies. ovv e 406

17.5.1 ExperimentSetup...............c.vuiuiiinn... 406

17.5.2 Data Acquisition., 406

1753 DataAnalysiS. 409

17.6 Practice EXercise. 418

17.6.1 Setting Up the Exercise Environment. 418

17.6.2 EXEICISES . o v vttt ittt e e et e 421

References. 422
Part V Malware Analysis

18 Introductory Malware Analysis. 425

18.1 Malware, Viruses and Worms. oo .. 426

18.1.1 How Does Malware Get on Computers. 426

18.1.2 Importance of Malware Analysis. 427

18.2 Essential Skills and Tools for Malware Analysis. 427

18.3 List of Malware Analysis Tools and Techniques. 428

18.3.1 Dependency Walker. 429

1832 PEvViewW. 432

1833 W32dasm. 435

1834 OllyDbg. 436

18.3.5 Wireshark. 436

18.3.6 ConvertShellCode 438

184 CaseStudy.t 441

18.4.1 ODbJeCtiVeS . . v vttt 442

18.4.2 Environment Setup. 442

18.4.3 Concluding Remarks. 452

18.5 Practice EXercise.t 453

References. 454

19 Ransomware Analysis. 455

19.1 Patterns of Ransomware. 456

19.2 Notorious Ransomware., 458

19.2.1 CryptoLocker Ransomware. 459

19.2.2 Miscellaneous Ransomware 461

xxii Contents

19.3 Cryptographic and Privacy-Enhancing Techniques as Malware

To0lS . . .o 462
193.1 RSA Cryptosystem. 462
1932 AES CryptosyStemcovvevnnn e 463
19.3.3 Cryptographic Techniques as Hacking Tools. 464
19.3.4 Tor Network and Concealing Techniques. 464
19.3.5 Digital Cash and Bitcoin as Anonymous
Payment Methods 466
19.4 Case Study: SimpleLocker Ransomware Analysis. 468
19.4.1 Overview of Android Framework 468
19.4.2 Analysis Techniques for SimpleLocker. 469
19.4.3 Online Scan Service. 471
19.4.4 Metadata Analysis. 472
19.4.5 Static Analysis. 475
19.4.6 Analysis of SimpleLocker Encryption Method 485
19.47 Dynamic Program Analysis. 491
19.4.8 Removal Methods of SimpleLocker. 492
19.5 Practice Exercise. i 496
19.5.1 Installing Android Studio. 496
19.5.2 Creating an Android Application Project. 497
References. 503

Part VI Multimedia Forensics

20 Image Forgery Detection. 507
20.1 Digital Image Processing Fundamentals. 508
20.1.1 Digital Image Basis. 508

20.1.2 Image Types. 510

20.1.3 Basic Operation and Transform. 512

20.2 Image Forgery Detection. 518
20.2.1 Image Tampering Techniques. 520

20.2.2 Active Image Forgery Detection. 522

20.2.3 Passive-Blind Image Forgery Detection. 525

203 Practice Exercise. i i 549
20.3.1 Setting Up Practical Exercise Environment. 549

20.3.2 EXEICISES . . .ottt et e e 550

References. 554

21 Steganography and Steganalysis........................... 557
21.1 Steganography and Steganalysis Basis. 558
21.1.1 Steganography Basis......................... 558

21.1.2 SteganalysisBasis. 561

21.2 Steganography Techniques and Steganography Tools. 562
21.2.1 Steganography Techniques..................... 563

21.2.2 Steganography Tools. 569

Contents

21.3

214

Steganalytic Techniques and Steganalytic Tools. 571
21.3.1 Steganalytic Techniques. 572
21.3.2 Steganalysis Tools. 574
Practice Exercises. i i 574
21.4.1 Setting Up the Exercise Environment. 574
2142 EXErCiSes., 575

References. e 576

Part 1
Fundamentals of Computer Systems and
Computer Forensics

Chapter 1 ®)
Introduction to Computer Forensics e

1.1 Introduction

Thousands of years ago in China, fingerprints were used on all business documents
in the same way signatures are used today—to provide approval of the document, or
authorization to perform any actions that the document outlines. This was the very
first application of forensics in the world. Since then, law enforcement around the
world has slowly developed the forensic skills and tools to investigate crime scenes,
using forensic sciences and methods to learn what happened. An example of this is
Song Ci, an outstanding forensics scientist in Ancient China who documented his
lifetimes of experience and thoughts on forensic medicine in his book ‘“Washing
Away of Wrongs: Forensic Medicine”. These works were the first of their kind in the
world (Fig. 1.1).

By the early twentieth century, with advances in science and technology, many
new forensics techniques had been developed. The growing prominence of these
techniques leads law enforcement to set up specialized forensic units to study the
evidence collected from crime scenes.

1.1.1 Young History

In contrast to forensics in general, computer forensics has a brief history. It started to
evolve about 30 years ago in the U.S., when law enforcement and military investi-
gators saw that the number of computer-related crimes (or e-Crimes or Cybercrimes)
was increasing at an alarming rate. Due to this trend, the FBI was commissioned to
set up the Magnetic Media Program in 1984, now known as the Computer Analysis
and Response Team (CART), in order to protect their confidential government
documentation. The objectives of this program were to conduct forensic investiga-
tions and protect top secret government information from being compromised, while

© Springer Nature Switzerland AG 2018 3
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_1&domain=pdf

4 1 Introduction to Computer Forensics

Fig. 1.1 “Washing Away
of Wrongs: Forensic
Medicine” authored by
Song Ci (1186-1249)

also mitigating any risks to this information in the future. Special Agent Michael
Anderson, who was responsible for starting the CART program, was later credited as
“the father of computer forensics”. Since then, the art of protecting information
security, and the art of investigating cybercrime, have become the foundation and
integral components of computer forensics.

In December 1997, The Group of Eight (G8)—eight highly industrialized nations
including Canada, France, Germany, Italy, Japan, Russia, UK, and U.S., established
the Subgroup of High-Tech Crime. During the G8 subgroup meeting on high-tech
crime, the G8 acknowledged the “International Nature of Computer Crime” and
brought together high-tech experts in the world for the first time to discuss “Com-
puter Forensic Principles”, 24/7 law enforcement points of contact, and dialogue
with the industry, in order to combat ever-increasing cybercrime. Collaboration with
the industry to assist in data preservation has continued ever since.

In today’s environment, ever-advancing computer power is available to govern-
ments, private businesses, and even the general public. Forms of this rapidly-
increasing power include increased networking power, multitudes of new uses for
the Internet, e-commerce and digital distribution platforms like Valve Corporation’s
Steam, and network-accessible portable devices like smartphones and PDAs. All of
these new technologies present golden opportunities for organized cybercrime,
which can occur at anytime and from anywhere in the world. Despite the CART’s
initiative’s efforts, computers and other electronic devices are increasingly being
used as tools to commit illegal activities against individuals, businesses, organiza-
tions, and even entire governments. Due to the widespread deployment of network-
ing technologies and the Internet, cybercrime has become a new reality that we have

1.1 Introduction 5

to face every day. High tech crimes such as personal identity theft, financial fraud,
theft of intellectual property, cyber espionage, network intrusions, etc. are increasing
rapidly.

Despite this well-established trend, law enforcement agencies around the world
lack the experience to deal with cybercriminal activities reliably. Cybercrime is
currently resulting in billions of dollars in financial losses, as well as damages to
the reputations of businesses, organizations, and governments. This demonstrates a
clear need for a more comprehensive approach to the investigation of digital
incidents and computer-related crimes, as well as protecting victims and their data.
Protection from cyberattacks has become an integral part of the forensic analysis
process, despite the additional time, inconvenience, and cost associated with pro-
viding such protection.

1.1.2 A Field on the Rise

In an attempt to deal with this new crime form, authorities from around the world are
establishing high-tech crime units, dedicated to fighting cybercrime and investigat-
ing offences involving computers and digital devices. Computer forensics laborato-
ries have also been established worldwide to assist in investigating and solving
crimes. These laboratories serve by collecting, analyzing, and presenting electronic
evidence stored on computers, and other electronic devices discovered or confis-
cated. As a result of their success, demand for innovative computer-forensic tech-
nology is growing at an extraordinary rate. A new industrial sector is forming and
booming, specialized in providing computer forensic services such as recovery of
deleted data, and developing these demanded technologies for forensic investiga-
tions. Guidance Software, now part of OpenText, pioneered, and remains a world
leader in e-discovery and digital investigations. Guidance Software provides the
industry-standard computer investigation solutions by its flagship product, EnCase®,
which allows examiners to acquire data from a wide variety of devices, unearth
potential evidence with disk level forensic analysis, and craft comprehensive reports
on their findings, all while maintaining the digital chain of custody to ensure the
integrity of their evidence [1].

At the same time, the academic research in the field of computer forensics is
exploding and becoming very active. The main venue for academics and practi-
tioners working on digital forensics, DFRWS digital forensics conference [2], is
realizing its 18th anniversary in 2018, and many cutting-edge research topics and
perspectives on best practices have been presented there. For example, one common
task for a digital investigator is to recover deleted files or restore lost files. Existing
solutions are predominantly for the recovery of contiguous files, which are stored
from beginning to end in consecutive data blocks on the storage device. Unfortu-
nately, a large portion of files that are frequently used in our daily life, such as
emails, are fragmented and stored in multiple pieces, either because they are very
large or because they were frequently accessed and modified. Fragmented file

6 1 Introduction to Computer Forensics

recovery is a very challenging problem because it is difficult, if not impossible, to
know the order and physical locations of the fragments; it remains an open research
area. Many promising approaches were introduced at DFRWS in the past; one of
them is called bi-fragment gap carving [3], which can be used to effectively recover
deleted files that have been fragmented and stored in exactly two pieces. Others look
into internal file structures uniquely possessed by different types of files, such as
restoring deleted fragmented image files [4]. This topic will be explored in more
detail later in this book.

Throughout the rise of computer forensics industry, we have seen an increased
demand for digital forensics experts. Unfortunately, demand has raced ahead of
supply. Across the globe, governments and organizations have become increasingly
vocal about the shortages of digital forensics experts, becoming a serious constraint
in some sectors. In order to lessen the shortage of digital forensics talent, there are
now many industry training programs and certifications, like SANS and InfoSec.
Universities around the world are also launching various levels of degree programs
in Digital Forensics.

1.1.3 Challenges

Computer forensics, even with its brief history, is proving to be an imperative
science for law enforcement, and it is developing rapidly. Today however, computer
forensics is still facing many challenges that force us to seek and develop new
investigative analysis techniques. In recent years, the immense advancement of
computer networking and Internet technologies has become the main challenge for
computer forensics professionals. The combination of rapid development, global
availability, and high influence on the population, leads these technologies to be
abused most by cybercriminals, and therefore they become the most vulnerable to
cybercrime. Rapid development makes it difficult for computer forensics specialists
to maintain the ability to discover and gather evidence, as the range of both evidence
itself, and methods of hiding it, increases with each technological development.
Another challenge for computer forensics professionals is that the development of
new Internet and computer networking technology consistently outpaces the legal
reform, which is comparatively much slower to reach to change. Where electronic
technology of all kinds is rushed through the development stages in an effort to get it
to the consumer faster, even the most mundane legal updates must be forced through
wave of approval and revision before they can be enforced. Until the law states that
an activity is illegal, it is only immoral, and authorities will be unable to combat the
threat, regardless of how blatant it is. These legal restraints create unnecessary
obstacles in both digital investigation and digital evidence extraction. For example,
cyberbullying, an online form of the use of coercion to harm other people, has
become an ever increasing problem in our society, and a recent study shows one in
five children have been victims of cyberbullying on social media sites during the last
year [5]. However, abusers barely get punished for bullying others online due to lack

1.1 Introduction 7

of applicable laws and the difficulty of tracking down cybercriminals. This can also
be extended to non-standardized deployments of technologies, due to pending or
changing ISO standards; such technologies may not fall within the collective
groupings that the laws govern, resulting in a legal loophole that makes abuse of
these technologies legal. Additionally, the resulting poor technical documentation
makes it difficult for forensic investigators to even accomplish the required tasks,
never mind gaining the approval to do so.

Although traditional computer forensics relies heavily on static examination of
data storage media (this is called “dead analysis,” because the system is in a
shutdown state), new waves of attacks, using the latest technology, will leave little
or no trace on a victim’s hard drive. This is because the attacker tries to take
advantage of the information in the computer’s volatile memory (RAM, caches,
and registers). As a result, traditional techniques, such as offline hard disk acquisi-
tion, will not be effective.

To solve this problem, live analysis is used, in place of dead analysis. Although
live analysis also involves looking through storage media, its main focus is to
investigate volatile memory. This method presents new challenges, as live analysis
techniques are usually intrusive and can actively affect the system being observed. If
the attackers discover that their system is being analyzed, and shut the system down
as a defense, most of the volatile data would be lost forever. On the other hand, even
if the system is still active, the kernel and programs employed by the forensic
investigators may have negative influences on the investigation results. Investigators
performing live analysis must be extremely careful to minimize their impact on the
system; this is very important, not only to ensure that their presence is not discov-
ered, but also to preserve the legal integrity of any evidence found.

In recent years, there has been increasing emphasis on performing live analysis.
One reason, as described above, is that many current attacks against computer
systems leave no trace on the computer’s hard drive; the attacker only exploits
information in the computer’s volatile memory. Examples of these attacks would
include Internet worms and rootkits. Another reason is the growing use of crypto-
graphic storage: It is quite possible that the only copy of the storage’s decryption
keys is in the computer’s memory, and therefore, turning off the computer
(to perform dead analysis) will cause that information to be lost. For example,
some operating systems employ default or configurable encrypted file systems. An
example of this would be windows 7/8 BitLocker or Linux distributions that encrypt
their users’ directories. These technologies bring challenging cryptographic prob-
lems into the forensic process, many of which cannot be solved without knowledge
of the secret keys used.

One rapid technological development in particular has a dramatic impact on the
environment in which society and businesses exist—it changed the way these
functions operate in a way that had not been seen since the desktop computer was
invented to begin with. This development, is cloud computing. Fast, convenient
access to network resources, and powerful computing capabilities, become a major
key to success for financial institutions, research centers, universities, governments,
and public institutions; today, even many average businesses are using cloud

8 1 Introduction to Computer Forensics

computing to expand and enhance their capabilities. Cloud computing provides
users with global access to shared data processing, computing, and storage applica-
tions, at a fraction of the cost of hardware and components that would otherwise be
required. Similar to the way tenants rent an apartment in a building owned by
someone else, clients essentially purchase the right to use hardware that is hosted
by a third party; the difference between cloud computing and the apartment analogy
is that, when needed, a client theoretically has access to all of the provider’s
hardware—they do not purchase rights for a specific hard disk or processing
machine. Cloud computing can be very beneficial to its clients, but it does pose a
challenge to computer forensics, as there are logistical and legal boundaries when
dealing with any sort of remote storage. Due to rapid development and deployment,
there is little legislation surrounding the topic, just like many other topics mentioned
so far (and many more that have not been mentioned).

Just as significant are the developments in disk storage technology, the ever-
growing storage capacity also poses a challenge for computer forensics, particularly
for existing data recovery algorithms, in terms of performance and efficiency. With
the increase in computer storage, we’ve seen disk storage go from 8 MB to more than
3 TB, and with the ever-increasing need for storage, this trend is only going to
continue. These large storage devices present the need for more efficient algorithms
to parse and recover the data we are looking for. Also, with SSDs (Solid State
Drives) becoming popular as the primary storage components in some consumer
PCs, the landscape of computer forensics has changed. Potential evidence could be
lost as SSDs are designed to self-destroy files for efficiency reasons. In these
circumstances, it is almost impossible to extract these destroyed files. Fortunately,
there are many exceptions where these mechanisms are not applied. For example, If
SSDs are used in NAS (Network Attached Storage) devices, RAID devices, and
those connected externally via USB or FireWire, they do not use self-destroy
mechanisms thus SSD drives can be recovered in the same way as from a traditional
drive. Additionally, these mechanisms are not supported in old versions of Win-
dows, Mac, and Linux operating systems. Therefore, they are also exceptions.
However, there are certainly more attention that must be paid to understand how
SSDs function and study the challenges of performing forensic examination of SSDs
[6, 71.

To make matters even more complex, many compression methods are applied to
the data, reducing the amount of storage space it requires. For example NTFS, the
most common file system for windows machines, uses the L2NT1 algorithm for its
compression, which removes a stream of continuous zeros from its physical storage
of files. Similarly, other compression and encoding techniques could be applied on
any operating system to maximize disk efficiency [8]; however, this results in added
complexity at the operating system level, and exponential complexity for any
forensic investigation.

Like many wars, an arms race is taking place in the field of forensic investiga-
tions, as with other areas of information security. As forensic investigation tech-
niques evolve, criminals also use more advanced techniques, and/or exploit
vulnerabilities in existing investigation techniques to make it hard or impossible to

1.1 Introduction 9

recover evidence left behind, or possibly even avoid leaving evidence altogether.
This process is known as anti-forensics, and is assisted by the wide variety of tools
available online.

An example of this would be “zeroing” a drive. After an attacker compromises a
system and achieves his goal, such as information retrieval, he may attempt to cover
his tracks by zeroing the drive. “Zeroing” refers to writing zeros to the entire drive.
Although it is still possible to recover some data from a zeroed drive, another better
option for the attacker is to write random streams of data over the drive, several times
in succession. It has been determined that multiple passes are required to make the
original data fully unreadable [9]; the reason for this is because although data is
binary and discrete, the strength of a magnetic field is continuous, and overwriting an
existing bit does not entirely nullify the magnetic strength that existed before. As a
result, overwriting an original O with a new 1 creates what is effectively a 0.95, but is
interpreted by the hard drive as a 1 because 0.95 is well within the “margin of error,”
or “tolerance” of the drive’s magnetic head [9]. Professional investigation of a hard
drive, using a head that is at least 20 times as sensitive as a standard hard drive head,
allows for this distinction to be observed [9]. If an investigator suspects that a hard
disk has been zeroed out, these distinctions can used as a clue to find the original
bit-values. Regardless, each successive overwrite makes discovering the true value
more difficult, not only because it can be difficult to determine how many times the
data was overwritten (on a heavily-used hard drive, these sectors could have been
legitimately deleted several times in the past), but also because the current magnetic
strength of each bit becomes so specific that the difference between two bits could be
within the margin of error (the difference between 1.0000001 and 1.00000099 is
extremely subtle). Combining zeroing and random overwriting is optimal for an
attacker; by first randomizing the data, and then zeroing everything, statistical
recovery becomes sufficiently difficult, but the process is much more time-efficient
than overwriting an entire drive a number of times.

In the above example, it is clear that the attacker has malicious intent, due to the
fact that he is attempting to remove evidence of his attack, but this is not always so
obvious. There are three classifications of people that deal with information security:
White hats, grey hats, and black hats. The term “white hat” refers to someone that
deals with proactively protecting information, such as a forensic investigator, infor-
mation security officer, etc. A “black hat,” on the other hand, attempts to access
protected information for malicious purposes, and actively attempts to disable,
breach, deceive, or otherwise circumvent any security he encounters. Finally, grey
hats are contract workers who are skilled in computer security practices, and will
participate either as white hats or black hats, depending on the motives of their
employers. It is obvious that with cybercriminals constantly seeking new and better
ways to hide their digital traces, we, as digital investigators, need to constantly
develop innovative forensic technologies to defeat them.

10 1 Introduction to Computer Forensics
1.1.4 Privacy Risk with Digital Forensics

Also, over the past few years, privacy in digital forensics has attracted more and
more attention from the public with the latest incidents highlighting its importance.
For example, in January 2008, Edison Chen, a Hong Kong film actor, was plagued
by a scandal where sexually explicit nude photographs of himself taken 4 years
earlier became widely circulated on the Internet. It happened because the computer
technician who repaired his notebook recovered these photographs and illegally
distributed them to the Internet [10]. As a result, privacy concerns may keep many
people from assisting with an investigation or seeking professional assistance since
they are afraid of embarrassment and humiliation, especially, when sensitive data are
involved.

Intuitively, there are conflicts between investigation warrants and privacy rights
since forensic investigation cases may expose private data that are not relevant to the
purpose of investigation case. Unfortunately, privacy disclosure is irreversible,
which means that once the private data is exposed it is impossible to “‘undo’ this
exposure effects even though the suspect is found innocent. This issue can be partly
addressed by enacting policy laws. In EU, there are two main acts managing privacy
rights, namely Charter of Fundamental Rights of the European Union 2000 [11] and
EU Data Protection Directive of 1995 [12]. In U.S., different privacy regulations are
applied in specific areas. For example, Health Insurance and Accountability Act
(HIPAA) is created for the health industry while financial institutions should obey
the Gramm-Leach Bliley Act (GLBA) [13].

Albeit there are policies to limit the rights of the forensic investigators, the
contradictory nature of digital investigation and privacy still makes it hard to achieve
a balance between them. Fortunately, some privacy protection technologies can be
used for digital investigation to solve this dilemma. For example, privacy respecting
keyword search techniques can be explored for investigators to search for keywords
[14]. Anonimizing or de-personalizing data records while maintaining the properties
of the data is another very applicable technique for forensics investigation.

1.1.5 Looking Ahead

As we go deeper into the digital age, we will see more and more organizations,
businesses, and governments, completely digitize their organizational information
and intellectual property, and establish presences on the web. The digital world has
become a huge part of business, just as it has of all aspects of our lives. As digitizing
information and creating online presences allows organizations to efficiently man-
age, transport, and store information (resulting in increased successful opportuni-
ties), it also increases the number and severity of threats posed towards this
information.

1.1 Introduction 11

The nature of financial crime, for example, has changed significantly over time,
especially with the adoption of digital records over paper ones. Before the digital
age, criminals manufactured fake money and receipts, and had to persuade people
face-to-face with lies and misinformation in order to con people. Nowadays, crim-
inals frequently use the Internet to find their fraud victims, using methods such as
hacking, viruses and malware, keylogging, and phishing. Technological advances
also make it easier for criminals to promote their activities, and retain their anonym-
ity. While we will continue to see old-fashioned financial fraud, the practice of
financial crimes and fraud involving computers is very much on the rise. Financial
crimes are now closely connected to cybercrime, and that is where the real threat will
emerge now.

As the nature of financial crime changes, so too does the approach to minimizing
opportunities for criminals. In particular, many sorts of crimes are now being
committed through computer systems, and the field of computer forensics must
exist to allow for the investigation of digital devices. Without it, digital crimes
cannot be adequately judged in a court of law. Whether we are able to collect or
recover electronic data, and then analyze them in order to reconstruct or detect
financial fraud, may be the biggest and most vital challenge we face.

Whereas the tangible skill set of computer forensics is closely related to infor-
mation technology and communication, computer forensics is only a small part of
the solution to crime, and computer forensic technology alone may not be sufficient
to solve crimes. Even so, computer forensics experts must have faith in team
mentality, and concentrate on domain expertise. One example of this is financial
fraud investigation. In the future, we will see new professional titles emerge, such as
“financial forensics investigator”. Also referred to as forensic accountants or forensic
auditors, these highly-skilled individuals will have a background not only in com-
puter forensics, but also in investigative techniques for fraud and financial crime.
This trend will also occur in other specialized fields of forensics, resulting in larger
teams who, in total, have a set of skills that is enormously broad, and just as deep.
The recent Griffiths Energy bribery case investigation highlights the efficiency of
this model well [15]. It involved a lot of extensive forensic analysis on a wide variety
of electronics collected from people involved in the case, such as searching the
acquired digital information for key words in several different languages; whenever
a search hit was found, experts who deeply understood the real-world implications of
the evidence took over, and, by further developing their theories, instructed the
forensic investigators to search for new evidence of different natures. Gradually,
these teams uncovered massive bribery schemes in a successful investigation, using
combined skill sets that are simply too massive for any one person to ever master.

Due to the nature of computer forensics targets, criminals can perform their
malicious activities from all over the world. Crimes involving computers are wars
without borders, involving multiple jurisdictions. In addition to the technical chal-
lenges of tracking and tracing cybercrimes, the legal situation becomes very com-
plicated because multiple jurisdictions are involved, and law enforcement in one
jurisdiction has no authority to act in another. This has led to the need for interna-
tional cooperation in conducting investigations and prosecuting criminals.

12 1 Introduction to Computer Forensics

INTERPOL (International Police) built cybercrime programs to keep up with
emerging cyber threats, and aims to coordinate and assist international operations
for fighting crimes involving computers. Although significant international efforts
are being made in dealing with cybercrime and cyber-terrorism, finding effective,
cooperative, and collaborative ways to deal with complicated cases that span mul-
tiple jurisdictions has proven difficult in practice.

As with a real-world crime scene, the practice of computer forensics has to be
supported by digital forensics practitioners. To preserve the scene, digital forensics
professionals must ensure that system logs, operating system data, etc. is acquired
and stored as an image at the time of forensic acquisition. Digital forensics pro-
fessionals must be in a position to assist any potential legal process, ensuring that the
evidence supports a successful and fair legal outcome. To combat the difficulty in
this goal that will come from the ever-changing nature of digital forensics, rapid
standardization in many fields, such as evidence gathering, will be required wherever
possible. It currently is (and always will be) very important that digital forensics
practitioners follow these guidelines and principles, because as explained before,
only through the use of unmatched teamwork will the application of digital forensics
be successful—following standards aids teamwork by making it easier for others to
make use of work done by a specific person.

Computer forensics has great prospects on solving crimes and improving security
of our society as computers and digital devices become more involved in crimes.

1.2 What Computer Forensics Is and Why It Is Important

Digital devices such as cellular phones, PDAs, laptops, desktops and many other
data storage devices pervade many aspects of life in today’s society; many contain
much more information than most people realize. The digitization of information and
its resultant ease of storage, retrieval, and distribution, have revolutionized our lives
in many ways, also leading to a steady decline in the use of traditional print
mediums. For example, the publishing industry struggled to reinvent itself and
was forced to move to online publishing as a result. Today, financial institutions,
hospitals, government agencies, businesses, the news media, and even criminal
organizations, could not function without access to the huge volumes of digital
information and digital devices that we regularly take for granted. Unfortunately,
because of this, the digital age has also given rise to digital crime where criminals use
digital devices in the commission of unlawful activities like hacking, identity theft,
finance fraud, embezzlement, child pornography, theft of trade secrets, etc. Increas-
ingly, digital devices like computers, cell phones, cameras, etc. are found at crime
scenes during a criminal investigation. Consequently, there is a growing need for
investigators to search digital devices for data evidence including emails, photos,
video, text messages, transaction log files, etc. that can assist in the reconstruction of
a crime and identification of the perpetrator. One of the decade’s most fascinating
criminal trials was against corporate giant Enron. The trial was successful largely

1.2 What Computer Forensics Is and Why It Is Important 13

due to digital evidence, in the form of over 200,000 emails and office documents
recovered from computers at their offices. Computer forensics is an increasingly
vital part of law enforcement investigations and is also useful in the private sector,
for example, for disaster recovery plans for commercial entities that rely heavily on
digital data as well as lawsuit protection strategies through digital evidence gathering
against an employee that an organization wishes to terminate [16].

Computer forensics can improve system security by mimicking and/or investi-
gating how attacks are performed. It is extremely helpful for solving crimes and
investigating incidents. Usually, large corporations hire computer forensics consult-
ing firms to test the security of their information systems. The specialists from these
firms actively attempt to surpass a system’s defenses, which is called “penetration
testing”. The computer forensics specialists play the roles of white hat hackers.
Notably, computer forensics services are more focused on why past attacks hap-
pened. They attempt to detect those attacks (or other illegal activities) in the first
place. Malware analysis and searching for contraband files are good examples of
computer forensics applications.

So what exactly is computer forensics? Simply put, it is the application of
traditional forensic science, in the environments of digital media. Computer foren-
sics is concerned with extracting digital evidence from suspect systems, doing it in a
way that preserves its legal worth, using that evidence to construct and prove
hypotheses about crimes, and ultimately, giving prosecutors the proof they need to
bring criminals to justice. There are two main components to computer forensics:
The first being the technical aspect of performing forensic analysis on digital media,
and the second being the legal aspect of maintaining evidence and proving
sequences of events. The first one is also known as digital investigation. A digital
investigation begins when a digital device is involved in an incident or crime. The
difference between digital investigation and computer forensics (digital forensics)
is that digital forensics has to deal with legal requirements of acquiring, preserving
and processing digital evidence.

With the advancement of technology, computer forensics has also greatly
evolved. Mobile computing devices, such as smartphones and tablets, have been
widely used over the recent years. Rather than being additional, complimentary
computing devices, mobile devices have been gradually relied upon as primary
computing devices because of their increasing processing capability. Therefore,
more and more information are manipulated and saved in mobile devices, which
brings a new target for the attacker. As a result, the term “computer forensics” has
expanded to cover investigation of all devices capable of storing digital data,
including smart phones and tablets, GPS, mp3 player, and therefore, is also referred
to as digital forensics (or even cyber forensics).

As for actually performing computer forensics, a wide variety of computer/
networking techniques and principles are used to solve a crime and provide evidence
to support or rebut a case. For example, statistical analysis on electronic payments in
a Canadian university reveals a suspicious pattern, an unusually high number of
refunds made by an employee after hours and on weekends at the copy center,
prompting the university authority to launch electronic payments audit of the center.

14 1 Introduction to Computer Forensics

FBI CART Experience

7000 . ;
Case load: 6000 |- =g::s:el::?nined
-FY'99 -2084 cases
-FY 00 -3891 cases 5000
~-FY 01 -5166 cases
-FY 02 -5924 cases 4000
-FY 03 -6546 cases
Data examined: |
-FY 99 -17 terabytes il
-FY 99 -39 terabytes
-FY 99 -119 terabytes il
-FY 99 -358 terabytes
-FY 99 -782 terabytes 0 ; : im

Fya9 FYo0 FY D1 Fyo2 FYm3

Fig. 1.2 FBI CART

It eventually leads to the arrest of the fraudster [17]. From a technical perspective
(that is, omitting the legal components), computer forensics may also be referred to
as “computational forensics.”

Computer forensics is important for many reasons since it allows for data
recovery, system recovery, crash analysis, volatile memory analysis, and many
other valuable services, while also providing frameworks to protect the legitimacy
of digital evidence (which is critical if it is to be used in court). Suppose a company’s
database is missing information and the system administrator is asked to resolve the
issue. Upon investigating the system, he notices that a bug in a recently applied patch
has caused foreign key constraints to change (foreign key constraints govern how the
individual tables in a database are related to each other), automatically deleting some
database tables. A variety of approaches could be taken to resolve the issue: If a
backup was made prior to the patching process then it could be reverted to that state,
or the drive or memory could be analyzed to see if the information is still physically
presented and in a recoverable state.

Needless to say, however (after repeated explanation), computer forensics is most
notable for its role in court cases that involved digital evidence, such as child
pornography. Such evidence has increased steadily in recent years; The FBI’s
CART handled more than 2000 cases in 1999, examining 17 terabytes of data, but
over the course of the next 4 years, this figure completely exploded to exceed 6500
cases and 782 terabytes of data, as shown in Fig. 1.2.

Organizations and companies frequently use digital evidence in their own disci-
plinary cases. Furthermore, the incidence of fraud in the finance and insurance
industries is on the rise, resulting in billions of dollars lost annually. It has become
one of the most challenging and complex issues impacting the industry worldwide
today.

1.3 Digital Evidence 15

Finally, forensic analysis techniques have also been adopted to analyze a
compromised computer system in general, for example, to determine attack tech-
niques used by the attacker, including how the attacker gained access and what the
attacker did. Incident response and malware analysis are examples of them, and
needless to say, this is valuable information to gain.

1.3 Digital Evidence

Whenever a crime occurs, a forensic investigation will be launched. Besides inves-
tigations, anything described as “forensic” is involved in uncovering facts that are
useful in an investigation. Not only do investigations try to determine who commit-
ted the crime, but as new scenarios arise, investigations into these scenarios give
authorities an opportunity to develop new crime-stopping methods and ideas. One
major part of the investigation is to secure the crime scene; another is to collect any
evidence that could explain what happened at the crime scene, and lead to the arrest
and conviction of the perpetrator(s). Forensic evidence is required to complete an
investigation; securing the crime scene is essential for gathering evidence, because
some evidence is fragile, volatile, or otherwise easily changeable, which can seri-
ously hinder the investigation.

Just as suspects are treated innocent until proven guilty, all evidence discovered is
considered to be valuable until it is determined whether the evidence has any
forensic value or is relevant. Forensic evidence only refers to evidence that has
forensic value, but in practice, non-forensic evidence is usually removed from the
investigation, and the forensic evidence that remains is simply called evidence.
There are many types of evidence, and in the past, criminal investigations dealt
principally with physical, tangible evidence, such as DNA, blood spatter, footprints
and fingerprints, damaged property, and of course, murder weapons. However, in
recent years, there has been a dramatic increase in computer crimes, where digital
devices, including computers and mobile devices, are used as tools for committing or
becoming involved in crime. As a result, investigators have resorted to a new special
type of forensic evidence—digital evidence—to fight crime.

Any information that is stored or transmitted in a machine-readable form, and
maintains enough integrity and legitimacy to be used in a court of law, is referred to
as digital evidence [18], regardless of whether it’s a 1000-page document, 24 h of
video, or a single bit that happens to be important to a case somehow. Examples
include child pornography, emails, text files, file metadata, and other information in
many other forms. Digital evidence can be found in every digital medium, including
hard drives, cell/smart phones, CDs, tablets, digital camera cards, GPS devices, and
lots more [19] (Fig. 1.3).

Also, when collecting evidence at a digital crime scene, some precautions must be
taken in order to ensure that everything useful has been gathered. For example,
currently the fashion trend for electronic devices (e.g., USB flash drivers) is irregular
appearances. Many electronics are manufactured with appearances that are different

16 1 Introduction to Computer Forensics

Sandek 23 ’ J
2 % .
N

r -

Fig. 1.4 Toy and art USB drivers

from their traditional appearances, turning into fashionable accessories. Examples of
such USB drivers are shown in Fig. 1.4. Therefore, an investigator must carefully
screen the crime scene, looking for these devices with non-traditional appearance.

Another important thing to note is that not all digital-crime-related evidences are
digital. For example, it is not unusual that people write down their passwords and
place it somewhere they think it is convenient to find. Figure 1.5 shows someone
keeping their passwords on a sticky note that is stuck onto a monitor. It is obvious
that finding written passwords is more effective than attempting to guess a suspect’s
password if such a note is discovered, and if such as thing is found, can be used as
concrete evidence for forensic investigation.

1.3 Digital Evidence 17

Fig. 1.5 Password written on a Post-it note [20]

Nowadays, digital evidence can help to solve a wide range of crimes, including
online threats, missing persons, financial fraud, theft, drug, child pornography,
murders/suicides and so on. For example, in 2005, the notorious BTK serial killer
was identified by the investigator through a single file on a floppy disk [21]. The
killer had killed at least 10 people and eluded authorities since 1974. Other digital
evidences such as suspect’s email or mobile phone files can also be used to solve
crimes because they could hide important information. This information might
discover the suspect’s location, activities, and relationship with other suspects or
persons of interest.

Digital evidence is just another classification of evidence—no matter how
abstract or strange a piece of digital evidence seems, it is still evidence, just like a
bloody knife or a smoking gun. Evidence (of any kind) is always needed to convict
someone of a crime, and there is never such a thing as too much good evidence; this
means that digital evidence is just as valuable as physical evidence. Sometimes, it is
even more valuable than physical evidence, as it may be more directly incriminating
or more readily available than physical evidence.

Like other types of evidence, there are two issues of particular importance that
digital evidence faces, and both must be considered before it can be admitted into
court. The first is that because digital evidence is still considered evidence, it must be
legally obtained with a proper warrant; however, this creates a big dilemma when
handling digital devices, as a digital investigation (which is not forensically sound) is
often required to form a hypothesis about the case and the suspect’s involvement. In
one very recent case, a phone without password protection was searched without a
warrant by the police, causing public uproar. The most interesting aspect of the case

18 1 Introduction to Computer Forensics

was whether the phone could still be considered, since the evidence had not been
legitimately obtained [22].

Digital evidence must obey the same legal constraints as physical evidence when
used in a court of law without more stringent guidelines [23, 24]. In the United
States, the admissibility of digital evidence is determined by the Federal Rules of
Evidence. In the United Kingdom, Police and Criminal Evidence (PACE) and Civil
Evidence acts play the roles. Many other countries have their own laws. Usually,
digital evidence laws primarily concern two issues: Integrity and authenticity.
Digital evidence satisfies integrity if the evidence (neither the original, nor the
copy) is not modified during the processes of acquiring and analyzing. The ability
to confirm the integrity of the evidence is authenticity [25]. Notably, authenticity can
also refer to the accuracy of the information and the trustworthiness of the source,
but “authenticity” is not used in this context in this chapter. In order to establish the
authenticity of evidence, it is important to document the chain of custody from the
crime scene to the court (a form of audit trail) through analysis [23]. This is
particularly crucial and challenging for digital evidence since it is also unique in
that it has much greater and more specific integrity needs, compared with traditional
evidence. It is much harder to destroy or tamper with a bloody knife than it is to
modify metadata on a critical file.

Due to the fact digital evidence can theoretically be altered, attorneys have argued
that digital evidence is inherently less reliable than other forms of evidence. There-
fore, chain of custody must be maintained to preserve the integrity of digital
evidence as it passes through the stages of investigation. For example, cryptographic
hash functions are widely used to ensure digital evidence integrity. It is crucial to
preserve digital crime scene during a digital investigation. A commonly used
technique in the preservation of a computer system is to make duplicate copies of
digital storage devices such as hard disks, USB flash drive. These copies are often
referred to as “forensic images” of the original evidence or disk image. So they can
be brought into a digital forensics lab for an in-depth analysis. It is very important to
calculate and record the hash values of these forensic images for ensuring that the
same images will be used for examination and analysis later. The basic idea behind
the chain of custody is to establish a chain to ensure that the alleged evidence is
really related to the alleged crime. It must be handled in a scrupulously careful
manner to prevent tampering or contamination. Generally, chain of custody involves
documenting who had control of the evidence, and what was done to the evidence
during what period of time. Also, the evidence should be appropriately physically
protected. In this way, evidence becomes more difficult to tamper with, thus
significantly dropping down the risk of mishandling.

In the U.S., it has been decided that the well-known principle of “innocent until
proven guilty” should also apply to evidence. In other words, it should be assumed
that the information is trustworthy until there is considerable reason to doubt this
assumption. In the case of U.S. vs. Bonallo, the court ruled that “the fact that it is
possible to alter data contained in a computer is plainly insufficient to establish
untrustworthiness” [23, 26]. In the United Kingdom, the ACPO and other such
organizations establish guidelines to standardize the process of the investigational

1.4 Computer Forensics Procedures and Techniques 19

conduct and evidence handling. Additionally, the sub-branches of digital forensics
may each establish their own specific guidelines for documenting the legality of
evidence. For example, a mobile device forensics may demand the additional
requirement of placing the phone of interest in a Faraday cage during acquisition,
which would prevent any further transmission or reception of information from the
device [23].

Digital investigators are legally obligated to make their conclusions based solely
upon factual evidence and their expert knowledge [23]. They should exclude any
subjective thoughts, biases, and opinions. For example, the U.S. Federal Rules of
Evidence state that a qualified expert may testify “in the form of an opinion or
otherwise” so long as [27]:

* The testimony is formed using sufficient facts and data.

» The testimony is the product of established and reliable principles and methods.

» The witness has applied the principles and methods reliably to the facts of
the case.

Malicious attacks are skyrocketing, and as more and more people become victims
to online criminal activities in the future, digital evidence is going to play an even
larger role in crime solving and criminal prosecution.

1.4 Computer Forensics Procedures and Techniques

Computer forensics investigations go through several stages, in order to form and
test the hypotheses about the crime. Suppose someone is suspected of accessing
child pornography on the Internet. To support this claim, a USB drive containing
images was found at his home. While it is crucial to physically secure the USB drive,
the data on the USB drive must also be protected by using disk imaging, which
essentially creates a virtual copy of the entire disk and stores it on the investigator’s
computer (note that this copy is also called a forensic image or simply image, and is
not to be confused with a digital picture, like a .bmp or .jpg). Then, the acquired USB
drive image can be brought into a forensic lab for further analysis. It may be that
none of the offending images can be found in the disk areas that are normally
accessible, but digital forensic investigators are able to examine the disk image,
and would eventually recover any deleted or hidden files. Finally, any child porn
found in the USB drive image can be presented as evidence in the trial of the suspect.
There exist many methodological (procedures) models which have been devel-
oped in the field of digital forensics. Many of these studies are summarized at
[28]. Among these models, we’ll explain three representative models as follows:

¢ KRUSE and HEISER model [29]: It’s called the “Three A’s” because it has three
phases whose names start with Letter A, shown in Fig. 1.6

20 1 Introduction to Computer Forensics

Fig. 1.6 KRUSE and _
HEISER modl | — s

ﬂ

Classification,
Comparison and
Individualization

Fig. 1.7 Yale University model

Fig. 1.8 Rodney McKemmish model

¢ Yale University Model [30]: This model is developed by Casey who was then the
security supervisor of Yale University’s IT systems. It is very similar to a widely
recognized standard incident response process and procedures, and comprises of
six stages, preliminary consideration, planning, recognition, preservation, collec-
tion and documentation, classification, comparison and individualization, and
reconstruction (Fig. 1.7)

¢ Rodney McKemmish model [31]: This model is proposed from Australia Police’s
officer. This model is comprised from four phases through the investigation
(Fig. 1.8).

From the aforementioned models, we can clearly see some interesting facts:

e There are some similarities between them even though they are from different
governments across the world or academia-based.

* Every model has emphasis on some specific stage.

* Although there are some similarities or differences, but still the main purpose is
to extract the digital evidence that it can be introduced into the court. By
mentioning the court, the court only can accept the legal evidence after they
agree on the violation of law. The following figure shows the main three
transitions of any case between the police as a law enforcement and the court
to take the decision.

1.4 Computer Forensics Procedures and Techniques 21

« Digital crime enforcement o Court

* e.g., Hacking « Procedures model procedures
e eg., Yale * e.g., Investigate

University Model the case

accepted

Violation of Law

evidence or not

Based on what we observed, we will introduce a new model that mainly focuses
on these major important procedures (methodological models). After that, we will
explain its detailed phases and what the tasks are for every phase.

Here the main important components of any model that can cover any case
starting from crime scene through the lab until the presentation of the case.

= It is the process to prepare the appropriate tools and equepments of current case specfically

#It is the process to collect all digital evidence related to the curent case

*Secure and eval the scene the

y of the digital evidence related to the current case

+It is the process to examine the data and calculate its hash value, export the data, and extract the metadata without damaging any
evidence

+It is the process to analyze the data, for U ining timeline, make ion beween the evid and record the results

Qi < <

*It is the ducumentation process for all previous phases, make Jusions, and prepare exhibits for the court, then archive it.

From the above, we can recreate it to three main stages and every stage has some
phases should be completed together at that stage so we can explain every stage
solely. Therefore, a typical computer forensic investigation commonly consists of
three stages as shown in Fig. 1.9 below.

22 1 Introduction to Computer Forensics

Preparation stage

Collection Preservation

4
In digital evidence lab stage

Examination Analyze Reconstruction Presentation

Fig. 1.9 Three stages of a digital crime investigation

1.4.1 Preparation Stage

Before the examiners go to the crime scene, they should be prepared for this type of
crime scene such as who is expert in this type of crime so he can go there, and what
the tools are appropriate for the crime because there are many types of crime scene so
every case has its appropriate tools and methods to handle it. In addition, the
examiner should have the legal permissions to enter the crime scene, and what are
the goals of his task.

1.4.2 In Crime Scene Stage

The first and the second phases of this stage, which are collection and preservation,
are strict set of procedures with guidelines that must be followed. It involves a
variety of measures to preserve the state of the crime scene as much as possible, and
limit (because it is impossible to completely eliminate) the destruction of potential
evidence. The digital system preservation phase also involves the act of actually
collecting evidence from the digital devices. The standard methodology for
collecting the digital evidence, while maintaining its integrity, is to create an
image of the device, as mentioned above; not only does this protect the integrity
of the original device—important for court—but it also allows for mistakes to be
made on the copy, because it is exactly that: A copy! Many of the guidelines in this
phase deal strictly with the documentation an investigator makes about the actions
taken with the image, so if any irreversible damage is accidentally dealt to that
image, a new image can be taken from the physical device, and the investigator can
re-perform all of the previously-documented actions (of course, with the necessary
corrections to prevent the damage from occurring a second time). Preserving digital
evidence is a key factor in identifying a suspect as the perpetrator of a crime,
especially when there is a risk that any known party might attempt to tamper with
evidence (Fig. 1.10).

It is worth pointing out that for some specific electronic devices, there are some
preliminary procedures with the seizure of these devices. First, the mobile phone and
smartphones devices, there are preliminary procedures in crime scene:

1.4 Computer Forensics Procedures and Techniques

Discovering the
digital device that
want to arrest

i

Secure scene and move everyone
away from the digital device or
any that has power source

NO Is the digital device

powered on?

law enforcement traini

23

Destructive processes can
be any functions intended to
obliterate data on the hard
drive or data storage
devices. Terms like“format",
"remove, "and” wipe” can
be indicative of destructive
processes.

for this type of case?

Is the system a networked
business environment? Or Smartphone
device or storage media

Afe destructive processe:
running?

information of evidenfia
alue visible on screen?

On what whatever
circumstances, DO
NOT turn the digital
device on.

Remove power cord from back of
digital device and any connections

i

Label all connections on the digital
device such as ports of all types of
cables even the power supplies

i

Locate and secure all evidence
within the scope of authority for the

instructions

—

TOP! DO NOT turn the
digital device off. CONTACT
the trained one in Network ,
Smartphone or storage
seizure, or go to that section

Request assistance
and follow
recommendations of
with specific digital
evidence seizure
training.

Thoroughly document
and photograph all
information on the screen

specific circumstances

!

Document, Log, and photograph
any digital device, connections,
cables, modems, and any related

Log and secure all
evidence according to
agency polices pending

forensics examination.

Fig. 1.10 Digital crime scene investigation process

1. If the device is in the off mode, do not turn it on for whatever the reason.
2. If the device is on, do not close it, and carefully check the level of the battery to
make sure it will arrive the lab before it dies; meanwhile, the following pre-

cautions should be taken:

24

1 Introduction to Computer Forensics

(a) Isolate the network from the device by placing it on the flight mode if possible
or placed in a network insulation such as Fradybag.

(b) Record the information on the screen, or simply photograph it which is better.

(c) Find out the serial number of the device if possible, by entering the following
code on Nokia devices * # 06 # for example, and it works for many phones
devices or by opening the battery cover and you will find the number behind
the battery or next to it inside of the phone device.

(d) Unplug the appliance from power source.

(e) Disconnect the mobile phone from its SIM card for any reason may cancel
your call history (outgoing, received, or missed).

(f) The fallen-down of the mobile phone device on the ground or exposure it to a
magnetic field or to the high temperature may affect the data stored in it.

(g) When the device receives incoming calls at the time of seizure the mobile
phone, immediately isolate its network, knowing that such data e.g. who is
calling and why will add new information for the case, but may be at the
expense of important information created immediately before the incident.

(h) The mobile device should be sent to the digital evidence lab and all related
such as the electrical connectors and data connectors are attached also, if any.

(i) If there is a security code on the mobile phone device or a bin code, the
suspect or the victim should be asked (if possible) to save time and effort
during the examination.

Second, for the storage media devices, there are preliminary procedures in crime

scene:

1.

If the storage media is connected to the computer or smartphones:

(a) We may (depend on the case type) wait for a while until it finishes the
copying, but except the storage media for backup purpose so it is in operation
and synchronization mode that means it has too much data of copying which
we can’t wait for it.

. If it is not connected to any equipment:

(a) We do the labeling, and writing down the place of where we found it.
(b) Put it in custom boxes, and send it to the digital evidence lab.

. If the storage media is an external hard drive, so its serial number must be

recorded and photographed from the outside with including the data cable
which should be attached also if any.

1.4.3 In Digital Evidence Lab Stage

In the third stage which has four phases (Examination, Analysis, Reconstruction, and
presentation). The investigator will search for useful evidence in the data acquired in
the first stge. Anything relevant to the case, including emails, photos, video, text

1.4 Computer Forensics Procedures and Techniques 25

messages, transaction log files, and more, is sought at this stage, and extracted from
the total data recovered.

In most cases, digital evidence could be hidden or deleted. The actual process of
discovering this information varies between investigations largely because of dif-
ferences in the devices to recover and a suspect’s data-hiding techniques. But
common strategies exist, including:

» Keyword searches: It can be implemented both within files and unallocated/slack
space, where hidden data is most often located;

¢ Identifying blacklisted files by file signature (also called hash value);

* Recovering deleted files;

e Extracting registry information: For example, TypedURLs lists every URL the
user has visited and typed into the browser URL bar;

* Analyzing log data.

When a crime occurs, investigators form many initial hypotheses about what
happened and who may be responsible; as evidence is recovered in the first phase,
they repeatedly cycle between that first phase, and the third: crime reconstruction.
The crime reconstruction phase is the process of reconstructing events or actions
that happened, according to the evidence recovered. As investigators find more
evidence, many incorrect hypotheses will be disproven, while one (or, at most, a
few) will become more and more plausible, and can eventually be proven entirely.

Finally, the last phase in this stage, called the presentation phase, is to prepare
reports in order to communicate findings to the appropriate audience. When a
forensic investigator is consulted or required to produce a testimony, both judge
and jury must be convinced that an investigator’s findings are sound, and in most
cases, these audience members are not proficient enough in the use of computers to
directly understand the implications that digital evidence can have. For this reason,
the language used in the report, and the way it is written, actually play very important
roles in the effectiveness of a prosecutor’s case.

Digital investigators often use a variety of techniques to help solve crimes or
uncover information. The most common are explained in detail below:

e Data acquisition: Images of hard disks are usually taken using a unix-based
program called “DD”, which directly accesses the drive and copies the specified
section. This is done to maximize the amount of information that exists about the
system, since unallocated disk space and file system metadata may contain
information that cannot be copied by traditionally tools.

* Disk volume analysis: Hard disks usually divided into multiple logical storage
units, also referred to as partitions. Examples of commonly-used techniques
include consistency checking, to check whether a disk is in any suspicious
state. This includes, but is not limited to, searching unpartitioned disk space for
hidden data and recovering deleted partitions.

e Data recovery: Files are stored with an identifier at their beginnings, which
notifies the operating system that what follows after is a single, contiguous file.
When a file is deleted, all that is removed is this identifier, which causes the

1 Introduction to Computer Forensics

operating system to interpret the remaining data as empty space (this is why it
takes much longer to install a program than it does to delete it!), but it is often still
possible to manually extract the data from the drive and reconstruct the file.
Keyword Search: Memory ranges are directly searched for a provided search
string. This procedure looks directly at the contents of memory addresses,
bypassing any software guards the suspect may have put in place.

Hidden data detection: It reveals (to the extent possible) hidden data, such as
secret data using steganography, the contents of hidden files as well as temporary
or swap files used by both the application programs and the operating system.
Extraction of Windows registry information: The windows registry contains
information on many topics, including user accounts, software product keys,
web browsing history, and attached USB devices. Mining the registry is a good
way to find evidence.

Cracking: Sometimes, files of importance to the investigation are password-
protected and/or encrypted, and needless to say, investigators are often left without
the legitimate passwords and keys to open these files. When this happens, it is
usually necessary to crack the security, which is another broad topic on its own.
Logfile analysis: While it is technically possible to manually read through logs, it
is much more common to use analytical tools and utilities to read the logs in an
efficient, heuristic manner, mostly because log files quickly become
unmanageably large. Something as simple as a user login at an unusual time
could be enough to incriminate someone, so logs cannot be overlooked.
Timeline analysis: Identifying patterns in system activity, similar to logfile
analysis.

Reverse engineering: Reverse engineering is all about analyzing (at an extremely
deep level) exactly what happens as a program executes, and using these findings
to attempt to reconstruct or modify the program. A common application is reverse
engineering malware to discover how it works, and build defenses against it; such
an analysis could also be used to prove that a particular program is malware, and
if other evidence proves that a given suspect wrote the program, this would
greatly benefit the prosecutor.

Document metadata analysis: Metadata is information about a file itself, also
known as data of data or data about data, such as when the file was last opened
and which user account created it. Much of a file’s metadata can be seen by right-
clicking a file and selecting “properties” from the context menu, but there are
specialized tools dedicated to retrieving highly-detailed metadata. Metadata is
often useful as evidence on its own, but aside from that, if the metadata of a deleted
file is still present, the recovery of that file is made much easier (sometimes, it is
not even possible to recover a file without it). For example, for image files, meta-
data is often found in “Exchangeable Image File” format (.EXIF) [32, 33].
Multimedia forensic analysis: This simply refers to the forensic analysis of
multimedia as opposed to ordinary files. Multimedia includes audio, video,
pictures, and other such files.

IP Trace: This can be used to determine the origin of an offending file or action,
for example, tracing the originator of defamatory emails [34].

1.5 Types of Computer Forensics 27

* Network traffic analysis: This technique often works with IP tracing, and is used
for the same reason, but network traffic analysis can also be used to determine
volumes of actions (like how many defamatory emails were sent by a particular
person). Network traffic analysis is a major component in Intrusion Detection/
Prevention Systems (IDS/IPS) as well, and log files from these systems often
reveal evidence of criminal activity.

It is important to note, once again, that the above list is far from exhaustive, and
ever-growing. As technology evolves, so too do the ways in which it is used to
commit crime, and so too must computer forensics techniques, to counteract this
negative development.

1.5 Types of Computer Forensics

We have described above, at a high level, what computer forensics is—essentially,
the science of gathering evidence from digital devices. That said, there are so many
different digital devices and media available today that the science of computer
forensics can be divided further, into many distinct types. In order to overcome the
challenges created by constant technological development, computer forensics has
evolved significantly over the years, resulting in new types emerging frequently.
According to forensic target or digital devices involved in an investigation,
particularly from the technical aspect of the investigation as well as types of digital
evidences that investigators are interested in finding, computer forensics includes
several sub-branches, and following are some of the its most well-known branches:

* File System Forensics: Data on a physical medium, such as a hard drive or flash
drive, is organized, labeled, and governed by a file system; FAT, NTFS, and EXT
are the most commonly used file systems, but there are many more, and it is also
possible that a suspect could have created their own file system, in order to
complicate an investigation. File System Forensics is generally used for discov-
ering the locations of files that are more useful as evidence than the file system
itself; however, the presence of a custom file system, as well as the presence of
anomalies in the locations of data (namely, data existing where it shouldn’t), are
usually proof of immoral activities. Though not directly punishable, the presence
of immoral activities is a very strong indicator of illegal activities, which warrants
further investigation.

e Memory forensics (i.e., RAM forensics): Despite being called RAM forensics,
this term actually refers to the application of forensic techniques on any/all
volatile memory, which includes RAM, caches (of all levels), and registers (not
to be confused with registries). Memory forensics must be performed during live
analysis, because the contents of volatile memory are permanently lost when the
system is shut down.

* Operating System Forensics: Logfile analysis is a major part of operating system
forensics, because logfile formats differ wildly between operating systems. The

1 Introduction to Computer Forensics

Linux equivalent to the Windows registry for example is not a hierarchical GUI
like the registry, but a series of organized text files instead. To perform operating
system forensics, the investigator must have deep and thorough knowledge of
multiple operating systems, as well as the ability to understand the meaning of
logs generated by different operating systems.

Multimedia Forensics: Multimedia forensics refers to the application of computer
forensics techniques on files that contain more audio/visual data than text, such as
sound recordings, music files, videos, and pictures. There are many possible cases
where multimedia files would be useful as evidence: Pirated music files, sound
and video recordings of crimes, and illegal pornographic images, are all good
examples.

Network Forensics: IP Tracing and Network Traffic Monitoring are the major
components of Network Forensics. The main objective is to look for evidence of
illegal activities that involve a transfer of files or information. It is important to
note that while most applications of Network Forensics make use of the Internet,
LAN:S, local ad-hoc networks, and emulated network connections between virtual
machines (VMs) and their host machines, can all be analyzed with the same
techniques. The analysis of social media accounts could be considered a combi-
nation of Network and Multimedia Forensics, depending on which techniques
are used.

Database Forensics: Databases are, understandably, full of different types of
information. The data can be investigated for its malicious uses, or to determine
how/whether some legitimate data was stolen or deleted. Sometimes, the database
itself is valuable information as well as the relations between tables in the
database can reveal important details of how, for example, a criminal organiza-
tion, is structured.

Malware Forensics: Malware Forensics mostly refers to the reverse engineering
of malware, but also covers the detection of existing or possible malware. One of
the most immediately useful approaches is to use a goatfile (named so because the
file is a scapegoat, sacrificed for the benefit of the investigator). Goatfiles are
designed to make it very easy for an investigator to see how malware modifies the
file once it is infected.

Mobile Device Forensics: Although the definition of this term is intuitive, it is
more complex in practice. Today’s mobile devices are basically smaller com-
puters, having their own operating systems, and usually serving a specialized
purpose. All of the above forensics types and more are applicable to Mobile
Device Forensics. Some mobile devices use proprietary operating systems, such
as i0S, Windows Mobile/CE, and BlackBerry OS, while others are built on open-
source systems, such as Android; an investigator would need to know all of them
to be effective in the field. There are also many different types of mobile devices:
smart phones, GPSs, Personal Digital Assistants (PDAs), and digital cameras, to
name a few, and all of them use different operating systems and have different
capabilities, storing different types of data. A mobile phone might contain taped
conversations, digital pictures, texts and emails, contact lists, and sometimes even
digital video recordings. The goal of GPS forensics on the other hand is to look

1.5 Types of Computer Forensics 29

for information like waypoints, directions, routes, favourites, etc., in order to
figure out the travel patterns of a suspect. It is worth noting that the manufacture
and model also play a role in the methods used, further complicating the inves-
tigation. Even analyzing two devices that are very comparable in the consumer
market could, and usually does, result in using very different combinations of
techniques to retrieve the information required.

e E-mail Forensics: As was mentioned regarding mobile devices, a lot of informa-
tion can be found in even the most ordinary emails. Malicious people can harvest
email addresses (both sender and receiver) and begin spamming these accounts in
the hopes of phishing them, or propagating malware; IP addresses can obtained as
part of a recon mission, aiding the attacker in visualizing how the network is
constructed; headers contain a plethora of information that is just as useful to a
hacker, and these factors are all present even before considering the content of an
email, a leakage of which could have any variety of consequences in the real
world. Emails are just as useful to forensic investigators however, as they can be
analyzed to discover details about the sender and his/her motives, and even
submitted as court evidence. One example of this is performing heuristic analysis
on the header (essentially the email’s metadata) to ensure it conforms to the
format specified by the email service provider used to send it—if an email claims
to have been sent by Yahoo! Mail, but its header’s set of fields and/or ordering is
different, or contains unexpected information (like an integer where a name
should be), this is a very strong indication that the email has been falsified.

* Firewall Forensics: Firewalls exist to grant or restrict access based on a set of
rules defined by the administrator. They are designed to be a first line of defense
against information theft and cyberattacks, and as such, are forensic-friendly:
Firewalls keep extremely detailed activity logs, which can be mined for data.
Because of this, logfile analysis is a big part of firewall forensics. Firewall logs
contain information about programs that attempted to access information, the
information that was requested, the user account or IP address requesting the
information, and the port it was requested on (among other things). All of this
information can be useful in detecting an attack and discovering details about it,
which can not only be used to create defenses against future attacks, but may even
identify the party responsible.

* Financial Forensics: Financial criminal activities such as corporate fraud, secu-
rities and commodities fraud, health care fraud, financial institution fraud, mort-
gage fraud, insurance fraud, mass marketing fraud, and money laundering, are
increasing during the past year [35]. Today, as digital media is used to store
extreme amounts of financial information in multiple and complex systems,
trends in fraudulent activities have changed from the traditional forgeries in
accounting books and receipts, to new frauds like modifying financial files and
deleting or altering important data (and metadata). It would be a very easy way to
frame an investor by modifying a large, legitimate transaction’s timestamp. For
example, inside-trading could be used to frame someone. In order to address these
kinds of challenges, Forensic auditing techniques are constantly evolving and
developing. Modern forensic audit employs new methods such as face-to-face

30 1 Introduction to Computer Forensics

interrogations, bank statement reconciliations, scrutiny of all vendor contracts
and payments, and etc. in addition to conventional auditing methods. Further-
more, various computer-based data analysis techniques, such as data mining
techniques, are also are widely used for fraud detection.

Also, according to how a digital device was involved in a crime, computer
forensics investigation can be classified into the following three types:

* The device is directly used as a tool to perform criminal activity, such as a hidden
microphone used to listen to a confidential conversation.

e The device is the victim of a crime, such as when a user has their identity stolen
online or is a victim of a password-stealing keylogger.

» The device is peripheral to the crime and unintentionally gathers evidence that
could be useful to the investigation. An example would be a tourist taking a photo
at the precise moment a crime occurs, and as a result the suspect appears in the
photo.

In either situation, different techniques might be used by the investigators to solve
the crime. Thus, the computer forensics may change slightly [36].

1.6 Useful Resources

There are extensive resources available on the Internet, where some of them can be
found in the section, including

* tools available to assist in the forensic investigation;

* test images, data sets and challenges for learning and practicing digital forensic
investigation techniques;

 digital forensics tutorials, reference books and resources;

 discussion Forums/user groups dedicated to digital forensics;

 international conference and professional journals related to digital forensics.

Resources listed below are not complete, and they don’t contain every material
currently available online. The resource list was compiled as a quick reference for
resources available online for persons who are interested in computer forensics
techniques and researches. Please note that the URLs may have changed since we
last visited them.

1. Open-source digital forensics tools

SANS Investigate Forensic Toolkit (SIFT)
https://computer-forensics2.sans.org/community/downloads/

The Sleuth Kit (TSK) and Autopsy Browser
http://www.sleuthkit.org/

BackTrack—A Linux-based digital forensics and penetration testing arsenal
http://www backtrack-linux.org/

https://computer-forensics2.sans.org/community/downloads
http://www.sleuthkit.org/
http://www.backtrack-linux.org/

1.6 Useful Resources 31

Kali Linux—A Penetration Testing and Ethical Hacking Linux Distribution

https://www .kali.org/

DEFT Linux—Computer Forensics live cd

www.deftlinux.net/

CAINE Live CD/DVD, a computer forensics Linux Live Distro

http://www.caine-live.net/pageS/pageS.html

Raptor, a modified Live Linux distribution based on Ubuntu that simplifies the
process of creating forensic images in a forensically sound manner

http://www .forwarddiscovery.com/Raptor

FCCU GNU/Linux Forensic Bootable CD contains a lot of tools suitable for
computer forensic investigations, including bash scripts.

http://d-fence.be/

Linux Forensics Tools Repository

www.cert.org/forensics/tools/

Forensic Acquisition Utilities—A collection of utilities and libraries intended for
forensic or forensic-related investigative use in a modern Microsoft Windows
environment

http://gmgsystemsinc.com/fau/

The Volatility Framework

https://www.volatilesystems.com/default/volatility

Scalpel—A Frugal, High Performance File Carver

http://www.digitalforensicssolutions.com/Scalpel/

Pasco—An Internet Explorer activity forensic analysis tool

http://www.mcafee.com/us/downloads/free-tools/pasco.aspx

A framework to extract timestamps from various digital artifacts and combine into a
single timeline

http://log2timeline.net/

Enhanced version of GNU dd with features useful for forensics and security

http://dcfldd.sourceforge.net/

Penguin Sleuth Kit Bootable CD

http://penguinsleuth.org/

2. Digital forensics Test Images, Data Sets and Challenges

Test Images and Forensic Challenges
http://www .forensicfocus.com/images-and-challenges

Digital Forensics Test Images
http://testimages.wordpress.com/

The Computer Forensic Reference Data Sets (CFReDS) Project
http://www.cfreds.nist.gov/

Digital Forensics Tool Testing Images
http://dftt.sourceforge.net/

CoMoFoD—Image Database for Copy-Move Forgery Detection.
http://www.vcl.fer.hr/comofod/

https://www.kali.org/
http://www.deftlinux.net/
http://www.caine-live.net/page5/page5.html
http://www.forwarddiscovery.com/Raptor
http://d-fence.be/
http://www.cert.org/forensics/tools
http://gmgsystemsinc.com/fau
https://www.volatilesystems.com/default/volatility
http://www.digitalforensicssolutions.com/Scalpel
http://www.mcafee.com/us/downloads/free-tools/pasco.aspx
http://log2timeline.net/
http://dcfldd.sourceforge.net/
http://penguinsleuth.org/
http://www.forensicfocus.com/images-and-challenges
http://testimages.wordpress.com/
http://www.cfreds.nist.gov/
http://dftt.sourceforge.net/
http://www.vcl.fer.hr/comofod

32 1 Introduction to Computer Forensics

DFRWS Forensic Challenge
https://www.dfrws.org/dfrws-forensic-challenge

Honeynet Project Challenges
http://honeynet.org/challenges

3. Digital forensics Tutorials, Reference Books and Resources

http://www.sans.org/reading_room/whitepapers/forensics/

This website contains links Computer Forensics whitepapers in the SANS
InfoSec Reading Room, which have been written by students seeking Global
Information Assurance Certification (GIAC) Forensic Analyst (GCFA) certifica-
tion to fulfill part of their certification requirements.

http://www.porcupine.org/forensics/forensic-discovery/

This website contains the HTML Version of the book entitled Forensic
Discovery published by Addison-Wesley.

http://www .nist.gov/oles/forensics/digital_evidence.cfm
This website contains a list of projects and technical reports related to digital
evidence from NIST
Guidelines on Cell Phone Forensics
http://csrc.nist.gov/publications/nistpubs/800-101/SP800-101.pdf
Guidelines on PDA Forensics
http://csrc.nist.gov/publications/nistpubs/800-72/SP800-72.pdf
Guide to Integrating Forensic Techniques into Incident Response
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
An Introduction to Computer Security: The NIST Handbook
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
Mobile Forensic Reference Materials: A Methodology and Reification
http://csrc.nist.gov/publications/nistir/ir7617/nistir-7617.pdf
Forensics Web Services (FWS)
http://csrc.nist.gov/publications/nistir/ir7559/nistir-7559_forensics-web-ser
vices.pdf
Forensic Filtering of Cell Phone Protocols
http://csrc.nist.gov/publications/nistir/ir7516/nistir-7516_forensic-filter.pdf
Cell Phone Forensic Tools: An Overview and Analysis
http://csrc.nist.gov/publications/nistir/nistir-7250.pdf
Cell Phone Forensic Tools: An Overview and Analysis Update
http://csrc.nist.gov/publications/nistir/nistir-7387.pdf
PDA Forensic Tools: An Overview and Analysis
http://csrc.nist.gov/publications/nistir/nistir-7100-PDAForensics.pdf
Forensic Techniques for Cell Phones—ITL Security Bulletin
http://csrc.nist.gov/publications/nistbul/b-June-2007.pdf
Forensic Techniques: Helping Organizations Improve Their Responses To Informa-
tion Security Incidents—ITL Security Bulletin
http://csrc.nist.gov/publications/nistbul/b-09-06.pdf
Computer Forensics Guidance—ITL Security Bulletin
http://csrc.nist.gov/publications/nistbul/11-01.pdf

https://www.dfrws.org/dfrws-forensic-challenge
http://honeynet.org/challenges
http://www.sans.org/reading_room/whitepapers/forensics
http://www.porcupine.org/forensics/forensic-discovery
http://www.nist.gov/oles/forensics/digital_evidence.cfm
http://csrc.nist.gov/publications/nistpubs/800-101/SP800-101.pdf
http://csrc.nist.gov/publications/nistpubs/800-72/SP800-72.pdf
http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://csrc.nist.gov/publications/nistpubs/800-12/handbook.pdf
http://csrc.nist.gov/publications/nistir/ir7617/nistir-7617.pdf
http://csrc.nist.gov/publications/nistir/ir7559/nistir-7559_forensics-web-services.pdf
http://csrc.nist.gov/publications/nistir/ir7559/nistir-7559_forensics-web-services.pdf
http://csrc.nist.gov/publications/nistir/ir7516/nistir-7516_forensic-filter.pdf
http://csrc.nist.gov/publications/nistir/nistir-7250.pdf
http://csrc.nist.gov/publications/nistir/nistir-7387.pdf
http://csrc.nist.gov/publications/nistir/nistir-7100-PDAForensics.pdf
http://csrc.nist.gov/publications/nistbul/b-June-2007.pdf
http://csrc.nist.gov/publications/nistbul/b-09-06.pdf
http://csrc.nist.gov/publications/nistbul/11-01.pdf

1.6 Useful Resources 33

Forensic Examination of Digital Evidence: A Guide for Law Enforcement
http://www.ncjrs.gov/pdffiles 1/nij/199408.pdf
Strengthening Forensic Science in the United States: A Path Forward
http://www.ncjrs.gov/pdffiles 1/nij/grants/228091.pdf
http://www.cs.dartmouth.edu/~farid/dfd/index.php/topics
The Digital Forensic Database maintains a bibliography of technical papers,
source code, and data in the field of digital image, audio, and video forensics
http://www .theonlineoasis.co.uk/cl-web/bibliography/main.html
This Multimedia forensics bibliography includes papers on digital forensics,
multimedia security and some related topics.
http://www .forensics.nl/
This website contains links to Computer Forensics whitepapers, articles, pre-
sentations, tools, products, mailing lists, howto’s, and more.
http://www.gpsforensics.org/
This website contains links to GPS Forensics whitepapers, articles, projects,
tools, forum, and more.
http://www.digital-evidence.org/
This website contains research information about digital investigations
(a.k.a. digital forensics and computer forensics) and digital evidence.
http://www .forensicfocus.com/
This website is a leading digital forensics web portal for computer forensics
and eDiscovery professionals.
http://www forensicswiki.org/
This website is a Creative Commons-licensed wiki devoted to information
about digital forensics (also known as computer forensics).
http://www.computerforensicsworld.com/
An online Community of Computer Forensics Professionals
https://www.anti-forensics.com/
This website is an online community dedicated to the research and sharing of
methods, tools, and information that can be used to frustrate computer forensic
investigations and forensic examiners.

4. Discussion Forums/User groups dedicated to digital forensics

groups.yahoo.com/group/linux_forensics/
This user group is dedicated to using Linux to forensically examine com-
puters, and is open to all, topics be related to forensics and log exams.
https://www .linkedin.com/groups/1170177
The Linkedin Mobile Forensics and Investigation Group discusses the Mobile
Devices Forensics and Investigation issues.
https://www.linkedin.com/groups/2386481
The Linkedin Android Forensics Group focuses on forensic methods and
analysis, including android-supported hardware and devices, the Android

http://www.ncjrs.gov/pdffiles1/nij/199408.pdf
http://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf
http://www.cs.dartmouth.edu/~farid/dfd/index.php/topics
http://www.theonlineoasis.co.uk/cl-web/bibliography/main.html
http://www.forensics.nl/
http://www.gpsforensics.org/
http://www.digital-evidence.org/
http://www.forensicfocus.com/
http://www.forensicswiki.org/
http://www.computerforensicsworld.com/
https://www.anti-forensics.com/
https://groups.yahoo.com/group/linux_forensics/
https://www.linkedin.com/groups/1170177
https://www.linkedin.com/groups/2386481

34 1 Introduction to Computer Forensics

software development kit (SKD), Android Open Source Project (AOSP), virtual
machines (VMs) and more.
https://www.linkedin.com/groups/153874
The Linkedin Digital Forensics Training Group discusses Digital/Computer
Forensics training opportunities and resources.

5. International conference and professional journals related to digital forensics

DFRWS (Digital Forensics Research Conference)
http://www.dfrws.org/
International Conference on Digital Forensics and Cyber Crime (ICDF2C)
http://d-forensics.org/
IEEE Transactions on Information Forensics and Security
http://www .signalprocessingsociety.org/publications/periodicals/forensics/
Digital Investigation
http://www .elsevier.com/locate/diin
Small Scale Digital Device Forensics Journal.
http://www.ssddfj.org/
Journal of Digital Forensics, Security and Law
http://www jdfsl.org/
Journal of Forensic Sciences
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1556-4029
International Journal of Electronic Security and Digital Forensics
http://www.inderscience.com/jhome.php?jcode=ijesdf
International Journal of Digital Crime and Forensics
http://www igi-global.com/journal/international-journal-digital-crime-foren
sics/1112

1.7 Exercises

. What is computer forensics?

. What is the main difference between digital forensics and digital investigation?

. What is digital evidence?

. What is digital chain of custody?

. Which certifications should be in your list of credentials if you decide to pursue a
career in digital forensics? Please list THREE certifications you think are the most
demanded (hottest) certifications in digital forensics. Note that you can browse
through a list of profiles of digital forensics professionals in LinkedIn and mine
certifications they hold, for example, becoming a group member of digital
forensics related group, such as, Mobile Forensics and Investigation,
ForensicFocus.com, Digital Forensics Association (DFA), Android Forensics,
and SCADA Forensics.

DN A W =

https://www.linkedin.com/groups/153874
http://www.dfrws.org/
http://d-forensics.org/
http://www.signalprocessingsociety.org/publications/periodicals/forensics
http://www.elsevier.com/locate/diin
http://www.ssddfj.org/
http://www.jdfsl.org/
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1556-4029
http://www.inderscience.com/jhome.php?jcode=ijesdf
http://www.inderscience.com/jhome.php?jcode=ijesdf
http://www.igi-global.com/journal/international-journal-digital-crime-forensics/1112
http://www.igi-global.com/journal/international-journal-digital-crime-forensics/1112
http://forensicfocus.com

References 35

6. Use a Web search engine, such as Google, and search for companies specializing
in digital investigations (a.k.a. digital forensics and computer forensics). Select
one and write a brief summary about what it does, including services offered and
a brief explanation of each.

References

1. https://www.guidancesoftware.com/

2. https://'www.dfrws.org/

3. S. L. Garfinkel. Carving contiguous and fragmented files with fast object validation. Digital
Investigation, vol. 4, pp. 2-12, 2007

4. Thomas Laurenson. Performance Analysis of File Carving Tools. In Proc. of Security and
Privacy Protection in Information Processing Systems, IFIP Advances in Information and
Communication Technology, Volume 405, 2013, pp. 419433

5. NSPCC study finds that cyberbullies target ‘one in five children’. http://www.theguardian.com/
society/2013/aug/10/cyberbullies-target-children-nspcc-internet-abuse-askfm

6. Yuri Gubanov, Oleg Afonin. Why SSD Drives Destroy Court Evidence, and What Can Be
Done About It http://articles.forensicfocus.com/2012/10/23/why-ssd-drives-destroy-court-evi
dence-and-what-can-be-done-about-it/

7. Nasir Memon. Challenges of SSD Forensic Analysis - Digital Assembly. http://digital-assem
bly.com/technology/research/talks/challenges-of-ssd-forensic-analysis.pdf

8. NTFS Compressed Files. http://www.ntfs.com/ntfs-compressed.htm

9. http://www.nber.org/sys-admin/overwritten-data-guttman.html

10. http://en.wikipedia.org/wiki/Edison_Chen

11. Charter of Fundamental Rights of the European Union 2000 (2000/C364/01), Available: http://
www.europarl.europa.eu/charter/pdf/text_en.pdf. Accessed on 13th Feb 2014

12. European Union (EU), “Directive 95/46/EC of the European Parliament and of the Council of
24 October 1995 on the protection of individuals with regard to the processing of personal data
and on the free movement of such data,” European Community (EU), Tech. Rep., 1995

13. https://www ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act

14. B.C.M. Fung, K. Wang, R. Chen, P.S. Yu, “Privacy-Preserving Data Publishing: A Survey of
Recent Developments,” in ACM Computing Surveys, Vol. 42, No. 4, Article 14, 2010

15. https://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/get
ting-to-the-bottom-of-the-griffiths-energy-bribery-case/article8 122202/

16. X. Lin, C. Zhang, T. Dule. On Achieving Encrypted File Recovery. In: X. Lai, D. Gu, B. Jin,
Y. Wang, H. Li (eds) Forensics in Telecommunications, Information, and Multimedia.
e-Forensics 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol 56. Springer, Berlin, Heidelberg

17. https://www.therecord.com/news-story/4177047-uw-supervisor-stole-from-school-cost-co-
workers-their-jobs/

18. http://en.wikipedia.org/wiki/Digital_evidence

19. Electronic Crime Scene Investigation: A Guide for First Responders, Second Edition. https://
www.ncjrs.gov/pdffiles1/nij/219941.pdf

20. A password for the Hawaii emergency agency was hiding in a public photo, written on a Post-it
note. http://www.businessinsider.com/hawaii-emergency-agency-password-discovered-in-
photo-sparks-security-criticism-2018-1

21. https://en.wikipedia.org/wiki/Dennis_Rader

22. http://en.wikipedia.org/wiki/Digital_forensics

23. Casey, Eoghan (2004). Digital Evidence and Computer Crime, Second Edition. Elsevier. ISBN

0-12-163104-4. Archived from the original on 2017-04-10

https://www.guidancesoftware.com/
https://www.dfrws.org/
http://www.theguardian.com/society/2013/aug/10/cyberbullies-target-children-nspcc-internet-abuse-askfm
http://www.theguardian.com/society/2013/aug/10/cyberbullies-target-children-nspcc-internet-abuse-askfm
http://articles.forensicfocus.com/2012/10/23/why-ssd-drives-destroy-court-evidence-and-what-can-be-done-about-it/
http://articles.forensicfocus.com/2012/10/23/why-ssd-drives-destroy-court-evidence-and-what-can-be-done-about-it/
http://digital-assembly.com/technology/research/talks/challenges-of-ssd-forensic-analysis.pdf
http://digital-assembly.com/technology/research/talks/challenges-of-ssd-forensic-analysis.pdf
http://www.ntfs.com/ntfs-compressed.htm
http://www.nber.org/sys-admin/overwritten-data-guttman.html
http://en.wikipedia.org/wiki/Edison_Chen
http://www.europarl.europa.eu/charter/pdf/text_en.pdf
http://www.europarl.europa.eu/charter/pdf/text_en.pdf
https://www.ftc.gov/tips-advice/business-center/privacy-and-security/gramm-leach-bliley-act
https://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/getting-to-the-bottom-of-the-griffiths-energy-bribery-case/article8122202/
https://www.theglobeandmail.com/report-on-business/industry-news/energy-and-resources/getting-to-the-bottom-of-the-griffiths-energy-bribery-case/article8122202/
https://www.therecord.com/news-story/4177047-uw-supervisor-stole-from-school-cost-co-workers-their-jobs/
https://www.therecord.com/news-story/4177047-uw-supervisor-stole-from-school-cost-co-workers-their-jobs/
http://en.wikipedia.org/wiki/Digital_evidence
https://www.ncjrs.gov/pdffiles1/nij/219941.pdf
https://www.ncjrs.gov/pdffiles1/nij/219941.pdf
http://www.businessinsider.com/hawaii-emergency-agency-password-discovered-in-photo-sparks-security-criticism-2018-1
http://www.businessinsider.com/hawaii-emergency-agency-password-discovered-in-photo-sparks-security-criticism-2018-1
https://en.wikipedia.org/wiki/Dennis_Rader
http://en.wikipedia.org/wiki/Digital_forensics

36

24.

25.

26.

217.

28.

29.

30.
31.

32.

33

36.

1 Introduction to Computer Forensics

Daniel J. Ryan; Gal Shpantzer. “Legal Aspects of Digital Forensics” (PDF). Archived (PDF)
from the original on 15 August 2011. Retrieved 31 August 2010

Sarah Mocas (February 2004). “Building theoretical underpinnings for digital forensics
research”. Digital Investigation. 1(1): 61-68. ISSN 1742-2876. https://doi.org/10.1016/j.diin.
2003.12.004

US v. Bonallo, 858 F. 2d 1427 (9th Cir. 1988)

Federal Rules of Evidence #702. Archived from the original on 19 August 2010. Retrieved
23 August 2010

S. McCombie and M. Warren. Computer Forensic: An Issue of Definitions. Proc. the first
Australian computer, Network and information forensics, 2003

Kruse II, Warren and Jay, G. Heiser. Computer Forensics: Incident Response Essentials.
Addison-Wesley, 2002

Eoghan Casey. “Digital Evidence and Computer Crime”, ACADEMIC Press, 2009

Rodney McKemmish. “What is Forensic Computing?”. Australian Institute of Criminology.
http://www.aic.gov.au/media_library/publications/tandi_pdf/tandil 18.pdf
http://www.detoxcomic.com/articles/document-metadata.html

. http://www electronicevidenceretrieval.com/molisani_meta_data.htm
34,
35.

http://hackertarget.com/ip-trace/

Financial Crimes Report to the Public http://www.fbi.gov/stats-services/publications/financial-
crimes-report-2010-2011

http://www.computerforensicstraining101.com/what-it-is.html

https://doi.org/10.1016/j.diin.2003.12.004
https://doi.org/10.1016/j.diin.2003.12.004
http://www.aic.gov.au/media_library/publications/tandi_pdf/tandi118.pdf
http://www.detoxcomic.com/articles/document-metadata.html
http://www.electronicevidenceretrieval.com/molisani_meta_data.htm
http://hackertarget.com/ip-trace/
http://www.fbi.gov/stats-services/publications/financial-crimes-report-2010-2011
http://www.fbi.gov/stats-services/publications/financial-crimes-report-2010-2011
http://www.computerforensicstraining101.com/what-it-is.html

Chapter 2 ®)
Introduction to Computer Organization s

Learning Objectives
The objectives of this chapter are to:

* Understand number systems and number base conversions

* Understand data representation in digital computers and learn how to
examine these representations in the debugger

* Understand how memory works, including memory addresses, byte
ordering

There has been a dramatically increase of cybercrime, so there is demand to analyze
a computer system to gather evidence after it has been hacked, which helps solve a
crime. Also we may have to gain information on systems for the purpose of
debugging, performance optimization, or reverse-engineering. In doing so, it is
important for digital investigators to understand raw data obtained from digital
devices confiscated at the crime scene; thus, they must first grasp how data that
composes of 1s and Os are encoded into the computer and how data are stored. This
chapter focuses on how computers store and process data. It serves as the foundation
for digital investigation from a technological perspective.

2.1 Computer Organization

A modern computer is composed of software (e.g. operating system, application
software) and hardware components. These hardware includes a Central Processing
Unit (CPU), main memory, input/output devices, secondary memory, and a bus to
communicate between different parts. A CPU, also known as processor, receives and
decodes instructions from memory. Within CPU there are several special units. One

© Springer Nature Switzerland AG 2018 37
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_2&domain=pdf

38 2 Introduction to Computer Organization

Fig. 2.1 Basic computer
architecture [1] CPU Memory
(RAM)
N Memory cell
Memory cell
Memory cell
ALU
A A A A
A \4
Data Bus

Address Bus

is Arithmetic Logic Unit (ALU) that performs operations with numbers and handful
of registers. Register allows quick access to data and instructions stored in memory.
These registers are typically addressed from mechanisms that are different from the
ones for the main memory (or RAM). Figure 2.1 depicts a basic computer architec-
ture as was described.

Nevertheless, processor registers have limited size of storage spaces. Therefore,
computer usually uses a storage hierarchy. It puts fast but expensive and small
storage options close to the CPU while slower but larger and cheaper options are
further away, as described in Fig. 2.2. Traditionally, computer storage is divided into
primary, secondary, tertiary and off-line storage.

Primary storage in computer, also known as main memory, is RAM. It holds
running programs and data that the programs use [2]. The main memory (or RAM)
can be imaged as sequences of memory cells containing arrays of bits, where each bit
represents a value. In actual hardware, data stored in the cells are represented as
electrical impulses of on or off. Numerically, we denote these two states as 1 bit and
0 bit respectively, also known as binary numeric. These cells have a unique address
(or array index) that a software instruction identifies and refers to. A sequence of
8 bits is a unit named byte. Since a typical cell stores one byte of memory, it is also
known as byte-addressable memory. Each of these addresses refers to one byte of
memory or points to one memory location in RAM.

ﬂf;d?;_{r There are other types of addresses based on its size. These include the

following: Nibble addressable memory (each address stores a nibble),
bit-addressable memory (each address stores a bit), and word-addressable memory
(each address stores a word).

2.1 Computer Organization 39

Primary Storage

CPU
Data bus

|

|

|

Registers Main memory |
(RAM) |

|

|

* " l

-

Cache memory Address bus

[}
[
[}
[}
| ALU
]
[}
|

» Off-line storage

Removable media drive
CD-RW, DVD-RW drive

Hard disk
Removable medium
CD-RW

| Mass storage device

- e e oo oo oo oo oo oo o oo oo oo oo oo oo oo oo o g
L

Tertiary storage
(Removable Storage)

Robotic
access
system

Removable medium Removable medium

Fig. 2.2 Computer storage hierarchy according to their distance from the CPU [2]

RAM is not a secondary, but primary memory of the computer, and thus volatile.
Although it is volatile storage space, it can access data hundreds of time faster than
secondary memory like hard drive, which is why active programs are loaded into
RAM in order to be processed seamlessly. All data in RAM are, in a sense, volatile
because they degrade over time. Some are more volatile than others. For example,
memory content is lost within nanoseconds as opposed to running processes which
take few seconds. As a result, secondary storage is used to store programs and data
when a computer is off. There are a variety of secondary storage devices, where hard
disk is the most common one. Not all data from the hard disk are loaded into the
system at one time. In fact, a computer typically has hard disk holding more space
than the primary to compensate the amount of memory needed to keep the unused
programs. For example, a computer bought from a retailer may come with a 2 TB
hard drive, and only has a 16 GB of RAM.

As more and more types of removable media like backup tape drives, optical
discs and flash memory drive have been introduced onto the market, there was an
opportunity to create storage spaces of archiving data which is not accessed fre-
quently. It is called tertiary storage which provides a third level of storage. It is

40 2 Introduction to Computer Organization

primarily used for archiving rarely accessed information without human operators
since it is much slower than secondary storage. The data is often copied to secondary
storage before use. Typically, computer will first consult a catalog database to
determine which tape or disc contains the information if it needs to read information
from the tertiary storage. In order to fetch the medium, a robotic arm is usually
involved to return the medium to its place in the library.

Unlike the other storages, Off-line storage cannot be accessed without human
interaction. It is usually recorded in a secondary or tertiary storage device. It must be
inserted or removed by a human operator. Since it can be easily physically
transported, Off-line storage can be used to transfer information. Additionally, in
the case of computer-based attack, Off-line storage increases information security
because it is physically inaccessible for a computer. In modern personal computers
(PCs), most secondary and tertiary storage media are also used for off-line storage.

As capacity of hard disk and other storage devices increase dramatically in the
past decade, it is tedious to use byte as measurement unit to represent computer
memory capacity. For example, it is not unusual to see computer’s or devices’ disk
size reaching up to 1 terabits. As a result, different digital units are used, such as kilo-
(thousand bytes), mega- (million bytes), and giga- (billion bytes), to distinguish the
size of a computer memory capacity [2]. Their relationships are shown in Fig. 2.3.
These can be simply denoted through abbreviation such as KB for Kilobytes (not to
be confused with low-case kb for Kilobits).

There are two conventions of kilo (KB) used in computer systems: 1000 in
decimal systems (it is equivalent to 1000 bytes.) and 1024 in binary systems (it is
equivalent to 1024 bytes.). Although these two different conventions are both
referring to the same “KB”, their hard drive sizes are different. This rule applies to
all units of measurements (or prefix) for digital information.

Due to various hard disk manufactures opting between different conventions,
confusion may arise with which convention it’s referring. This is especially true in
the case of a Seagate customer who was misled by a product label that advised the
hard disk sizes to be larger than originally claimed; an approximately 7.4% gap in
memory. The company reimbursed the customer after being sued [3]. As an effort to
reduce confusion, IEEE proposes a guideline that helps distinguish between a

Fig. 2.3 Measurement word Yottabyte(YB)
units for digital information

1 Zettabyte(ZB)

byte
Exabyte(ZB)

Petabyte(PB
bit yte(PB)

Terabyte(PB)

Gigabyte(GB)
NOTE that some hard
disk manufacturers
consider 1 MB to be
1,000,000 bytes.

Megabyte(MB)

Kilobyte(KB)

2.2 Data Representation 41

decimal K (1000) and a binary K (1024). For instances, the conversion of low-case
“k” refers to decimal kilo and upper-case “K” refers to binary kilo. However, not
everyone strictly follows these conventions. Regardless, we use 1024 convention in
this book.

2.2 Data Representation

Data is represented by encoding, which is the process of converting message or data
into code. From code to local representation is decoding. There are many common
ways that data is encoded in 1’s and 0’s. This is called data representation. In this
book, we mainly focus on the following data representation:

» Unsigned integers (e.g. non-negative integers)

» Signed integers (e.g. negative, positive integers, and zero)

* Floating point numbers (e.g. approximations of real numbers)
e Characters (e.g. ASCII, Unicode)

There are many data types and complex data that are built on basic ones. You will
be able to construct and deconstruct data by understanding some. Byte ordering is
important in digital investigation, as well as byte alignment, which will be discussed
in this section. But before we proceed into the lesson, we need to introduce how
integers are encoded because it is the most common type of data, either unsigned
integer or signed integer.

A typical memory cell (or one memory location) stores one byte of data, known as
“byte-addressable” memory. It means that each address refers to one byte of
memory. So, if we are to store a word into memory, we will have to split the
32 bits quantity into 4 bytes. With 8 switches of 1s and Os, or 2%, there would be
256 possibility for one byte. Each of these bytes corresponds to an integer between
0 and 255. Numbers we normally are familiar with like 5 and 8 are known as decimal
notation. Each digit in a decimal formation corresponds to base 10. For example,
178 decimal digits can be written as 1 x 10% + 7 x 10" + 8 x 10°. Similarly, a switch
in byte represents a binary number where digits are represent as 1 and Os instead of
the 0-9 digits. To denote a binary number, we use “Ob” or state that the digit is in
base 2. For example, the data representation of decimal number 178 in binary is
0b10110010. We derive this binary number by converting the decimal to base 2. The
simplest way is using a conversion table that listing the power of 2s from right to left
starting at 2° = 1, and incrementally, the exponent until 2’ = 128. Using the process
of elimination, we figure out the greatest power that will fit into 178 is 128.
Whenever a digit fits, it is a 1 bit. When it doesn’t fit, it is a O bit. In this case, we
note down 1 bit and subtract 178 from 128 to get 50 as our new digit to compare. We
shift to the right and repeat the processes until there are no more base 2 digits to
compare. To verify that we correctly convert decimal to binary, we can sum all base
2 numbers that are tick as 1 bits. For instance, 128 + 32 + 16 + 2 = 178, shown in
Table 2.1. Thus, we have correctly converted decimal to binary.

42 2 Introduction to Computer Organization

Since using binary seems long and cumbersome to write bytes to a computer, we
use a more effective representation. By breaking the bytes into 2, we have 4 bits (also
known as nybble). A nybble can take 16 configurations. These configurations can be
represented by a single character called hexadecimal. A hexadecimal digit uses
decimal digit to represent 0-9 and A to F to represent 10-15. Hexadecimal allows
us to represent a byte as 2 digits instead of 8. To denote a hexadecimal number, we
use “Ox” or state that the digit is in base 16. For example, the data representation of
decimal number 178 in hexadecimal is 0xB2, as shown in Table 2.2. We derive this
hexadecimal number by dividing the 8 bits calculated from our binary conversion
into two halves, referred to Table 2.3.

Generally speaking, a number can be represented in any base b, also known as
radix. The format is shown as follows:

(dk—ldk—zdk—3 dzdldo)b,

where the ds are digits, i.e., symbols for the integers between 0 and b — 1.This
notation means a nonnegative integer written to the base » and is equal to

di 1B dy BT d B +dob* + dib' + d.

Table 2.1 Binary of 1789 Base 2 128 |64 [32 [16 [8 [4 [2 [1

Binary value 1 0 1 1 /0 (0 |1

:‘fa?;eé 2.2 Hexadecimal Binary 1011 0010
1o Hexadecimal value 0xB 0x2

Table 2.3 Conversion table Binary Decimal Hexadecimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

2.3 Memory Alignment and Byte Ordering 43

Notably, sometime the parentheses are omitted, donated by d;, _ d;, _
oy — 3. dyd,dy,. For example, in the number (1234567)g, 1234567 are digits
and 8 is base.

Character popular encoding scheme like ASCII (American Standard Code for
Information) maps numbers 0-9, letters a—z or A—Z, basic punctuation symbols, and
blank spaces to binary integers. Let’s use ‘A’ as our example, which is valued at
65 when encoded to decimal (base 10). If converted into hexadecimal (base 16), its
value is 0x41.

ﬂ:;-tfi_!{r ASCII is often denoted as 7-bit, but it’s not unusually to see 8-bit, which

extends the original character-mapping by adding additional characters on top of the
first 128 characters made from 7-bits.

ASCII is nice and simple if you use American English, but it is quite limited for
the rest of the world because their native symbols like Greek letters and Chinese
characters cannot be represented. Unicode helps solve this problem by using more
than 1 byte to store the numerical version of a symbol. Unicode offers a better
scheme as it has a wider array of characters than ASCII by using multiple-bytes. It
can be encoded in 8-, 16- or 32-bit binary formats, called UTF-8, UTF-16 and
UTEF-32. But how these multiple-byte quantities are arranged in memory? We will
talk about this topic in the next section.

2.3 Memory Alignment and Byte Ordering

One important aspect we need to cover is Memory Alignment (or sometime referred
to as Data Alignment). It dictates how data is arranged and accessed in computer
memory. Data is distributed in 2-, 4-, 8-, 16-, or 32-byte chunks at a time, where the
larger a byte that the CPU distributes means faster a computer can access data from
memory. For example, a 32-bit processor requires a 4-byte integer to reside at a
memory address that is evenly divisible by 4. This requirement is called “memory
alignment”. Padding unused byte between the end of the last chunk and next chunk
correctly aligns the data structure in order to optimize the transfer of data more
efficiently; Less cache miss and less bus transactions. In other words, accessing a
misaligned structure will yield a lower overall performance. Let’s take a memory
that uses byte address as our example. The computer would break up the 32-bits into
4-bytes chunk and arrange them in consecutive orders. This means the next 3 bytes
are stored at offset of 0x1001, 0x1002, and 0x1003 if the first byte is stored at
0x1000. Since the data is chunked into 4-bytes at a time, memory address cannot
start with a memory address of 0x1001, 0x1003, or 0x1005 as they are not divisible
by 4. Note that storing data in sequences may not apply to all cases because there are
two ways to distribute and store multiple-byte in memory. This is called Endianness,
which will be covered in this section. But first we must understand why a modern
processor is restricted to access memory at granularity.

44 2 Introduction to Computer Organization

Misalignment causes hardware complications, since the memory is typically
aligned on a word boundary. A misaligned memory access will introduce multiple
aligned memory references [7]. The following diagram illustrates two situations, and
in both cases the CPU accesses 4-byte chuck of data. Also, memory is accessed in
4-bytes. In summary, data is arranged (or 4 bytes aligned in our example below) and
accessed in computer memory.

The situation on the left in Fig. 2.4 shows a case where data is aligned and
situation located on the right shows a case where the data is misaligned. For the
second situation, CPU has to perform extra work to access the data: Load 2 chucks of
data, shift out unwanted bytes then combine them together, as shown in Fig. 2.5.
Thus, the CPU data access performance suffers and CPU cycle is wasted for
misaligned data in order to correctly retrieve the data from memory.

Generally, an access to an object of size s bytes at byte address A is aligned if
A mod s = 0. Let’s use the following as our example:

In Table 2.5, line 3 occupies 4 bytes of memory, line 4 occupies 3 bytes of
memory, and line 5 occupies 4 bytes of memory. These numbers of bytes are not
random but derived by type of data, which can be referred to the list in Table 2.4.
It can thus be concluded that the struct object Student occupies 11 bytes (4 + 3 +4) in
memory. However, 11 isn’t divisible of 4 (assuming that this case uses the common
32-bit x86 processor.). Therefore, the compiler will add an unused padding byte,
making the struct Student allocate 12 bytes instead of 11 bytes of memory. This is
why the size that a struct object occupies is often larger than the total storage
required for the structure (Table 2.5).

%{: You can use the expression “sizeof(struct Student)” to see for yourself. It

gets the actual size of its occupied memory space.

System with Intel processors can still perform with a misaligned data structure;
however, in some Unix systems it results in bus errors. Most compilers compensate
the problem by automatically aligning data variables according to their types and the

Memory CPU Memory
I [I CPU

data_| || | data [[]
[—> | — data [= [
— — — p—
4-bytes memory access for aligned data 4-bytes memory access for misaligned data

Fig. 2.4 Memory mapping from memory to CPU cache [4]

2.3 Memory Alignment and Byte Ordering 45

chunk 1 [
Memory i-_““““mi ; [i
— (| CPU
. —> |- e | - —
I [
data— — Combine o || -data
4-bytes chunks
chunk 2
| Il shift 3 byte
b d down
>
Fig. 2.5 Misaligned data slows down data access performance [4]
Table 2.4 Data alignment for Data type Alignment (bytes)
each type Char 1
Short 2
INT 4
Float 4
Double 4or8
Table 2.5 Example C 1 struct Student
2 {
3 int id;
4 char province[3]; //ON, BC etc. + terminating null
5 int age;
6 I3

particular processor being used as such with the struct Student example explained.
This also applies to union or classes objects.

In systems, byte of multiple-byte data element can be arranged depending on its
order in which byte addressable memory is stored. This is known as Endianness
(or Byte ordering). There are two popular types of endian:

¢ little-endian
* big-endian

46 2 Introduction to Computer Organization

The name endianness derived from Jonathan Swift’s book “Gulliver’s Travels”.
In the book, he talks about how a vigorous war starts over a silly debate that
composes of people who prefer cracking boil eggs from the little end (“little-
endian”) and people who prefer creaking from the bigger end (“big-endian”).

It is such a trivial thing, yet people argue about the ordering scheme in computer
architecture too. Traditionally, things are done in big-endian, but then Microsoft
came and decided to do little-endian. All the architecture architectures for Windows
x86, x64, x32 operation systems are done in little-endian. However, both
bit-ordering schemes are very much in use. For instances, processors like IBM
360/370, Motorola, Suns, 68 k, MIPS, Sparc, and HP PA use big-endian. These
are general mainframe and big computers. Little-endian processes are Intel 80 x 86,
DEC Vax, DEC Alpha, and SuperH. However, there are architectures like MIPS and
Intel 64 TA-64 that operate in either big-endian or little-endian [5].

Either way, it is important to know little-endian and big-endian because one
incorrect byte can throw off the whole machine. This is especially true when sending
data over the network between two different machines that use opposite endianness
because data would be read in the wrong order.

Within memory there is a high address and low address. Little endian stores with
the least significant byte first (low address) in smallest address; read from right to
left. Big endian stores the most significant byte first (high address) in the smallest
address; read from left to right.

To fully understand these two different byte-ordering concepts, we will use
4 bytes number “90, AB, 12, CD” as our example, where each byte requires 2 hex
digits, referred to Table 2.6.

Obviously, if we read the little endian version from low to higher memory
addresses, we obtain CD 12 AB 90. We have to flip over to get the actual value of
0x90AB12CD. It means that the lower-order byte or least significant byte of a
number is stored at the lowest address, and the high-order byte or most significant
byte at the highest address in memory.

Similarly, the solution to the data sent over the network problem is to use a
network byte order to rearrange the bytes stored at consecutive memory location
when it detects the byte order scheme of that machine. A similar problem also exists

Table 2.6 Little-Endian Address ‘ Value
vs. Big-Endian

Little-Endian

1000 CD
1001 12
1002 AB
1003 90
Big-Endian

1000 90
1001 AB
1002 12
1003 CD

2.4 Practice Exercise 47

when data exchange between computers over network. This is where XDR (External
Data Representation) comes into play. XDR is a standard data serialization format,
which allows data to be transferred between different kinds of computer systems
[6]. It is independent of the transport layer. Converting from the local representation
to XDR is called encoding. Converting from XDR to the local representation is
called decoding. It uses a base of 4 bytes and order by big-endian. Variables would
be padded by a divisible of four bytes.

Review Questions
1. Convert the following decimal numbers to binary numbers

(a) 102
(b) 18
() 7
2. Solve for x in the following equations.

(3.) X10 = 10010102
(b) FCB8]6 = X2

3. Suppose a computer with Intel processor has memory locations from 0x0000 to
0x0003, each storing 1 byte. What is the actual value stored there? (in decimal)

Address Hex contents
0x0000 10

0x0001 23

0x0002 01

0x0003 Al

4. What is Byte-addressable memory?
5. How many bits are there in a nybble? How many bits are there in a byte?

2.4 Practice Exercise

The objective of this exercise is to give you a better understanding of how a
computer stores and processes data.

2.4.1 Setting Up the Exercise Environment

For this exercise, assume that you have a physical or virtual Linux system with a C
compiler installed, for example Linux GNU GCC.

48

2.4.2 Exercises

2 Introduction to Computer Organization

Consider the following C program

#include <stdio.h>

struct Student
{ int id;

char province[3]; //ON, BC etc. + terminating null

int age;
be

int main(){

struct Student studentl;
/I Assign values to structure variables
studentl.id = 100364168;
strncpy(student].province, "ON\0", sizeof(studentl.province));

studentl.age= 18;

printf(" The size of struct member id is %d bytes\n", sizeof(student1.id));
printf("The size of struct member province is %d bytes\n", sizeof(studentl.

province));

printf(" The size of struct member age is %d bytes\n", sizeof(studentl.age));
printf("The size of struct Student is %d bytes\n", sizeof(struct Student));

return O;

}

Part A: Data Alignment

Answer the following questions based on the above C code, by filling in all of the
blanks where indicated based on the output of the program (Table 2.7).
Note that the size of a variable or data type is evaluated using sizeof operator in C

Programming.

Table 2.7 Storage sizes of variables or data types in the above C code

Variable or data type

Size in bytes

student].id 100
student].province 101
student]l.age 102
Add lines 100, 101, and 103
102

Struct student 104

2.4 Practice Exercise 49

Q1. Which is bigger?

1. The size of struct Student (Line 104).
2. Subtotal of the sizes of all the members of struct Student (Line 103).

Part B: Get the Representation of Data Using GDB
In the following exercises we will look into how computers represent data based on
the above code. Specially, you will use GDB commands to look into the memory to
get the representations of all the members of struct Student. For example, if we
declare an int variable,

inta = 16;

Then we can use the x command in GDB

(gdb) x/4bt &a

Oxbffff56c: 00010000 00000000 00000000 00000000

where the first item is memory address where an integer value (in 4 bytes) is
stored, the second item is the content stored in the memory. If you want to learn more
about GDB & how to use it, you can refer to Appendix A, “How to use GDB to
debug C programs”, as a reference.

Answer the following questions after debugging the above C program, by filling
in all of the blanks with the output of GDB commands (Table 2.8):

Table 2.8 Data presentation of variables in the above C code

Representation of values (in hexadecimal) (after a value is assigned to the
Variables variable)
student1.id

studentl.
province

studentl.age
Student1

Part C: Examining Endianness
Consider the following C program

#include <stdio.h>
#include <stdlib.h>

int main(){

unsigned char digits[4];
digits[0] = 0x12;
digits[1] = 0x34;
digits[2] = 0x56;

(continued)

50 2 Introduction to Computer Organization

digits[3] = 0x78;
int * ptr = (int *)digits;
return 0;

}

i‘ﬁ" "You can use the following GDB command to print the content at the memory

address specified by a pointer, assuming p is an integer pointer.

(gdb) x/x p

Oxbffff570: 0x78563412

where the first item is memory address that the integer pointer p contains, the
second item is the content stored in the memory specified by the pointer.

Also, the following GDB command can be used to print the content of a specific
array item. We’ll be discussing an array of 4 unsigned chars as an example for
simplicity.

(gdb) x/1bx &digits[0]

Oxbffff570: 0x12

where the first item is memory address where the 1st array item (in 1 byte) is
stored, the second item is the content stored in the 1st array item.

Answer the following questions based on the above C code, by filling in all of the
blanks where indicated with the most appropriate response (Table 2.9):

Table 2.9 Memory adresses and stored values of char array elements in the above C code

Item of array digits | First item Second item Third item Fourth item

Memory address

Stored value

Q2. What is the value in hexadecimal format at the memory address specified by the
integer pointer ptr?

Q3. According to your debug output, which endianness (big or little endian) is used
in your system? Briefly explain your rationale for your conclusion. If necessary,
give a diagram to help in your explanation.

Appendix A: How to Use GDB to Debug C Programs

In order to use gdb to debug a C program, you should compile your C program with
-g option. It allows the compiler to collect the debugging information. For example,

Appendix A: How to Use GDB to Debug C Programs 51

gee —g —o test test.c

where gcc is the compiler, test.c is the C program and test is the executable file.

Suppose we need to debug the executable file, the followings are basic steps for
debugging a ¢ program using gdb debugger:

Step 1: start gdb
gdb ./test
Step 2: Set up a break point inside C program

Syntax: break <line_number>
Note that since now on, you execute the commands in the gdb command line, not
in the bash command line.

Step 3: Execute the C program in gdb debugger

run [args]

where args is the command line arguments you pass to the program.

Afterwards, you can use various gdb commands to examine executing Code.
Example options of examining executing Code include:

e p or print: Print the content of variables or parameters.
e x or examine: Examine memory contents in different forms, including binary and
hexadecimal forms. It uses the following syntax:

x/[NUM][SIZE][FORMAT] [Address]

where NUM is the number of objects to display, SIZE is the size of each object
(b = byte, h = half-word, w = word, g = giant word (eight bytes)), FORMAT
indicates how to display each object (d = decimal, X = hex, o = octal, t = binary),
and [Address] is the memory address. For example,

the following x command will display a program’s variable a’s actual value in
hex form when given the argument &a. 4 is the repeat count or the number of
units whose size is specified by argument b, which stands for byte as the unit size.
‘x” means that you want to display or output the value in hexadecimal form,
which is the default display format for the x command.

(gdb) x/4bx &a
Oxbffff56¢: 0x10 0x00 0x00 0x00

Step 4: Continue, stepping over and in after a breakpoint
There are three kinds of gdp operations after a breakpoint:

e ¢ or continue: Execution will continue until the next breakpoint in your code.

* n or next: Executing the next line of code after the current breakpoint.

e sor step: The s command is very similar to the n command, except for that the s
command steps into a function and executes it line by line, whereas the n
command simply treats a function call as one line of code.

Step 5: Quit from the gdb debugger
Syntax: quit

52 2 Introduction to Computer Organization

References

1. What is the difference between memory and hard disk space? http://pc.net/helpcenter/answers/
memory_and_hard_disk_space

2. https://en.wikipedia.org/wiki/Computer_data_storage

3. Seagate customers eligible for manufacturer refunds, free software Seagate is offering a settle-
ment agreement to Sara Cho, the woman who sued the . . . http://arstechnica.com/gadgets/2007/
10/seagate-customers-eligible-for-manufacturer-refunds-free-software/

4. Data Alignment. http://www.songho.ca/misc/alignment/dataalign.html

5. kilobyte. http://www.webopedia.com/TERM/K/kilobyte.html

6. External Data Representation (XDR) http://en.wikipedia.org/wiki/External_Data_
Representation

7. Aligning Addresses http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/addressAlign.html

http://pc.net/helpcenter/answers/memory_and_hard_disk_space
http://pc.net/helpcenter/answers/memory_and_hard_disk_space
https://en.wikipedia.org/wiki/Computer_data_storage
http://arstechnica.com/gadgets/2007/10/seagate-customers-eligible-for-manufacturer-refunds-free-software
http://arstechnica.com/gadgets/2007/10/seagate-customers-eligible-for-manufacturer-refunds-free-software
http://www.songho.ca/misc/alignment/dataalign.html
http://www.webopedia.com/TERM/K/kilobyte.html
http://en.wikipedia.org/wiki/External_Data_Representation
http://en.wikipedia.org/wiki/External_Data_Representation
http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/addressAlign.html

Chapter 3)
Building a Forensics Workstation e

Learning Objectives
The objectives of this chapter are to:

* Build a computer forensics workstation using open source tools
» Use TSK and Autopsy to conduct a digital forensics investigation

If you’ve seen CSI: NY (Crime Scene Investigation: New York) or any other
detective TV shows, you will notice that detectives use tools to search and find
clues and evidence within the crime scene. For example, they use tweezer to pick up
small objects on the ground and camera to take pictures of crime scenes. As the age
of technology, many crimes involve using technological devices. This is why the law
enforcement needs to embrace digital forensics. Besides traditional forensic equip-
ment and tools, detectives will now need digital forensics tools to analyze electronic
devices and media. In this chapter, we will build a computer forensics workstation
using open source forensic tools. Particularly, we have chosen The Sleuth Kit (TSK)
and Autopsy for our book, as it is a widely used open source forensic toolkit. Also,
we will learn how to use TSK and Autopsy Forensics Browser to conduct a digital
forensics investigation through practical exercises.

3.1 The Sleuth Kit (TSK) and Autopsy Forensic Browser
3.1.1 The Sleuth Kit (TSK)

The Sleuth Kit, better known as TSK is a collection of free forensic tools. It was
developed by Brian Carrier [1] and is available at http://www.sleuthkit.org/. This is a
forensic suite available for Linux distribution and is used primarily to analyze file

© Springer Nature Switzerland AG 2018 53
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_3&domain=pdf
http://www.sleuthkit.org/

54 3 Building a Forensics Workstation

systems and storage media. TSK can be installed via package manage or compiled
from source code. Forensic Linux distributions, like BackTrack, Kali, Helix or
Penguin Sleuth Kit, ship with TSK pre-installed. If you are operating from a
Windows workstation you can use TSK via a virtual machine installation. TSK
tools are used on command line interfaces. Autopsy, developed by Basis technology,
is a graphical front-end for TSK. The aim of TSK is to create the leading forensic
analysis tool for source file and volume systems available on all major platforms.

Brian Carrier developed TSK in collaboration with @stake. It was initially known
as @stake The Sleuth Kit or TASK. TASK was created to fill many gaps found on
two popular tools for digital forensic analysis, The Coroner’s Toolkit (TCT) [2] and
TCTUTILS [3]. TASK added support for FAT and NTFS file systems. The pre-
decessors of TASK and TSK, TCT and TCTUTILS were first developed in 2000 by
Dan Farmer and Wieste Venema. TCT was an innovative approach to digital
forensics. It was free and open sourced and was available to the public. However,
TCT file system tools could only support operations on the inode or block layer.
During analysis, file directory names were not utilized. Furthermore, TCT was
platform dependent. In other words, analysis could only be performed on a
filesystem if it was the same version as that performing the analysis. This caveat
made it difficult to create forensics OS distributions that we have today.

TSK provides a large number of specialized command-line based utilities. It is
capable of parsing many types of file systems, including Ext2, Ext3, Ext4, HFS, ISO
9660, UFS 2, YAFFS2, FAT/EXFAT, and NTFS file systems. It can analyze within
disk images stored in raw images that are in dd format, AFF formats or Expert
Witness formats. You can use TSK using command line tools or as a library
embedded within a separate digital forensic tool such as Autopsy. TSK was origi-
nally designed to tackle digital forensics with a layered approach. The tools in the
original TASK distribution were developed to tackle specific layers of a forensic
image. We can separate forensic images into four main and distinct layers [4].

. File System Layer

. Content /Data Layer

. Metadata/Inode Layer
. File Layer

RIS S

The File System Layer consists of disks used in digital forensics. These disks
consist of one or more slices; otherwise known as partitions. These partitions contain
their own file systems. There are several types of file systems. Popular are File
Allocation Table (FAT), fourth extended filesystem (ext4) and New Technologies
File System (NTFS). Values that allow you to differentiate among other file systems
are contained on this layer. TSK tools for this layer are prefixed with ‘fs’. File
System tools are used to display general file system details. This includes layouts,
allocation structures and boot blocks.

Data is stored in pieces. These pieces can be called blocks, fragments or clusters
depending on how data is stored. The Content or Data Layer houses file and
directory content. Tools for this layer are prefixed by ‘blk’. Previous versions of
TSK and TASK used the prefix ‘d’. These tools are geared towards the search and
recovery of actual information and can be crucial in the recovery of deleted content.

3.1 The Sleuth Kit (TSK) and Autopsy Forensic Browser 55

The Metadata or Inode Layer stores descriptive information. This includes inode
structures or entries for various file systems or platforms. These include directory
and MFT entries from FAT and NTFS respectively and inodes from Ext and UFS.
Furthermore, timestamp, addresses and size data can be collected on this level. TSK
tools for this level are prefixed with an ‘i’.

The final layer is known as the File Layer. It sometimes referred to as the Human
Interface Level. This level allows for interaction between users and file content. File
names are saved in data units which are allocated by parent directories. File Name
structures contain the name and addresses of to a corresponding metadata structure.
TSK tools for the File Layer are prefixed with ‘f’. File Name Layer handles name
structures. This is useful in gathering data based on the name of files. However, file
names and directory structures do not often fully demonstrate the content of files.
File Name Layer tools are useful in cataloging the contents of a volume.

TSK hosts several tools that fall outside or work between layers. These can be
categorized as Fully Automated, File System Journal, Volume System, Image File,
Disk and other miscellaneous tools. Description of all tools are given in the table
below.

Tools in the TSK Suite [5] are listed below.

Tool category | Tool name Description
File system fsstat This command is used to display all details associated with a
layer file system
File name layer | ffind This command is used to find unallocated and allocated file
names that point to specific meta data structure
fls Lists names in a directory. These include deleted file names
as well
Meta data layer | icat Used to extract data units from a file as per meta data address
rather than the file name
ifind Used to find the meta data structure that has a given file name
or other meta data structure pointing to it
ils Used to list meta structures and their content
istat Used to display statistics. Specifically, statistics on meta data
structures
Data unit layer | blkcat Extract and display the contents of a given data unit
blkls Used to list details concerning data units. Can also detail
which data units are allocated or not
blkstats Used to display statistics on given data structures
blkcalc Used calculate where data found in unallocated space can be
found on the original image
File system jeat Display information of a journal block
journal layer jls List entries for a file system journal
Volume sys- mmls This command is used to display disk layout and
tem layer organization
mmstat Used to display information on the volume system
mmcat Used to extract contents from a partition

(continued)

56

3 Building a Forensics Workstation

Tool category | Tool name Description
Image file layer |img_stat Displays the details of an image file. Used to collect size of
images and the byte range of split image formats
img_cat Used to output the contents of image files. Displays the raw
content of image files
Disk tools disk_sreset This tool is used to remove Host Protected Areas (HPA) if
layer they exist
disk_stat Displays if HPAs exist on an image
Automated tsk_comparedir | Used to compare local directories with images or raw
tools devices. This can be used to detect if rootkits are used to hide
files from the local directory hierarchy. TSK parses raw
content from the raw device
tsk_gettimes Extracts metadata to be used by mactime to create timelines.
This is useful for timeline analysis
tsk_loaddb Saves the volume, image, and file metadata to a SQLite
database. This database can then be used by other non-TSK
programs for further analysis
tsk_recover Used to extract unallocated and allocated files from an image.
The files can then be saved to a local directory
Miscellaneous | hfind Uses a binary sort algorithm and compares them to hashes
found in hash databases. Hashes are md5sum
mactime Creates a timeline for a file’s activity
sorter Sorts files based on file type. Also, performs extension
checking and hash database lookups. Useful in checking
whether file extensions have been changed to secret contents
sigfind This command is used to find binary signatures in a given
data set

3.1.2 Autopsy Forensic Browser

Autopsy forensic browser or simply Autopsy, also known as Autopsy server or
Autopsy service, is a digital forensics platform and graphical interface to TSK and
other digital forensics tools usually used by the military or corporate examiners for
investigation on a victim’s computer. As Autopsy is HTML-based, you can connect
to it from any platform using an HTML browser, for example, Firefox. Autopsy
provides a “File Manager”-like interface, which gives investigators a convenient
way to managing their investigation cases, showing the details about deleted data
and file system structures of imported disk (or partition) images [6]. Simply to say,
Autopsy forensic browser is easy to set up in a Linux system as the only way to
accessing this browser is the input of the URL http://localhost:9999/autopsy. For
example, you should be able to launch the Autopsy Forensic Browser in Kali Linux
by navigating to Applications — Forensics — autopsy, shown in Fig. 3.1, and then
connect to the Autopsy server by opening a Web browser and typing the above URL
in the URL bar.

Afterwards, the default start page is displayed like Fig. 3.2, and you can start
a digital forensics investigation by either creating a new case or opening an
existing one.

3.1 The Sleuth Kit (TSK) and Autopsy Forensic Browser

57

Ele Edit Yew VM Tsbs Hep | [l -
Library

B My Computer
(5] INFR 26500 Forensics Workstation
9 Kl Linese: 2018 2ven-i386

Shared VMs

To deect input to this VM, click inside or press Ctrle G,

‘. autopsy

Fig. 3.1 Launch Autopsy in Kali Linux

Autopsy Forensic Browser - Mozilla Firefox

J i Autopsy Forensic Bro.. x | Kali Linux, an Offensive S.. x =+

90% | & ||Q Search

€ | @ | localhost:9999/autopsy

[Most Visited~ JllOffensive Security s Kali Linux %, Kall Docs "8 Kali Tools # Exploit-DB Wy Alrcrack-ng

WARNING: Your browser currently has Java Script enabled.

wBa & #

»

You do not need Java Script to use Autopsy and it is recommended that it be turned off for security

reasons.

Autopsy Forenslc Browser 2.24

http: /v, sleuthkit

OPEN CAsE HEW Case

Fig. 3.2 Autopsy web GUI

58 3 Building a Forensics Workstation

Bl 4 You VW Iss ey | I - Y |+ FOUNR| m== =

| O X Rl U201 e 288

Klali Forensics

Toglkit Collection

=

T st et s this VM, ek i e peess Cirle 6. =1 LT
— —

Fig. 3.3 Kali Linux

3.1.3 Kali Linux Sleuth Kit and Autopsy

Kali Linux, with its BackTrack lineage, is a digital forensics and penetration testing
Linux distribution. It is based on Debian Linux, and has over 600 preinstalled digital
forensics and penetration-testing programs, including TSK and Autopsy (Fig. 3.3).
We will use Kali Linux to build a Forensics Workstation for our book. There are still
many other interesting tools available online, such as The SANS Investigative
Forensic Toolkit (SIFT) [7]. The SANS SIFT kit is a computer forensics VMware
appliance pre-configured with all the necessary tools for digital forensic
examinations.

3.2 Virtualization

The virtualization technology has been introduced as a solution that several operat-
ing systems and applications can be run on one physical computer, known as “host”,
in order to address one limitation of today’s computers, which are designed to run
just one operating system at a time. Each self-contained “virtual machine” runs like a
separate physical computer, and has its own virtualized computing resources,
including virtual CPU, virtual hard disks, virtual memory, based on its requirements
to computing resources available on the host. Whereas OS installed and running on a
physical server is referred to as primary operating system, each VM runs its own
operating system, called guest operating system.

Simply put, virtualization is an abstraction layer in the computer architecture
model where an operating system communicates with this layer, instead of directly

3.2 Virtualization 59

Fig. 3.4 1SO Open Systems (= = - -
: . File .: . 1

Interconnection (OSI) i 1 1 E-mail . | HTTP leoe

model D s !

Application Layer
Presentation Layer

Session Layer
Transport Layer
Network Layer

Data Link Layer
Physical Layer

— | — T —

Services/Apps [¢ e+ Services/Apps

Fig. 3.5 The virtualization
layer sitting over the host

OS and letting you run oS =R 0S 5 <
multiple virtual systems o é
cach with its own OS and Virtual Machine 1| | Virtual Machinen| |3 £

services/applications
Gmotle s [amoies
Virtualization Layer

Operating System (OS) Layer
Hardward Layer

communicating with the hardware. An abstraction layer can be described as a way of
dividing up and isolating a model based on functionality. An example of such a
concept would be the Open Systems Interconnection (OSI) Model, shown in
Fig. 3.4, where the seven layers are split up based on their functions.

In a usual case, a person would run an operating system in a “virtual machine”,
shown in Fig. 3.5, which would basically create an environment which emulates an
actual computer, allowing the operating system to function normally within the
limits set in the virtual machine. Nevertheless, besides operating system, technically,
virtualization could be the “creation of a virtual (rather than actual) version of any
computing system, including a server, a storage device or network resources” [8].

1SOH

3.2.1 Why Virtualize?

The benefits of using virtualization (e.g., a pre-configured Fodera virtual machine)
include

60 3 Building a Forensics Workstation

First, we can save a lot of time from configuring the devices and softwares. If thing
doesn’t work out, we can always roll back to a snapshot and start over again until
it works. In other words, we can have an environment that can be saved, deleted,
backed up, etc., on demand. By using virtualization, we can always have a copy
of clean and workable image, which is very good for the purpose of teaching.

Second, all students have the same lab environments, which can be well controlled.
As aresult, it could become easy to troubleshoot and diagnose problems in the lab
environments of students.

Third, another reason to virtualize is to have a testing environment that can be saved,
deleted, backed up, etc., on demand.

Finally, as for virtual machines, thin provisioning is used for just enough physical
space being used as needed, and allows you to create virtual hard disks of a
certain size without occupying as much space (it consumes space as it needs it),
allowing you to overcompensate the size of hard drives.

3.2.2 What Are the Virtualization Options?

The virtualizing platform (e.g. VMware Workstation, Oracle VirtualBox, Citrix
XenServer, etc.) creates an almost-transparent layer between the hardware and the
operating systems running. The platform also creates virtual hard disks, virtual
CPU’s, etc. needed for the virtual operating system to run. There are two common
types of virtualizing platforms:

1. Ones that Run On an operating system

For example: Oracle VirtualBox runs as an application under Ubuntu.

Products: VMware Workstation/Fusion, Oracle VirtualBox, Parallel’s Desk-
top/Workstation (Fig. 3.6).

2. Ones that Run as an Operating System as a Hypervisor.

For example: VMware ESXi runs as its own operating system, which is a very
thin version of Linux, customized for virtualization, and the virtual operating
systems communicate with the hypervisor.

Products: VMware vSphere/ESXi, Citrix XenServer, Parallel’s Virtuozzo
Containers, Microsoft Hyper-V.

3.2.3 Why VMware Virtualization Platform?

There are now many virtualization platforms available, including such as VMware,
Microsoft Virtual PC, and Oracle VirtualBox. In the book, we choose VMware due

3.3 Building Up Your Forensics Workstation with Kali Linux 61

Virtualizing Platform
Windows 7 using Fedora9 Virtual Machine
Host Machine VMware Player

i- a9 :
[) soptcazons Paces Sntem @ o

oot flocalhort:-
e [dt \ew Jeomnd Tl e
[restplocalhast =)o |

Fig. 3.6 An example of virtualization environment where a Fedora 9 virtual machine running on
Windows 7 machine using VMware Player (and configuring VMware Tools)

to the fact that VMware has a rich product line which allows us to deliver all the
practice exercises developed in the book in a more flexible way to meet the needs of
different institutions.

3.3 Building Up Your Forensics Workstation with Kali
Linux

Next, you will build a Forensics Workstation using virtualization technologies and
Kali Linux.

1. Download and install VMware Workstation Player (or VMware Workstation
(PRO)) on your computer by going to http://www.vmware.com/

http://www.vmware.com/

62 3 Building a Forensics Workstation

Note that VMware Workstation Player is free software that enables PC users to
easily run any virtual machine on a Windows or Linux PC, but you may need to
register with VMware using your email for the use of the software.

2. Download Kali Linux (Kali Linux 32 bit Vmware Preinstalled Image) by going to
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-
download/

[st Linix Cuntom Image %

€« C | @ Secure | hiips//www.offensive-security.com;ali-lin ware-virtualbox-hypeny-image-download/ g
! apps dr Bockmadks [F UOT e UOMser v Blackbowd [MyCampus W Loy [} TSC
n “E(‘J -
;‘-“’F';'—'I(:E Ltng Courses Certifications. Online Labs Penetration Testing Projects Blog About Q
Kali Linux VMware Images Kali Linux VirtualBox Images Kali Linux Hyper-V Images &n ouf lled
Offensive Security Certified
Professionals. Learn hands-on,
real world penetration
Image Name Torrent Size Version SHA2S565um
Kali Linux Ve 32 | Torrent | 3.0G | 2018.1 | 7laTies 8215, ¢! cfeedlcalBoddlsE21M0FaTES ST distribution.
Bit [Zip]
OSCP REGISTRATION
Kali Linux Vm 32 | Torrent | 3.5 | 2018.2 2e7é4727 166551911624
Bit [OVA]
Kali Linux Vm 64 | Torrent | 3.0G | 2018.2 % ahlet = B
Bit [Zip]
Kali Linwx Vim 64 | Torrent | 346 | 2018.2 | Sl6dfalisfcloesSlsd
Bit [OVA]

3. Install Kali Linux VMware Image in VMware
Next, we will install Kali Linux VMware image in VMware Workstation/
VMware Player. The installation procedure is the same for VMware Workstation
and VMware Player. Here we use VMware Workstation. Note that the
downloaded VMware Image is a zipped file so we have to first extract the Virtual
Machine files for Kali Linux VM.

(a) Start VMware Workstation and then click on “File” and then click on “Open

(b) Now, browse to the folder for extracted Virtual Machine files and select the .
vmx Kali Linux image file and click on “Open*.

https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download
https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download

3.3 Building Up Your Forensics Workstation with Kali Linux 63

Downloaded Kali Linux
custom image

© & v 1 b« New 20167 » VMs » Kali-linux-2018.2-vm-i325 v e

Organize » New folder

Y Favodites A Name : Date moddied Type Size

B Desitop (59 Kl Linaee 20182 vm-i388.vme A2EETTAOAM Viware virtual m. |
8 Downloads

UL Recent places

o} Homegroup

1 This PC

I Desitop

Fl Documents
18 Downloads
B Music

= Pictures

B videos

e Local Disk (C)

o ... W

Fibe pame: | Kali-Linux-2018.2-vm-i386mx w| |All supported files v

(c) Click Open. Once the import gets completed then we will see the newly imported
Kali Linux VM appeared in the list of available virtual machines on the left side
of the VMware Workstation as like below:

Ble E&t Yew VM Isbs Hep | B - | o | [0 £ | |E) d 2 |
"I:’ X rrome % @MMP«MW..X!@M@M«.:«' “p
Type here te search M = =) .
O R A j!'j.. Kali-Linux-2018.2-vm-i386
Kali Linux et & i] € Start Klali Machine
2 > et preree

5 Upgrade this virtual machine

= Devices
. Memary 68
[Processees 4

S Haed Dink (5030 80GB
FJCODVD 06 Auto debect
Wi Hetwork Adspter MAT

D USE Contrells Present

i Sound Card Busto debect

W Display fusto detect
= Description
Kall Relling (2018.2) x6
20180425 Vinual Machine Detaits

State; Powered off
------------------ Configueation fle: _\Kah-Linua-2013
Hardware compatibility. Workstation S v

LJ

(d) Click the Power on button to start Kali machine

64 3 Building a Forensics Workstation

Ele [ot Yew VM Jsn Hep | 11 -
Lenry

Wy Compreter
R4 S50 Ferensscs Workstation
3 N Lir B8 2w 336
S Ve

00:05

Sunday, June 10

T dinect ingset b this VW, ick inside or press Cirle .
SHEL A

Note that default root password for Kali Linux is “toor”, without the quotes. Also,
most of us like the convenience of using PuTTY for SSHing into a linux machine
(herein Kali Linux VM). However, Kali Linux VM images have the SSH server
disabled by default, though the SSH server is installed by default. To enable SSH
server on Kali, log in to the Kali Linux VM as root from the console, and start a
terminal and type the following commands

First, Generate New Keys for Kali Linux SSH Server For security reasons, it
would better not use default keys provided in SSH server. Instead, you should back up
the original keys (these files’ names starting with “ssh_host_""), which can be found in
the folder of /etc/ssh, and generate new keys for your Kali Linux SSH Server.

cd /etc/ssh

dpkg-reconfigure openssh-server

Creating SSH2 RSA key; this may take some time . . .

2048 SHA256:ZYMY3yvTNuqjp27htTqyxsrSLQFW91/4yO16/bdxVhc
root@Xkali (RSA)

Creating SSH2 ECDSA key; this may take some time . . .

256 SHA256:JMhFkF26jMSZss6UTiPoF88gGBZ6vesmZiSfAyrXQAc
root@kali (ECDSA)

Creating SSH2 ED25519 key; this may take some time . . .

256 SHA256:bRahoYuCNnjx+eeScSVPM2T4ecpMYLnvRdTAnFycZJg
root@kali (ED25519)

Once it is done, the new keys have been generated.

3.3 Building Up Your Forensics Workstation with Kali Linux 65

Second, Enable SSH Root Login Edit the SSH server configuration file

vi /etc/ssh/sshd_config

, change the following line to enable logging in through ssh as root
#PermitRootLogin prohibit-password

to

PermitRootLogin yes

Finally, Start and Restart the Kali Linux SSH Server start the Kali Linux SSH
Server

service ssh start
or, restart the Kali Linux SSH Server

service ssh restart

Aslo, it is recommended to permanently enable the SSH service to start whenever
Kali Linux VM starts, and type the following command

systemctl enable ssh.service

Synchronizing state of ssh.service with SysV service script with/lib/
systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install enable ssh

Created symlink/etc/systemd/system/sshd.service — /lib/systemd/system/
ssh.service.

4. Check the version of TSK installed on Kali Linux

mmls -V
The Sleuth Kit ver 4.6.0

66 3 Building a Forensics Workstation

5. Share files between computers

During a digital investigation, we need to frequently upload data files to Forensics
Workstation (herein Kali Linux VM). We can transfer files between the two com-
puters by using a file transfer program, for example, WinSCP, a free and open source
file transfer client for Microsoft Windows systems. However, for convenience, it
would be better to make a shared folder between host and virtual machines in our
circumstance. Note that your virtual machine running Kali Linux, aka the guest
operating system, is a completely independent computer from the real computer
running the host operating system (Windows in our examnple). Generally speaking,
there are four different file sharing techniques including vmware-tools, samba, sftp
and cloud storage. They all have different advantages and limitations, we will
discuss them next.

1. File sharing by using vmware-tools

Vmware-tools is a suite of utilities that can give us more convenience by
enhancing the performance of the virtual machine’s operating system and improving
management of the virtual machine. With vmware-tools, we can eliminate or
improve these issues:

e Low video resolution

* Unable to resize your virtual machine

* Restrict movement of the mouse

 Inability to copy/paste and drag/drop files between host and virtual machine

Also, it enables us to create shared folders between virtual and host machines,
which is a very fast way to share folders. However, it can only be used between
vmware virtual machine and its host. When we have other virtual machine such as
Virtualbox or even a real physical machine, VMware Tools is useless. The VMware
Tools is installed by default in Kali Linux VM images. We can check the version of
VMware Tools installed on Kali Linux VM by typing the following command

vmware-toolbox-cmd -v
10.2.5.3619 (build-8068406)

After having VMware Tools installed on a VMware virtual machine, we can
share files between virtual machine and host by creating shared folders. To create a
shared folder, we must have VMware Tools correctly installed and then use the
virtual machine control panel to specify the directories to be shared. Following is the
detailed configuration of shared folder on the Kali Linux virtual machine.

(a) To set up one or more shared folders for a virtual machine, be sure the virtual
machine is powered off. Click Edit the virtual machine settings

3.3 Building Up Your Forensics Workstation with Kali Linux

Ele Egit Yiew Vid Jabs Hep | B~ |

£ 00| mee|

| @rome x|

(51 INFR 46800 Forensics Workstation
> &
1 Shaeed Vs

=

Kali Linux:

..xll'-\ -

(5] Kali-Linux-2018.2-vm-i386

Power on thes virtual machine

F Upgrade this virtusl machane
= Devices

. Memory 168

[Processors. 4

EAHwd Disk (5C51) 2068
EHCOONDDE Auto detect
T Metwork Adapter HAT
BB USE Controllier Present

Edit virtual

,l i

settin

67

machine

=

) Seund Cwd Bute debect
B Display At debect
= Description
Kali Relling (3018.2) 86
2008-04.23 = Virtual Machine Details
ez Pewered off
.................. Contiguration fBx: . Uk Lioxar-2018
Hardware compatibility: Workstation Bxvir
[J |
(b) Click Options->Shared Folders
[Hardware | Options |
[~ — 2l = . "
A\ Shared folders files to the
" : your programs in
ol General Kali-Linux-2018. 2-vm-336 virtual machine. This may put your computer and
P Power | your data at risk. Only enable shared folders if you
ESERUTECT RN et e e e it st
(& snapshots O Disabled
©) auteProtect Disabled | (@) Always gnabled
B Guest 1solation Enabled untl next power off or suspend
Access Control Notencarypted
WMware Tools Time syncon | Eoiders
'VNC Connections Disabled
Wty Name Host Path
5 appiance view |
Autologin Mot supported
B advanced Default/Defauit |
Q& | Remove Properties
|
|
|
|

(c) Choose Always enabled for the folder sharing between virtual machine and host.
Click Add to add a shared folder. The Add Shared Folder Wizard will guide you
through the steps adding a new shared folder to Kali Linux VM.

68 3 Building a Forensics Workstation

(d) Choose the path on the host to the directory you want to share. Type in the full
path or browse to the directory

Name the Shared Folder
What would you e to call this shared folder?

The path on the host to the ost e
. | C: shared_folder
directory you want to share S e

Name

The name of the shared
folder in Kali Linux VM

(e) Specify shared folder attributes and enable this share. Note that you can add a
folder to the list without enabling it immediately. You can then enable the folder
at any time by clicking its name in this list, clicking Properties and enabling the
folder in the Properties dialog box.

Specify Shared Folder Attributes
Specify the scope of this shared folder.

Additional attrbutes
[V Enable this share

[JRead-only

3.3 Building Up Your Forensics Workstation with Kali Linux 69

(f) Click Finish to finish adding the shared folder.

= = Folder sharing

* A, Shared your files to progr the
sl General Kall-Linuc- 2018, 24m4386. virtual abchin, This iy put your comguter nd
P Power your data at risk. Only enable shared folders if you
| Shared Folders Enabled trust the virtual machine with your data.
@ snspshots O pisabled
O autcProtect Disabled (®) Mways grobled
B Guest1salaton Enabled ynti rext power off or suspend
fyAccess Contrl Mot encrypled

VMware Tools Time syncon Eoiders
SHWC Connectons Disabled T
Bty | tme HastPath Newly created
@lapphance View [ok shar.... C:¥iak_shared_folder ™ pr— .
25 auclogn Mot supported shared folder
I advanced Defacit/Default
[a6][Bemove | [Hopsies]

It can be observed that the newly created shared folder appears in the list of shared
folders. You can always select a shared folder and click Properties to change its attributes.

Note that you must run the mount-shared-folders.sh on the desktop (shown in
Fig. 3.7) to mount Windows shared folder(s) to Kali Linux VM for them to be
accessible in the folder of /mnt/hgfs after starting Kali Linux VM.

Be [o Yoo W Iis B [N~ | B0 0 0|02 B |[F

I"'b" . Ll | o x] 5 Kali-Linux-2018.2-vm-386 % |

Q, Typehese to search -l PR - o
= 8 My Computer

(5 INFR 85500 Forensics Woerkstation
L9 Kali-Linax-2018.2-vm-i386
17 Shared VM3

Run it to mount
Windows shared
folder(s) to Kali
Linux VM

>
To dieect input 1o this VM, click inside or press Ctrl=G. w, s -l 2 |

Fig. 3.7 Mount shared folders in Kali Linux VM

70 3 Building a Forensics Workstation

(g) Once completed, the shared folder we created should be accessible in “/mnt/
hgfs”.

: /mnt/hgfs# 1s Newly created
Kali Shamd folder <« shared folder in

Kali Linux VM

kali:/mnt/hgfsé |

Afterwards, you can use newly created shared folder to share any type of file
between your host machine and Kali Linux. However, windows shortcuts and Linux
symbolic links do not work correctly if you try to share them via shared folders.
Also, please do not open a file in a shared folder from more than one application at a
time. For example, you should not open the same file using an application on the host
operating system and another application in the guest operating system. In some
circumstances, doing so could cause data corruption in the file.

2. File sharing by using Samba

Vmware-tools is convenient, but can only be used in VMware virtual machine
environment, which is so circumscribed. As we know, Network File System (NFS)
enables file sharing between Linux machines, whereas Common Internet File Sys-
tem (CIFS) helps us to share files between Windows machines. However, sharing
files between Windows and Linux in a seamless way can be a little more complex.
Next, we will show how to use Samba to create shared folders across both operating
systems, which is applicable for more situations.

Samba is an implementation of SMB (Server Message Block) protocol, which is a
file/resource protocol (Fig. 3.8). It facilitates file and printer sharing among Linux
and Windows systems as an alternative to NFS. By using Samba, we have two ways
to share files. First, by running Samba server in Linux, we can specify the shared
folders and then gain access from windows; second, which is the opposite way, we
can access windows shared folders from Linux by using Samba client. Next, we are
going to describe a file sharing configuration based on Samba. Particularly, Kali
Linux VM acts as Samba server and the host Windows machine works as Samba
client.

Fig. 3.8 File sharing using .
Server Message Block client server

(SMB) SMB Requests

A

SMB Resqonses

3.3 Building Up Your Forensics Workstation with Kali Linux 71

Build Samba server on Linux To share files with Samba, we need to set up a
Samba server in Kali Linux VM. We create shared folders on Linux machine which
is running samba server. After that, we can visit the shared folders directly from
windows file manager. Following is the samba Linux server setup step by step:

1. First, you should install Samba related software using the following command

apt-get install samba

2. Then, the Samba configuration file can be found in its default system folder of /
etc/samba/smb.cnf.

3. On your host Windows machine, navigate to the Control Panel. Click the System
icon to find your Workgroup settings, including Workgroup name. In our exam-
ple, we have “Workgroup = WORKGROUP”.

B2 system
4~ B3 » Control Panel » System and Security » System
Control Panel Hi . o .
ek ol View basic information about your computer
G Device Manager
Q Remote settings

Windows edition

Windows 10 Education

@ System protection € 2016 Microsoft Corporation. All rights reserved.
& Advanced system settings
System
Processor: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz 3.40 GHz
Installed memeory (RAM): 16.0 GB
System type: 64-bit Operating System, x64-based processor
Pen and Touch: No Pen or Touch Input is available for this Display

Computer name, domain and workgroup settings
Computer name: DESKTOP-5CRPVIM
Full computer name: DESKTOP-5CRPVIM

Computer description:

T — \iotkgroup: WORKGROUP

4. To set up the share folders on Kali Linux machine, open the Samba configuration
file and set the workgroup the same as windows workgroup. In our example,
change the workgroup setting to WORKGROUP, shown below

72 3 Building a Forensics Workstation

& rooti@iali ferciuambs)

Global Settings

Browsing/Identification

Change this to the workgroup/NT-domain name your Samba server will part of
ey |ll workgroup = WORKGROUP

Windows Internet Name Serving Support Section:
WINS Support - Tells the NMBD component of Samba to enable its WINS Server
wins support = no

§# WINS
Note
; wins server = w.

erver - Tells the NMBD components of Samba to be a WINS Client
her a WINS Server, or a WINS Client, but NOT both

Y.2Z

amba can b

rent nmbd to search for NetBIOS names through DNS.

#§ This will pr

#88% Networking #§##

s to bind to
an IP address/netmask;

The specific set of
This can be either

29,1 8%

5. Navigate to the “Share Definitions” section, and add a section named [Shares]
like the followings for a shared folder between Kali Linux VM and host Windows
machine

: Share Definit

Shared Py :
folder root

From the above setting, we create a shared folder “/home/shares” and authorized
users who are able to access shared folder include “root”. The “read only = no”
means that authorized users can modify files within the shared folder from a Samba
client (or herein host Windows machine). The “browsable = yes” indicates that all
files in this path can be discovered by a Windows Samba client. It is worth noting
that the shared folder “/home/shares” must exist in Kali Linux VM.

3.3 Building Up Your Forensics Workstation with Kali Linux 73

6. Change the owner and the group of the shared folder to “nobody” using the
following command

chown nobody:nobody /home/shares

7. To finish setting up newly created shared solder, add authorized user by the
following command, and choose a password for this user when prompted. Note
that the authorized user should be an existed user in Kali Linux system

pdbedit -a -u root

new password:

retype new password:

Unix username: root

NT username:

Account Flags: [U]

User SID: S-1-5-21-4281320985-2316340312-3265071856-1000
Primary Group SID: S-1-5-21-4281320985-2316340312-3265071856-513
Full Name: root

Home Directory: \\kali\root

HomeDir Drive:

Logon Script:

Profile Path: \\kali\root\profile

Domain: KALI

Account desc:

Workstations:

Munged dial:

Logon time: 0
Logoff time: never
Kickoff time: never

Password last set: Sat, 09 Jun 2018 14:51:01 EDT

Password can change: Sat, 09 Jun 2018 14:51:01 EDT

Password must change: never

Last bad password :0

Bad password count : 0

Logon hours : FF

8. Once configuration is complete, we can start the Samba server using the follow-
ing command

smbd start

Note that you can test your modified Samba configuration file to verify its
correctness by using the ‘testparm’ utility.

74 3 Building a Forensics Workstation

Connect to Samba from Host Windows Now, Samba server is running on Kali
Linux and you can access the shared folders from host windows machine, which is a
SMB client. Assume that the IP address of Kali Linux VM is 192.168.85.128. Open
File Explorer in host Windows machine, enter \\192.168.85.128\Shares, and then
type the user name “root” and the password you chosen into the popped up window
to log in. Please be notified that the IP address of your Kali Linux VM may be

different. You can use “ifconfig”utility to figure it out.

Shared folder

=

accessed from —-@6——*} 192.168.85.128 » Shares | w4y || 2% shares

host Windows P

h T=
L ¥ 5]
<p BEHENCR

| = Z8
| s =

|

|

=

| Busm
5 EH
4 B

W it - 4 il

[-

Bt

L =dsh

Or, you can set up a network drive by Opening the Start menu to Select “This

PC”. Then, Right-click on “This PC” and Select “Map network drive”

Xiaodong Lin

Documents

Pictures

Music

Games

Recent ltems

@ VMware Workstation Pro
This PC
Open

E WinSCP »
) Control Panel % Manage

Calculator Devices and P Pin to Start

E/; WinEdt

x 4 WinEdt * Create shortcut

Disconnect network drive...

(T et ,

P All Programs

| Search programs and files

3.3 Building Up Your Forensics Workstation with Kali Linux 75

On the Map network drive dialog, select an available drive letter and enter\
\192.168.85.128\Shares into the Folder box. Click Finish.

What network folder would you like to map?

Specify the drive letter for the connection and the folder that you want to connect to:

Drive: |Z= v

[\W192.168.85.128\Shared v| [Browse..

Bample: \\server\share
[[JReconnect at sign-in
[[] Connect using different credentials

nn ite th n

Einish | Cancel |

Once it is complete, the shared network folder you just mapped should appear in a
list of available Windows drives. In our example, the shared folder is mapped to
drive Z.

- & Windows7_OS (C:)

Shared folder mapped ' @ LCHOVO_RECOVEW (Q)
as a network drive on [F72"Shares (\\192.168.85.128) (Z;)

host Windows

3. File sharing by using ftp

The File Transfer Protocol (FTP) is a standard network protocol used to transfer
files between a client and server. Most Linux machines already have vsftp installed,
so we can easily transfer file with ftp. Also, for secure transfers, secure file transfer
protocols are available. For example, we can use SFTP, which is a secure version of
FTP protected by SSH.

First, in host Windows, we install winscp [9] or filezila [10], and then connect to
the Kali Linux VM by typing the IP address, user name and password (example of

76 3 Building a Forensics Workstation

WinSCP Login ? X
Session Session
Stored sessions Host name: Pogt number:
Envimrmeni | 2 s
- Directories =1
SSH User name: Password:
Preferences [
/ Private key file:
Protocol
File protocol: SFTP v | [Allow SCP falback
Select color
[[J Advanced options
About... _ Languages | Login Save... Close

Fig. 3.9 Transfer files using WinSCP

using winscp shown in Fig. 3.9). Afterwards, we can transfer files between Kali
Linux VM and host Windows easily.

4. File sharing by using Dropbox-like cloud storage

Nowadays, cloud storage is also a convenient file sharing way. By enrolling in
some cloud storage services like Dropbox, you can easily set up share folders
between different computers. For more information about sharing file using
Dropbox, please refer to https://www.dropbox.com/help/topics/sharing_files_and_
folders.

3.4 First Forensic Examination Using TSK

Until now, you have successfully built your Forensics Workstation. Next, you can
use the newly built Forensics Workstation to perform your first forensic examina-
tion. You will learn some of the most used TSK tools, and how they can be used. In
doing so, sample image files were downloaded from the Computer Forensic Refer-
ence Data Sets (CFReDS) project website [11]. The Computer Forensic Reference
Data Sets (CFReDS) for digital evidence is a repository of digital images developed
by The National Institute of Standards and Technology (NIST) [12]. These data sets

https://www.dropbox.com/help/topics/sharing_files_and_folders
https://www.dropbox.com/help/topics/sharing_files_and_folders

3.4 First Forensic Examination Using TSK 77

were created as references, simulation and practice material for investigators hoping
to further their digital forensic skills.

1. Download your forensic disk image from NIST government site using the
following command

wget http://www.cfreds.nist.gov/dfr-images/dft-11-mft-ntfs.dd.bz2

Note that the downloaded test image is compressed with bzip2.

2. Extract disk image files using the following command

bzip2 —d dfr-11-mft-ntfs.dd.bz2

The resulted disk image is dfr-11-mft-ntfs.dd, which is a test image used for the
practice of deleted file recovery.

3. Use the mmls command to discover the layout of the disk image. With the mmls
command we can find the image offset, or where the allocated partition starts.

mmls -t dos dfr-11-mft-ntfs.dd
DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description
000: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

OOy ====mm 0000000000 0000000127 0000000128 Unallocated
002: 000:000 0000000128 0002091135 0002091008 NTFS / exFAT (0x07)
OB} ======= 0002091136 0002097152 0000006017 Unallocated

where the “-t dos” option specifies the test image undertaking examination and
testing is using DOS partitions, also known as PC-based Partitions.

In this example, we can clearly see that there is only one partition in the image.
The locations of the starting sector and ending sector for the partition are Sector
128 and Sector 2091135, respectively. Thus, the size of the partition is 2091008
sectors.

4. Use the dcfldd command to extract the partition image from the disk image

defldd if=dfr-11-mft-ntfs.dd bs=512 skip=128 count=2091008 of=ntfs.dd

http://www.cfreds.nist.gov/dfr-images/dfr-11-mft-ntfs.dd.bz2

78 3 Building a Forensics Workstation

where ntfs.dd is the name of the file used to store the extracted partition image.
Please refer to Appendix B at the end of this chapter for detailed instructions on how
to use dcfldd utility.

5. Use the fsstat command to display the details of the filesystem made on the
partition

fsstat -f ntfs ntfs.dd
FILE SYSTEM INFORMATION

File System Type: NTFS

Volume Serial Number: 2ACADBOFCADADSE3
OEM Name: NTFS

Volume Name: ntfs

Version: Windows XP

METADATA INFORMATION

First Cluster of MFT: 43562

First Cluster of MFT Mirror: 65343
Size of MFT Entries: 1024 bytes
Size of Index Records: 4096 bytes
Range: 0 - 64

Root Directory: 5

CONTENT INFORMATION

Sector Size: 512

Cluster Size: 8192

Total Cluster Range: 0 - 130686
Total Sector Range: 0 - 2091006

SAttrDef Attribute Values:

SSTANDARD_INFORMATION (16) Size: 48-72 Flags: Resident
SATTRIBUTE_LIST (32) Size: No Limit Flags: Non-resident
SFILE_NAME (48) Size: 68-578 Flags: Resident,Index
SOBJECT_ID (64) Size: 0-256 Flags: Resident
SSECURITY_DESCRIPTOR (80) Size: No Limit Flags: Non-resident
$VOLUME_NAME (96) Size: 2-256 Flags: Resident
SVOLUME_INFORMATION (112) Size: 12-12 Flags: Resident
SDATA (128) Size: No Limit Flags:

SINDEX_ROOT (144) Size: No Limit Flags: Resident
SINDEX_ALLOCATION (160) Size: No Limit Flags: Non-resident
SBITMAP (176) Size: No Limit Flags: Non-resident
SREPARSE_POINT (192) Size: 0-16384 Flags: Non-resident
SEA_INFORMATION (208) Size: 8-8 Flags: Resident

SEA (224) Size: 0-65536 Flags:

SLOGGED_UTILITY_STREAM (256) Size: 0-65536 Flags: Non-resident

As mentioned earlier, the test disk image we used here is created for the purpose
of practicing deleted file recovery forensic tools in TSK. Next, you will use TSK to
recover deleted files found in the image. However, as an investigator, we are not

3.4 First Forensic Examination Using TSK 79

likely to know the names or contents of files deleted. Next we will use the fls
command to find deleted files. You can use man fls from your system to learn
more about available options with the manual provided.

6. Use the fls command to peruse the filesystem. We will be using the —r option to
recursively move through directories. The option -o provides the offset number.

fls -r ntfs.dd

7. Next, use the fls command to display only deleted files with the —d option.

#fls -r -d ntfs.dd

d/- #0: Orion

-/d * 36-144-1: Lyra

-/t * 41-128-1: Lyra/Sheliak.txt
-/t * 42-128-1: Lyra/Vega.txt
-/t * 43-128-1: Lyra/Sulafat.txt

We can see here that several text files were deleted. We will recover them next
using the icat command, which is a TSK utility used to output the contents of a file
based on its filesystem metadata (or the Master File Table (MFT) entry number in
NTFS filesystem or inode number in extended file system (Ext) filesystem.

8. Recover deleted files using the icat command.

icat -r ntfs.dd 41 > recovered_Sheliak.txt
icat -r ntfs.dd 42 > recovered_Vega.txt
#icat -r ntfs.dd 43 > recovered_Sulafat.txt

Where the “-r”” option specifies that icat uses file recovery techniques if the file is
deleted. The numbers 41, 42 and 43 are the MFT entry numbers used by these
deleted files, Sheliak.txt, Vega.txt, and Sulafat.txt, respectively. The details about
NTES filesystem will be covered in Chaps. 7 and 8. The recovered/deleted files are
saved into files whose names start with a prefix “recovered_”.

9. Finally, use the cat command to display your recovered files. Congratulations,
you have successfully completed your first forensic examination by using TSK to
recover deleted files.

80

3 Building a Forensics Workstation

cat recovered_Sheliak.txt

DFR

File Sheliak.txt path Lyra
e
L L L
L
L
L L L
L
L L L
L

s o B B o ST S IR SIS BT SAE S SR A A S SR S S A
Sheliak.txt

Review Questions

—_—

w

. What does NFS stand for?
. What is the default URL used by a web browser connecting to the Autopsy

service?

. What is the relationship between TSK and Autopsy?
. What utility in The Sleuth Kit (TSK) displays the layout of a disk?

(a) mmls
(b) fsstat
(c) blkcat
(d) xxd

. Samba is a network file sharing protocol.

(a) True
(b) False

3.5 Practice Exercise

The objective of this exercise is to learn how to conduct a digital forensics investi-
gation using Kali. Particularly, you are required to analyze a disk image using TSK
and Autopsy, from creating cases in Autopsy to practicing various forensic analysis
techniques in TSK and Autopsy.

3.5 Practice Exercise 81
3.5.1 Setting Up the Exercise Environment

For this exercise, you will use a disk image named “thumbimage_fat.dd”, provided
in the book. It can be found in the diskimages subfolder. You will need to upload this
disk image to Forensics Workstation you have built earlier in this chapter. Note that
you need to remember the location where you upload the disk image file
“thumbimage_fat.dd” since this information is required when you add the disk
image for analysis in Autopsy.

3.5.2 Exercises

Part A: Starting Your Autopsy Forensic Browser

 Start your Forensics Workstation (or Kali Linux VM) and Login as root onto it.
» Start Autopsy and launch Firefox to access its web interface using the URL of
http://localhost:9999/autopsy.

Part B: Starting a New Case in Autopsy

You already started the Autopsy Forensic Browser, and the default start page should
be displayed as shown in Fig. 3.10. Now, you can start your investigation by creating
a new case in Autopsy

(-)@ | localhost:9999/autopsy 90% | & ||Q Search

Fig. 3.10 Create a new investigation case in Autopsy

82 3 Building a Forensics Workstation

¢ Click New Case
Note that you will need enter all the necessary details when you create your

investigation case. Assume that you are called in to investigate a computer
compromise occurred at the University of Cyber Security, which is located in
Waterloo, Ontario, Canada. The host name of the compromised Web server is
www.hacker.ucs.ca, and “thumbimage_fat.dd” used in the exercise is the disk
image you acquired at the crime scene.

* Enter the case details and Click New Case to continue. Note that the name of the
Case must contain information which can be used to identify cases. In our
example, the name of the Case could be “UCS.CompromisedWebServer”.

.

¢ Click ADD HOST Button.

The directory
where the
evidence for
this case is
located

http://www.hacker.ucs.ca

3.5 Practice Exercise

* Enter the host details on the “ADD A NEW HOST” page and Click ADD HOST
to continue.
Click ADD IMAGE Button to add the image file of the added host for analysis.

o

| locd.lnsl:autops?mod:v

n image file for th

* On the following page about the added host, click “ADD IMAGE FILE” to
continue.

@ Open Image In UCS.C. .
@ | localhost:9999/autopsy? mod=08&view

84 3 Building a Forensics Workstation

* Enter the image file details on the ADD A NEW IMAGE page and Click Next
Button. In the example, we upload the image file into /home/student. Enter the
path of the image file, /home/student/thumbimage_fat.dd, in the Location field.
Since this image file is from a disk, select the “Disk” radio button. Also, there are
three import methods available, select the “Symlink™ radio button.

Add Image To UCS.CompromisedWebServer:www.hacker.ucs.ca - Mozilla Firefox e e O
/ (@ Add Image To UCS.Co.. x | +

€) @ | localthost:9999/autopsy?mod=0&view: (70% | ¢ || Q Search T Ba 4+ #®

[2) Most Visited~ J§Offensive Security “& Kali Linux " Kali Docs "8 Kali Tools = Exploit-DB Wy Aircrack-ng »
Case: UCS.CompromisedWebSorver

Host: www.hacker.ucs.ca
ADD A NEW IMAGE

1. Location
Enter the full path (starting with /) to the image file.
If the image is split (either raw or EnCase), then enter *** for the
oxtension.
Mhome/student/thumbimage._ fat.dd

2. Type
Please select If this image file is for a disk or a single partition.

*' Disk Partition

3. Import Method

To analyze the image file, it must be located in the evidence locker. It
can bo imported from its curment location using a symbaolic link, by
copying it, or by moving it. Note that if a system fallure occurs during
the move, then the image could become corrupt.

2! Symlink Copy Move

="

* The next page shows the details of the imported image. On the Image File Details
page, select the “Calculate the hash value for the image” radio button and click
ADD to continue.

e The MDS5 hash value will be printed out. Be sure to write down the MDS5 hash
value of the image calculated by Autopsy and click OK to continue.

Now, you have successfully created an investigation case, and a default investi-
gation page should be displayed in Fig. 3.11. Now you can analyze the digital
evidence (or disk image) in Autopsy by clicking ANALYZE Button to try a variety
of evidence analysis techniques, for example, keyword search.

Q1. What is the MD5 hash value of the disk image “thumbimage_fat.dd”
calculated in Autopsy?

Part C: Using Autopsy for Forensic Disk Analysis

After you click ANALYZE Button in Fig. 3.11, the following interface appears with
a list of tabs on the top of the screen. Each tab stands for an evidence search
technique, except for HELP and CLOSE. Note that the list of evidence search

3.5 Practice Exercise 85

Open Image In USC.CompromisedWebServer:www.hacker.ucs.ca - Mozilla Firefox @ 0 0
/ > Open Image In USC.C.. x Kali Linux, an Offensive S.. x +
%% | ¢ ||Q Search T A +$ AR » =

% | @ | localhost:9999/autopsy? mod=08view
[Most Visited~ Jll Offensive Security " Kali Linux " Kali Docs “w Kali Tools ® Exploit-DB Wy Aircrack-ng »
Case: USC.CompromisedWebServer

Host: www.hacker.ucs.ca
Select a volume to analyze or add a new image file.

CASE GALLERY _ HOST GALLERY] HoST MANAGER
mount name fs type
e disk thusbimage fat.dd-disk raw details
C:/ thusbisage fat.dd-97-248319 fat32 details
0 ADD IMAGE FiLx CLosE HosT
HeLr
FILE ACTIVITY TIME LINES IMAGE INTEGRITY HASH DATABASES
ViEw NoTES EVENT SEQUENCER
k.

Fig. 3.11 Digital Investigation Analysis in Autopsy

functionalities can be variably used, depending on which type of data (disk or file
system image) for analysis. In Fig. 3.12, only a limited set of functionalities and
interfaces, including keyword search, image details and data unit analysis, are
enabled since we chose to analyze a disk image in Fig. 3.11.

We can clearly see in Fig. 3.12 that Autopsy provides a list of evidence search
functionalities [13]:

 File analysis: This technique helps Autopsy analyze files and directories as well
as the names of deleted files and Unicode-based file names.

» Keyword search: This technique allows Autopsy to configure keyword searches,
of file system image, that can be performed using ASCII strings and grep regular
expressions. Faster searches can be created for index files and strings that are
searched frequently, can be configured into Autopsy for automated searching.

* File type analysis: This technique allows Autopsy to identify files based on their
contents and internal structures. It can also be used to find hidden files.

* Image details: This technique allows Autopsy to view file system details as well
as, on-disk layout and times of activity. This will provide information useful,
during data recovery.

* Meta data analysis: This technique allows Autopsy to analyze Metadata structures
that contain details on Files and Directories. This is useful if a deleted content in a
file needs to be recovered. To do this, Autopsy will search directories so full path
of the file can be identified where the structure is allocated.

86 3 Building a Forensics Workstation

UCS.CompromisedWebServer:www.hacker.ucs.ca:voll - Mozilla Firefox (IO <]

/ i UCS.CompromisedW... x | +

€ | ® | localhost:999¢ sy?mod=08&view=17&he & ||Q Search wEe +$§ 84 QO =
[Most Visited~ [l Offensive Security "\ Kall Linux “ Kall Docs "8 Kali Tools # Exploit-DB Wy Alrcrack-ng »
KEYWORD SEARCH IMAGE DETAILS DATA UNIT HELP CLose

? X

To start analyzing this volume, choose an analysis mode from the tabs above.

Fig. 3.12 Digital evidence search techniques in Autopsy

e Data unit analysis: This technique allows Autopsy to analyze data units of the
stored file content. It allows you to view the contents of any data unit, in ASCII,
hex dump, and strings. Autopsy will search the Metadata structures, with the file
type, in order to identify, which file has allocated the data unit.

Among these evidence search techniques mentioned above, keyword searching is
one of the most common forensic techniques. In the early stages of a digital
investigation, it is very typical that investigators don’t have any leads in a case,
but do know some specific keywords of interest to the investigation, for example,
“forensics”, “pornography”, etc. Then, the investigators can develop their hypothesis
to continue their investigation. In this exercise, you are asked to search a keyword
“Wikipedia” in the disk image provided. After the disk image has been searched, a
list of “hits” will appear on the left-hand side. Each data unit that contains the string
is listed with the offset of each occurrence.

In Fig. 3.12, click on the Keyword search tab to complete this part of the exercise
and answer the following questions.

putsels Note that for this exercise, you need to make keyword search case
NOTE

insensitive.
Q2. How many hits when the search keyword is encoded to ASCII format?
Q3. What is the number (or address) of the data unit where the keyword resides?

Appendix A Installing software in Linux 87

Fundamentally, computers deal with numbers, particularly binary digits. When
storing letters and other characters, they assign a number for each one. In other
words, these letters and characters must be encoded in a way used to uniquely
identify them, where ASCII, which stands for American Standard Code for Infor-
mation Interchange (ISO 14962:1997), is the most common technique for encoding
the characters. ASCII is a way of assigning specific 8-bit strings (a string of Os and 1s
of length 8) to the alphanumeric characters and punctuation. ASCII uses only 1 byte
per character and a 1 byte scheme can only represent 256 symbols. However, there
are many languages in the world, with their own alphabets or with their own
accented versions of the ASCII romanized alphabets. Obviously, 8 bits per character
is not sufficient. This is why multiple byte character encoding standards were
developed. A very popular 2 byte (16 bit) encoding standard is called “Unicode”,
which can represent 65,000+ characters (two to the power of 16). In other words,
Unicode is able to encompass the characters of all the world’s living languages

Q4. How many hits when the search keyword is encoded as Unicode?

Appendix A Installing software in Linux

Petsels You will need to become root (or superuser) to install software.
NOTE

There are many ways to install software in Linux, and it can be accomplished
either graphically or using the command line. There are two popular ways of
installing software in Linux, installing software from source code and installing
software with Apt [14], a Linux package manager for Debian and Debain-based
Linux distributions like Ubuntu and Kali Linux.

Note that there exist many Linux distributions, and the way of how to install
software is slightly different for each distribution. Kali Linux is based on
Debian Linux, which uses Apt.

(a) Using the “apt-get” commands to manage packages in Linux

apt-get Apt-get performs installations, package searches, updates and many other operations to
software packages available to your Debian and Debain-based Linux systems.
For example, to install a package, use:
% apt-get install [package_name]
To remove a package, use:
% apt-get remove [package_name]

(b) Compiling and installing software from source in Linux

The installation procedure for a software that comes in tar.gz (or tgz) and tar.bz2
packages isn’t always the same, but usually it’s like the following, assuming that the
name of the package containing the source code of the program is archive:

88 3 Building a Forensics Workstation

tar -zxvf archive.tar.gz (or tar -zxvf Decompress the files contained in the zipped and tarred
archive.tgz) or tar -xvjf archive.tar.bz2 archive called archive

cd archive Change directory to software package

./configure Execute the script preparing the installed files for com-
piling, including Makefile

make GNU make utility to maintain groups of programs

make install Install the software

Appendix B dcfldd Cheat Sheet

dcfldd is “an enhanced version of GNU dd with features useful for forensics and
security”, for example, creating a forensic image of an entire disk. The basic syntax
of the command is:

dcfldd if= input file bs=512 skip=0 count=1 of= output file

This command will read data from the source (drive or file) and write that to an
output file (or drive). It will then read one block from the beginning of the input file.
The block size for transferring has been set to 512 bytes.

Where:

1. If indicates input file. Example input files include:

LINUX

File name The input file

/dev/stdin “standard input” (stdin) device, i.e., keyboard
/dev/hda (First IDE Physical Drive)

/dev/hda2 (Second Logical Partition)

/dev/sda (First SCSI Physical Drive)

WINDOWS

File name The input file
\\.\PhysicalDriveO (First Physical Drive)
\\D: (Logical Drive D:)

\\.\PhysicalMemory (Physical Memory)

2. Of indicates output file. Example output files include

imagefile.img (Bit Image File)
/dev/usb (USB Drive)
/dev/hdb (2nd IDE Drive)

3. Useful Options

bs=Dblock size (Sets the block size)
count=N (Copy only N blocks of input file)
skip=N (Skip ahead N blocks FILE. By default, skip=0, which means it reads input

file from beginning.)

References 89

conv=noerror,sync (Do not skip on errors)
hashwindow=num (Hash every num bytes)
hashwindow=0 (Hash entire file)
hashlog=filename (Write md5 hash to file)

4.

R

S I I S

~N N

10.
11.

12.
13.

14.

Usages and Examples

(a) Create a disk image
Example: dcfldd if=/dev/sdb of=/datatraveller.img
This command will create a disk image of external USB drive, and write
the image to an output file called datatraveller.img.
(b) Wipe out hard drives and flash drives, for example, with all zero
Example: dcfldd if=/dev/zero of=/dev/sdb
This command will fill external USB drive with zeros.
(c) Extract a random portion of a data file
Example: dcfldd if=thumbimage_fat.dd bs=512 skip=0 count=1
of=mbr.dd
Assume that thumbimage_fat.dd is an image of MBR disk. This command
will extract the MBR of the disk.

eferences

. B. Carrier, “The Sleuth Kit,” 2017. [Online]. Available: www.sleuthkit.org.

. http://www.porcupine.org/forensics/tct.html

. https://www.symantec.com/connect/articles/freeware-forensics-tools-unix

. C. Marko. Introduction to The Sleuth Kit (TSK). 2005.

. Sleuthkit.org, “Sleuth Kit Wiki,” Sleuthkit, [Online]. Available: https://wiki.sleuthkit.org/
index.php?title=Main_Page. [Accessed February 2017].

. Autopsy. https://www.sleuthkit.org/autopsy/desc.php

. The SANS Investigative Forensic Toolkit (SIFT). https://digital-forensics.sans.org/community/
downloads

. What is Virtualization? https://www.igi-global.com/dictionary/an-evolutionary-approach-for-
load-balancing-in-cloud-computing/31852

. https://winscp.net/eng/download.php

https://filezilla-project.org/

The Computer Forensic Reference Data Sets (CFReDS) Project. [Online]. Available: http://

www.cfreds.nist.gov/

https://www.nist.gov/

https://digital-forensics.sans.org/blog/2009/05/11/a-step-by-step-introduction-to-using-the-

autopsy-forensic-browser

A Beginners Guide to using apt-get commands in Linux(Ubuntu). https://codeburst.io/a-begin

ners-guide-to-using-apt-get-commands-in-linux-ubuntu-d5f102a56fc4

http://www.sleuthkit.org
http://www.porcupine.org/forensics/tct.html
https://www.symantec.com/connect/articles/freeware-forensics-tools-unix
http://sleuthkit.org
https://wiki.sleuthkit.org/index.php?title=Main_Page
https://wiki.sleuthkit.org/index.php?title=Main_Page
https://wiki.sleuthkit.org/index.php?title=Main_Page
https://www.sleuthkit.org/autopsy/desc.php
https://digital-forensics.sans.org/community/downloads
https://digital-forensics.sans.org/community/downloads
https://www.igi-global.com/dictionary/an-evolutionary-approach-for-load-balancing-in-cloud-computing/31852
https://www.igi-global.com/dictionary/an-evolutionary-approach-for-load-balancing-in-cloud-computing/31852
https://winscp.net/eng/download.php
https://filezilla-project.org/
http://www.cfreds.nist.gov/
http://www.cfreds.nist.gov/
https://www.nist.gov/
https://digital-forensics.sans.org/blog/2009/05/11/a-step-by-step-introduction-to-using-the-autopsy-forensic-browser
https://digital-forensics.sans.org/blog/2009/05/11/a-step-by-step-introduction-to-using-the-autopsy-forensic-browser
https://codeburst.io/a-beginners-guide-to-using-apt-get-commands-in-linux-ubuntu-d5f102a56fc4
https://codeburst.io/a-beginners-guide-to-using-apt-get-commands-in-linux-ubuntu-d5f102a56fc4

Part 11
File System Forensic Analysis

Chapter 4)
Volume Analysis e

Learning Objectives
The objectives of this chapter are to:

* Understand how disk works and how data is structured on the surface of
disk drive platters

* Demonstrate an understanding of concepts fundamental to disk partitioning

* Know about common types of disk partitioning systems

* Understand fundamental concepts of the most commonly encountered
partition system and DOS-style partition system

* Know how to interpret partition-table hexdumps and how the data is laid
out on a DOS-style disk

* Know how to use a The Sleuth Kit (TSK) utility mmls

When conducting digital forensic investigations, the most common source of digital
evidence is hard disk or hard disk drive (HDD). This chapter is devoted to the
fundamentals of hard disk. Following a brief introduction to hard disk geometry or
internal structure, the concept of disk partitioning is introduced. Afterwards, the
most common partition system, DOS-style partitions, is presented. Finally, this
chapter gives an introduction to analysis techniques for disk volumes.

4.1 Hard Disk Geometry and Disk Partitioning

Some important concepts and definitions that will be used throughout this part of file
system forensic analysis are first presented in Table 4.1 for reference.

© Springer Nature Switzerland AG 2018 93
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_4&domain=pdf

94 4 Volume Analysis

Table 4.1 Definitions and common concepts

Table A table is a collection of related data arranged in a predefined structure.

Table entry | A table contains many entries (or rows) of the same size, all of them assembled in an
orderly manner. In most cases, entry number starts with 0, for example, 0, 1,2,
A unique number is assigned to each entry, and entry numbers are in increasing

order.

Cluster A group of data blocks, typically 4 kB and the smallest allocation of storage space
assigned by an operating system.

Cluster A group of clusters which make up an entire file.

chain

Data block | The smallest unit of storage of a device, typically 512 bytes. Also known as a sector.

Dataset A collection of data blocks (e.g. disk image) from which files are to be recovered.
File header | The first data block of a file which contains a beginning-of-file marker.

File A group of sequential data blocks that make up only part of the complete file and
fragment separate from the rest of the file by unrelated data blocks.

File footer | The last data block of a file which contains an end-of-file marker.

4.1.1 Hard Disk Geometry

There are various storage devices, for example, hard disks, USB drives, SD cards,
Solid State Drives (SSD), floppy disks, tapes, CD-ROM, DVD, and hard disk is the
most commonly used one. For simplicity, unless otherwise specified, we will use
“disks” to refer to hard disks since hard disk is the storage device we are focusing on
in the book. As shown in Fig. 4.1a, a disk consists of platters. Each platter has two
magnetic surfaces, where data is stored. Disks use magnetic storage technology, and
each platter surface requires its own dedicated head to read/write data. The surface of
the disk is smooth and shinning, but actually much complicated. A magnetic film on
the surface memorizes all information. The head magnetizes microscopic particles
on platter surfaces to write data, and reads section of film that stores the data in
sequence of 1 or 0. Each 1 or 0 is called a bit. Each square meter of the disk’s surface
can hold billion bits.

Data is stored into tiny concentric tracks on the disk’s surface, which are arranged
from the inner to the outer edge of the platter. A group of tracks with the same radius
is called a cylinder (in Fig. 4.1a the dashed-line tracks belong to a cylinder). The
number of tracks in a cylinder is twice the number of platters. In other words, it is the
same as the number of disk’s surfaces. Each track is divided into sectors. Each sector
has a size of 512 bytes. It is important to note that sectors are always 512 bytes large;
and sectors of other sizes can only be found in a few of the most modern hard drives
available. Unless otherwise specified, assume that all sectors are 512 bytes. Newer
hard drives use 4096 byte (4 kB) sectors, known as Advanced Format standard
[7]. However, most of today’s hard drives still use 512-byte sector as the basic unit of
data storage.

Disks manufactured are initially blank; they don’t contain tracks and sectors.
Hence, disks need to be formatted in order to organize the disk surface into tracks
and sectors. Most disks manufactured today have their disks preformatted. The

4.1 Hard Disk Geometry and Disk Partitioning 95

Cylinder
actuator arm
@’- Head O
— Head 1
— Head 2
S~ Head 3
— Head 4
— Head 5
Track
AN
Sector
(a)
Hard disk
volume
Sector Sector
0 1800

(b)

Fig. 4.1 Hard disk geometry. (a) Cylinder-head-sector. (b) An example of disk volume with size of
1801 sectors (or 1801X521 Bytes)

process of creating data structures including tracks and sectors directly to the storage
medium or the disk surface is called disk formatting, often referred to as “low-level
formatting”. In other words, the process of formatting a disk applies addressing data
to the platter’s surface.

96 4 Volume Analysis

The smallest addressable unit (block) in a disk is sector. These blocks of data on
the disk are mapped by two types of addresses:

e CHS (Cylinder-Head-Sector) address
¢ LBA (Logical Block Address) address

CHS sector addressing is an older method that is used to refer to the different
disk’s characteristics (cylinder, head, and sector). It no longer maintains a physical
relationship of them. As it stands, a CHS address contains three information:
Cylinder number, head number, and sector number. These three information can
uniquely locate a sector on a disk according to their positions in a track, which is the
sector number (or S in CHS). The track is determined by the head (or H in CHS) and
cylinder (C in CHS) numbers. LBA is introduced to better address the Hard Disk
Drive (HDD); although CHS is still being used by many utilities like partitioning.
Thus, LBA supports CHS. LBA addressing is to sequentially number sectors, for
example, the first sector on the disk is given an address of 0, i.e., sector 0. Since LBA
supports CHS, CHS addresses can be converted to LBA addresses using the
following formula:

LBA = (((CYLINDER *heads_per_cylinder) + HEAD) *sectors_per_track)
+ SECTOR — 1,

where LBA is the LBA address, CYLINDER, HEAD, and SECTOR stand for
cylinder, head, and sector numbers of the CHS address.

For example, consider a disk that reports 16 heads per cylinder and 63 sectors per
track. If we have a CHS address of cylinder 2, head 3, and sector 4, its conversion to
LBA would be as follows:

(((2%16) +3)*63) +4 — 1 = 2208.

Hence, The LAB address of CHS = (2, 3, 4) is Sector 2208.

In CHS addressing, data is accessed by referring to the cylinder number, head
number, and sector number where the data is stored. However, LBA maintains a
complete mapping of sequence numbers (LBA addresses) and their locations includ-
ing all tracks and sectors (CHS addresses) in the disk.

The collection of addressable sectors on a disk is called disk volume. Figure 4.1b
shows an example of disk volume. Normally, a physical disk forms a volume, which
is the most common case for our today’s computers. Nevertheless, a disk volume can
contain multiple physical disks. In Fig. 4.2, two physical disks can be combined and
set up as a logical disk volume, for example, by Logical Volume Manager (LVM) in
Linux. It creates the appearance of one large disk.

In a logical disk volume, the sectors can be addressed in two ways using LBA
sector addressing. The first is called logical disk volume address, which is a sector
address that is the distance relative to the starting of the disk volume. The second is
known as physical address. 1t is only applied to a single physical disk. The physical
address is the distance relative to the starting of the disk. If a disk volume only

4.1 Hard Disk Geometry and Disk Partitioning 97

Cg// Hard disk 1 Cgy/ Hard disk 2

Disk volume 1 | Disk volume 2

For example, using Logical Volume
Manager (LVM) in Linux or Redundant
Array of Inexpensive Disks (RAID)

Logical disk volume

Fig. 4.2 An example logical disk volume with two physical disks

(.) Hard disk 1 (.) Hard disk 2
| |

/ Logical disk volume
Sector A Sector B
Physical address: 100 Physical address: 100
Logical disk volume address : 100 Logical disk volume address : 1100

Fig. 4.3 Sector addressing in logical disk volume

contains one physical disk, physical address and logical disk volume address are the
same in such a case. However, they become different when a disk volume is formed
by multiple disks, as shown in Fig. 4.3. In the example shown in Fig. 4.3, a disk
volume contains two physical disks (the size of 1000 sectors each). Logical disk
volume address is the distance relative to the starting of the disk volume, which is the
starting of disk 1. Therefore, Sector A’s physical address and logical disk volume
address are the same, 100, since it belongs to Disk 1. However, Sector B’s logical
disk volume address will be 1100 because it is located at offset 100 in sectors in Disk
2. Thus its distance to the starting of disk 1 should consider adding the size of Disk
1, although its physical address is still 100.

4.1.2 Disk Partitioning

A hard disk is usually divided into multiple parts, called partitions. Partitions are
used to separate disk into logical storage units. It acts like minidisks (or multiple
logical storage) of the HDD [5, 8]. This allows different file systems to be used on
each partition. File system is some special data structures, which allow files stored on

98 4 Volume Analysis

a disk to be easily accessed. It will be detailed in the next chapter. This is also
particularly useful since the capacity of modern disks has increased dramatically and
becomes very large, but some file system cannot handle large disks. Some other
benefits include [1, 2]:

* Allow images of the disk to be backup

» Easy to recover or prevent corrupted file systems

* Eagy to share data among different Operating Systems through a partition dedi-
cated for data and formatted with a file system supported by all OSes

¢ Improve data access performance

e “Short Stroking”, which reduces the average seek time that a head requires to
move between the tracks in order to read/write

However, there are also some disadvantages using multiple partitions:

* “Fragmentation” is likely to happen because of the size reduction in contiguous
free data blocks (or clusters) which can be occupied on each partition.

* Constraints such as ability to use the full capacity of the disk when the disk is
divided between two partitions. For instance, you cannot copy a 6 GB DVD
image file to a 3 GB disk partition.

The partition will need to be formatted before use. The process of formatting is
also known as “making a file system” on a disk partition or logical drives, which will
be discussed in the next chapter. The formatted partition is also called volume, which
is a storage area that can be accessed by a single Operating System (OS). Usually, a
file system occupies the entire storage space allocated to a partition, which it resides
in, and hence, the two terms partition and volume are often used interchangeably.
However, they are not the same. First, it is possible that not the entire partition or
logical drive is used when formatting. Some space is left unformatted and inacces-
sible to OS. The leftover storage space is also known as volume slack. Second, the
difference between a volume and partition is that volume exists at a logical operating
system level, while partition exists in physical media level [3].

There are many partitioning systems, including GUID (Globally Unique IDenti-
fier) Partition Table (GPT), PC-based Partitions (or DOS-style partitions). Among
them, the most common partition system used today is the DOS-style partitions,
which will be discussed in detail in the subsequent section. Although DOS-style
partitions are commonly used, GPT partitions have become popular, and have also
been widely used in the latest OSes, such as Windows Server 2003 with SP1 and
later [6]. Here we focus on DOS-style partitions.

4.1.3 DOS-Style Partitions

One popular disk partition system is called the DOS (Disk Operating System)-style
partition system, also known as PC-based or Master Boot Record (MBR) partition
style. DOS-style is usually called MBR style because it reserves the first 512-byte

4.1 Hard Disk Geometry and Disk Partitioning 99

Table 4.2 Basic structure of MBR sector [3]

Byte range (within MBR Length in Relative byte offsets (within

sector) in hexadecimal decimal MBR sector)

(bytes) (bytes) (in hexadecimal) Description

0x000-0x1BD 446 0x000 Code area

0x1BE-Ox1FD 64 0x1BE Partition table with
four 16-byte
entries

0x1FE-Ox1FF 2 0x1FE Boot record signa-
ture (0OxaaS5)

MBR total size: 446 + 64 + 2 = 512 bytes

Fig. 4.4 Computer boot
process 1) BIOS
Instructions

T
: CPU
v
2) Instructions 3) Partition
inDisk fF--—--—--------—-—---—-- > Sector O
MBR Instructions

Y
4) Operating
System(e.g.,
Windows)

sector for the MBR. Disks using this type of partition system are called MBR disks.
The MBR is not a partition, but a section of the disk that contains the Partition
Table, as shown in Table 4.2, and code for initializing boot (such as bootloader,
loading the operating system kernel files).

The code for initializing boot in MBR or the bootloader reads the MBR partition
table, and searches for an “active” or bootable partition. If one is found, the
bootloader will load the operating system kernel files found in the partition. If
none of the partitions on a disk is found active or bootable, an error message
“Missing operating system’ appears. The entire booting process of a computer can
be found as follows: As shown in Fig. 4.4, assume that our computer is off, let us
turn on the computer. The computer’s BIOS (Basic Input Out System), which
contains instructions and setup for how your computer system should boot and
how it operates, first triggers a POST (Power-on self-test). If the test fails, the
computer will grind to a halt. This could be caused by a number of factors such as
hardware failure, missing keyboard, etc. Once the POST passes, the BIOS boot
sequence tells the computer to look for MBR of the first recognized storage device,

100 4 Volume Analysis

Table 4.3 Structure of a partition table entry [3]

Relative byte offsets Length in Byte range in
(within entry) decimal hexadecimal
(in hexadecimal) (bytes) (bytes) Contents
0x0 1 0x0 Boot indicator (0x80 = active)
Ox1 3 0x1-0x3 Starting CHS values
0x4 1 0x4 Partition-type descriptor
(e.g. 0x06 = FAT16, 0x07 = NTFS,
0x0B = FAT32)
0x5 3 0x5-0x7 Ending CHS values
0x8 4 0x8-0xb LBA address of the starting sector
Oxc 4 Oxc—0xf Partition size (in sectors)

Partition total size: 1 + 3 + 1 + 3+ 4 + 4 = 16 bytes

for example, Disk 0 in Fig. 4.4. Afterwards, the bootloader in MBR takes control of
the execution, loads the OS kernel files, and transfers the control to the OS.

The Partition Table is a table that illustrates the layout of a physical disk. It is
traditionally composed of four 16-byte entries, as shown in Table 4.3, each of them
representing one primary partition. It is possible to divide the hard disk into more
than four partitions by using extended partition concept, where one partition can be
defined as extended and further divided into multiple logical partitions (or Logical
drives). Each partition can be formatted and assigned with drive letters available for
data storage. In such a case, an extended partition logically acts like a hard disk. The
process of formatting is usually known as “making a file system” on a disk partition
or logical drives. In other words, a specific file system structure, which is detailed
later in next chapter, will be created after formatting. A partition or logical drive must
be formatted before it can be available for data storage.

The way in which different OSes manage these partitions varies. Particularly,
there are currently two mainstream ways: Windows-style and Linux-style. For
example, in Windows, each partition is assigned with a drive letter, and can be
formatted with a file system to be accessible as a volume, as shown in Fig. 4.5a.
However, in Unix, different volumes are mounted to different directories (or folders)
so they can be ready to use. The terms “folder” and “directory” are used interchange-
ably throughout this book. Also, it is worth noting that a different file system can be
used on each partition, and some partitions can be hidden (like recovery partitions)
which are invisible to computer users in a file browser such as Windows Explorer or
DOS command line interface.

Figure 4.6 shows a hex dump of a MBR by using a Linux utility xxd. The left side
(the seven digits before each colon) is the offset address, in hexadecimal format,
which is used to locate individual bytes (starting at byte offset 0). The middle is the
hex dump data, and the right is the ASCII interpretation of the dump data. Each byte
represents a two-digit hexadecimal number. Table 4.2 explains what the MBR’s
content means, and where each variable is delimited. Table 4.3 shows the layout of
partition table entry.

4.1 Hard Disk Geometry and Disk Partitioning 101
: MBR
% Partition 1 | | Partition 2
Volume #1 fete N
C: (Primary Partition) D: (Logical Drive)
—> /mnt/cdrom/ CD-ROM
Volume #1 Volume #2 —
[tmp/
S
Just/ Volume
\#_2/
(a) Windows Drive (b) Unix Drive
Fig. 4.5 Volumes in Windows and Unix
0000000: 33c0 Bed0 bc00 7cBe cOBe dB8be 007c bf00 3..... |
0000010: 06b9 0002 fcf3 a450 6Blc O6cb fbb9 0400 2] - SRR
0000020: bdbe 0780 7e00 007c Ob0Of B850e 0183 <510 es™en]anenaves
0000030: e2fl1 cdl8 8856 0055 c646 1105 c646 1000 V.U.F F
0000040: b44l1 bbaa 55cd 135d 720f B8lfb 55aa 7509 A..U..]r...U.u
0000050: f£7cl 0100 7403 fed6 1066 6080 7elD 0074t..F.f .~..t
0000060: 2666 6800 0000 0066 ff76 0868 0000 6800 &fh....f.v.h..h
0000070: 7c68 0100 6810 00b4 428a 5600 B8bf4 cdl3 |h..h...B.V.....
0000080: 9f83 c410 %eeb 14b8 0102 bb00 7cBa 5600

0000090: 8a76 0lBa 4e02 Babte 03cd 1366 €173 lcfe
00000a0: 4ell 750c 807e 0080 0f84 B8al0 b280 ebB4
00000b0: 5532 e4B8a 5600 cdl3 5deb 9e81 3efe 7d55
00000c0: aal5 ceff 7600 e88d 0075 17fa b0dl e664
00000d0: e883 00b0 dfeé 60e8 T7c00 bOff eé664 eB75
00000e0: 00fb b800 bbcd la6t6 23c0 753b €681 fbb54
00000£f0: 4350 4175 3281 £902 0172 2c66 6807 bb00
0000100: 0066 €800 0200 0066 €808 0000 0066 5366
0000110: 5366 5566 6800 0000 0066 6800 7c00 0066
0000120: 6168 0000 07cd lab5a 32f6 ea00 7c00 00cd
0000130: 18a0 b707 eb08 alObé 07eb 03a0 b507 32e4
0000140: 0500 078b fOac 3c00 7409 bb07 00b4 Oecd
0000150: 10eb f2f4 ebfd Z2bc9 e464 eb00 2402 e0f8
0000160: 2402 c349 6e76 ©6lé6c €964 2070 €172 7469
0000170: 7469 oefee 2074 6le2 6ce5 0045 7272 6£f72
0000180: 206c 6f6l 6469 6e67 206f 7065 7261 7469
0000190: 6e67 2073 7973 7465 6400 4469 7373 696e
00001a0: 6720 ©f70 6572 ©174 6€96e 6720 7379 _ 7374
00001b0: 656d 0000 0063 7b%a fB8e8 7499 0000'8020
00001c0:§12100 O07fe f££f££f 0008 0000 0000 1£01 0Ofe
00001d0: | £f£fff 07fe f£f£ff 0008 1£f01 b022 bOlc 0000

00001e0:| 0000 0000 0000 0000 0000 0000 0000 0000}

00001£0:]0000 0000 0000 0000 0000 0000 0000'55&&

Fig. 4.6 Dump data of MBR

...... toadis§oan
$..Invalid parti
tion table.Error
loading operati
ng system.Missin
g operating syst
em...c{...t....

102

4 Volume Analysis

Table 4.4 Structure of a CHS address

Relative byte offsets (within CHS Length in

address) (in hexadecimal) decimal (bytes) | Contents

0x0 1 Head

0x1 1 Sector is in bits 5-0; bits 9-8 of
cylinder are in bits 7-6

0x2 1 Bits 7-0 of cylinder

CHS total size: 3 bytes

Table 4.5 Limitations of CHS

CHS Minimum value Maximum value Number of bits Number of values
Sector 1 63 6 63
Head 0 255 8 256
Cylinder 0 1023 10 1024

In the partition table, a CHS address is represented by three-byte values. The
structure of CHS address is shown in Table 4.4. As shown in Table 4.2, the partition
table can be found at byte offsets Ox1BE to Ox1FD, and the partition table has four
entries (16 bytes each). If any partition table entry’s 16 bytes are all 0, it means that
the corresponding partition doesn’t exist. It can be observed in Fig. 4.6 that the
partition will go through next exists, and obviously, it is the first partition.

Note that BIOS imposes the following limitations to CHS (Table 4.5):

It is worth emphasizing that in CHS addressing the sector numbers always start at
1. It may seem counterintuitive, but there is no sector 0 in CHS addressing.

Therefore, to calculate the CHS address, you will first need to break a CHS value
down into three sections: Head, sector, and cylinder. Each is mainly represented by
1 byte in the partition; however, they have different bit length that BIOS imposes.
For this example, we will calculate the starting CHS address of the first partition.

By observing Fig. 4.6, we know that the dump data of that address is “20 21 007,
where 0x20 (or the first byte) is the head, 0x21 (or the second byte) represents the
sector, and 0x00 (or the third byte) represents the cylinder plus the two bits at the top
of 0x21. By converting the 2 digit hexadecimals repetition into binary, we see its
8 bits binary counterpart. Since length of head is 8 bits, the head is 32 when
converting to decimal. However, sector consists of 6 bits, so we only take the first
6 bits from the least significant bits (or low 6 bits). Therefore, the sector is 16 in
decimal. The remaining top 2 bits from 0x21 are added to cylinder as its two most
significant bits, who has the length of 10 bits. This makes the cylinder 0. The detailed
parsing process can be found in Fig. 4.7.

Assuming that the system discussed here is using little-endian. It means to obtain
the real value of a multiple byte number, you need to reverse or flip the order of raw
data. For example, the dump data “00 08 00 00” of LBA address is read from the
least significant byte (or the last 00) so the real value is 0x00000800 or 2048 in
decimal. To calculate the size of the partition, which usually is represented in MB or
GB, we first need to parse out the number of sectors in partition, which is

4.1 Hard Disk Geometry and Disk Partitioning 103

Raw data of CHS address 20 21 00

Hex: 0x20 => Bin: | |Hex: 0x21 => Bin: | [Hex: 0x00 => Bin:

0b00100000 0b00 100001 0b00000000

Head (8 bits)

Sector (6 bits) .~~~ Cylinder (10 bits) ",

B: 0b00100000 B: 0b100001 B: 0b0O | | 0b00000000
=> Decimal: 32 => Decimal: 33 =>0b0000000000

=> Decimal: 0
CHS Address:

H:32, S:33, C:0
Fig. 4.7 CHS address parsing

Table 4.6 Partition table for partition entry #0

Starting CHS address Cylinder: 0, head: 32, sector: 33

Ending CHS address Cylinder: 1023, head: 254, sector: 63

Starting LBA address 0x00000800 => 2048

Size of the partition 0x011f0000 => 18808832 * 512 bytes = 9184 Mega-

(MB) Bytes = 8.96875 GB
Since we know the number of sectors in partition is 18808832
Type of partition 0x07 => NTFS

0x011f0000 or 18808832 in decimal. Then, we can obtain the partition size in bytes
by multiplying it by 512. This is because one sector is 512 bytes long.

If you have followed the example, you should have the following answers for the
first partition in Table 4.6.

Figure 4.8 shows the layout of the disk whose MBR partition table is analyzed
above, which is displayed in Disk Management Console. It can be seen from Fig. 4.8
that the partition information including partition size and type matches our analysis
results.

Also, The Sleuth Kit (TSK) provides a utility named mmls, which reads the
partition table and displays the layout of a disk (or disk volume system). Finally,
Fig. 4.9 shows an example output of The Sleuth Kit (TSK)’s mmis tool, detailing
information about the layout of a disk.

Please note that the output of mmlis on the disk image describes the starting,
ending and size of the partitions (in sectors). One thing to note about the size of the
partition is that the size is indicated by the number of sectors which a partition
contains. For example, the size of the first partition is 248,223 sectors. You would
need to convert the size of a partition from sectors to some commonly used
measurements, such as megabytes (MB).

104 4 Volume Analysis

Eile Action View Help

e nfBE D xForaB

& Computer Minsgement fLecal | Yohime | Layoue | Type [Fle System | Status | Capacity | Free Space | % Free | Actions

a] System Tocks e (C) Simple Basic NIFS o (B, Page File, Crash Du imary Pactition) 295008 AT4GE 2% s
() Task Scheduler o ETTETE] Smple Basic NTFS Healthry {Systemn, Active, Primary Partition) BSTGE RTOGE 9T% mmm"ﬁ—i
6 Event Viewer Mare Actions r
) Shared Folders
&8 Lo<al Users and Groups
+) Pedformance

< >

M Dk O L
Basic System Reverved [

2384768 257 GENTFS 229.50 GB NTFS.

Online. Actve, Page File, Crash Dumg, Primary Partition)

vy B ¥) l

b

1* Partition

< » || M Unabocated [l Primary pastiticn

Fig. 4.8 The disk layout in disk management console

[root@localhost tools]# mmls -t dos thumbimage fat.dd
DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

1" partition _ 01: -—----
—- (2 00:00 0000000097 0000248319 0000248223 Win95 FAT32| (0x0B)

[&) (B) (c) (m)

Az start position of the partition

B: end position of the partition

C: size of the partition

I: the partition type. For example, specifving the file svstem the partition contains is FAT32,

Fig. 4.9 Example output from The Sleuth Kit (TSK)’s mmls tool details information about the
layout of the disk

4.1.4 Sector Addressing in Partitions

After disk partitioning, the sectors in partitions can be addressed in two ways: LBA
sector addressing and a sector address, which is the distance relative to the start of a
partition, also known as logical partition address.

Figure 4.10 shows a disk partitioned into two partitions. It is worth noting that not
all sectors have partition addresses, specifically for these in non-partitioned area. For
example, Sector A doesn’t belong to any partition, and has a physical address of
36, but not partition address. Whereas, Sector B has both: Physical address is 1058,
and partition address is 38. A partition address is the distance relative to the starting

4.2 Volume Analysis 105

Partition 1 Partition 2
Starting at Sector 63, Starting at Sector
and ending at Sector 1020, and ending at
1000 Sector 2200
Sector A Sector B
Physical address: 36 Physical address: 1058
Logical partition address: N/A Logical partition address: 38

:l Partitioned disk space

Fig. 4.10 An example disk layout

of a partition. The Partition 2 starts at sector 1020, and the physical address of Sector
B is 1058. The distance between them is 38, which is the difference between two
numbers. It can be obtained by subtracting 1020 from 1058. Hence the partition
address of sector B is 38. Note that the (LBA) sector address starts at 0.

4.2 Volume Analysis

Next, we will discuss basics of volume analysis and commonly used volume analysis
techniques.

4.2.1 Disk Layout Analysis

When it comes to forensic analysis of a disk, knowing how data is laid out on the
disk is the first and foremost important thing. In doing so, we would need to locate
the partition table, for example, the partition table in MBR can be found at byte
offsets Ox1BE to Ox1FD. Also, from Table 4.3, we know how the partition table is
organized and structured. Therefore, we should be able to figure out the information
about each partition on a disk, including locations, types, and sizes. In other words,
we are able to discover the layout of the disk, as shown in Fig. 4.11.

We can also check if any disk space is not used when disk partitioning. Extra care
or attention should be paid to these non-assigned sectors, which can be used to
hide data.

106 4 Volume Analysis

Raw data in the partition table

-~ MBR 00001be: 0003 0200 0b07 e0c9 6100 0000 9fc9 0300
M Extract 00001ce: 0000 0000 0000 0000 0000 0000 0000 0000

L 00001de: 0000 0000 0000 0000 0000 0000 0000 0000

00001lee: 0000 0000 0000 0000 0000 0000 0000 0000

Parse out
Partition Table
I B
97 248319 FAT32
derive
Unpartitioned space V W/W A
The hard disk layout
Fig. 4.11 Disk layout analysis
Fig. 4.12 Partition
consistency check BAD
Partition 1 Partition 2
The hard disk layout

We can also check if each entire partition or logical drive is used when format-
ting, which will be discussed in next chapter. This can be done by comparing the
sizes of partition and file system made on it. If the size of file system is smaller than
one of partition, it means there exists volume slack on disk.

4.2.2 Partition Consistency Check

By convention, a disk partition utility usually creates partitions in a way where one
immediately follows the other if multiple partitions have to be created on a disk and
partitions occupy the entire disk space. However, something inconsistent could
occur due to many reasons, for example, Fig. 4.12 shows two partitions are
overlapped, which could result unexpected file system corruption. Such kind of

4.2 Volume Analysis 107

#Disk 0 _———————ee———————————————————————
" System Reverved (€]

76 57 GB NTF 229.50 GB NTF
~~~~~ y (System, Active, Pimary Partiton Healthy (Boot, Page File. Crash Dump, Pamary Parttion

Extract, for example,
using dcfldd

Extracted partition containing a
NTES file system

Fig. 4.13 Partition extraction

disk layout is invalid, and in principle, partitions should not overlap to each other. A
further investigation should be launched to determine the cause if there is any
inconsistency to the disk layout.

4.2.3 Partition Extraction

After we figure out the layout of the disk, we can conduct any further investigation
by extracting each individual partition, for example, using dcfldd. These extracted
partitions can be further analyzed, for example, using any file system analysis tools,
which will be discussed in next chapter (Fig. 4.13).

4.2.4 Deleted Partition Recovery

Due to various reasons, accidental deletion, formatting, or even trail obfuscation
against the investigation by criminals, a partition could be deleted. Hence, it is
crucial to recover deleted partition(s) either at uncovering evidence during a forensic
investigation or for maintaining business operations. Fortunately, when a partition
on a disk is deleted, the partition contents aren’t actually erased. Instead, the
respective partition table entries are all zeroed, indicating the pre-partitioned but
now deleted area is free and cannot be assessable. In order to recover the deleted
partition, we need to figure out these important information about the partition,
including the start point, the size, and type, and then put back to the zeroed partition
table entries.

By convention, a disk is partitioned in a way where one partition immediately
follows the other if multiple partitions have to be created on a disk and partitions
occupy the entire disk space. Therefore, it should not be very difficult to figure the



108 4  Volume Analysis

&

Capeico [N

Basxc SptemBeserved | I0)
e 100 ME MTFS 14633 GE NTFS 15050 GB NTFS
Criee Feakhy Dyriem & || Healihy [Boct Page i, Crach Dump, Prvuey Pasitier || Healtry (Prmury Pass

Doleted

Fig. 4.14 Partition deletion

location of a possible deleted partition by taking a look at the existing partitions.
Afterwards, by further analyzing the possible area for the deleted partition, which
most likely is a type of file system, we should also determine the partition type. For
example, if we figure out the type of file system on the deleted partition is FAT, then
the partition type is 0xOb (Fig. 4.14).

Review Questions

1. What does MBR stand for?
2. When conducting digital forensic investigations what is the most common
source of digital evidence?

(a) hard disk

(b) Internet

(c) partitions

(d) unpartitioned disk space

3. Which of the following disk layout is invalid?
(a)

Partition 1 Partition 2

.

N

(b)

Partition 1

|/ \|




4.2

10.
11.
12.

Volume Analysis 109

©

Partition 1 Partition 2

(d) None of the above

. In MBR, how many entries are in the partition table?
. What is the logical disk volume address (or ask logical partition address) for the

Sector A shown in the figure below? (If the address doesn’t
exist, N/A should be given.)

Hard disk

Physical 800 900 1000 1699
address

4 v )4 A 4

e

Sector A
Partitioned space

Unpartitioned space

v
[ ]

. When is the MBR created?

(a) Low-level Format
(b) High-level Format
(c) Partitioning

(d) OS Install

. BIOS stands for .
. Consider a disk that reported 8 heads per cylinder and 63 sectors per track. If we

had a CHS address of cylinder 6, head 3, and sector 18, the LBA address is

. After , MBR takes control of the booting process of a computer.

(a) BIOS

(b) partition boot section
(c) master boot record
(d) Operation System

How big, in bytes, is MBR?

In CHS, C stands for .

According to Fig. 4.6, fill out the following table with details of the second
partition.



110 4 Volume Analysis

Partition table for partition entry #1
Starting CHS address Cylinder:
Ending CHS address Cylinder:
Starting LBA address
Size of the partition (GB)
Type of partition

, head: , sector:
, head:

, sector:

4.3 Practice Exercise

The objective of this exercise is to give you a better understanding of how disk
partitioning works.

4.3.1 Setting Up the Exercise Environment

In order to begin this exercise, you need to prepare the following disk images:
Download extended DOS partition testing tool, 1-extend-part.zip, where a file
called ext-part-test-2.dd inside the zip archive (1-extend-part.zip) is a disk image for
the purpose of learning extended partition concepts, and upload it to your Forensics
Workstation [4].
To download this tool, go to http://dftt.sourceforge.net/test1/index.html.

4.3.2 Exercises

Part A: Analyze the MBR of the Disk Image “‘ext-part-test-2.dd”, and Fill Out
the Following Table with Details of the First Partition (Table 4.7)

Part B: Analyze the First Extended Partition, and Fill Out the Following
Table with Details of the Partition (Table 4.8)

Please note: An extended partition acts like a disk, and the first sector is an MBR.
You can figure out the layout of the extended partition by analyzing its MBR.

Table 4.7 Details of the first
partition in the disk image
“ext-part-test-2.dd”

First partition

Start LBA address

Number of sectors in partition
Size of the partition (MB)
Type of partition



http://dftt.sourceforge.net/test1/index.html

4.3  Practice Exercise 111

Table 4.8 Details of the first
extended partition in the disk
image “ext-part-test-2.dd”

First extended partition

Start LBA address

Number of sectors in partition
Size of the partition (MB)

Hard disk

Physical 600 800 1000 1699
address

¥

4
|:| Partitioned space

Unpartitioned space

Fig. 4.15 An example layout of hard disk

Part C: Find Out the Layout of the Disk Image “ext-part-test-2.dd”
An example of the disk layout is given below (Fig. 4.15).

Q1. By looking at the disk layout which you have figured out, is there any
unpartitioned space? (Yes/No). (Unpartitioned space can be used to hide
data.)

Please note that in order to figure out the layout of a disk, you will need to
determine the locations of all the partitions.

Part D: Use dcfldd to Extract the First Partition Image from the Disk Image
Provided
Q2. Use the spaces provided to write down the command(s) you issued.

Part E: Validate Your Answers Using mmls
Once you complete the above lab exercises, you will be able to validate your answers
by using TSK utility mmls. The basic syntax of the command mmls is shown below.

mmls —t dos ext-part-test-2.dd

where ‘-t” option specifies the mmls utility has been used to display the layout of a
disk that was partitioned using DOS partitioning, and the last argument specifies the
filename of the disk image. In the example shown in Fig. 4.8, we known that we can
determine the location of each partition and its type.



112 4  Volume Analysis
4.4 Helpful Tips

Here we provide some tips and tricks for obtaining a structured data in a disk image.
In a digital investigation, it is common that we need to parse out meaningful
information from the raw data found on a disk. In doing so, two important informa-
tion are required:

* Location of the data, for example, the partition table stored at byte offset of
0x1BE

» Data structure of the data, for example, the partition table data structure depicted
in Table 4.3 (Fig. 4.16)

For example, suppose that we have an image of MBR. In order to gather all the
partitions information, we need to know the location of the partition table as well as
the partition table data structure. As shown in Table 4.2, we know that the partition
table starts at byte offset of 446 (or 1BE in Hex). We also know the detailed data
structure according to Table 4.3. Thus, we should be able to obtain the partition
information such as the starting LBA address, size of partition, and partition type.

Using the image of MBR in Fig. 4.6 as an example, we are able to fetch the
partition table in its raw format, shown in Fig. 4.17.

According to Table 4.2, each partition table has four partition entries and one
partition entry has a length of 16 bytes. For simplicity, we will look at the first
partition entry as our example, where the raw data is “80 20 21 00 07 f. ff ff 00 08
00 00 00 00 1f 01”. According to Table 4.3, the first byte indicates if the partition is
bootable or not. It is set to 0x80 if bootable, or 0x00 if not. In our example here, the
partition is bootable. The next 3 bytes (20 21 00) is the CHS address for starting
position of the partition, followed by 1 byte (07) that stands for the partition type.
The 3 bytes afterwards (fe ff ff) is the CHS address for ending position of the

Disk Image Data structure of
partition table

Offset b
(e.g.,in Entry O
bytes)

Entry 1

@ Entry 2
Entry 3

Byte offset Ox1BE >

Partition table

Parse the raw data in a meaningful way
(human readable format)

Fig. 4.16 How to obtain a structured data (e.g., partition table) from a disk image



4.4 Helpful Tips 113

7

00001be: [BA20 2100 [07fe £££f [0008 0000I[0000 1FOI]<—1" Partition
00001ce: 00fe ffff 07fe ffff 0008 1f01 b022 bOlc
00001de: 0000 0000 0OOOO 0OOOO 0OOOO 0OOOO 0000 0OO0OO
00001lee: 0000 0000 0000 0000 0000 OOOO 0O0OO 0OOO

A: Offset to the first attribute 0x38

B and D: Starting and Ending CHS address respectively
C: Type of partition

E: Starting LBA address

D: Size of partition

Fig. 4.17 DOS partition table

partition. The 4 bytes afterwards (00 08 00 00) is the LBA address for starting
position of the partition, and the last 4 bytes (00 00 1£ 01) of the 16-byte-entry counts
the number of sectors in that partition.

It is important to emphasize that a byte offset is an address (or distance in bytes)
relative to a position, for example, the beginning of MBR or the partition table. For
example, in Table 4.3 it states that the starting CHS address of the first partition is
between the byte offset of 1 and 3. This is referring to the beginning of the partition
entry (or the partition table since we are discussing the first partition), which is at
byte offset of 446 in MBR. In other words, the offset of starting CHS address is
between 447 and 449 in MBR.

Example Consider the first partition and we first obtain the raw data of the first
partition table entry, shown as follows:

Raw data 80 |20 |21 |00 |07 |fe |ff [ff |00 [O8 |00 |00 |00 |00 |1f |O1
Byteoffset | O | 1 | 2 |3 |4 |5|6 78| 9|A B |[C |D |[E |F

Bytes 1-3 (20 21 00) show starting CHS address value. Then, we have cylinder,
which has 10 bits, where bits 9-8 of cylinder are in bits 7—6 in the second byte and
bits 7-0 of cylinder in the third byte,

(00 000000000), = 0.

Also, we have head, which has 8 bits from the entire first byte of the CHS address
value,

0x20 = 32.

Finally, we can obtain sector, which has 6 bits. These bits are from bits 5-0 in the
second byte,

(100001),=33.

Thus, starting CHS address is (C = 0, H =32, S = 33).
Similarly, we can obtain that ending CHS address is (C = 1023, H = 254,
S = 63).



114 4 Volume Analysis

Next, Bytes 8§—11 (00 08 00 00) show LBA address of the first sector in the
partition. Note that little endian conversion applies here since we are currently using
a Little-Endian machine. This applies to any multibyte values later.

0x00000800 = 2048

The size of the partition in sectors is determined by the last four bytes of the
partition entry (00 00 1f 01), which is 0x011f0000 = 18808832 sectors.

Finally, we can obtain the size of the partition in GB,

18808832 X 512 /1024 / 1024 = 8.96875 GB.

References

1. Disk partitioning. [Online] Available at: http://en.wikipedia.org/wiki/Disk_partitioning

2. Master boot record. [Online] Available at: http://en.wikipedia.org/wiki/Master_boot_record

3. Brian Carrier. File System Forensic Analysis. Addison-Wesley Professional; 1 edition (Mar
27 2005) ISBN-10: 0321268172

4. Digital Forensics Tool Testing Images. [Online] Available at: http://dftt.sourceforge.net/

5. Partitions and Volumes. [Online] Available at: http://www.yale.edu/pclt/BOOT/PARTITIO.
HTM

6. GUID Partition Table. https://en.wikipedia.org/wiki/GUID_Partition_Table

7. Brian D. Carrier. Volume analysis of disk spanning logical volumes. Digital Investigation, vol.
2, no. 2, June 2005, pp. 78-88.

8. Anthony Sammes, Brian Jenkinson. Forensic Computing: A Practitioner’s Guide. Springer-
Verlag London, 2007. (ISBN: 9781846283970)


http://en.wikipedia.org/wiki/Disk_partitioning
http://en.wikipedia.org/wiki/Master_boot_record
http://dftt.sourceforge.net
http://www.yale.edu/pclt/BOOT/PARTITIO.HTM
http://www.yale.edu/pclt/BOOT/PARTITIO.HTM
https://en.wikipedia.org/wiki/GUID_Partition_Table

Chapter 5 )
Examining FAT File System s

Learning Objectives
The objectives of this chapter are to:

* Understand fundamental concepts of file systems in general

* Recognize the difference between a file system, and a partition, as well as
how to find key information about them

* Understand the File Allocation Table (FAT) file system structure

* Know how to use an open-source tool, dcfldd. For example, use dcfldd to
extract a partition image from a disk image

e Manually analyze the FAT file system image to detect the version number,
the locations of important data structures as well as to locate a file in FAT
file system

Digital devices, such as computers, store their data on a variety of storage devices;
hard disk drives are the most common. All hard disks are made up of sectors; just
like bits are the basic building units of files, a sector is the basic building unit of data
storage on a hard disk. Sectors have a size of 512 bytes. It is important to note that
sectors are almost always 512 bytes large; sectors of other sizes can only be found in
a few of the most modern hard drives available. Newer hard drives use 4096 byte
(4 kB) sectors, known as Advanced Format standard [1]. However, most of today’s
hard drives still use 512-byte sector as the basic unit of data storage. Unless
otherwise specified, assume that all sectors are 512 bytes throughout this book.
These sectors are accessed directly by the operating system (OS), in order to enable
users to access files.

The preceding chapter has described that a hard disk is usually divided into
multiple parts, called partitions. One popular disk partition system is called the
DOS (Disk Operating System)-style partition system. DOS-style is usually called
MBR style because it reserves the first 5/2-byte sector for the MBR. The MBR is

© Springer Nature Switzerland AG 2018 115
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_5&domain=pdf

116 5 Examining FAT File System

Format (usually
known as ‘making a

filesystem’)
Partition | artition

A /
Split into one or

more partitions

Partition Partition
e
B B
A collection of ..
addressable Unpartitioned Uppartitioned
free space free space

sectors

Fig. 5.1 Disk partitioning and formatting

not a partition, but a section of the disk that contains the Partition Table, and code
for initializing boot (such as loading the operating system kernel files). The Partition
Table is a table that illustrates the layout of a physical disk. It is traditionally
composed of four 16-byte entries, each of which representing one primary partition.
It is possible to divide the hard disk into more than four partitions by using Extended
Partition concept (or Logical Partitions), where one partition can be defined as
extended and further divided into multiple partitions, which can each be formatted
and assigned with drive letters available for data storage. In such a case, an extended
partition is logically treated like a hard disk. The process of formatting is usually
known as “making a file system” on a disk partition or logical drives. In other words,
a specific file system structure, which is detailed later, will be created after format-
ting. A partition or logical drive must be formatted before it can be available for data
storage (Fig. 5.1). With this quick review on partitioning, we can proceed and
discuss file systems in detail. This chapter serves as an introduction to file system
analysis. In later sections, we will give an overview of file systems, and explain the
FAT (File Allocation Table) file system, which is a legacy file system that is still
widely used by removable media, such as USB drives.

5.1 File System Overview

A File is a collection of data that has some relation, and most files have predefined
organization. A File system is a collection of files organized in a way that an OS can
manage. It allows programs to access these files easily, effectively, and quickly. How
data is actually written to storage media is a result of the OS interacting with the
device driver. There are many ways to organize data, i.e., many types of file systems,
for example,



5.1 File System Overview 117

File System Data Category Application Category

| I | :
i Layout and Size Information : : Quota Data :
- B I !
File Name Matedata Content

Category Category Category
il [yttt | Infelaintulaletalnintnininie |
i I
Filel.dat : :, Tlm:(si:iamp s and I :r Content Data #1 :
! ! resses ~:\L !
! ! | I'| Content Data #2 | |
| : | | |
| l T 1 | 1

T t

File2.dat : > imestamps and : » Content Data #1 |
| | Addresses | X |
_____________ U | |

Fig. 5.2 Data categories in file systems [2]

Extended file system (EXT), such as EXT2, EXT3, EXT4
New Technology File System (NTFS)

File Allocation Table (FAT), such as FAT12/16, FAT32
Compact Disc File System (CDFS)

High Performance File System (HPFS)

As shown in Fig. 5.2, data in a file system can be categories as following:

File System data: This contains general information about a file system, includ-
ing locations of various data structures used in the file system. It is analogous to
the campus map in a university, which can be used to locate any building in the
university campus.

Content: This group of data is the actual information that a user would open a file
in order to get; It is made up of the actual file contents, and is typically organized
into logical data units (or standard-size containers). The data unit is also known
as a cluster, or block, and is a group of several sectors which are then treated as a
single, unbreakable unit. Block sizes are usually a small power of 2, for example
using 2° = 8 sectors as the unit size. It is the smallest unit of disk space that can be
allocated to a file and the OS can access; if a file only requires three sectors, but
the file system’s block size is eight sectors, the OS still assigns one block to the
file, and allows the other five sectors to remain empty. These five sectors cannot
be allocated to another file.

Metadata: This is data that describes files in some way. It includes information
like file size, the addresses of allocated clusters/blocks, and some important
timestamps related to the files, such as creation time, modification time, and
accessed time.

File name: This is simply the name that a user would see when looking for a file
(on their Desktop for example).



118 5 Examining FAT File System

* Application: This data provides special features, including user quota informa-
tion and file system journals. User quota refers to the maximum amount of disk
space a user or group of users are allowed to use, while file system journals are
logs or records of changes made to the file system. Not all file systems have
application data.

When searching for a file, or for specific content, in the file system (manually—no
Windows Explorer here!), begin by taking a look at File System data to figure out the
layout of a file system, determining where File Name, Metadata, and Content data
are stored. Then, you can search the file system for the file name or content you need,
and find the corresponding metadata which is used to describe the file, including the
addresses of the clusters/blocks that store the file contents. Remember that these will
be logical addresses. So once they are discovered, we need to determine the physical
disk location of these clusters/blocks. The translation from the addresses of the
clusters/blocks to physical addresses is done automatically by the file system.
Once these physical addresses are acquired, these blocks can be accessed directly
to obtain the actual file contents.

The OS’s role is to define the API (Application Programming Interface) for file
access, and to define the related structures. Almost all operating systems have a file
system available automatically on startup, but some allow users to add additional
devices into the system, called “mountable file systems”. This can only be done with
special commands and privilege levels. In addition, modern operating systems
provide various ways for users to interact with file systems managed by them. For
example, the Microsoft Windows operating system provides both graphical user
interfaces (GUIs), such as, File Explorer, shown in Fig. 5.3a, and non-graphical
command line tools, such as Microsoft Disk operating system (MS-DOS) command
prompt shell, shown in Fig. 5.3b, to manage the files in the file systems controlled by
the Microsoft Windows.

Files have attributes associated with them, such as owner, permission, and dates/
times. File name, size, and address are essential for finding a file, whereas access
time and security permissions are not essential for finding a file. The data’s actual
structure can be implicit or explicit, which determines whether the OS can force a
specific file structure, based on file extension. Windows uses file extensions to
determine the type of file (e.g., .exe = executable file, .txt = text file); this is implicit
structuring, because the file extension tells the OS precisely how to handle the file
when a user attempts to access it. Other operating systems, like Linux and UNIX, use
explicit structuring, and therefore rely on a file’s attributes to determine whether
certain actions, such as executing the file, are valid or not. In explicit structuring, the
file extension doesn’t determine these details, as the same type of file can be given
different sets of attributes to govern its use; a file that has the extension.txt, but has
the attribute “executable” enabled, will cause the OS to treat it like a program instead
of a text file. Explicit structuring increases versatility for the user, but this comes at
the cost of increasing complexity—a user who doesn’t know what they are doing
could create many problems for themselves!



5.1 File System Overview 119
- — - = =l
- =
@__ P » Computer » Local Disk (C) » Windows » B - v?. p
Organize Include in library + Share with » Bumn New folder b w |
- Favorites I
Bl Desktop addins
& Downloads AppCompat
Recent Places AppPatch i
& SkyDrive assembly
EBoot
a4 Libraries Branding
[ ¢ Documents CsSC
o' Music Cursors
&= Pictures debug
E Videos diagnostics
DigitalLocker
48 Computer Downloaded Program Files
‘,-,., Local Disk (C:) ehome
en
136 items
L _ |
(a)

-

oft Windows

BN Administrator: C:\Windows\system32\cmd.exe

[Version 6 76811

. l;]}lt (c> 2889 Microsoft Corporation.

rs\180362279>m

All rights reserved.

(b)

Fig. 5.3 Ways to interact with file systems in modern operating systems. (a) File explorer. (b)
MS-DOS command prompt shell

File systems also use folders (also called directories), each being a collection of
files and folders (or subfolders). The terms ‘“folder” and “directory” are used
interchangeably throughout this book. The organization of files into a hierarchy of
folders makes it easy to organize files in system that has billions of file’s reference or
“path” to files. An example of such hierarchical organization/structure is shown in
Fig. 5.4. Putting a file into a folder doesn’t affect the physical data on a drive, but the
OS categorizes it by the folder’s path, allowing users and programs to find it more



120 5 Examining FAT File System

Root
Directory

|

I:, Directories

J:fl_[El Files

JL

Fig. 5.4 Hierarchical file structure

easily. A typical directory uses a hierarchical form, but other forms exist too,
especially in older operating systems like mainframes. For instance, every disk in
an MS-DOS that has a long history but been discontinued, has a VTOC (Volume
Table Of Contents), which is a simple table that describes each file (and each block
of space) within a disk—it would be like allocating a number to every file in a folder,
and then listing what each number represents. Hierarchical directories allow an
arbitrary number of levels, meaning that they can go almost infinitely deep. The
“root” directory is the top-most directory in a hierarchy, where all paths of the file
originate from.

A cluster (or logical groupings of sectors) is a block of disk space allocated for
files or directories. It is very common that a file takes up more than one block, and
hence there must be a mechanism to specify which blocks have already been
allocated, and how these blocks are allocated to the file. This mechanism operates
block by block, and continues until there is enough disk space allocated to store the
entire file content. There are three main types of file allocation mechanism:

¢ Contiguous allocation
¢ Linked allocation
¢ Indexed allocation

Contiguous Allocation stores file in contiguous blocks on the disk—one block
after the other in one location of the disk. Figure 5.5 illustrates the concept of
contiguous allocation (note that the blank blocks are free space, which we refer to
as unallocated space). For example, six contiguous blocks, starting at block 5, are
allocated to File 1. Hence, only the start block number (block 5) and the length of



5.1 File System Overview 121

File Data

Strucstural Data - 3
MR\ E 3 g

Address Block

Fig. 5.5 Contiguous allocation

these contiguous blocks are needed to locate File 1, as described as structural data in
Fig. 5.5.

Most file systems use Linked Allocation (or non-contiguous blocks) like File
Allocation Table (FAT) file system. A file will have a number of blocks, each block
containing the disk address of the next block throughout the disk. At first, this may
seem redundant (Imagine continuous blocks being allocated this way—why not just
progress to the next block each time instead of wasting space listing its address?), but
this model allows for non-contiguous allocation. This leads to more efficient use of
the hard drive, because new files no longer require a set of contiguous blocks in order
to be created.

In Fig. 5.6, block 18, the first block occupied by the file File I, contains an
address that points to block 20, which is the second block held by the file. Block
20, in turn, contains an address that points to block 15, the last block held by the file,
and block 15 holds a special code that tells the OS that it is the last block in this file.
In this model, the blocks (or clusters) allocated to a file are also collectively called a
“chain”, referred to as chain of clusters.

Obviously, with linked allocation, each block can only be found by reading the
previous block, and hence, it does not support random access of files (which allows
for more efficient processing). Indexed allocation, shown in Fig. 5.7, solves this
problem by bringing all the pointers together into an index block, as opposed to



122

Structural Data
File Start
File 1 18

5 Examining FAT File System

File Data

12

13

14
15

16

.

N

N

%

Address Block

Fig. 5.6 FAT (File 1’s occupied three blocks—address block follows these sequences:
18—20—15). (1) Read block 18. (2) Block 18 points to block 20; read block 20. (3) Block 20 points
to block 15; read block 15. (4) Block 15 points to EOF (end of file); finished!

Structural Data

File

1 Index 2" Index

3" Index

File 1

26 28

23

Address Block

File Data
T
N

w| ]
s

Fig. 5.7 File index (File 1’s occupied three blocks—address block follows these sequences:

26—28—23)

scattering them across the blocks themselves; however, it is not very flexible. A fixed
number of blocks have to be allocated for the file upon its creation, but unfortunately,
file size can change dramatically, due to various file manipulations such as writing or
appending to a file. Also, it is not unusual that the size of a file is not a multiple of the
cluster size, but of course, the file system allocates disk space to a file in clusters; as a



5.2 FAT File Systems 123

result, there could be space left over in the end of the file. The unused bytes in the last
data unit for a file are called Slack Space.

IMPORTANT: Slack Space is not to be confused with Volume Slack. Expla-
nations about this can be found in the Helpful Tips section of this chapter.

In a hard disk, a sector is the basic unit of data storage that disk can address, while
file systems use blocks or clusters to allocate disk space to files or directories. As
such, a disk sector could be addressed in both sector number and cluster/block
address. Therefore, we frequently have to perform a conversion between cluster
address and sector address. Unfortunately, this conversion isn’t fun; it is not a
straightforward, intuitive, one-to-one mapping, and the exact method actually
depends on the file system structure and design, which will be detailed when various
file systems are introduced later.

When a media device becomes full, there may not be sufficient continuous disk
space available for a file, so the file will have to be stored in several physical areas on
the disk. This will subsequently slow the operation system, because it will need to
retrieve data from all of these areas in order to access the file. This problem is called
Fragmentation. Many operating systems provide defragmentation programs to
rearrange data on the disk, block by block, so that the blocks of each file are
contiguous in order to make it easier to access files. In spite of the existence of
linked and indexed allocation, it is ALWAYS preferable to store files contiguously,
as this involves less movement of the mechanical arm in the hard drive. Naturally, it
is many thousands of times slower than the electronic components. This is why users
experience a drastic increase in system performance after defragmenting for the first
time in several years!

5.2 FAT File Systems

FAT (File Allocation Table) file system (also simply known as FAT) is a propri-
etary file system, which was originally developed in 1976-1977 by Bill Gates and
Marc McDonald. In the past, this file system was used in MS-DOS and Windows
operation systems (up to Windows ME). Today, it is often used in small storage
devices, such as SD cards and USB drives. Each allocated cluster contains the
pointer to the “next cluster” or a special address that marks the end-of-cluster
chain such as Oxfff (in FAT12), Oxffff (in FAT16), and Oxfffffff (in FAT32)—so
you can clearly see that FAT uses linked allocation, as described above! Currently,
there are three variants of FAT in existence: FAT12, FAT16, and FAT32; the size of
a file’s entry into the file allocation table varies among different versions of FAT:

* FATI12: Each FAT entry is 12 bits in size
* FATI16: Each FAT entry is 16 bits in size
e FAT32: Each FAT entry is 32 bits in size

Nevertheless, all versions share the same FAT layout, as shown in Fig. 5.8, which
consists of three sections:



124 5 Examining FAT File System

Reserved Area FAT Area*** Data Area
Partition | FS Information Ri\:[;)r‘;/ee d
Boot Sector (FAT32 Séctors File Allocation Table(s) Other folders and all files
Sector* only) X
(optional)

Root Folder**

* The Boot Sector (aka Partition Boot Record) is the first reserved sector (sector 0)
** In FAT32 file system, root folder (directory) could be found everywhere in data area
#%% By default, there are two File Allocation Tables, which are identical

Fig. 5.8 Layout of FAT file system

1. Reserved Area,
2. FAT Area, and,
3. Data Area.

5.2.1 The Partition Boot Sector

Partition Boot Sector describes the file system’s data structures. It resides in the
Reserved Area, and lies in sector 0. Also note that “FS Information Sector (FAT32
only)” and other, optional reserved sectors such as “backup boot sector”, occupy the
Reserved Area. These sectors cannot be occupied by ordinary files.

Fig. 5.9 shows a hex dump of a partition boot sector by using a Linux utility xxd.
The left side (the seven digits before each colon) is the byte offset address, in
hexadecimal format, which is used to locate individual bytes (start at byte offset
0). The middle is the hex dump data, and the right is the ASCII interpretation of the
dump data. Each byte represents a two-digit hexadecimal number. Table 5.1 below
explains what the boot sector’s content means, and where each variable is delimited.
For instance, the data starting at byte offset 3 and continuing until byte offset 10 is
“4d 53 44 4f 53 35 2e 30” (first boxed section in Fig. 5.9), and corresponds to the
ASCII output boxed on the right. This represents the OEM name, which is
“MSDOS5.0”. Notice that byte offsets begin at 0, not 1.

& 3 We assume that the system discussed here is using little-endian. Unless

otherwise stated, the assumption is used throughout the book. So little endian format
applies to any multi-byte value. In other words, the actual value of the multi-byte
data is declared in reverse order of bytes.

By looking at the partition boot sector (within reserved area), you should be able
to figure out the layout of a FAT file system, just like looking at the MBR for the disk
layout discussed in previous chapter. For FAT12/FAT16, it’s simple enough; you
only need the first 32 bytes. For FAT32, this is not the case, and you will have to look



5.2 FAT File Systems 125

0000000: eb58 9(j4d 5344 4f53 352e 3000 0202 acl8 .XIESDOSS.OI....
0000010: 0200 0000 00f8 0000 3f00 ££f00 6100 0000 ........ ZacsBane
0000020: 9fc9 0300 2a03 0000 0000 0000 0200 0000 ....ccoveensnssns
0000030: 0100 0600 0000 0000 0000 0000 0000 0000 ..veeewennnnnnns

0000040: BO00 29b9 d33d aede 4f20 4ed4l 4d45 2020 ..)..=.NO NAME

0000050: 2020 4641 5433 3220 2020 33cH9 8edl bcf4 FAT32 Biaeas
0000060: 7b8e clBe d9od 007c 884e 02Ba 5640 b44l {...... | .N..V@.A
0000070: bbaa 55cd 1372 1081 fbd5 aa75 Oafé cl0l ..U..r...U.u....
0000080: 7405 fe4d46 02eb 2dBa 5640 b408 cdl3 7305 t..F..-.V@....s.
0000090: b9ff ffBa f166 0fbé c640 660f bédl B0e2 ..... foanBE g
00000a0: 3ff7 e286 cdcO0 ed06 4166 0fb7 c966 flel ?2....... Af...f..
00000b0: €689 46f8 837e 1600 7538 837e 2a00 7732 f.F..~..uB8.~*.w2
00000c0: 668b 46lc 6683 c00c bb00 80b9 0100 eB2b f.F.f.......... +
00000d0: 00e9 2c03 alOfa 7db4 7d8b flOac 84cO0 7417 ..,...}.}..... t.
00000e0: 3cff 7409 b40e bb07 00cd 1l0eb eeal fb7d <.t............ }
00000£0: ebed al0f9 7deb e098 cdl6é cdl9 6660 807e ....}....... £ .~
0000100: 0200 0f84 2000 666a 0066 5006 5366 6810 .... .fj.fP.Sfh.
0000110: 0001 0OOb4 428a 5640 8bf4 cdl3 6658 6658 ....B.V@....fXfX
0000120: 6658 6658 eb33 663b 46f8 7203 f9ecb 2a66 fXfX.3f;F.r...*f
0000130: 33d2 660f b74e 1866 f7fl fec2 Baca €668Bb 3.f..N.f...... £.
0000140: d066 clea 10f7 76la 86d6 Bab56 408a eBcO .f....v....V@...
0000150: e406 Oacc b801 02cd 1366 610f 8275 ffBl ......... fa..u..
0000160: c300 0266 4049 7594 c342 4f4f 544d 4752 ...f@Iu..BOOTMGR

0000170: 2020 2020 0000 0000 0000 0000 0000 0000 ... ieienicenns
0000180: 0000 0000 0000 0000 0000 0000 0000 0000 ....vecvecucnnns
0000190: 0000 0000 0000 0000 0000 0000 Q000 0000 ...cevvvennnanns

00001a0: 0000 0000 0000 0000 0000 0000 OdOa 5265 .....iveeenean Re
00001b0: 6déf 7665 2064 6973 6b73 206f 7220 6f74 move disks or ot
00001cO: 6865 7220 ©dé5 6469 6l2e ff0d Oad44 6973 her media....Dis

00001d0: 6b20 6572 726f 72ff 0dOa 5072 €573 7320 k error...Press
00001e0: 6l1l6e 7920 6b65 7920 746f 2072 6573 7461 any key to resta
00001f0: 7274 0dOa 0000 0000 OOac cbd8 0000 55aa rt............ 0.

Fig. 5.9 Example of partition boot sector in a FAT partition

at other fields of the partition boot sector. As an example, we then analyze the
partition boot sector shown in Fig. 5.9 to conclude the size and location of three
important areas of the FAT file system.

1. Reserved area: The reserved area starts with the beginning of the partition where
the FAT file system resides. The data at byte offsets Oxe-0xf is “ac 18” (see the
first underlined digits in Fig. 5.9). This represents the size in sectors for the
reserved area. Remember that we assume the system discussed here is using little-
endian, so the size of the reserved area is 0x18ac = 6316 sectors.

2. FAT area: It is always located immediately following the reserved area. There
are two important parameters related to this area, the number of FAT copies and
the size of each FAT table. The data at byte offset 0x10 (see the second
underlined digits in Fig. 5.9) represents the number of FAT copies, which is
“0x02” (or 2 copies). And, the data at byte offsets 0x16-0x17 represents the size
in sectors for one FAT table, which is “00 00”. It indicates the file system here is
FAT32. Then, according to Appendix B, we know the data at byte offsets 0x24-
0x27 represents the FAT table size in sectors, which is “aa 03 00 00 (see the third



126

Table 5.1 Data structure of partition boot sector [2]

5 Examining FAT File System

Byte offset (within Length in | Byte range

Partition Boot Sector) in | decimal in decimal

hexadecimal (bytes) (bytes) Contents

0x0 3 0-2 Assembly instruction to jump to boot
code. It must exist if the file system
inside the partition is bootable

0x3 8 3-10 OEM (original equipment manufacturer)

0xb 2 11-12 Number of bytes per sector: 512, 1024,
2048, 4096

0Oxd 1 13-13 Number of sectors per cluster (data unit)

Oxe 2 14-15 Number of reserved sectors (reserved
area)

0x10 1 16-16 Number of file allocation tables (typi-
cally 2: primary and copy)

0x11 2 17-18 Max number of entries in the root
directory

0x13 2 19-20 Total number of sectors used by the FAT
volume. Value is set to zero if number of
sector is larger than what would fit in
2 bytes. Number of blocks would be
stored in range 32-35

0x15 1 21-21 Media/descriptor type (0xf8 = fixed disk,
0xf0 = removable)

0x16 2 22-23 Number of sectors occupied by a FAT. If
zero, indicates it is FAT32. Then, it
should be referred to the data at byte
offsets 0x24—0x27 for the FAT table size
in sectors

0x18 2 24-25 Number of blocks per track

Oxla 2 26-27 Number of heads

Oxlc 4 28-31 Number of sectors before the start of
partition

0x20 4 32-35 Total number of sectors used by the FAT
volume

0x24 476 36-511 The boot structure between version

FAT12/16 and FAT32 changes after

36 bytes. Please refer to Appendix A and
B for FAT12/16 and FAT32,
respectively

underlined digits in Fig. 5.9). Hence, the total size of the FAT area is
0x000003aa = 938 sectors.
3. Data area: It is always located immediately following the FAT area. The size in
sectors for the file system is represented by the data either at byte offsets 0x13-
0x14 (a 2-byte value) or at byte offsets 0x20-0x23 (a 4-byte value) if the 2-byte
value above (bytes 0x13-0x14) is zero. It is obviously that in our example the
total size of the file system is stored at byte offsets 0x20-0x23. Seeing the fourth



5.2 FAT File Systems 127

underlined digits in Fig. 5.9, the size of the file system is 0x0003c99f = 248223
sectors. Therefore, the size of the data area is 240031 sectors after subtracting the
sizes of reserved and FAT areas.

Within the data area, there is one important structure, the root directory. The
root directory is always located immediately following the FAT region in previ-
ous FAT versions, such as FAT12/16, whereas it can be stored anywhere within
the data area in FAT32. In FAT12/16, we know the root directory is located
immediately after the FAT area. Then, we know the number of directory entries
by referring to the data at byte offsets Ox11-0x12. Since each directory entry is
32 bytes in size, the size of the root directory is multiplying the number of
directory entries by 32 bytes. However, in FAT32, the root directory is treated
a regular file, and the starting cluster that stores the root directory is specified at
byte offsets 0x2c-0x2f in the FAT32 boot sector. The FAT file system shown in
Fig. 5.9 is FAT32, and the cluster number of root directory start is 2, as shown in
the fifth underlined digits in Fig. 5.9. Then, the chain of clusters that are allocated
to the root directory can be found in the FAT table of the file system, which will
be discussed next. For example, here is a hex dump of the first 32 bytes of the first
FAT table, FAT O (This is a FAT32, so each FAT entry is 32 bits in size):

Entry 2

J

00: |f8ff ffof|lefff feef|[efef ££0£] 0400

L

60 ¥, ) YO 0OR0O0D

Partition boot sector tells you that the first cluster is cluster 2, so FAT Entry 2 is
the entry you read and its content is the next cluster allocated for the file. This
continues until the FAT entry corresponding to the last cluster is reached. The last
FAT entry contains a special signature “EOF” in the FAT, which marks the end of
the file. As such, we can find out address information for all clusters allocated for the
root directory. Since FAT entry 2 contains OxOfffffff, which means the last cluster in
the root directory (see later section for more details). The chain of clusters allocated
for the root directory would then be like the following

2—EOF
Therefore, the root directory has one cluster (or Cluster 2) allocated to
it. Further, the size of one cluster is specified at byte offset Oxd in the partition
boot sector, which is two sectors. Finally, the root directory is two sectors in size.
It is worth mentioning that only disk space in data area has a cluster address
(a number) assigned to it and cluster numbering starts at 2 for FAT file systems.

Therefore, the layout of the FAT file system in Fig. 5.9 can look like the following
(Fig. 5.10).



128 5 Examining FAT File System

< Total size of file system= 248223 sectors >
v 4
FAT area Data area
. File .
Reserved area
Fllc. Allocation Root Directory Data Region (for all files and other
Allocation (Sectors 8192-8193 . .
Table #1 directories)
Table #0 . or Cluster 2)
(duplicate)
Sectors 0-6315 (Total Sectors 6316-8191 (Total Sectors 8192-248222
6316 sectors) 938x2=1876 sectors) (Total 240031 sectors)

Fig. 5.10 The layout of FAT file system in Fig. 5.9

5.2.2 The File Allocation Table

The FAT file system uses Linked Allocation method, and this is implemented
through the File Allocation Table (FAT), which contains cluster status and pointer
to next cluster in chain that is allocated to a file.

The FAT area holds the FAT table(s), and the FAT table entries point to the
clusters in the data area. Multiple copies of the FAT table reside in the FAT area as
well. These are identical, synchronized copies of the FAT. This is only strictly for
redundancy purposes. If an error occurs from reading the primary allocated table, the
file system will attempt to read from the backup copies. In FAT32, you can disable
this FAT mirroring feature and dedicate an “active” table, other than the primary
table, for the operating system to read from. A FAT table contains indexed entries for
each data block on the disk indexed by the cluster address. The FAT has one entry
per cluster. In other words, FAT entries correspond directly to the clusters; for
example, entry 3 in the FAT table is the entry for cluster 3. Different versions of
FAT file systems use different file allocation table entry lengths. For example, 12, 16
or 32 bits are used for FAT12, FAT16 and FAT32, respectively. It is worth noting
that the top four bits of the FAT entries in FAT32 are reserved, which means that
FAT32 only uses a 28-bit file allocation table entry.

Each FAT entry contains one of four types of values, indicating four statuses that
clusters can take on:

e Unused or free cluster (0x0000)

¢ Bad cluster (—9 or Oxffffff7 for FAT32)

¢ Address of next cluster in use by a file

e Last cluster in a file or end of file (EOF) (—1 or OxOfffffff for FAT32). Note that
FTA32 only uses 28-bit file allocation table entry.

As shown in Fig. 5.11, cluster addresses start with 2, whereas the FAT entry
numbers starts with O (zero). Each FAT table entry points to the cluster whose
address is equal to the FAT entry number in the data area. For example, FAT entry
2 corresponds to cluster 2.



5.2 FAT File Systems 129

Fig. 5.11 The relation FAT
between FAT entries and
clusters 0
i Clusters
2 Cluster 2
8 09 Cluster 8
9 10 Cluster 9
10 EOF Cluster 10

5.2.3 Addressing in FAT File Systems

As discussed in previous section, file systems use cluster as the minimum unit of
allocating disk space to files or directories, whereas, in a hard disk, a sector is the
basic unit of data storage that disk can address. As such, a disk sector could be
addressed in both sector number and cluster/block address. Note that sector
addressing here is relative to the beginning of the filesystem. Therefore, there is a
need to perform a conversion between cluster address and sector address.

In FAT file systems, the data area is divided into clusters which are numbered or
addressed from the start of the data area, whereas their corresponding sectors are
addressed from the start of the partition. The cluster addresses start at 2, and hence,
the basic algorithm for calculating the sector address of a cluster address C is:

(C —2) * (number of sectors per cluster) + (sector address of Cluster 2)

To reverse the process and translate a sector address S to a cluster address, the
following is used:

((S — sector address of Cluster 2)/(number of sectors per cluster)) + 2

However, the difference among different versions of FAT file system is in the
location of Cluster 2. As shown in Fig. 5.12, FATI12/16 has a root directory
immediately after the FAT area; cluster 2 then comes immediately after that. In
FAT32, Cluster 2 comes immediately after the FAT area, which is the first sector of
the data area.

In addition, disk space can be accessed by using byte offset, which is the distance
in bytes relative to the beginning of a partition or file system here. Given a byte offset
B into a partition or file system, we can obtain the corresponding sector address S of
the disk space:



130 5 Examining FAT File System

Root FAT12/16
Directory
T
Reserved area FAT area : Data area
I
starting location
Root FAT32
Directory

Reserved area FAT area Data area

I I
I I
I I
- o

Fig. 5.12 Conversion between cluster address and sector address
S = floor (B/512)

where floor() is the floor function.

5.2.4 The Root Directory and Directory Entry

The FAT file system uses a hierarchical directory structure and the “root” directory is
the top-most directory in the hierarchy. In FAT12/16, the content of the root
directory follows immediately after the FAT Area, but in FAT32 the root directory
can be located anywhere in data area. The purpose of this is to allow the root
directory to grow as needed. The root directory can be found by referring to the
partition boot sector. Any file or sub-folder under the root folder will be allocated
with a root directory entry, and it is easy to find any file based on this path. The
directory is organized as a table, known as Directory Table (DIR) or File Directory
Table (FDT), containing many entries, each entry corresponding to a file (or a
sub-folder) including its name, extension, meta-data (e.g. creation time, access
time, modification time, owner, etc.), permissions, size, and most importantly the
address of the starting cluster for the file, shown in Table 5.2. In FAT file systems,
files and folders are treated the same way, using a simple flag value (using byte offset
0xb in the directory entry) to denote whether an entry represents a file or a folder.

The data area stores the file and directory like the root directory, which has many
entries in it. A directory entry is always 32 bytes large. Each directory entry
generally contains the file or folder name, file size, and the address of the first
cluster. Clusters can take on one of four statuses [4], which are indicated in their
corresponding FAT table entries, including:



5.2 FAT File Systems

131

Table 5.2 Data structure for FAT32 directory entry [2]

Byte offset (within Length in | Byte range

directory entry) in decimal in decimal

hexadecimal (bytes) (bytes) Contents

0x0 1 0-0 First character of file name in ASCII and
allocation status (Oxe5 or
0x00 = unallocated, Ox2e = not a normal
file, but directory)

0x1 10 1-10 Character 2-11 of file name in ASCIL

0xb 1 11-11 File attributes (0x01 = read file only,
0x02 = hidden file, 0x04 = system file,
0x08 = entry containing disk’s volume
label, 0x10 = entry describes a
subdirectory, 0x20 = archive flag, 0x40
and 0x80 = not used)

Oxc 1 12-12 Reserved

0xd 1 13-13 Creation time (tenths of second)

Oxe 2 14-15 Creation time (hours, minutes, seconds)

0x10 2 16-17 Creation day

0x12 2 18-19 Accessed day

0x14 2 20-21 High 2 bytes of first cluster address (0 or
FATI12 and FATI16)

0x16 2 22-23 Written time (hours, minutes, seconds)

0x18 2 24-25 Written day

Oxla 2 26-27 Low 2 bytes of first cluster address

Oxlc 4 28-31 Size of file (0 for directories)

|:| File data

Directory entry

File name

File size

Starting cluster
address

10000 Bytes

Cluster 16¢

|
|
: File.dat
|

Fig. 5.13 FAT file system

e Unused or free cluster
* Cluster in use by a file
e Bad cluster

e Last cluster in a file or end of file (EOF)

FAT Clusters

16 17 é— — — Cluster 16

% 18 p — — —® Cluster 17

18 19 b — — Cluster 18
19 20 o — — Cluster 19
20 EOF ®— — Cluster 20

Figure 5.13 shows an example of a FAT file System as a whole, and describes the
relation between a variety of important data structures in the FAT file system,



132 5 Examining FAT File System

oo
won

"
ke

400 187c 68af README TXT .
n

03007022 0000 6€6R. ... (>..{"..

~o on
.-
Lo N
D

Fig. 5.14 An example of directory entry dump data

including the directory entry structure, FAT structure, and data contents organized in
clusters. In this example, a directory entry has a file called “file.dat”. In addition to
the file name, the entry also contains the file size and the address of the first cluster
allocated to the file. With the address information of the starting cluster, we can
locate the corresponding FAT entry (FAT entry 16) whose content is the next cluster
allocated for the file, i.e., the second cluster (or block 17) (note that the FAT entry
number starts with 0). This continues until the FAT entry (FAT entry 20)
corresponding to the last cluster is reached. The last FAT entry contains a special
signature “EOF”, which marks the end of the file. Except FAT entries 0 and 1, each
FAT entry is associated with a cluster whose address is equal to the FAT entry
number. As such, we can find out address information for all clusters (or the chain of
clusters) allocated for the file, which are Clusters 16-20. According to this address
information, we can determine the physical disk location of these clusters and obtain
the file contents stored there.

Next, let us take a look at a directory entry sample. Figure 5.14 shows a hex dump
of a directory entry, which has 32 bytes, using xxd. Table 5.2 above lays out the
content of the directory entry in FAT file systems. Parsing this data manually allows
one to gather information, as defined above in Table 5.2. As an example, the byte
offset 0x0-0Oxa represents the filename. Specially, the byte offset 0—7 represents the
eight-character base filename, followed by a three-character filename extension at
byte offset 8—10. It is also known as 8.3 file names or short file names. The 8.3 file
names are stored in ASCII code. Either base filenames or extensions are padded with
white spaces (0x20). This is labelled with A in Fig. 5.14. It can be observed that the
file name is readme.txt. Note that an 8.3 filename is written in a way that a dot is
added between the base filename and the filename extension. Also, the byte offset
28-31, which represents the file size in bytes, is 7b 22 00 00 in raw form. This is
labelled with B in Fig. 5.14. When this raw data is parsed in a meaningful way, it
becomes 0x0000227b, because this computer system is using Little Endian format,
which will be discussed later. Therefore, by converting this base-16 value to a base-
10 value for our own understanding, the size of the file is 2%16° + 2%16% + 7*16!
+ 11%16° = 8827 bytes.

Another example involves identifying the first cluster address (labelled with
H and L in Fig. 5.14). The cluster address would be 3 because combining the high
2 bytes (0x0000 or labelled with H) with the low 2 bytes (0x0003 or labelled with L)
results in 0x00000003. How are these combined? The high bytes are written first,



5.2 FAT File Systems 133

Entry 3

J

0000000: f8ff ffOf ffff ffff ffff ££fOf[0400 0000
0000010: 0500 0000 0600 0000 0700 0000 0800 0000
0000020: 0900 0000 0a00 0000 0b0OO 0000 [ffff ffOf]

f

Entry 11

Fig. 5.15 FAT entries dump data for the example file shown in Fig. 5.14

and the low bytes are concatenated directly afterwards to create a 4-byte value of
0x00000003. This can now be converted into other bases as necessary, just like the
previous example.

Next, we look through the FAT table to determine the chain of clusters that are
allocated to the file. For example, below is a hex dump of the first sector of the first
FAT table, FAT O (Fig. 5.15).

As we have seen from the directory entry representing the file, the first cluster
allocated for the file is 3, so Entry 3 is the entry you read and its content is the next
cluster allocated for the file, i.e., the second cluster (or block 4). This continues until
the FAT entry corresponding to the last cluster is reached. The last FAT entry
contains a special signature “EOF”, which marks the end of the file. As such, we
can find out address information for all clusters allocated for the root directory. Since
FAT entry 11 contains OxOfffffff, which means the last cluster in the file, the chain of
clusters allocated for the file would then be like the following:

3—4—5—-6—7—8—9—10—11—EOF

It can be observed that the total number of clusters assigned to the file is
9. Suppose the cluster size is 1024 bytes, it means the disk space occupied by the
file is 9216 bytes. However, as we have seen from the above, the file size is 8827
bytes. Obviously, they are not equal, and the difference is called Slack Space, which
is 389 bytes.

5.2.5 The Long File Name

FAT uses the conventional 8.3 file naming scheme, where at most eight characters
are used for the file name and at most three characters for filename extension. For
example, “readme.txt” indicates the file name is readme and it is a text file. Note that
in the FAT file system, the file name is divided into two fields: The first character of
the file name, and the rest of the file name. The reason for this will become clear
when deletion of files is discussed in future chapters. In a case where the file has a



134 5 Examining FAT File System

Table 5.3 A file with 2 LEN
entries for a single standard

entry

LEN entry 2
LEN entry 1
8.3 entry (e.g., forens~1.pdf)

Table 5.4 Data structure for long file name directory entry

Byte offset (within LEN | Length in | Byte range

sirectory entry) in decimal in decimal

hexadecimal (bytes) (bytes) Contents

0x0 1 0-0 Sequence number, starting at 1 and
increasing for each LFN entry until the
final entry, and the last one is ORed with
0x40; and allocation status (0xe5 if
unallocated)

0x1 10 1-10 5 filename characters (Unicode)

0xb 1 11-11 File attributes (0xOf means it is LFN
directory entry)

Oxc 1 12-12 Reserved

Oxd 1 13-13 Checksum

Oxe 12 14-25 6 filename characters (Unicode)

Oxla 2 26-27 Reserved

Oxlc 4 28-31 2 filename characters (Unicode)

long name, an additional directory entry called “Long File Name (LFN) Directory
Entry” would be used, and the LFN entry will precede the standard one, which is also
known as 8.3 entry, as shown in Table 5.3. It is worth noting that it is possible to
have more than one LFN entries for a file with a long name; each of these entries
stores a corresponding part of the long filename in Unicode so that each character in
the name uses two bytes in the directory entry. Note that the Unicode characters are
stored in little-endian here. As shown in Table 5.4, there is a checksum in each LFN
entry, which is created from the shortname data. It can be used to link the “Long File
Name Directory Entry” to the standard ‘“Directory Entry” representing the file.
Please note that a Java program to calculate the checksum is provided in Appendix
C to this chapter.

Also, there is a special field called “sequence number”, a.k.a. ordinal field, which
explains the order of multiple LFN entries (first LFN entry, second LFN entry, etc.).
Generally speaking, the first LFN entry is located at the very bottom, followed by the
second one, and so on. The last one has a special mark in its “sequence number”
field, with its sixth bit set as 1—this indicates that it is the last entry. In the order the
LFN entries are laid out, the long file name can be pieced together from characters
stored in these fields [3] (Fig. 5.16).

More details about the Long Filename Specification can be found here: http://
home.teleport.com/~brainy/Ifn.htm.

As discussed above, a file with a long filename also has a standard directory entry,
which looks very similar to traditional ones. The differences lie in the followings: It


http://home.teleport.com/~brainy/lfn.htm
http://home.teleport.com/~brainy/lfn.htm

5.2 FAT File Systems 135

File attributes: bitwise: 00ARSHDV ( 0 : unused bit. A : archive bit,

R : read-only bit. S : system bit. D : directory bit. V : volume bit)
Starting Cluster ~ Starting Cluster

Created tifne; millisecond portion High 2 bytes Low 2 bytes
| | |

v Created date Last v Last write v File Size

Short base filename/fjExtension f and time Accessed Date/Time (byte)
Length |]
3 1 1 4 2 2 4 2 4
(Byte)

NT (Reserved for WindowsNT; always 0)

Fig. 5.16 Directory entry (when file has a long name)

Table 5.5 An illustration of 8.3 entry and LFN entries of the file
“OnAchievingEncryptedFileRecovery.pdf”

LFN entry 3: Sequence number: 0x43; checksum: Oxa7; filename characters: “Covery.Pdf”

LEN entry 2: Sequence number: 0x02; checksum: Oxa7; filename characters: “cryptedFileRe”

LFN entry 1: Sequence number: 0x01; checksum: Oxa7; filename characters: “OnAchievingEn”
8.3 entry (e.g., ONACHI~1.PDF)

Sequence number for 2" LFN entry Checksum

/ Sequence number for 1st LFN entry

2" L EN ent 003-002D|i [42 002e 0070 0064 000f 043 66l Bm.e...p.d...1lf.
v ffff ffff £fff 0000 ffff

0000030%| 000 333

0000040; 016 0072 0065 006e 000f 0031 7300| .f.o.r.e.n...ls.
0000050:| 69500 6300 7300 7200 6500 0000 6100 6400 i.c.s.r.e...a.d.
0000060;[TA64E 5245 4 14 4620 0000 79ae| FORENS~LFDF ..y.
0000070: 5e4b 5edb oo:To 79ae Se4b 0d00 dbca 0000| “K*K..y."K......

1 LFN entry

Standard entry

Short filename

Fig. 5.17 Long file name directory entry example

contains a short filename which is derived from the long filename. Specially, a
typical base short filename consists of two components: An initial piece of the long
filename and a number with Ox7e (‘~’) added between them, for example,
“FORENS~1.PDF”. Plus the file extension, the short filename would be unique.

From Table 5.4 it can be observed that each LFN can hold 13 filename characters.
More LFNs are needed if a filename is longer than 13 characters. As discussed
above, the LFN entries are laid out in an order in which the directory entry for the file
is immediately preceded by first LFN entry, second LFN entry, ... Each LFN is
labelled with a sequence number, starting at 1 and increasing for each LFN entry
until the final entry whose sequence number is ORed with 0x40. For example, if
there was a file with the name “OnAchievingEncryptedFileRecovery.pdf”’, which
needs 3 LEN entries, the sequence numbers and directory entries including 8.3 and
LFEN entries would be shown in Table 5.5. Also, the 8-bit Checksum is calculated
using the short filename “onachi~1.pdf”, as shown in Table 5.5.



136 5 Examining FAT File System

m e . p d f
2" LFN entry 426d 0065 002e 0070 0064 0dOf 0031 |[€600
0000: EEFE F££fFf FEFF FEFfFf D000 EEff EFFF

f 0 r e n S
1% LEN ent 066 006f 0072 D065 006e OOOEf 0031 |7
ok 6900 €300 7300 7200 6500] 00006100 6400
i [ s r e d

| a

Fig. 5.18 Filename characters in the LFN entries in Fig. 5.17

Figure 5.17 shows an example of a file which has a long name, “forensicsreadme.
pdf”, in the root directory. It occupies three entries, one standard entry and two LFN
entries, where the standard entry contains its short name of “forens~1.pdf” and all
LFN entries have a same checksum of 0x31, which is calculated from the 11 char-
acters in the 8.3 filename found in the standard entry. The first LEN entry has a
sequence number of 1, and the second LFN entry has a sequence number of 0x42,
where its sixth bit means it is the last one so that its real sequence number is 2. Look
carefully at the ASCII representations of each entry below, and notice that you need
to read the entries from bottom-up. In other words, LEN entries precede the standard
entry and it will be in reverse order. Also take note of the fact that the shortname data
isn’t influenced by how many LFN entries there are, nor their content. The entire
name of the file can be found in the LFN entries alone.

In the example above, it can be observed in Fig. 5.17 that the short name
“FORENS~1.PDF” is stored at byte offset 0x0-Oxa in the standard entry. Also it
can be observed in Fig. 5.18, the long filename has been divided into five pieces,
spreading into the LFN entries. The first three pieces, “foren”, “sicsre”, and “ad”, can
be found in the first LEN entry. They are located at byte offset Ox1-Oxa, Oxe-0x19
and Oxic-Ox1f, respectively. The last two pieces, “me.pd” and ‘f* are stored in the
second LFN entry, and are located at byte offset Ox1-0xa, Oxe, respectively.

If you look at all LEN entries, you will find out that their 11th byte (or the file
attributes for LFN) is 0xOf. It can be used to identify a LFN entry. Also, in the second
LEN entry (or the last LFN entry), it can be seen that the last four bytes are set to FF
FF FF FF (Oxffff). This indicates the end of LFN entry for the file in the root
directory.

Finally, Fig. 5.19 shows the output of The Sleuth Kit (TSK)’s fsstat tool,
detailing information about a file system image used in this chapter. The information
about three sections of the FAT file system is marked according to the output.

Review Questions

1. Describe in your own words, what is a File System?

2. The file attributes, s and , are essen-
tial for finding a file.

3. The data in file systems can be classified into five categories. The first one is File
System Data, and the other four are




5.2 FAT File Systems 137

FILE SYSTEM INFORMATION

OEM Name: MSDOS5.0

Volume ID: Oxae3dd3b9

Volume Label (Boot Sector): NO NAME
Volume Label (Root Directory):

File System Type Label: FAT32

Next Free Sector (FS Info): 8212
Free Sector Count (FS Info): 240010

Sectors before file system: 97

File System Layout (in sectors)
Total Range: 0 _ 248222

* Reserved: 0 - 6315

** Boot Sector: 0

** FS Info Sector: 1

C— Lackup Doot Joctornl O

p—
* FAT 0: 6316 - 7253 K—— FAT area
——

Reserved
area

* FAT 1: 7254 - 8191

[F Data Area: Blos - 220222

** Cluster Area: 8192 248221
*** Root Directory: 8192 - 8193
** Non-clustered: 248222 - 248222

Data area

METADATA INFORMATION

Range: 2 - 3840502
Root Directory: 2

CONTENT INFORMATION

Sector Size: 512
Cluster Size: 1024
Total Cluster Range: 2 120016

FAT CONTENTS (:Ln sccvors)

8192-8193 ()) -> EOF
8194-8211 (18) -> EOF

Fig. 5.19 Whole view of the FAT file system used in this example (Output from The Sleuth Kit’s
fsstat tool details information about a file system image used here)

, and . Which data category does partition boot
sector in FAT file systems belong to?
4. Consider the size of data unit (cluster or block) in a file system is 4 KB (4096
bytes). If we create a file of 31,105 bytes in size, the slack space of the file is
bytes.
5. Consider a FAT32 file system with the cluster size of 8 KB and a data area that
starts at sector 1894. The root directory is located in the data area of sectors
2000-2031. The sector address of cluster 28 is




138 5 Examining FAT File System

6. What is a disk partition? What is a disk volume? Which is bigger, and which do
you put a file system on?
7. According to Fig. 5.13, what is the possible size of a cluster?

(a) 1024 bytes
(b) 2048 bytes
(c) 4096 bytes
(d) 5120 bytes

8. What utility in The Sleuth Kit (TSK) displays the layout of a file system?

(a) mmls
(b) fsstat
(c) blkcat
(d) xxd

5.3 Lab Exercises

The objective of this exercise is to give you a better understanding of how FAT file
system works.

5.3.1 Setting up the Exercise Environment

For this exercise, you will use a disk image named “thumbimage_fat.dd” provided in
the book and will need to upload this disk image to Forensics Workstation you have
built up in Chap. 3.

5.3.2 Exercises

Part A: Disk Analysis with mmls
Use the ‘mmls’ tool of The Sleuth Kit to figure out the layout of the disk image
provided. Determine the location of the first partition, and fill out the following table
with details of the partition (Table 5.6).

Note that the output of mmls on the disk image describes the start, end and size of
the partitions (in sectors). You need to convert the size of a partition from sectors to
megabytes (MB).



5.3 Lab Exercises 139

Part B: Use dcfldd to Extract the First Partition Image from the Disk Image
Provided

=%

i—E‘ Please refer to Appendix B in Chap. 3 on how to use the dcfldd utility to

extract a random portion of a data file.

Part C: FAT File System Analysis

In Part A, you should have already determined that the first partition is formatted
with the FAT file system. Now analyze the file system image by answering the
following questions based on the data stored in the image.

"
i~E‘ You would need to analyze the partition boot sector.

Q1. What version of FAT is used? (FAT12, FAT16, or FAT32).

Q2. What is the number of reserved sectors?

Q3. Where is the File Allocation Table (FAT) 0 located? (Hint: you would need
to figure out the start position and the size (or end position) of the FAT area.)

Q4. What is the number of FAT copies?

Q5. Where is the root directory located (sector address, and cluster address)?
(Hint: you would need to figure out the start position and the size (or end position) of
the root directory.)

Q6. What is the cluster size (in bytes)?

Q7. Where is the data area (in sectors and clusters)?

Q8. What is the volume label (the name of the volume)?

Q9. What is the size in sectors of the file system?

Q10. Is there volume slack? (Yes/No)

Part D: Analyze File Properties

In the extracted partition, there is a file named readme.txt under the root directory.
You would need to answer the following questions by discovering the properties
of the file.

=%

i~E‘ You would need to analyze the FAT file system’s important data

structures, including file allocation table and root directory.

Table 5.6 Details of the first
partition in the disk image
“thumbimage_fat.dd”

First partition

Start position in sector

Number of sectors in partition
Size of the partition (MB)
Type of partition




140 5 Examining FAT File System

For “readme.txt”:

Q11. File size in decimal (bytes):
Q12. Starting cluster number in decimal:
Q13. Starting sector address in decimal:
Please note: You would need to convert cluster number to sector address.

Q14. The number of clusters allocated to the file ‘“readme.txt”:

Q15. The number of sectors allocated to the file ‘“readme.txt”:

Q16. The list of the addresses of clusters in the order that are allocated to the file
“readme.txt”:
Q17. The size of Slack Space in decimal (bytes):

Part E: Analyze Files with Long Filenames
In the extracted partition, there is a file with a long file name under the root directory.
You need to discover the information about this file, by answering the same
questions as listed in Part D, and most importantly, the long name of the file.

Q18. What is the long name of the file?

5.4 Helpful Tips

(a) There are many ways to determinate the version number of a FAT file system.
For example, we look at the data at byte offset 82—85 within the Partition Boot
Sector, and should be able to figure out whether a FAT file system is FAT32
or not.

(b) In the FAT file system, a special signature is used to mark the end of the file or
the end-of-cluster chain. The following special signatures are used for the
various versions of FAT file systems:

Oxfff (in FAT12)
Oxffff (in FAT16)
OXfFFEFF (in FAT32)

(c) As for different versions of FAT file system, the method for finding the location
of root directory, which is one of most important data structures, is quite
different. For FAT12/16, this is actually very straightforward. First, the root
directory follows right after the FAT Area, so we know its starting point. Next,
we can find the number of entries in the root directory by taking a look at the data
at byte offset 17-18 within the Partition Boot Sector; each directory entry has
2 bytes. We then know the size of the root directory by multiplying the number
of directory entries by the entry size, and finally, we figure out the location of the
root directory.

For FAT32, itis very similar to the way we locate a file. First, we can find the starting
cluster allocated to the root directory by taking a look at the data at byte offset 44-47



5.4 Helpful Tips 141

within the Partition Boot Sector. Next, we take a look at the FAT entry
corresponding to the starting cluster, and determine the address of the next cluster
in the root directory. This continues until all the clusters belonging to the root
directory are found.

(d) Volume slack: A partition or logical drive must be formatted before it can be
available for data storage. It is possible that not the entire partition or logical
drive is used, and some space is left unformatted. Under normal conditions, it
cannot be allocated to files. This unformatted space is called volume slack,
which is the unused space between the end of file system and end of the partition
where the file system resides. Therefore, if we discover there is a size difference
between the disk partition and the file system residing in the partition, we can
determine that there is volume slack.

(e) In order to do conversion between sector addresses and cluster addresses in FAT,
you need to first figure out the following four things:

— What is the cluster size in sectors?

— Where is the data area located?

— Where is the root directory located?

— What is the version number of the FAT file system?

The basic formula for calculating the sector address S of cluster C in a FAT file
system is

(C = 2)* (number of sectors per cluster) + (sector address of cluster 2)

To reverse the process and translate a sector S to a cluster number, the following
is used:

((S — sector address of cluster 2)/(number of sectors per cluster)) + 2

However, before you use the above formulas to do the conversion, it is very
important to know which version of the FAT file system you are dealing with:
FAT32, or FAT12/16. According to the version number, you can figure out the
location of Cluster 2 respectively. If it is FAT32, Cluster 2 is located at the beginning
of the data area or right after the FAT area, i.e., the first sector of the data area, while
for FAT12/16, Cluster 2 comes immediately after the root directory.

Then, you need to know the cluster size, i.e., how many sectors per cluster.

Suppose, you have the following output from the fsstat tool in TSK,

File System Layout (in sectors).

Total Range: 0-1957847

* Reserved: 0-37

** Boot Sector: 0

** FS Info Sector: 1

** Backup Boot Sector: 6



142 5 Examining FAT File System

* FAT 0: 38-1946

* FAT 1: 1947-3855

* Data Area: 3856-1957847

** Cluster Area: 3856-1957847
*** Root Directory: 3856-3863

CONTENT INFORMATION

Sector Size: 512

Cluster Size: 4096

Total Cluster Range: 2-244250

Also, suppose that we convert the sector address 8009 to a cluster number.

From the above output of the fsstat tool, we know sectors per cluster = 4096/
512 = 8.

Further, since we are dealing with a FAT32 file system, we know the sector
address of Cluster 2 is the first sector of the data area, i.e., sector 3856.

Therefore, we have:

((S — sector address of cluster 2)/(number of sectors per cluster)) + 2
=((8009 — 3856)/8) + 2.

=521.125 Finally, we apply the floor number function to the result
=521

Hence, we have the cluster number 521.

Appendix A: Data Structure for the FAT12/16 Partition Boot
Sector [2]

Byte offset (within FAT12/ | Length in | Byte range

16 Partition Boot Sector) in | decimal in decimal

hexadecimal (bytes) (bytes) Contents

0x00 36 0-35 See Table 5.1

0x24 1 36-36 Physical drive number (0x00 for
removable media, 0x80 for hard disks)

0x25 1 37-37 Not used

0x26 1 38-38 Extended boot signature to identify if

the next three values are valid. The
signature is 0x29

0x27 4 3942 Volume serial number, which some
versions of windows will calculate

based on the creation date and time

0x2b 11 14-25 Volume label, padded with blanks
(0x20)
0x36 8 54-61 File system type label in ASCII stan-

dard values include “FAT”, “FAT12”,
and “FAT16”, but nothing is required.

(continued)



Appendix B: Data Structure for the FAT32 Partition Boot Sector 143

Byte offset (within FAT12/ | Length in | Byte range

16 Partition Boot Sector) in | decimal in decimal

hexadecimal (bytes) (bytes) Contents
P.S.: This is not meant to be used to
determine drive type, however, some
utilities use it in this way

0x3e 448 28-31 Not used. It could contain operating
system boot code

Ox1fe 2 510-511 Boot sector signature (0x55 OxAA)

Appendix B: Data Structure for the FAT32 Partition Boot

Sector [2]

Byte offset (within FAT32 | Length in | Byte range

Partition Boot Sector) in decimal in decimal

hexadecimal (bytes) (bytes) Contents

0x00 36 0-35 See Table 5.1

0x24 4 36-39 Sectors per file allocation table (FAT)

0x28 2 4041 Defines how multiple FAT structures
are written to. If bit 7 is 1, only one of
the FAT structures is active and its
index is described in bits 0-3. Other-
wise, all FAT structures are mirrors of
each other.

0x2a 2 42-43 The major and minor version number
(defined as 0)

0x2c 4 44-47 Cluster number of root directory start

0x30 2 48-49 Sector number of FS information sector

0x32 2 50-51 Sector number of a copy of this boot
sector (0 if no backup copy exists)

0x34 12 52-63 Reserved

0x40 1 64-64 Physical drive number (see FAT12/16
boot sector at offset 0x24)

0x41 1 65-65 Reserved (see FAT12/16 boot sector at
offset 0x25)

0x42 1 66—-66 Extended boot signature (see FAT12/16
boot sector at offset 0x26)

0x43 4 67-70 ID (serial number)

0x47 11 71-81 Volume label

0x52 8 82-89 FAT file system type: “FAT32 ”

0x5a 420 90-509 Not used. It could contain operating
system boot code

Ox1fe 2 510-511 Boot sector signature (0x55 0xAA)




144 5 Examining FAT File System
Appendix C: Checksum Algorithm for LFN Entry [3]

The following C code snippet is used to calculate this checksum:

/* Calculating the Checksum */
#include <stdio.h>
Int main() {

// Short file name. For example, "FORENS~1.PDF".

/I ' is excluded when calculating the checksum according to a short
file name.

char name[11] = {'F',/O',R"'E','N,'S",'~","1"'P",'D,'F'};

unsigned char checksumy;

int i;

checksum=0;

for(=0;i<11;i++) {

checksum = (((checksum & 1) << 7) | ((checksum & Oxfe) >> 1)) +
namel[i];

}
printf(" The Checksum for the short file name specified is %#x\n",

checksum);
return O;

References

1. Transition to Advanced Format 4K Sector Hard Drives [Online]. Available at: http://www.
seagate.com/ca/en/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

2. Brian Carrier. “File System Forensic Analysis”. Addison-Wesley Professional, 2005

3. Long Filename Specification. http://home.teleport.com/~brainy/Ifn.htm

4. File Allocation System. http://www.ntfs.com/fat-allocation.htm


http://www.seagate.com/ca/en/tech-insights/advanced-format-4k-sector-hard-drives-master-ti
http://www.seagate.com/ca/en/tech-insights/advanced-format-4k-sector-hard-drives-master-ti
http://home.teleport.com/~brainy/lfn.htm
http://www.ntfs.com/fat-allocation.htm

Chapter 6 )
Deleted File Recovery in FAT e

Learning Objectives
The objectives of this chapter are to:

» Understand the principles of data recovery

* Understand the principles of file creation and file deletion in FAT file
system

* Understand how to recover deleted files based on remaining file system
metadata, particularly through manually recovering the deleted files in a
FAT file system

In this chapter, you’ll start to explore how file recovery works. It is very common to
recover deleted or lost files during an investigation. When a file is deleted by an
Operating System, the file content (data) stored in the file system is not destroyed
immediately, remaining intact until it is overwritten by other files. Furthermore,
many file systems don’t completely destroy file system meta-data of the deleted file.
It becomes, thus, highly likely and straightforward to perform file recovery based on
residual metadata after deletion. In the chapter, we’ll show you what happens to a file
when it is created and deleted in FAT file system. Then, you’ll learn how to recover a
deleted file based on residual file system metadata remaining after deletion in FAT
file systems.

6.1 Principles of File Recovery

Digital devices such as cellular phones, PDAs, laptops, desktops and a myriad of
data storage devices pervade many aspects of life in today’s society. The digitization
of data and its resultant ease of storage, retrieval and distribution have revolutionized

© Springer Nature Switzerland AG 2018 145
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_6&domain=pdf

146 6 Deleted File Recovery in FAT

our lives in many ways. For example, we have witnessed the success of Internet
business (e-commerce or online commerce), allowing people to buy products,
without visiting a real store. Unfortunately, the digital age has also given rise to
digital crime where criminals use digital devices in the commission of unlawful
activities like hacking, identity theft, embezzlement, child pornography, theft of
trade secrets, etc. Increasingly, digital devices like computers, cell phones, cameras,
etc. are found at crime scenes during a criminal investigation. Consequently, there is
a growing need for investigators to search digital devices for data evidence including
emails, photos, video, text messages, transaction log files, etc., which can assist in
the reconstruction of a crime and identification of the perpetrator.

Unfortunately, it is also very often that criminals try to hide their wrongdoings by
deleting these digital evidences, which could indict them in the court. Nevertheless,
if these digital evidences haven’t been overwritten or zeroed-out, the data may still
be there, and can be recovered. Actually, when a file is permanently deleted in a file
system, the file system no longer provides any means for retrieving the file and
marks the data units (clusters or blocks) previously allocated to hold the deleted file
content as unallocated hence available for reusing by other files. It is worth noting
that many modern Operating Systems provide the user with a means to recover
deleted files, particularly from Recycle Bin due to the fact that once a file is deleted
from your computer, it’s actually just moved to the Recycle Bin, a predefined special
file directory, where it’s temporarily stored until the Recycle Bin is emptied. In this
book, however, we will consider scenarios where there is no ways for the user to gain
access to the deleted files using regular file-browsing tools in Operating Systems.
Although the file appears to have been erased, its data is still largely intact until it is
overwritten by another file.

: } The Recycle Bin only stores files deleted from hard drives, not from remov-
Al

able media, such as USB Flash Drives or memory cards. Nor does it store files
deleted from network drives. The actual location of the Recycle Bin may vary
depending on the type of Operating System and file system used. On FAT file
systems (typically Windows 98 and prior), it is located in Drive:\RECYCLED. In
the NTFS filesystem (Windows 2000, XP, NT), it is Drive:\RECYCLER. On
Windows Vista and Windows 7, it is Drive:\$Recycle.Bin folder. For example,
Fig. 6.1 shows the Recycle Bin in Windows 7, which is located in a hidden directory
named \$Recycle.Bin\%SID%, where $RECYCLE.BIN is a system and hidden
folder and %SID% is the security identifier (SID) of the user that performed the
deletion. A Recycle Bin can also be configured to remove files immediately when
deleted, as shown in Fig. 6.1, to enable the check box provided.

Also, data could be lost or missing due to many other reasons, for example,
hardware failure, accidentally deleting a file (or folder) or formatting a disk partition
by mistake. Therefore, it is important and crucial to recover files that have been
deleted or lost. For example, when the Enron scandal [1] surfaced in October 2001,
top executives deleted thousands of e-mails and digital documents in an effort to



6.1 Principles of File Recovery 147

Recycle Bin 3
» General |

T’."’

Recyde Bin Location Space Available
Miocalpisk () 22968

Settings for selected location

(®) Custom size: —
Maximum size (MB): | 13798

(O Don't move files to the Recycle Bin, Remove files
immediately when deleted.

("] pisplay delete confirmation dialog

Fig. 6.1 The Recycle Bin in Windows 7

cover up their fraud. As one of the decade’s most fascinating criminal trials against
corporate giant Enron, it was successful largely due to the digital evidence in the
form of over 200,000 emails and office documents recovered from computers at their
offices. Digital forensics or computer forensics is an increasingly vital part of law
enforcement investigations and is also useful in the private sector for disaster
recovery plans for commercial entities that rely heavily on digital data, where data
recovery plays an important role in the computer forensics field. Therefore, data
recovery has become one popular task for digital investigator.

Data recovery can be done mainly on two possible copies of deleted or lost data,
the primary (original) copy and backup copy. Data recovery effort should first be
made on the primary (original) copy because of two reasons. One is that the primary
copy has current or up-to-date data. Second, the backup copy may not exist in many
cases. For example, if there is no contingency plan in an organization, there could be
no backup copy available.

The most common form of inaccessible data is different types of deleted or lost
files, including photos, documents, source code files, photos, videos, audio, email
files (e.g., Microsoft Outlook Data Files (.pst)) etc. However, data recovery can be
the recovery of any other forms of data which cannot be accessed in a normal way.
For example, nowadays, mobile devices are widely used, and also can be used for
many different applications. Consider social networking and mobile chat apps:
There is a vast amount of information that can be shared (and potentially stored on
your device) via these two categories of applications alone, such as messages and
geographic locations (GPS information). The above information could be of extreme



148 6 Deleted File Recovery in FAT

importance to a forensic investigation, whether a victim or a perpetrator is being
investigated. Many of these applications use SQLite, an open source, embedded
relational database, to manage their data. As a result, data recovery could mean the
recovery of deleted database records. Nevertheless, deleted file recovery is the focus
of this chapter, particularly recovering deleted files in FAT file systems.

There are various different approaches to recover deleted files. According to
whether or not file system data has been used for recovery, data recovery techniques
can be classified into two categories: Residual file system metadata based
approaches and file carving.

When a file is deleted, the operating system updates some file system data so the
file system no longer provides any means for the user to access the deleted file.
However, in many cases, in addition to file data left intact, some important file
system metadata information about the deleted file is not completely wiped out.
Obviously, it is very straightforward to recover deleted files by using remaining file
metadata information. Nevertheless, these traditional recovery methods that make
use of file system structure presented on storage devices become ineffective when
the file system structure is corrupted or damaged, a task easily accomplished by a
savvy criminal or disgruntled employee with freely available tools. A more sophis-
ticated data recovery solution which does not rely of this file system structure is
therefore necessary. These new and sophisticated solutions are collectively known as
file carving. File carving is the technique of recovering files from a block of binary
data without using any information available in the file system structure.

In this book, we distinguish two terms “file deletion” and “file wipeout”, although
they are sometimes used interchangeably. File wipeout refers to the file contents
completely destroyed, for example, overwritten, or zeroed-out. It means the file has
been physically removed. Once file contents are physically destroyed in this way, the
deleted file cannot be recovered. It is also known as secure deletion.

6.2 File Creation and Deletion in FAT File Systems

We now look at what happens to a file when it is created and deleted, particularly in
FAT file systems. For ease of presentation, we will always discuss the scenarios
about files in the root directory. This is because as to files in the other directories, the
only extra effort is that we would need to locate the directory which contains the file
we are looking for. This can be done by going through the entire file path, starting
from the top-most directory (or root directory) to its next sub level until the directory
containing the file is reached.



6.2 File Creation and Deletion in FAT File Systems 149
6.2.1 File Creation

The file system is an integral component of the operating system of a digital device.
It is composed of files of many different types with varying sizes and functions.
There are system files, executable program files, text files, image files, etc. The file
system organizes and manages these files and keeps track of various properties like
the file name, security permissions, created and last accessed dates, deleted status,
data clusters on disk where the file is stored, information about unused space on the
device, etc.

When a file is newly created, the Operating System is responsible for searching
the file system for the best location to store the file to ensure fast and efficient
retrieval later on. Usually, the Operating System first searches its unallocated space
for a block of consecutive clusters large enough to hold the entire file. However, free
space is often broken into chunks over time as files are created and deleted and so the
largest chunk of unallocated space may not be large enough to hold the entire file. In
such cases, the file must be broken into smaller pieces so that each piece can be
stored in a separate chunk of free space on the device. Such a file is said to be
fragmented, as shown by the example (file 2015_16.xlsx) in Fig. 6.2.

Next, we will explain the steps for creating a file in a FAT file system. As shown
in Fig. 6.2, a FAT file system is divided into three areas, including reserved area,
FAT table(s), and data area for the file content. All the files are organized in a
hierarchical structure, starting with the top most folder, root folder or directory. A
directory in a FAT file system is represented by Directory Table (DIR), containing an
entry for each file or sub-directory including its name, extension, meta-data
(e.g. created date and time, etc.), permissions, size, and most importantly the address
of the starting cluster for the file. The FAT area contains indexed entries for each data
block on the disk indexed by the block number. Each index contains one of the
following four entries [2, 3]:

e Unused (0x0000)

¢ Bad cluster (OxFFF7)

e Address of next cluster in use by a file
¢ Last cluster in a file (OXFFF8-0xFFFF)

Directory Table (DIR)
(e.g., Directory of C:\)

2015_16.xlsx

File content
(fragmented)

Root
Directory

Reserved Area FAT Area Data Area

Fig. 6.2 Layout of FAT file system



150 6 Deleted File Recovery in FAT

: } Most of the time, the terms Directory and Folder are used interchangeably to
Al

describe a location for storing files and/or other directories (subdirectories) on your
computer, however there is one distinct feature that separates these terms. Directory
is a term in file system, while a Folder is a term used by GUI in an Operating System
like Windows. So, sometimes, folders are not physical directories, for example
printers. For ease of presentation, hereafter unless otherwise specified the terms
Directory and Folder are used interchangeably.

In an FAT file system, the procedure for the file creation can be illustrated as
below:

 First, the Operating System checks if the file system has sufficient disk space to
store the contents of the newly created file. If not, an “Insufficient disk space”
error message appears and the file creation fails. Otherwise, a certain number of
clusters will be allocated to the file, and their status becomes allocated and
unavailable to other files or folders.

* Second, according to the file path, an entry of the directory that contains the file
will be assigned to the file, where some important information about the file,
including its name, extension, created date/time, permissions, and size. Most
importantly, the address of the starting cluster for the file, will be filled.

¢ Third, the chain of clusters that are allocated to the file will be created in the FAT
table of the file system. In FAT file system, each cluster has a corresponding FAT
table entry with the same sequence number, for example, FAT table entry 2 stands
for cluster 2. Also, each FAT entry holds either the address of next cluster in use
by the file or a special mark (e.g., Oxfffffff in FAT32), indicating the last cluster in
a file (or the end-of-cluster chain). In the example shown in Fig. 6.3, the newly
created file file 1.dat occupies clusters 8—10. FAT table entry 8 represents cluster
8, and it contains a value 9, indicating that the next cluster in use by the file is
cluster 9, whereas FAT table entry 10 contains EOF, indicating that cluster 10 is
the last cluster allocated to the file.

6.2.2 File Deletion

When a file is deleted in a FAT file system, the operating system only updates the
DIR entry where the first character of the file name (or the first byte of the directory
entry) is set to a special character (Oxe5 in hex). The directory entry becomes a
deletion entry. The character OXES indicates to the system that the directory entry is
available for use by a new entry, but no other change is made to this directory entry.
In other words, the rest of the file name as well as meta-data (created date/time,
permissions, size, and most importantly the address of the starting cluster for the file)
is kept intact. At the same time, all the FAT entries corresponding to the deleted file
are zeroed out to indicate that the corresponding clusters are available for use.
However, the operating system does not erase the actual contents of the data clusters.



6.3 Deleted File Recovery in FAT File Systems 151

File data Step 1: Allocating
b disk space to newly
irect t _
rectory enfry created file
: File name Filesize ~ Starting cluster | FAT Clusters
| address P
. |
Il Filel.dat | 10270 KB | Cluster8 ¢+——S» 09
l |
|

Step 2: Creating an ’
entry in the st ) ; fl
Directory Table ast cluster in the file

Step 3: Creating the
chain of clusters that
are allocated to the file

Fig. 6.3 File creation

In other words, the data of the file remains untouched in the data area. As shown in
Fig. 6.4b, it shows its relevant remaining information in the system after File.txt
(in the example Fig. 6.4a) is deleted from the system. The two cardinal changes are:
“File.txt” updates to “_ile.txt” and the FAT cluster chain are wiped out in directory
entry.

6.3 Deleted File Recovery in FAT File Systems

Obviously, it is very straightforward to recover deleted files by using remaining file
metadata information in a FAT file system given that most of files are stored in
contiguous blocks. First, we scan the entire file system one directory entry at a time
and compile a list of entries with a deletion marker (e.g. OXES). Then, we simply
change the first character of the file name back to its original one from OXES. Then,
we put back the cluster chain into FAT since we know the starting cluster address
from the DIR entry as well as the file is stored on consecutive disk blocks. The
detailed recovery process will be elaborated on below.

Assume that a file is stored in a hard disk contiguously and without fragmenta-
tion, which happens to be the most common scenario for file storage, i.e., contiguous
storage allocation. In order words, the list of clusters in use by a file will progress in a
linear fashion (for examples 26, 27, 28, 29 if a file occupies 4 clusters, starting with
cluster 26.). It is worth noting that in this chapter, we only consider the above
scenario. But when a deleted file is fragmented, then it becomes very challenging to
recover it. The state-of-the-art of this will be elaborated on in Chap. 9 on file carving.



152 6 Deleted File Recovery in FAT

File data

Directory entry

. 1
| File name Filesize ~ Starting cluster | Clusters FAT
I address | e
1| File.txt | 16000 Bytes |Cluster 26 ¢ 26
I | 27
e | 28
EOF
(@ T e T

File data
Directory entry

_______________ -

File name Filesize  Starting cluster| Clusters FAT

I address |
:|;i1e.txt 16000 Bytes | Cluster 26

The first byte of the
file name replaced FAT cluster chain
by Oxe5 are wiped out

(b)

Fig. 6.4 Illustration of file deletion in FAT file systems. (a) Relationship between the directory
entry structures, clusters, and FAT structure before file deleted. (b) Relationship between the
directory entry structures, clusters, and FAT structure after file deleted

Now, if you want to recover this deleted file, then you need to do a number of
things. Suppose that we know the cluster size.

Firstly, search the DIR which contains the deleted file, and according to the
remaining file name, locate the directory entry, which represents the deleted file.

Secondly, locate the file name in the directory entry and alter that first character
from OxES to its original one or any legal value.

Thirdly, obtain the file size and the address of the first cluster which has been
allocated to the file by parsing out the directory entry. Then, determine the number of
clusters allocated to the file based on the file size and the cluster size. In the example
shown in Fig. 6.4a, the file size is 16,000 Bytes. Suppose that the cluster size is 4 KB.
Then, we have

No of clusters = ceil( the file size/the cluster size ) = ceil(16000 Bytes/4 KB)
=ceil(3.91) =4



6.3 Deleted File Recovery in FAT File Systems 153

where ceil(.) is the ceiling function. Since the starting cluster address is 26, we now
know that clusters 26,27,28,29 are allocated to the deleted file. For cued recall, we
assume that files are stored continuously.

Finally, the linked-list of used clusters for that file needs to be chained back
together into the FAT table, starting from the first cluster defined in the directory
entry representing the file and progressing in a linear fashion until the last cluster
with the corresponding FAT entry filled with end-of-clusterchain marker, i.e.,
Oxfffffff in FAT32. Based on the addresses of the clusters used by the file, we can
locate these corresponding FAT entries, i.e., FAT entries 26, 27, 28, 29, which need
to be updated. Basically, every FAT entry must be inserted with a value which is the
address of the next cluster allocated to the file, where the last FAT entry will be
updated with a special flag or end-of-clusterchain marker, indicating that it is the last
cluster for the file or the end of the file.

Review Questions

1. After a file is deleted in FAT file system, the first character of the file name is
replaced with a special character with hexadecimal code
2. In a FAT32 file system, the exact size of each entry in the File Allocatlon Table is

bytes.
. In FAT file systems, the size of a directory entry is bytes.
. Does FAT file system allow random access to a file? (Yes or No)

. The first cluster in a FAT file system is cluster
. Assume that a file named file.txt is stored contiguously on disk and each cluster is
4 KB. Consider the following directory entry pointing to the file file.zxt.

AN B~ W

Directory entry

Starting cluster
address

FILE.TXT | 10270 Bytes | Cluster 8

File name File size

Fill in all the blank FAT entries with proper values in the figure below, particu-
larly the missing index numbers for the entries and their stored values. Assume a
value of Oxfffffff in a FAT entry indicates the end of chain of clusters occupied by a
file. (Note that in the real FAT file system, an entry may use multiple bytes, for
example each entry uses 2 and 4 bytes (16 and 32 bits) for FAT16 and FAT32,
respectively. The value of each entry can be stored in different ways, mainly big
endian and little endian, depending on which computing system you use, Big-Endian
machine or Little-Endian machine; we are simply using the actual value for sim-
plicity in this question.)



154 6 Deleted File Recovery in FAT

FAT entry
index File allocation table (FAT)

l ......

0x8

6.4 Practice Exercise

The objective of this exercise is to recover a deleted file based on residual file system
metadata remaining after deletion in FAT file systems.

6.4.1 Setting Up the Exercise Environment

For this exercise, you will use a disk image named “thumbimage_fat.dd” provided in
the book and will need to upload this disk image to Forensics Workstation you have
built up in Chap. 3. Also, you need to extract a partition (or the only partition) from
the disk image, and the partition has been formatted with an FAT file system.

6.4.2 Exercises

Part A: File System Layer Analysis
Now analyze the file system image by answering the following questions using the
fsstat command in TSK:

Q1. What version of FAT is it? (FAT12, FAT16, or FAT32).

Q2. Where is the File Allocation Table (FAT) 0 located? (Hint: You would need
to figure out the start position and the size (or end position) of the FAT area.)

Q3. Where is the root directory located (sector address, and cluster address)?
(Hint: You would need to figure out the start position and the size (or end position) of
the root directory.)

Q4. What is the cluster size (in bytes)?

Q5. Where is the data area (in sectors and clusters)?



6.4 Practice Exercise 155

Part B: Mounting and Unmounting File Systems
Write down the command(s) used for the exercises below:
Q6. Change into the /mnt directory, and make a directory called “forensics”.

i‘E To mount a file system (either the name of the device file for the file system or

a partition (file system) image) to a directory (mount point), making it available to
the computer system, for example, a partition image hda.dd will be mounted as
shown below:

# mount —o rw hda.dd < mount_point>

In the above example, the option “-o rw” indicates that the partition image hda.dd
should be mounted with read-write access. Also, make sure that the directory where
the file system will be mounted (the mount point) exists before you execute the
mount command.

Q8. Change into the “/mnt/forensics” directory and then delete a file named
readme.txt by using the rm command.

I ; } For a file system, any file operation may not be immediately applied to the
Al

physical file associated to it. Therefore, in order to make sure that the readme.txt is
indeed deleted, you can use the command sync to flush file system buffers and force
changes to disk in Linux.

Q9. Unmounting the extracted partition.

To manually unmount file systems, type:

# umount < mount_point >

& 3 “Before unmounting a disk partition, you have to ensure that the partition is not

accessed. Otherwise, you will get a “device is busy” error.



156 6 Deleted File Recovery in FAT

Part C: Recovering the Deleted File “Readme.txt”
After the file “readme.txt” has been deleted, you can discover that its directory entry
has been marked as deleted, particularly with its first character (byte O of the entry)
replaced with OxES5, by looking at the root directory.

e Sort through the root directory and locate the entry pointing to the deleted
“readme.txt” file, like the one below:

marked as deleted file

0000000:?_45 4144 4d45 2020 5458 5420 187¢c 68af [EADME TXT .|h.
0000010: 3640 364 096 ’sj'rr* Oi7b22 0000) 6@6@....(>..{"..

high 2 bytes of first low 2 bytes of first
cluster address cluster address

* Referring to Table 5.2 in Chap. 5, parse the root directory entry and obtain the
following information, including first cluster address and file size. Since both are
multiple byte values, the little endian conversion applies here since we are using a
Little-Endian machine.

Q10. Address of the first cluster: , Q11. file size:

» Replace the first character of the root directory entry, OXES5, with its original one
“R” or any legal value. Note that efficient editing of large data files could work in
a way like the following, especially there are only few places which need to be
altered: First, extract these data areas to be modified; then, make changes to these
extracted data and replace the ones in the original data file with the revised
version. For more how-to details, please refer to the Helpful tips section.
* Determine how many clusters are allocated to the file and what are they?
Q12. Clusters:
* Based on the addresses of the clusters above, locate these corresponding FAT
entries and insert proper values into them. Note that since we are using FAT32,
each FAT entry uses four bytes. Therefore, the little endian conversion applies
here too. We need to flip the order of bytes when inserting the value into the FAT
entry. Fill in the following as many FAT entries as necessary with proper values,
particularly the missing index numbers for the entries and their stored values in
right byte order (Fig. 6.5).




6.5 Helpful Tips 157

FAT entry

index File allocation table (FAT) Clusters

Byte 0 Byte 1 Byte 2 Byte 3

Unchanged
data area

Fig. 6.5 Restore the cluster chain in the File Allocation Table while recovering the deleted file
“readme.txt”

I ; } Once you have successfully completed this lab, you can verify the successful
1

recovery of the deleted file by mounting the modified partition image and seeing
whether or not you can view the “readme.txt” properly.

6.5 Helpful Tips

(a) Endian order

Depending on which computing system you use, you will have to consider the byte
order in which multibyte numbers are stored, particularly when you are writing those
numbers to a file. The two orders are called “Little Endian” and “Big Endian”.

When you read or write multiple byte data from/to a binary data file, the big or
little endian conversion applies depending on what kind of byte order is used by the
computing machine, Big-Endian machine or Little-Endian machine.



158 6 Deleted File Recovery in FAT

We only alter data
in‘one sector

»  Total 1957848 sectors

A 4

Original | rhe First 3856 sectors The Last 1953991 sectors
Image

| . |

| Extract Edit the extracted |

| v~ sector |

| / \ |

Copy | [ | | Copy

| \ / |

| N ~-7 I

! Copy |

v A v
Nﬁ):;fgj:d The First 3856 sectors The Last 1953991 sectors

Fig. 6.6 The best practices of editing large image files

(b) A practical approach to recover the deleted readme.txt file

In order to recover a deleted file in FAT file system, we have to modify several
areas.

However, in practice, we need to work on a disk image, which could be very
large. It is hard to edit the whole image file. In reality, we only need to edit a small
disk area. Therefore, a good approach is to locate the area which we will work on,
and then extract and save it into a small image file. Afterwards, we can edit the small
image file and make any necessary changes for file recovery. Once all changes are
complete, we can create a new disk partition image by integrating two images, the
original image and the modified small image, as shown in Fig. 6.6.

Suppose you want to work on FAT table O to restore the cluster chain of the
readme.txt file.

You can extract the first sector of FAT 0 by [FAT 0: Sectors 6316-7253]

dcfldd if = fatimage.dd bs = 512 skip = 6316 count = 1 of = fat0.dd

where “fatimage.dd” is the extracted file system image, and “fat0.dd” is the file
storing the extracted sector. Note that the size of “fat0.dd” is only one sector, which
is very small comparing with the original file system image.

Then, we can use a hex editor (e.g., ghex) to edit “fat0.dd” file.

The following is the snippet of the first sector of FAT 0:



6.5 Helpful Tips 159

[root@localhost lab8]# xxd fat0.dd

0000000: f8ff ffof ffff ffff ffff ffOf 0000 0000 ................

0000010: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000020: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000040: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000050: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000060: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000070: 0000 0000 0000 0000 000 0 0000 0000 0000 ................
0000080: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Now, we have to put back the cluster chain, which is wiped out during the file
deletion. Since the readme.txt file has 8827 bytes and the cluster size is 1024 bytes,
no of clusters allocated to “readme.txt” is

ceil(8827/1024) = 9.

Further, it is worth noting that in this exercise, we only consider a scenario where
afile is stored in a hard disk contiguously and without fragmentation. In order words,
the list of used clusters will progress in a linear fashion and clusters 3, 4, 5, 6, 7, 8,
9, 10 and 11 (total 9 clusters) are occupied by “readme.txt”. Therefore, the cluster
chain looks like the following (remember that each FAT entry has 32 bits or 4 bytes
in a FAT32).

FAT entry 3 contains “0x00000004”, which means the next occupied cluster is
cluster 4

Similarly, we have

FAT entry 4 contains “0x00000005”, which means the next occupied cluster is
cluster 5

FAT entry 5 contains “0x00000006”, which means the next occupied cluster is
cluster 6

FAT entry 6 contains “0x00000007”, which means the next occupied cluster is
cluster 7

FAT entry 7 contains “0x00000008”, which means the next occupied cluster is
cluster 8

FAT entry 8 contains “0x00000009”, which means the next occupied cluster is
cluster 9

FAT entry 9 contains “0x0000000a”, which means the next occupied cluster is
cluster 10

FAT entry 10 contains “0x0000000b”, which means the next occupied cluster is
cluster 11



160

6 Deleted File Recovery in FAT

until FAT entry 11, where cluster 11 is the last cluster allocated to readme.txt.
Therefore, FAT entry 11 contains a special flag of the end of file, “OxOfffffff”,
which means cluster 11 is the last cluster allocated to “readme.txt”.

As a result, you should see the following:

[root@localhost softwares]# xxd fat0.dd

0000000: f8ff ffof ffff ffff ffff ffOf 0400 0000 ................

0000010: 0500 0000 0600 0000 0700 0000 0800 0000 ................
0000020: 0900 0000 0a00 0000 0b0O 0000 ffff ffOf ................
0000030: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000040: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000050: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000060: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000070: 0000 0000 0000 0000 0000 0000 0000 0000 ................
0000080: 0000 0000 0000 0000 0000 0000 0000 0000 ................

Next, suppose you want to work on root directory to change back the first
character of the file name.
You can extract the first sector of root directory by [Root Directory: 8§192-8193]

dcfldd if = fatimage.dd bs = 512 skip = 8192 count = 1 of = rootdir.dd

where “fatimage.dd” is the extracted file system image.
Then, we can use ghex to edit rootdir.dd file, which is very small.
The following is the snippet of the first sector of root directory:

[root@localhost softwares]# xxd rootdir.dd

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
0000060:
0000070:
0000080:

e545 4144 4d45 2020 5458 5420 187c 68af .EADME TXT .|h.
3640 3640 0000 a096 283e 0300 7b22 0000 6@6@....(>..{"..
0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

0000 0000 0000 0000 0000 0000 0000 0000 ................

Change “Oxe5” located at byte offset 00 to “0x52”, which is “R”.



References 161

Finally, now it is time to resemble the images we’ve already made changes
on. Note that there are total 248,223 sectors (Total Range: 0-248,222) in this FAT
file system.

dcfldd if = fatimage.dd bs = 512 skip = 0 count = 6316 of = recover.dd
dcfldd if = fat0.dd bs = 512 skip = 0 count = 1 > > recover.dd

dcfldd if = fatimage.dd bs = 512 skip = 6317 count = 1875 > > recover.dd
dcfldd if = rootdir.dd bs = 512 skip = 0 count = 1 > > recover.dd

dcfldd if = fatimage.dd bs = 512 skip = 8193 count = 240,030 > > recover.dd

where “fatimage.dd” is the original file system image after file deletion and recover.
dd is the resulted image after you successfully recover the deleted “readme.txt” file.

References

1. X. Lin, C. Zhang, T. Dule, On Achieving Encrypted File Recovery. Forensics in Telecommu-
nications, Information, and Multimedia (e-Forensics), 2010

2. File Allocation Table. http://en.wikipedia.org/wiki/File_Allocation_Table

3. FAT. http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html


http://en.wikipedia.org/wiki/File_Allocation_Table
http://www.win.tue.nl/~aeb/linux/fs/fat/fat-1.html

Chapter 7 ®)
Examining NTFS File System s

Learning Objectives
The objectives of this chapter are to:

* Understand fundamental concepts of the NTES file system

* Understand the NTFS file system structure

* Perform in-depth analysis of a NTFS file system and discover the locations
of its important data structures

Preceding chapters in this part have been aimed at helping you understand funda-
mentals of FAT File Systems. This chapter is focusing on NTFS (NT file system;
sometimes New Technology File System). NTFS, like FAT file system, is another
proprietary file system developed by Microsoft.

7.1 New Technology File System

New Technology File System (NTFS) was first introduced in the Windows NT
operating system to overcome some of the limitations of FAT including disk size,
disk space utilization and the length of file names. Later, it became the preferred file
system for all subsequent versions of Microsoft Windows Operating System product
line (e.g. Windows XP Professional, Windows Vista, Windows 7). It replaced FAT
file system (although, still favourable for small storage devices), and offered many
improvements. A major advantage is its reliability. For instances, NTFS keeps detail
transaction logs that track file system metadata changes to the volume using the
NTFS Log ($LogFile as shown in Table 7.1). Scalability and security features like
file and folder permission, encryption, sparse file, alternate data stream, and com-
pression makes NTFS more complicated than its predecessor, such as FAT file

© Springer Nature Switzerland AG 2018 163
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_7&domain=pdf

164

7 Examining NTFS File System

Table 7.1 NTEFS system metadata files or metafiles [1]

Entry |File name | Description

0 $MFT MEFT entry itself

1 SMFTMirr | Backup copy of the first entry in MFT

2 $LogFile | Journal that record metadata transaction

3 $Volume Volume information (e.g. label, identifier, version)

4 $AttrDef List of attribute names, numbers, and descriptions

5 Root directory of the file system

6 $Bitmap Allocation status of each cluster in file system (1 = cluster is allocated,
0 = cluster is unallocated)

7 $Boot Boot sector and boot code for the file system

8 $BadClus | Clusters that have bad sector

9 $Secure Security and access control for file (only applicable for Windows 2000 and
Windows XP)

10 $UpCase Table of Unicode uppercase character for namespace

11 $Extend Extension features like $Quota (disk quota limit), $ObjId (link tracking),
and $Reparse (symbolic link)

12-15 |...... Reserved for extension entries or future metadata

NTFS File System

Partition Boot
Sector

MFT File Area

- L

. Data Area —_—  »

Fig. 7.1 The layout of an NTFS volume

system. One other distinguishes different between FAT and NTES is NTFS uses
B-trees to organize the entries in its directories, which will be elaborated on in Sect.
7.2; thus, faster at retrieving files (especially large folders) as oppose to FAT file
system. A B-tree is a group of data structures called nodes that are linked together
such that a parent node would have several child nodes, which would have their own
child nodes and so on.

The following figure shows the layout of an NTFS volume [3, 5], and it consists
of two sections:

1. Partition Boot Sector (or Volume Boot Sector): It contains key information
about NTFES file system structures; and

2. Data Area: It contains an important file in NTFS, called Master File
Table (MFT), which will be discussed later, and the files’ data (Fig. 7.1).

Like the Boot Sector in FAT, the Boot Sector in NTFS describes the file system’s
data structure. It provides the cluster size, MFT entry’s size, and the starting cluster
address of the MFT since it is not placed in a predefined sector. This enables us to
move the MFT whenever a bad sector takes up its normal location.



7.2 The Master File Table 165

A file occupying 3 clusters

| Cluster 18 | Cluster 19 | Cluster 28 |

]

VCN 0 VCN 1 VCN 2
LCN 18 LCN 19 LCN 28

LCN (Logical Cluster Number), also known as Logical File System Address: cluster
offset from the beginning of an NTFS file system.

VCN (Virtual Cluster Number), also known as Logical File Cluster (LFC): cluster offset
from the beginning of a file when logically considering that all the clusters belonging to
the file are following one after another sequentially, though the file could be fragmented.

Fig. 7.2 VCN-to-LCN mapping

Similar with other file systems like FAT, NTFES uses clusters to allocate disk
space for files and each cluster comprises a certain number of sectors, usually a
power of two sectors. The cluster number starts with O at the beginning of the file
system. The number of cluster in NTFS is also given another name called LCN
(Logical Cluster Number). Further, the clusters belonging to a file are referenced in
the MFT using virtual cluster numbers (VCNs). VCNs start from 0, sequentially
increasing by 1 until the last cluster allocated to the file. A LCN is its relative offset
from the beginning of an NTFS file system, whereas a VCN is its relative offset from
the beginning of a file. Both LCN and VCN start from 0. Figure 7.2 shows an
example of a file with 3 clusters (clusters 18, 19, and 28) and the VCN-to-LCN
mapping for the clusters in the MFT.

7.2 The Master File Table

Within Data Area, two important components reside there; Master File Table (MFT)
and File Area. MFT is the utmost importance to NTFS, and is a relational database
which like directories in FAT contains an entry for every file on the system. The first
16 entries (start with 0) of MFT are reserved for the Metafile, shown in Table 7.1.
Particularly, the first MFT (MFT entry O or $MFT) describes the MFT itself, which
determines its size and location, whereas the second MFT (MFT entry 1 or
$MFTMirr) is the backup copy of the first entry in MFT. Then, there follows one
entry in the MFT for each file and for each directory [4].

As we Know MFT plays a very vital role in NTFES, but locating it would go
through several stages (Fig. 7.3). First, take a look at Bytes 44—47 in partition boot
sector and find out the starting cluster address of the MFT. Second, locate the first
cluster occupied by the MFT and look at its first 1024 bytes, which is MFT entry
0 ($MFT) whose $DATA attribute contains the clusters used by the MFT. It will be
detailed later on when we introduce the MFT entry structure.



166 7 Examining NTFS File System

[ Partition boot sector

Bytes 44-47: |starting cluster address
For example,|100 MFT

| @ MIF'T entry 0 (SMFT)

Cluster 100

Cluster 101 @

SDATA Attribute: clusters allocated to MFT
For example, clusters 100-102, 106

Cluster 102

Cluster 106

J

Assume the cluster size is 4KB. Note that the size of each entry in MFT is 1KB.

Fig. 7.3 The relationship between partition boot sector and $SMFT with respect to determining the
location of the MFT

Attr Size Offset

l_ Head Content

MFT Entry Attributes Artributes Attributes| Unused
Header Soace

Bytes: 42 B = = = =1024

Fig. 7.4 An MFT entry

While FAT uses directory entries, NTFS uses MFT (Master File Table) entries.
Each MFT entry, also known as a file record, is assigned with a unique 48-bit
sequence number (or the file (record) address). The first entry (record) has the
address of zero and the address increases sequentially. In addition, each MFT
entry has another 16-bit sequence number stored within the MFT entry, located at
its byte offer 16, shown in Fig. 7.4. It starts with 1 when the entry is allocated, and is
incremented by 1 whenever the entry is reallocated (or the file represented by it is
deleted). The result of concatenating the sequence number in the upper 16-bits and
the file (record) number in the lower 48-bits gives a 64-bit file reference address,
which is used by NTFES to refer to MFT entries. Here’s an example of a file reference
address for an MFT entry (in hex): 16 00 00 00 00 00 01 00, where the upper two
bytes, here 0x0001, are the sequence number and the lower six bytes, here
0x000000000016, are the file record address or MFT entry number. It shows MFT
entry 22 with a sequence number of 1. MFT entries are comprised of a header and
sets of attributes that describe the files or directories on the disk. These attributes are
stored as metadata, and contain information about the file. Thus, each file on NTFS
file system has an associated MFT entry. In other words, files in NTFS are collec-
tions of attributes, so they contain their own descriptive information, as well as their
own data.



7.2 The Master File Table 167

Each MFT entry is usually 1024 bytes or 1 KB long, where the size of the
attributes inside it varies. Small files (those less than 900 Bytes) can be contained
completely in the MFT entry. Files that are too large to be written inside the MFT are
store in the File Area. An important difference between FAT and NFTS in the design
of the cluster chain is that in FAT, the index of the next cluster in a cluster chain is
contained within the previous cluster while in NTFS the indexes of all the clusters
that make up the cluster chain are stored inside the MFT.

Figure 7.5 shows a hex dump of a MFT entry. The left side is the offset address to
locate individual bytes (start at byte 0), the middle is the hex dump data (each 8-btye
represent two-digit hexadecimal number), and right is the ASCII interpretation of the
dump data. This example uses little endian bit-ordering scheme. Note that MFT
records start with “FILE”. A bad entry would start with “BAAD”.

0 46494c45 30000300 00000000 00000000| F FILE 0... .... ....
16 01000100 38000100 30020000 00040000 g_ ssse Base Dase sene
32 00000000 00000000 04000000 1c000000] 2 asss sase ssms ssse
48 04006373 00000000'10000000 48000000) . eslBB caas neee Haaea
64 00001800 00000000 30000000 18000000 ’:_ ssan sane Dice soae
80 040298f fbb7call 0040298f fbb7call] = @)e siae M)s woee
96 040298f fbb7call 0040298f fbb7call 55 R (P | .
112 00000000 00000000 00000000 00000000 % paea esses Eeees esee
128 30000000 50000000 00001800 00000300 Dice Peoe scee sess
144 54000000 18000100 05000000 00000500 T.ue wves cuve wens
160 0040298f fbb7call 0040298f fbb7call ; B wane sl e
176 0040298f fbb7cal0l 0040298f fbb7call|iz .8). .... .8). ....
192 00000000 00000000 00000000 00000000 5‘ asss saas sasa saas
208 00000000 00000000 09006900 6e007400 % ssse ssss sels R.E.
224 72006£00 2e¢007400 78007400 18000000 FeOs sels EoeBa sene
240 50000000 68000000 00001800 00000100 Poeeo Boce sece sese
256 50000000 18000000 01000480 14000000 Weiia suns wnee eous
272 24000000 00000000 34000000 01020000 Bous sane Biss siae
288 00000005 20000000 20020000 01020000 ceses asae sses sess
304 00000005 20000000 20020000 02001cO0O S o
320 01000000 00031400 ££011£00 01010000 sess sess sess sess
336 00000001 00000000 80000000 AOOOOODO sses saas msesa assaes
352 00001800 00000200 bBOOOOOO 18000000 eees sess sess sess
368 436£6d70 75746572 20666f72 656e7369 Comp uter for ensi
384 63732069 73206120 6272616e 6368206f cs i sa branch o
400 6620666f 72656e73 69632073 6369656e f fo rens ic s cien
416 63652070 65727461 696e696e 6720746f ce p erta inin g to
432 206c6567 616c2065 76696465 6e636520 leg al e vide nce

448 666756 6420696e 20636f£6d 70757465 foun d in com pute
464 72732061 62642064 69676974 616c2073 rs a nd d igit al s
480 T46£7261 6€765206d 65646961 2e20436f tora ge m edia . Co
496 6d707574 65722066 6£72656e 73690400 mput er £ oren si..
512 20697320 616c736f 206b6e6f 776e2061 is also kno wn a
528 73206469 67697461 6c20666f 72656e73 s di gita 1 fo rens
544 6963732e 0d0a0dOa L£LfLffLrfef 00000000 188, cees vene sane

Fig. 7.5 MFT entry dump data



168 7 Examining NTFS File System

The MFT entry’s small header describes the whole entry (Table 7.2). From this
header we can derive the first attribute whose starting position is defined at byte
offset 20 of the MFT entry. After first attribute follows the second attribute and so
forth, until the end of the entry.

Each MFT Entry Attribute consists of two parts: Attribute head and attribute
content, where the important area in the attribute is the attribute’s header, which
describes the attribute’s properties like the type of value. The actual content or value
of the attribute is also called stream. There are two types: non-resident and resident.
Resident attribute is attribute content store inside MFT entry (Table 7.3), and
non-resident attribute is attribute that cannot be found in MFT but in the file area.
Therefore, the data structure for non-resident is slightly different than the resident
attribute, particularly because the content of the attribute is stored outside MFT entry
so the addresses of these clusters allocated to store the content must be specified. The
contents of non-resident attributes are stored in intervals of clusters called data runs,
shown in Fig. 7.6. Each run is represented by its starting cluster and its length in
clusters. The lengths of data runs varies, and are determined by the first byte of a run,
where the lower 4 bits represent the number of bytes for the length of the run and the
upper 4 bits represent the number of bytes containing the starting cluster address for
the run, shown in Fig. 7.6. Each run uses contiguous disk allocation. Table 7.4 below
is a layout of an attribute including resident attribute and non-resident attributes.

Table 7.2 Data structure of MFT entry’s header [2]

Byte

range Description

0-3 Signature (“file”)

4-5 Offset to fixup array

67 Number of entries in fixup array
8-15 $LogFile sequence number (LSN)
16-17 Sequence value

18-19 Link count
20-21 Offset to first attribute

22-23 Flag (in-use and directory): 0x0000: Deleted file; 0x0001: Allocated file; 0x0002:
Deleted directory; 0x0003: Allocated directory

24-27 Used size of MFT entry

28-31 Allocated size of MFT entry

32-39 File reference to base record

4041 Next attribute id

4243 Alignment to 4-byte boundary

44-47 MFT file record number (only in NTFS 3.1 and later)
42-1023 | Attribute and Fixup value

Table 7.3 Data structure Byte range Description
of MFT entry’s attributes - "
. 0-15 Attribute’s header
(resident) [2]
16-19 Size of attribute content

20-21 Offset to attribute content




7.2 The Master File Table 169

Run 1 >
Number of bytes containing the
starting cluster address

Bits |7 43 0

Run length Run offset Next Run Header
(in clusters) (in clusters) (If zero, indicate there are no more runs)
Run header Run header
—>| le————
(1 byte) (1 byte)

| ————
Number of bytes for the length Run 2

of the run
The structure of Data Runs
(storing non-resdient attribute content)

\

Data Runs

Data Run Starting cluster Length

e
2 e e

Fig. 7.6 NTES data runs

Also, according to their purposes, there are many types of attributes used by an
NTFS volume. This is defined by a hidden system file named $AttrDef. $AttrDef is
made up of multiple 160 byte records, one for each attribute. Each record contains
the attribute’s name, numeric type identifier, flags (e.g., Non-resident or
Non-resident, indexed or not), minimum size, a maximum size. If an attribute has
no size limitations, the minimum size will be set to 0 and the maximum will have all
bits set to 1 [8]. Examples include the ones listed in Table 7.5.

Note from the above table that NTFS has two attributes,
$STANDARD_INFORMATION and $FILE_NAME, which contain all four
FS timestamps (created, modified, changed, accessed.) OSes are expected to
update both, but study shows different OSs behave differently when updating
the times in two attributes, some update only the times in
$STANDARD_INFORMATION and others only $FILE_NAME [8]. Thus,
extra caution should be taken when conducting timeline analysis in NTFS.

Recall that every file on the file system will have at least one MFT entry and the
size of each MFT entry is only 1024 bytes. In case that a file has too many attributes
that won’t fit into a single MFT entry, an additional MFT entry would be used, linked
from the base MFT through the use of the SATTRIBUTE_LIST attribute. In other
words, the SATTRIBUTE_LIST attribute is used to indicate where other attributes
can be found for the given MFT entry [2].



170 7 Examining NTFS File System

Table 7.4 Data structure of attribute including resident and non-resident attributes [2]

Byte Description
range
0-3 Attribute type identifier is classified according to type of information stored into the

file (16 = $SSTANDARD_INFORMATION for general information,
48 = $FILE_NAME for file name & MAC, 64 = $OBJECT_ID for file & directory,
128 = $DATA for file content, etc.)

4-7 Length of attribute

8 Non-resident flag (0x00: Resident; 0x01: Non-resident)

9 Length of name

10-11 Offset to name

12-13 Flags

14-15 Attribute identifier

Resident attribute Non-resident attribute

Byte Description Byte Description

offset offset

16-19 Size of file content | 16-23 Starting virtual cluster number (VCN) of the

runlist

20-21 Offset of file 24-31 Last VCN of the runlist

content

32-33 Offset to the data runs

34-35 Compression unit size

36-39 Unused

40-47 Allocated size of the attribute content
48-55 Actual size of the attribute content
56-63 Initialized size of attribute content
64+ Data runs

Each attribute consists of two parts: Attribute head and attribute content. All
attributes have the same generic header structure, shown in Fig. 7.4, but many types
of attributes also have their own special internal structures for their contents, such as
“FILE_NAME”, “INDEX_ROOT”. For example, Table 7.6 shows the
“$FILE_NAME” structure.

To highlight the point that has been made above, an example will be analyzed.

Next, we use a real example to see how an attribute, specifically, the
“$FILE_NAME?” attribute as an example, can be analyzed and parsed out. In the
example shown in Fig. 7.7, the MFT record starts with a signature (aka “magic
number”) 0x46494C45 or “FILE”. (If the entry is unusable, it would be “BAAD”.)

In an MFT entry, bytes 20 and 21 (38 00) indicate the starting point of the first
attribute. The Byte positions are counted from the beginning of the MFT entry. This
means that the first attribute is located at byte offset 0x0038 = 56. (Notice that little
endian conversion applies here since we are currently using a Little-Endian machine.
This applies to any multibyte values later.) Also, Bytes 24-27 (30 02 00 00) manifest
the used size of the MFT entry. This entry has only used 0x00000230 = 560 bytes,
though each MFT entry occupies 1 KB. In other words, we know the actual end of



7.2 The Master File Table

171

Table 7.5 List of default MFT entry attribute types [2]

Attribute type

identifier Attribute name Description

16 $STANDARD_INFORMATION | General information, such as flags; file
system timestamps, including the last
accessed, written, and created times; and
the owner and security ID

32 $ATTRIBUTE_LIST List where other attributes for file can be
found

48 $FILE_NAME File name, in Unicode, and file system
timestamps, including the last accessed,
written, and created times

64 $VOLUME_VERSION Volume information. Exists only in version
1.2 (Windows NT)

64 $OBJECT_ID A 16-byte unique identifier for the file or
directory. Exists only in versions 3.0+ and
after (Windows 2000+)

80 $SECURITY_DESCRIPTOR The access control and security properties
of the file

96 $VOLUME_NAME Volume name

112 $VOLUME_INFORMATION File system version and other flags

128 $DATA File contents

144 $INDEX_ROOT Root node of an index tree

160 $INDEX_ALLOCATION Nodes of an index tree rooted in
SINDEX_ROOT attribute

176 $BITMAP A bitmap for the $MFT file and for indexes

192 $SYMBOLIC_LINK Soft link information. Exists only in version
1.2 (Windows NT)

192 $REPARSE_POINT Contains data about a reparse point, which
is used as a soft link in version 3.0+
(Windows 2000+)

208 $EA_INFORMATION Used for backward compatibility with OS/2
applications (HPES)

224 SEA Used for backward compatibility with OS/2
applications (HPES)

256 $LOGGED_UTILITY_STREAM | Contains keys and information about

encrypted attributes in version 3.0+ (Win-
dows 2000+)

the MFT entry. We can now begin to examine attributes one by one until the end of
the entry. In doing so, we apply attribute layout, shown in Fig. 7.7, to the MFT entry
data starting at byte offset 56.

Note from the above figure that the first attribute starts at byte offset 56.
Its attribute numerical type identifier is located in the first four bytes or at byte
offset 0-3 (10 00 00 00). That is, the type identifier is 0x00000010 = 16.
According to Table 7.5 NTFS MFT Attributes, the first attribute is the
“$STANDARD_INFORMATION” Attribute, which contains general information



172 7 Examining NTFS File System

Table 7.6 The “$FILE_NAME?” structure (The time
1, 1601, UTC)

values are given in 100 ns since January

Byte range Bytes Description
0-7 8 MEFT file reference to its parent directory
8-15 8 File creation time
16-23 8 File modification time
24-31 8 MFT modification time
32-39 8 File access time
40-47 8 Allocated size of file (in bytes)
48-55 8 Actual size of file (in bytes)
56-59 4 Flags
60-63 4 Reparse value
64-64 1 Length of name
65-65 1 Namespace
66+ Varies Name
® © ?
0000000+ IN00 0300 ee2241000 0400 0000
0000010: 0100 0100 o100[a001 oo0o0] 0dos oooo
0000020: D000 0000 0000 0000 D600 0000 0400 0000
0000030: 0200 948d 0000 0000[1000 0000 6400 0O0DO
0000040: [0000 1800 0000 0000 4800 0000 1400 0000
0000050: |0d60 foed aSfc ccl0l 0460 foed affec ccdl
0000060: [0d60 f0ed aSfJISUAGKIDULE) foed adfc ccOl
(2)—L0000070: L0600 0000 0000 0000 0000, 0000 0400 0000
0000080 | 0000 0000 0001 0000 0000|0000 0400 000
0000090 | 0000 0000 0000 0000 3000V000C 5000] $FILE_NAME structure
00000 D000 1800 0000 0300 4a00 000 0100
SFILE_NAME -’El e e B e e > 0500 0000 0000 0500 0d60 £0e9 aSfc ccOl
Attribute - f0e9 a5f 1 460 f0e9 &5f 0460 fO0e9 aSfc ccll 0dE0 fl0ed aSfc ccll
000004 f0e9 adf " = 0460 fO0e9 aS5fc ccOl 0040 0000 0000 0000
000008 P | 0040 0000 0000 0000 0600 0000 0000 0000
00000 4 ' 100 4 400 0000 oooo oooo| [0403[2400 4400 4600 5409
0000100: BU00 UQHAU 4800 0000 0100 4000 0000 0100
000011 2000, 00 0000 0000 3£00 0000 0000 0000
SFILE_NAME Attribute Content, which isa 0000 0000 0400 0000 0000 ®
SFILE_NAME structure 0000 0000 0400 0000 0000
0000140: 2140 6628 0001 10bS bOOO 0000 5000 0000
0000150: 0100 4000 0000 0500 0000 0000 0000 0000  Filemsthoffiename
0000160: 0100 0000 0000 0000 4000 0000 0000 00O O Unicodeflename, which s SMIT
0000170: 0020 0000 0000 0000 0810 0000 000D 0000
00001801 0000 0000 0000 2101 6528 2101 fefd
0000150: 0100 00a0 948d ffff £EEf 0000 000D
0000140+ 0400 0000 0000 2140 6628 0001 10bS
00001b0: 0000 5000 0000 0100 4000 0000 0500

A: MFT entry signature (FILE)

B: Offset to the first attribute 0x38

C: Used size of MFT entry 0x01A0

D: size of SFILE_NAME attribute content 0x4A

E: offset to SFILE_NAME attribute content 0x18, which is relative to start of SFILE_NAME attribute

Fig. 7.7 Example of a parsed file name

about the file or directory. We know it is not the attribute we are looking for so we
continue to move forward to look into the next (or second here) one. The size of the
first attribute is determined by Bytes 3—7 (60 00 00 00), which is 0x60 B long. The
second attribute immediately follows the first and begins at byte offset
0x38 + 0x60 = 0x98, where 0x38 is the start point of the first attribute and 0x60
is the size of the first attribute. (Notice that this is because 0x98 is less than
560 bytes, the used size of the MFT entry so we know there is more attributes
beyond. Otherwise, this is the end of the MFT entry.)



7.2 The Master File Table 173

By analyzing the MFT entry data starting at byte offset 0x98, we can find the
second attribute. This is a “$FILE_NAME” attribute. This is identified by its
attribute numerical type identifier, Bytes 0-3 (30 00 00 00) or 0x00000030 = 48.
This attribute is used to store the name of the file. Bytes 3—7 (68 00 00 00) indicate
the length of the attribute, and the content of the file name begins at byte offset
0x0018 = 24 (Bytes 20-21 (18 00)). The size of the attribute content is 0x0000004a
(Bytes 16—19 (4a 00 00 00)). Since this is a “$FILE_NAME?” attribute, the layout of
the content follows The “FILE_NAME” structure, shown in Table 7.6.

The first 8 bytes of the file name content (05 00 00 00 00 00 00 05 00) are the
reference to its parent directory, where the lower six bytes are the MFT entry, here
0x000000000005 = 5. MFT entry 5 is the NTFS’s root directory, which means that
the file can be found in the root directory. At byte offset 66 (Bytes 66+) in the file
name content, we find the file name in Unicode. It means two bytes for each
character in the file name. Byte 64 (04) indicate the length of the file name, which
is 4 characters long. The name is “$MFT"”. It is worth noting that it is possible to
have multiple “$FILE_NAME” Attributes in an MFT entry.

The following figure shows a detailed description of the MFT entry used in this
example, which is the output of the TSK meta data layer tool istat (Fig. 7.8).

MFT Entry Header Values:

Entry: 0 Sequence: 1
S$LogFile Sequence Number: 1057518
Allocated File

Links: 1

$STANDARD INFORMATION Attribute Values:
Flags: Hidden, System
Owner ID: 0

Created: Wed Mar 7 16:04:41 2012
File Modified: Wed Mar 7 16:04:41 2012
MFT Modified: Wed Mar 7 16:04:41 2012
Accessed: Wed Mar 7 16:04:41 2012

SFILE_NAME Attribute Values:

Flagsr_ﬁiddrn, System

Name : | SMFT 4 File Name
Parent MFT Entry: 5 Sequence: 5

Allocated Size: 16384 Actual Size: 16384
Created: Wed Mar 7 16:04:41 2012

File Modified: Wed Mar 7 16:04:41 2012

MFT Modified: Wed Mar 7 16:04:41 2012

Accessed: Wed Mar 7 16:04:41 2012

Attributes:

Type: SSTANDARD INFORMATION (16-0) Name: N/A Reside size: 72
Type: SFILE NAME (48-3) Name: N/A  Resident Attribute Length
Type: SDATA (128-1) Name: SData Non-Resident size: 262144
10342 10343 10344 10345 10346 10347 10348 10349

10350 10351 10352 10353 10354 10355 10356 10357

10358 10359 10360 10361 10362 10363 10364 10365

10366 10367 10368 10369 10370 10371 10372 10373

10374 10375 10376 10377 10378 10379 10380 10381

10382 10383 10384 10385 10386 10387 10388 10389

10390 10391 10392 10393 10394 10395 10396 10397

10398 10399 10400 10401 10402 10403 10404 10405

Type: SBITMAP (176-5) Name: N/A Non-Resident size: 4104

10341 9827

Fig. 7.8 View of MFT’s entry used in this example



174 7 Examining NTFS File System
7.3 NTFS Indexing

While what we do on the computer differs from person to person, a common task on
the computer amongst all people is to look for required files and folders, for example,
by filename. If the location of the file is forgotten and must be found in a sea of
folders and files, it is time consuming to locate them. Therefore, a faster, more
efficient way to locate the desired item on a computer would be helpful. In NTFS file
systems, this is addressed by using index. For example, an index has been used to
arrange all the files and subdirectories in a directory in specific order so we can find
files faster. This is also an important difference between FAT and NFTS. FAT uses a
sequential search and will go through each directory entry searching for a match in a
directory while in NTFS the names of all files and subdirectories in a directory are
indexed, making the lookup faster. Using an index is akin to using a table of contents
in a book, it is much faster to look at the table of contents and find what you are
looking for rather than searching the entire book.

7.3.1 B-Tree

NTFS uses the B Tree (also known as B-tree) data structure for its indexes, for
example, large directories organized into B-trees for fast search, which are essen-
tially B-trees of file (subdirectory) names [6, 7]. A B Tree is a data structure that
keeps data sorted and allows efficient operations to insert, delete, find, and browse
the data. It contains a group of “nodes” that are linked together such that there is a
head node and it branches out to the other nodes; node being a structure which
contains values or data. The topmost node in a tree is the “root”. Every node, except
the root, has one “parent” node and every parent nodes can have an arbitrary number
of “children” node. It is different from binary tree (Fig. 7.9), where each node has
maximum 2 children nodes, although they seem to be very similar. Nodes that do
not have children node are called “leaves”. Node with same parent nodes, meaning
there are two or more nodes that derived from the same nodes, are called “siblings”.
The depth of a node is the length of unique path from the root to that node, which is
equal to the depth of the deepest leaf. Height of a node is the length of longest
downward path to a leaf from that node. All leaves are at height 0, and its parents are
at height 1, and so on. NTFS uses B-Tree indexing to speed up file system access. An
index in NTFS is a collection of attributes that is stored in a sorted order, where the B
Tree is used to sort the NTFS attributes in an efficient way. The tree is optimizes for
large amount of data because its scalability and minimizing input/output from the
system; in other words, B Tree is designed to maximize branch-out and minimize
tree depth. Thus, it limits the input/output operations and minimizes the number of
times a medium must be accessed to locate a desired record, thereby speeding up the
process. This is particularly useful for scanning directories to see if they contain the
files or directories you are looking for, but since hard disk access is slow, indexing



7.3 NTEFS Indexing 175

Fig. 7.9 Binary Tree =
example, where there are fi= <--- Root

\l
4 leaves, depth is 4, and /
height is 3 ) .
B\

4 | <--Parent

[ , 7\ _
\? \ \ / \ /———C}1|Idrer~.
B <-- Leaf
h

By 4 E
5 g = ~
’/ \\ _/ =
A \ TN / A Y 2
/A " P /N
\ V. \
> D+ E G <+ H A B < D+ E G+ H
(a) (b)
: .\\\\ // - \\\\
5 4 Rt
III - \ n I|II I| \\ I IIII
! \\ \ I — \_ !
() (d)

Fig. 7.10 Illustration of concepts of B-Tree and B+Tree. (a) B+Tree E, C, H, A, D, I, G. (b)
B+Tree E, C, H, A, D, I, G (where B is inserted to the tree). (¢) B-Tree E, C, H, A, D, I, G. (d)
B-Tree E, C, H, A, D, I, G (where B is inserted to the tree)

the file names using B Tree minimizes the number of required disk accesses for
searching a particularly file, especially, in large directories. If indexing is done
linearly (instead in a tree structure), the process would be slow and cumbersome to
the system as it would require more power to process it. This minimizes the number
of disk reads necessary to pull in the data during lookups; or bottlenecked. Other
file systems (like ext4) use B Trees for the same reason (Fig. 7.9).

There are two major types of B Tree: B-Tree and B+Tree. When people mention
B-Tree, they really refer to B Tree, whereas B+tree is the most proliferating
variation in which all keys reside in the leaves, and the internal nodes are purely
redundant search structures, had substantial benefits compared to B-Tree, the orig-
inal version, which will be detailed later. Both are a generalization of a binary search
tree in that more than two paths diverge from a single node. Those values in node
greater than the parent’s value goes right, and those smaller than the parent’s value
goes left. For example, C is located on the left of E because it is less than E in
Fig. 7.10. The B Tree is optimized for systems that read and write large blocks of
data because it’s always balanced.



176 7 Examining NTFS File System

Two requirements that establish a B Tree is perfectly balanced are:

1. Leaf nodes must be all at the same depth; and,
2. Key values (data items) in all nodes are in increasing order.

Furthermore, the maximum number of children that a node can have is called the
order of the B Tree. For example, B Tree of order » means the maximum number of
children per node is n (so that n — [ is the maximum number of keys that a node can
contain). Also, a root which has at least 2 children (if not a leaf), and all other nodes
(except the root) have at least ceil(n/2) children (or ceil(n/2) — I keys). Every node
has at most n children and n — 1 keys (or data values). By restricting how many keys
a particular node can have, we ensure data doesn’t exceed allocated memory block.
It is worth pointing out that B Trees used in NTFS doesn’t strictly follow the
properties of the numbers of children that a node can have, whereas they are
kept balanced to achieve optimal disk access when searching files by names.
This is why B Trees used in NTFS are also dubbed B*Tree.

The difference between B-tree and B+tree is that B+ tree doesn’t store data
pointer in interior nodes like B-tree does. Pointers are stored in leaf nodes, which
enables the tree to fit more keys on block of memory and grab data that’s on the leaf
node faster because the tree depth is shorter and fewer cache are missed. So
performing a linear scan of all keys will requires just one pass through all the leaf
nodes for B+tree. A B-tree, on the other hand, would require a traversal of every
level in the tree. Refer to Fig. 7.10 to see the illustration of the B-Tree and B-tree
concept [9]. Regardless, you will see the two different B tree types in NTFS, where
B-tree structure is most often used than B-tree.

7.3.2 NTFS Directory Indexing

The most popular usage for the index in NTFS is to create a B-Tree to index the
names of the files and or sub-directory in a directory, making finding a specific file or
sub-directory faster. Thus, the key values in an index node are the file names, more
specifically $FILE_NAME structures. NTFS stores this index in the Index Root and
Index Allocation Attributes in the directory’s MFT entry, shown in Fig. 7.11. These
containing indexing data structure (or B-Tree nodes here) are often called “Index
Buffers” or “Index files”, also known as the $130 file. It is worth noting $I30 is not a
file but the name or indicator of directory entry index on NTFS. It is used in
combination with multiple type of structures (index root, index attribute, bitmap).
The SINDEX_ROOT attribute (shown in Fig. 7.12) starts with a generic attribute
header and a $INDEX_ROOT head, which starts in the beginning of the
SINDEX_ROOT attribute content. It also contains an Index Node, which is the
root of the B Tree that describes the directory with “index entry” structures inside it,
shown in Fig. 7.13, each contains a copy of the “$SFILE_NAME?” structure for the file
or sub-directory. Basically, the entry contains two type of important information, a
file name, which is an index key, and MFT file reference or entry number, which is a



7.3 NTEFS Indexing 177

MFT Attributes
A MFT entry for a directory

MFT Header $STANDARD_1NFORMAT[ON|

irectory (file) namel Index attributes | Unused space

SINDEX_ROOT Attribute
$INDEX_ALLOCATION Attribute

SBITMAP Attribute

|Attribute Header

DEX_RWr |Index (B-tree) Node Header| Index Entries

Indicate the statuses offindex records
(index nodes) or whethér they are used.

|Attribute Header | Attribute Content |

Datarun | Starting cluster | Length
21

Clusters 21-28

Index Records (One per index node)

Index Node fndex Entry] $FILE_NAME [index Ent $FILE_NAME
0| INDX Header Header. Header Structure Headern1 Structure I

| |
| |
| |
| |
| 1 | INDX Header Index Node ndex Entry] $FILE_NAME |
| |
| I
| |

Header Header Structure
index Node Index Entry] $FILE_NAME [index Ent $FILE_NAME
2 | INDX Header Header Header Structure Header Structure I
P M ]

Index Buffer File

Note that the size of each Index Entry varies.

Fig. 7.11 NTES directory structure when indexing in use

SINDEX_ROOT Index Node
Header Header Index Entries
SINDEX_ROOT Attribute ‘ . ‘ ‘ ‘ | Unused space
Byte offset Bytes Description
0x00-0x0F 16 Generic attribute header
Attribute 0x10-0x13 a4 Length of attribute content
header 0x14-0x15 2 Offset to attribute content
0x16-0x17 2 Padding for word (32-bit or 4-byte) alignment
0x17-0x1F 8 Unicode attribute name (e.g., $130 for directory index)
0x00-0x03 4 Type of attribute stored in Index (0 if index entry doesn’t use an attribute)
0x04-0x07 4 Collation sorting rule
SINDEX_ROOT 0x08-0x0B a4 Size of each Index record (in bytes)
Header
0x0C 1 Size of each Index record (in clusters)
0x0D-0xOF 3 Unused
0x00-0x03 4 Offset to start of index entry list, which is relative to start of node header
0x04-0x07 4 Offset to end of used portion of index entry list, which is relative to start
Index Node of node header
Header 0x08-0x0B a4 Offset to end of allocated index entry list buffer, which is relative to start
of node header
1 0x0C-0xO0F 4 Flags (0x01 is set when there are children index nodes)
0x10+ Index entries

Fig. 7.12 Data structure for SINDEX_ROOT attribute



178 7 Examining NTFS File System

Byte offset Bytes Description
0x00-0x07 8 MFT file reference for the file whose name is included
Index 0x08-0x09 2 Length of the index entry
Entry
Header 0x0A-0x0B 2 Length of SFILE_NAME structure
0x0C-0xOF 4 Flags (0x01 if child node exists and 0x02 if last entry in list)
0x10+ 0+ SFILE_NAME structure
Last 8 bytes 8 VCN (Virtual Cluster Number) of child node in the SINDEX_ALLOCATION
of entry attribute if child node exists

Fig. 7.13 Data structure for “index entry” (specifically for directory)

Byte offset Bytes Description

0x00-0xOF 16 Generic attribute header

0x10-0x17 8 Starting virtual cluster number (VCN) of the Runlist

0x18-Ox1F 8 Last virtual cluster number (VCN) of the Runlist

0x20-0x21 2 Offset to the data runs

0x22-0x23 2 Compression unit size

0x24-0x27 4 Unused

0x28-0x2F 8 Allocated size of the attribute content (in bytes)

0x30-0x37 8 Actual size of the attribute content (in bytes)

0x38-0x3F 8 Initialized size of the attribute content (in bytes)

0x40-0x47 8 Unicode stream name (e.g., $130 for directory index)
- - Data Runs (varies)

Fig. 7.14 Data structure for SINDEX_ALLOCATION attribute

pointer referring to the MFT entry or record representing the file. Note that an index
entry might contain none of the “$FILE_NAME?” structure. If so, it means an empty
index entry (or no key is found).

And $SINDEX_ALLOCATION attribute (shown in Fig. 7.14) contains the
sub-nodes of the B-Tree. This attribute is always non-resident. Its layout simply
follows the data structure of a standard non-resident attribute. For small directories,
this attribute will not exist and all information will be saved in the $INDEX_ROOT
structure. The content of this attribute is one or more “Index Records”, shown in
Fig. 7.15, one record per index node (B-Tree node here). Each “Index Record”
contains one or more “Index Entry” structures, which are the same ones found in the
$INDEX_ROOT. Note that the “Index Entry” structures are also called the $I30
index entries.

Next, let us take, for example, an NTFS volume’s root directory, to see how
NTFS uses Tree-based Indexing, specifically, B-Tree, a balanced tree data structure,
to sort filenames in a directory to speed up searches in NTFS. Figure 7.16 shows a
hex dump of index attributes of a MFT Entry 5. Note that MFT entry 5 points to the
root directory of an NTES volume.



7.3 NTEFS Indexing

Index Record
Index Record

Index Record

179

Byte offset | Bytes Description

0x00-0x03 a4 Signature (49 4E 44 58) INDX

of node header

0x04-0x05 2 Offset to the Update Sequence

0x06-0x07 2 Size in words of the Update Sequence (S)

0x08-0x0F 8 $LogFile sequence number

0x10-0x17 8 VCN of this Index record in the Index Allocation

0x00-0x03 4 Offset to start of index entry list, which is relative to start of node header
0x04-0x07 4 Offset to end of used portion of index entry list, which is relative to start

of node header

0x08-0x0B 4 Offset to end of allocated index entry list buffer, which is relative to start

0x0C-0xOF 4 Flags (0x01 is set when there are children index nodes)

- - Index entries (varies)

Index Node [Index Entry] $FILE_NAME [Index Enti $FILE_NAME
INDX Header Header Header Structure Headern1 |

Structure

INDX Header

Index Node [index Entry] $FILE_NAME
Header Header Structure

Index Node [Index Entry] SFILE_NAME [Index Ent $FILE_NAME
INDX Header Header Header Structure Headern1 |

Structure

Index Buffer File

Fig. 7.15 Data structure of Index Record

INDEX
Attributes

0000000:
0000010:
0000020:
0000030:
0000040:
0000050:
00000&0:
0000070:
0000080:
0000090:
00000a0:
00000b0:
00000c0:
00000d0:
00000e0:
00000£0:
0000100:
0000110:
0000120:
0000130:
0000140:
0000150:
0000160z
0000170:
0000180:
0000190:
00001a0:
00001b0:
00001c0:

000!120:

00001£0:
0000200:
0000210:
0000220:
0000230:
0000240:
0000250:
0000260:
0000270:
0000280:
0000290:
00002a0:
00002b0:

4649 4c45 3000 0300 éb3d 1000 0000 0000
0500 0100 3800 0300 b002 0000 0004 0000
0000 0000 0000 0000 ObOO 0000 0500 0000
0500 0000 0000 0000 1000 0000 4800 0000
0000 1800 0000 0000 3000 0000 1800 0000
0de0 f0e9 aSfc ccll 40c5 2170 aefc ccll
6c95 3970 aefc ccll 40c5 2170 aéfc ccll
0600 0000 0000 0000 0000 0000 0000 0000
3000 0000 €000 0000 0000 1800 0000 0100
4400 0000 1800 0100 0500 0000 0000 0500
0d6é0 f0e9 aSfc cc0l 0460 f0ed aSfc ccll
0d6é0 f0e9 abfc cc0l 0460 f0ed aS5fc ccll
0000 0000 0000 0000 0000 0000 0000 0000
0600 0010 0000 0000 0103 2200 0000 0000
4000 0000 2800 0000 0000 0000 0000 Qa0
1000 0000 1800 0000 031f 77dl 9868 elll
b914 0050 56c0 0008 5000 0000 €800 0000
0000 1800 0000 0200 5000 0000 1800 0000
0100 0480 3000 0000 4000 0000 0000 0000
1400 0000 0200 1c00 0100 0000 0003 1400
££01 1£00 0101 0000 0000 0001 0000 0000
0102 0000 0000 0005 2000 0000 2002 0000
0102 0000 0000 0005 2000 0000 2002 0000

9000 0000 5800 0000 0004 1800 0000 0600
3800 0000 2000 0000 2400 4900 3300 3000
3000 0000 0100 0000 0010 0000 0100 0000
1000 0000 2800 0000 2800 0000 0100 0000

0000 0000 0000 0000
a000 0000 5000 0000

0104 4000 0000 0800 0000 0000 0000 0000
0000 0000 0000 0000 4800 0000 0000 0000
0010 0000 0000 0000 0010 0000 0000 0500
0010 0000 0000 0000 _2400 4900 3300 3000

b000 0000 2800 0000
0004 1800 0000 0700 0800 0000 2000 QOO0

2400 4900 3300 3000 0100 0000 0000 0000

0001 0000 &800 0000 0009 1800 0000 0S00
3800 0000 3000 0000 2400 5400 5800 4600
500 4400 4100 5400 4100 0000 0000 COOO
0500 0000 0000 0500 0100 0000 0100 QOO0
0000 0000 0000 0000 Q00O 0000 0000 COOO
0000 0000 0000 0000 0000 0000 0000 QOO0
0200 0000 0000 0000 ffff ffff 0000 Q000
0000 0000 0000 0000 0000 0000 0000 0000

FILEQ...k=......

........ wewsHous
cesssssslecennas
EiiORRNE ;[ | < S
1.9p....R.!1p....
L
Dicesssanansanna

vesaXaa

24 - - SINDEX_ROOT
+  Attribute

R

«@ "SINDEX_ALLOCATION
. Attribute
verne$.1.3.0.
g SBITMAP
°  Attribute "
§.1.3. .

S | R

8...0...5.T.X.F.
D AT A e

Fig. 7.16 INDEX attributes in MFT entry 5 (NTFS volume’s root directory)



180 7 Examining NTFS File System

A: Attribute type identifier 0x90 G: Size of each Index record (in bytes) 0x01

B: Size of SINDEX_ROOT attribute 0x58 H: Index Node Header

C: Size of attribute content 0x38 I: Offset to start of index entry list, which is relative to start of node header 0x10

D: Offset to attribute content 0x20 J: Offset to end of used portion of index entry list, which is relative to start of node header 0x28
E: SINDEX_ROOT header K: Offset to end of allocated index entry list buffer, which is relative to start of node header 0x28

F: Size of each Index record (in bytes) 0x1000 L: Index entries

Fig. 7.17 MFT entry 5’s SINDEX_ROOT attribute

Here we are specifically interested in three attributes, the first of which is the
$INDEX_ROOT attribute, shown in Fig. 7.17. As we can see from the figure below,
the first 4 bytes of the attribute 0x00000090 = 144 indicate it is an $INDEX_ROOT
attribute. It takes up 0x00000058 = 88 bytes (Bytes 4—7 (58 00 00 00)). The attribute
content starts at byte offset 0x0020 = 32 (Bytes 20-21 (20 00)), thereby making the
official beginning of the $INDEX_ROOT structure (or SINDEX_ROOT Header).
At byte offset 0x08—0x0B (shown as F in Fig. 7.17) in the $INDEX_ROOT Header,
we find the size of each Index Record, which will be found in the
SINDEX_ALLOCATION attribute, as it is discussed next. The Index Record size
is 0x00001000 = 4096 bytes (Bytes 0x08—0x0B (00 10 00 00)) or 0x01 = 1 cluster
((Byte 0x0C (01))). The $INDEX_ROOT attribute contains an Index node, which is
the root node of the B Tree describing the root directory here. The Index Node starts
with an Index header, immediately following the end of the $INDEX_ROOT
Header.

At byte offset 0xOC-0xOF in the Index Node Header, we find flags 0x00000001,
which means there are children index nodes which we should continue to look for in
the SINDEX_ALLOCATION attribute. The first 4 bytes of the Index Node Header
0x00000010 = 16 indicate the offset to start of index entry list, which is relative to
start of node header, each index entry containing a “$FILE_NAME” structure. The
next 4 bytes, here 0x00000028 = 40, show the offset to end of used portion of index
entry list. Further, the next 4 bytes, here 0x00000028 = 40, show the offset to end of
allocated index entry list buffer. It means the area containing index entries starts at
byte offset 16 and ends at byte offset 40, shown as L in Fig. 7.17. Clearly, all the
allocated index entries space is occupied here.

Thus, based on the figure above, the index entries can be further extracted and
analyzed for the file names contained, as well as the children index nodes if exists.
Figure 7.18 shows index entries in the $INDEX_ROOT attribute. At byte offset
0x0C-0x0F, we find flags 0x00000003 = 0x01 Il 0x02, which means this is the last
index entry (0x02) and has a child node (0x01). Bytes 0x0A-0xOB (00 00) indicate
the length of $FILE_NAME structure included. Since the length is 0, it means that it



7.3 NTEFS Indexing 181

?

0000000: 0000 0000 0000 0000 [1800]|000d [0300 0000] .....ovveurunnnnn
0000010: [0000 0000 0000 0000l  L.......

A: MFT file reference for the file whose name is included

B: Length of the index entry 0x18

C: Length of SFILE_NAME structure 0x00

D: Flags 0x03=0x01 || 0x02

E: VCN (Virtual Cluster Number) of child node in the SINDEX_ALLOCATION attribute 0x00

Fig. 7.18 Index Entries in $INDEX_ROOT attribute

11

A: Attribute type identifier 0xA0

: Size of SINDEX_ALLOCATION attribute 0x50
: Starting VCN of the Runlist 0x00

: Last VCN of the Runlist 0x00

: Offset to the data runs 0x48

: Data runs

mTETOW

Fig. 7.19 MFT entry 5’s SINDEX_ ALLOCATION attribute

is an empty index entry. Also, since the entry has one child node, the last 8 bytes
shows the wvirtual cluster number (VCN) of its child node in the
$INDEX_ALLOCATION attribute, which is VCN 0.

The second attribute is the $INDEX_ ALLOCATION attribute, shown in
Fig. 7.19. This attribute is always non-resident, and its content is stored in data
runs, which point to the actual storage location for all sub-nodes of the B+ tree that
implements a directory index. In this example, both starting (Bytes 0x10-0x17) and
ending (Bytes 0x18-0x1F) VCNs are 0x00. It means only one cluster is allocated to
the $INDEX_ALLOCATION attribute. The data runs begin at byte offset
0x0048 = 72 (Bytes 0x20-0x21). Since the attribute takes up 0x00000050 = 80
bytes (Bytes 0x04-0x07), we can have data runs: 11 01 2C 00 00 00 00 00.

Next, we analyzed the extracted data runs for the addresses of data units (clusters)
which store the B+ tree data structures for the root directory index sub-nodes. First
we look at the first byte, here Ox11. The lower 4 bits (0x1 in our case) and upper
4 bits (0x1 in our case) of the first byte show the number of bytes for the length of the
run and starting cluster address for the run, respectively. Next, we take one byte, here
0x01 = 1, (or the second byte) indicating the length of the run or the number of



182 7 Examining NTFS File System

Indicate there
are no more
runs

- A 4
| 00
J

Number of bytes containing the
starting cluster address

|
L

01

Starting cluster field
Cluster 0x2c=44

Length field 0x01=1 cluster

Number of bytes for the length
of the run

VCN
- 0
Data runs Starting cluster | Length e
luster
1 44 1] —
44
LCN

Fig. 7.20 Data runs in the SINDEX_ALLOCATION attribute

clusters of the run. There’s quite clearly only one cluster allocated to the
$INDEX_ALLOCATION attribute, similarly as previously found. Next, we collect
one byte, here 0x2C = 44, (or the third byte) indicating the starting cluster address
for the run. In other words, Cluster 44 is the first cluster for the run. The analysis of
the first run is now finished, and we know only one cluster, i.e., Cluster 44, is
allocated to the attribute.

We continue the analysis of the data runs. Next byte is 0x00, which indicates
there are no more runs. Summarizing, we have known that is Cluster 44 is allocated
to the SINDEX_ALLOCATION attribute (Fig. 7.20).

Next, we obtain and analyze the contents of Cluster 44, shown in Fig. 7.21,
which contains one index record or index node. Fig. 7.21 shows part of hex dump of
Cluster 44 by using the TSK tool “blkcat -h ntfsfs.dd 44”, where “ntfsfs.dd” is the
NTFS volume image.

As we can see from the figure below, the index record starts with a signature
(49 4E 44 58) “INDX”. The first 24 bytes are INDX header, followed an index node
header. The first 4 bytes of the index node header (40 00 00 00) indicate offset to
start of index entries, here 0x40 = 64, which is relative to start of index node header.
In other words, the first index entry begins at byte offset 88 = 64 + 24, where 24 is



7.3 NTES Indexing 183

Start of index node header

0 49444458 28000900 y£23kM 000 0000MO00 INDX (cvs ofee sans
16 0000W0O00 00000000‘4000000()'50050000 sess wess Booo Puoas

Start of first 32 00000000 0pO0O0O500 00000000

indexentry gg 00000000 00000000 00000000 [00000000
64 00000000 00000000 0000000 w000000Q0 fere eaaae s aeas
Startof 80 00000000 00000000[[04000000 00000400
SFILE_NAME 96 £800]5200]]00000000|[05000000 00000500 h.R. Firstindex =« =+« -
structure 373 0@0000P0_000F0000 00000000700000000 | e S0y in this . . ... .
128 000000 000pe00O0 00000000|00000000 SN <L .
144 0doooopo 000p000OO 00000000|00000000
160 odoooopo ooopoooo pgo3zacof41007400 cem aneee G Bt
176 72po_4a40 d5000000] 00000000 tirs Dies Eliw waua

O

A: Offset to start of index entry list, which is relative to start of node header 0x40

B: Offset to end of used portion of index entry list, which is relative to start of node header 0x0550
C: Offset to end of allocated index entry list buffer, which is relative to start of node header 0x0OFE8
D: MFT file reference for the file whose name is included (MFT entry 0x04=4)

E: Length of the index entry 0x68

F: Length of SFILE_NAME structure included 0x52

G: Flags 0x00 means there doesn’t exist child node

H: MFT file reference to its parent directory (MFT entry 0x05=5 or root directory)

I: The length of the file name 0x08

(a) Hex dumpof the beginning of Cluster 44 containing INDX header, index node header and first index
entry

Start of second last index entry

® @@

A
1168 6c007500| 6d006500] 05p00doo 00040500 1., Me@e wnen wnnn
1184 58004400[ 00000000 0spoodoo 000do500 X.D. g Filhans
econd last index

1200 0d60f0e9| a5fccc0l 4052170 a6fdccol : entry in this index + - - -

1216 6c953970[ a6fccc0l 40k521|70 a6fdccol ‘_L-é'_'p . record ...
?J:Ziﬂ.'ﬁ? 1232 00000000[ 00000000 00poodoo 000do000
Y 1248 06000010y 00000000 014132400 0000000

1264 [ 23000000 00000200/ [68005600][00000000 Eooy Sibvnaw Rona
1280 05000000 00000500 9c6e0070 a6fcccOl vees AR e

1296 de2624704a6fccc0l 5ca2dcT0 a6fcccll ? in thisindex  + . . .
1312 40c52170|acefceccO0l 60000000 00000000 e . record e
1328 60000000| 00000000 20000000 00000000 Vakw wwend s e
1344 08j038300161008200 4008 2e ..c. a.n._a.d. a...
1360 007800174000 00000000 00000000 i Eewwr wams s
1376 0000000|02000000 00000000 00000000 sess sess seas seas
1382 0000000 | 00000000 00000000 00000000 B SRR WOSATE AT

®
A: MFT file reference for the file whose name is included (MFT entry 0x23=35)
B: Length of the last index entry 0x68
C: Length of SFILE_NAME structure included 0x52
D: Flags 0x00 means there doesn’t exist child node
E: MFT file reference to its parent directory (MFT entry 0x05=5 or root directory))
F: The length of the file name 0x0A

(b) Hex dump of the ending of Cluster 44 containing last two index entries

Fig. 7.21 Hex dump of Cluster 44. (a) Hex dump of the beginning of Cluster 44 containing
INDX header, index node header and first index entry. (b) Hex dump of the ending of Cluster 44
containing last two index entries



184 7 Examining NTFS File System

the size of the INDX header. Also, the first 8 bytes of the first index entry (04 00
00 00 00 00 00 04 00) are the MFT file reference for the file whose name is included
in this index entry, where the lower six bytes are the MFT entry number, here
0x000000000004 = 4. MFT entry 4 represents an NTFS system file named
“$AttrDef”. At byte offset 0x08-0x09 in the index entry, we find the length of the
index entry, here 0x68 = 104 bytes. Bytes 0x0A-0xOB show the length of the
$FILE_NAME structure included, here 0x52 = 82 bytes. Bytes 0x0C-OxOF are
flags, here 0x00000000, which means there doesn’t exist a child node.

The $FILE_NAME structure, containing the name of a file located within the root
directory and referred to by the first index entry, begins at byte offset 104 = 88 + 16,
where 88 is the byte offset for start of the first index entry and 16 is the size of index
entry header. The first 8 bytes of the file name content (05 00 00 00 00 00 00 05 00)
are the MFT file reference to its parent directory, where the lower six bytes are the
MFT entry number, here 0x000000000005 = 5. MFT entry 5 is the NTFS’s root
directory, which means that the file is located within the root directory. At byte offset
66 (Bytes 66+) in the file name content, we find the file name in Unicode. It means
two bytes for each character in the file name. Byte 64 (08) indicates the length of the
file name is 8 characters long. Note the part of the index record underlined with
dotted line following the length of the file name in Fig. 7.21 (a). These unicode
characters represent the file name, which is “$AttrDef”. Summarizing, we have
known the first index entry contains the following file.

File name $AttrDef
MFT entry referring to the file MFT entry 4
MFT entry referring to its parent directory MFT entry 5
It has child node? No

In the example above, there are 13 index entries. For simplicity, we skip the rest
of the index entries (or files), including “$BadClus” (second entry), “$Bitmap” (third
entry), “$Boot” (fourth entry), “$Extend” (fifth entry), “$LogFile” (sixth entry),
“$SMFT” (seventh entry), “SMFTMirr” (eighth entry), “$Secure” (ninth entry),
“$UpCase” (10th entry), “$Volume” (11th entry), and “.” or root directory (12th
entry). Instead, we go to the last index entry directly and analyze it, as shown in
Fig. 7.21 (b). The last index entry contains a file we created for the lab exercises later
in the book. We can see from Fig. 7.21 (b), the last index entry (13th entry) contains
the following file.

File name canada.txt
MEFT entry referring to the file MEFT entry 35
MEFT entry referring to its parent directory MFT entry 5
It has child node? No

In the end, we can find out the following B-tree index structures for the root
directory in the example above. Obviously, these entries are organized in alphabet-
ical order by name of the files included (Fig. 7.22).



7.4 NTFS Advanced Features 185

Empty index entry in

v SINDEX_ROOT Root level
_- Attribute
-~
-~
-
-
-
Index nodes
~
~
Index key (or file name) ~ N
l ~
N Index Record #0 Leaf level

s

[ vt [ sowscim | swwmer [ oo ][ sosems J| oo J[ e J[sorroee J[ e J[ strcom J oo J[ - ][ comiome |

Pointer (or MFT file reference
or entry number)

Fig. 7.22 B-tree index structures for the root directory in the example above

A: Attribute type identifier 0xB0

B: Size of $Bitmap attribute 0x28

C: Non-resident flag 0x00, which means resident
D:Size of the attribute content 0x08

E: Offset to the attribute content 0x20

Fig. 7.23 MFT entry 5’s $BITMAP attribute

The third attribute is the $BITMAP attribute, shown in Fig. 7.23. It is used to
describe which structures in the B-Tree are being used. As we can see from the figure
below, we find flags 0x0x00 at byte offset 0x08. It means this is a resident attribute.
The attribute content starts at byte offset 0x0020 = 32 (Bytes 0x14-0x15 (20 00)),
and has a total of 0x08 = 8 bytes (Bytes 0x10-0x13 (08 00 00 00)), as underlined
with dotted line in Fig. 7.23. Except the first bit (bit 0) of the first byte, the attribute
content is all zero. It means only the first index node (or Index Record #0) is being
used now. It is worth noting that there always exists a root node in a B-tree, which is
stored in the SINDEX_ROOT Attribute, but is excluded from the $BITMAP attri-
bute. The $BITMAP attribute only indicates the usage status of sub-nodes of B-tree
index.

7.4 NTFS Advanced Features

NTFS has many different versions, and the newer version of NTFS has more
features. NTFS v1.2, released with Windows NT 3.51 in 1995, supports compressed
files, and NTFS v.3, introduced with Windows 2000, incorporates a number of



186 7 Examining NTFS File System

additional features including file encryption via the Encrypting File System (EFS),
sparse attribute, and disk quotas, which can be used to monitor and limit disk-space
use. This section will further dive into NTFS by explaining its key features such as
encryption, compression, and sparse.

7.4.1 Encrypting File System (EFS)

NTFS version 3.0 and above uses EFS (Encrypting File System) to encrypt data,
which can be invoked through Windows Explore or through command-line utility
called “cipher.exe”. We will first review the basics of cryptosystems. Symmetric key
encryption and asymmetric key encryption are two prominent types.

Symmetric cryptosystems encrypt and decrypt using the secret/private key shared
by the receiver and the sender. A secret key can be a number, word, or string of
random letter applies to plain-text message in order to change the content in a way
that isn’t recognizable until someone with the key can scrabble the cipher message
back to its readable form. This process is as followed:

1. Alice and Bob agree on a cryptosystem.

2. Alice and Bob agree on a share key.

3. Alice takes her plain-text message and encrypts it using encryption algorithm and
key. This creates a cipher-text message.

4. Alice sends the cipher-text message to Bob.

5. Bob decrypts the cipher-text message with the same algorithms and key
(Fig. 7.24).

In symmetric, the key used to encrypt message must be distributed secretly as the
strength of the cryptosystem hinge a single key that is shared between the two
parties. Once a key is comprised (e.g. eavesdrop), any message exchanged can be
decrypted.

Asymmetric encryption has each person with two keys, public key for encryption
and a private key for decryption owned by receiver. This process is as followed:

Plain-Text Input Cipher-Text Input Plain-Text Input
715wP0"8a’lyud

Encrypt Decrypt
Secret Message NN Secret Message
SlihA7Gda;0ydh

Secret Key g

Fig. 7.24 Symmetric encryption



7.4 NTFS Advanced Features 187
Plain-Text Input Cipher-Text Input Plain-Text Input

Encrypt Decrypt
B FOkT* & UKFI87xdf I
1k*(&uk4789%kds0

Secret Message PLOK T Private Key

Decrypt Encrypt
KikAjd7k%6f71WI
qY#D=146j0R@5+

Private Key 7 Public Key_—
&) I

Fig. 7.25 Asymmetric encryption

Secret Message

. Alice and Bob agree on a public-key cryptosystem.

. Bob publishes his public key.

. Alice encrypts her message using Bob’s public keys and sends it to Bob.
. Bob decrypts Alice’s message using his private key (Fig. 7.25).

R O R S

In practices, asymmetric key algorithms are typically hundred times slower than
symmetric key algorithm because it requires heavier mathematics (or computational
cost) to convert data (or plaintext) into something unreadable (or ciphertext) to
unauthorized people, and vice versa. However, symmetric is not without its draw-
backs too. It suffers from key management problems. For instants, how we ensure
the secret key we deliver arrives to correct person online? Hence, the concept of
hybrid encryption is introduced to protect data and as well guarantee efficiency. It
combines the advantage of both symmetric and asymmetric; a hybrid cryptosystem.
Thus, solving the asymmetric and symmetric disadvantages discussed.

Instead of having the message encrypted with Alice’s public key, hybrid crypto-
system uses a randomly chosen session key & and encrypt it with Alice public key via
asymmetric encryption, and concatenate the message encrypted with a secrete key
using symmetric encryption. This process is as followed:

1. Bob sends Alice his public key.

2. Alice generates a random session key k, encrypts it using Bob’s public key, and
sent to Bob EA(k).

3. Bob decrypts Alice’s message using his private key to recover the session key DA
(EA(k)) = k

4. Both of them encrypts their communication using the same session key
k (Figs. 7.26 and 7.27).

NTFS adopts hybrid encryption technique in its Encrypting File System (EFS),
which uses a hybrid of asymmetric and symmetric cryptosystem to protect files. It is
based on DES-X (Data Encryption Standard-X or DESX). DES-X is a variant of



188 7 Examining NTFS File System

i -Text |
Plain-Text Input Chpher-Tost pwt

Encrypt

715wP0"8a’lyud
Sljh*7Gda;0ydh

Secret Message

9&*34yUdsljhA7a
;0wpS

Session Key ——

Fig. 7.26 Hybrid encryption—encryption process

Cipher-Text Input Plain-Text Input

ecrypt

2 . g Secret Message
9&*34yUdsljh~7a ° |  Session Key"

;0wpS

Decrypt
Al

Fig. 7.27 Hybrid encryption—decryption process

DES (Data Encryption Standard), which can defend against brute force attack by
increasing the complexity of brute-forcing a DES key, for example, using a tech-
nique called key whitening. In Windows XP Service Pack 1 (SP1) and later versions,
EFS utilizes the Advanced Encryption Standard (AES) algorithm with a 256-bit key
to encrypt data, making unauthorized data access almost impossible without know-
ing the encryption key.

When a file is encrypted in NTFS (or its encryption attribute is set, shown in
Fig. 7.28), the encryption process is divided into two phases, shown in Fig. 7.29.
First, a secret encryption key, also known as the File Encryption Key (FEK) is
randomly generated. It is then used to encrypt the file, particularly the file content
stored in the $DATA attribute in the MFT entry that represents the file. This phase is
involved with symmetric encryption. It is worth pointing out that only the file
content is protected, but not other information associated with the file, such as file
name, timestamps.



7.4 NTFS Advanced Features 189

Fig. 7.28 Advanced
attributes dialog box in the
file properties window
(Windows 8) @ Choose the settings you want for this folder.

File attributes

[w] Allow this file to have contents indexed in addition to file properties

Compress or Enarypt attributes
[} Compress contents to save disk space
[¥] Encrypt contents to secure data Detais

o [ e

A MFT Unencrypted File Entry &@T HeadN | $DATA Attribute |

File content

¢— =)

File Encryption Key (FEK)
Symmetric key

—»l Public Key Encrypt
| Encrypted File content

User’s public key
Asymmetric key Encrypted FEK
(Data Decryption Field (DDF))

After encryption

L MFET He&§ | $LO£;GED_UTILITY_STREAM | | $DATA Attribute | |

Fig. 7.29 EFS—encryption process

Second, an attribute called SLOGGED_UTILITY_STREAM in the MFT entry is
created to log the user’s FEK that is associated with the encrypted file (stored in
$DATA attribute). The attribute is named $EFS. Specifically, each Windows user is
issued a public key certificate that contains a public key and as well a private key,
which are used for EFS operations. The public key is used to protect the FEK,
whereas the private key is used to retrieve the original file content. The private key is
kept secret and protected by the user’s Windows login password. EFS then encrypts
the FEK using the user’s public key, and the resulted encrypted FEK is encapsulated
into a special data structure called a Data Decryption Field (DDF). In addition, EFS
also encrypts the FEK using the Public File Recovery Key of a Windows Domain
Administrator account, which is called data recovery agent (DRA). It is created to
give the users the capability to recover these encrypted files in some circumstances,



190 7 Examining NTFS File System

A MFT Encrypted File Entry

MET Header | [ SLOGGED_UTILITY_STREAM | [ SDATA Attribute | |

Encrypted FEK
(Data Decryption Field (DDF))

T —»I Public Key Decrypt

User’s private key
Asymmetric key

Encrypted File content

FEK

Symmetric key

User’s Windows Login Password

File content

Applications

Fig. 7.30 EFS—decryption process

for example, forgotten user passwords. On a standalone Windows server or a
Windows desktop computer (or laptop), it is the local super user account (or an
administrator account). Similar to a normal user, a pair of keys is issued to the DRA,
also known as File Recovery Key. The encrypted FEK under the DRA’s public file
recovery key is encapsulated into a special data structure called a data recovery field
(DRF). It is possible to have more than one DDR fields when more users are
authorized to have access to the encrypted file or DRF fields when extra recovery
agent is defined. Finally, both DDF and DRF are stored into the newly created
$LOGGED_UTILITY_STREAM attribute.

When the user opens the encrypted file, a decryption process occurs, shown in
Fig. 7.30. The user’s private key (the DRA’s private key) is required to decrypt the
encrypted FEK. Then, the retrieved FEK is used for symmetric key encryption to
decrypt the file’s content. Afterwards, the decrypted data can be used by Windows
applications, such as Microsoft Office, Adobe Acrobat Reader. Encryption and
decryption of a file or folder are performed transparently to computer users who
encrypt the file like s/he reads and writes other regular files.

As the above attests, EFS combines best features of two different encryption
systems, solving the problem of key management from asymmetric key encryption
and gaining the speed of encryption and decryption from symmetric key encryption.
It provides confidentiality by the way of encrypting sensitive data, but it does not
provide integrity or authentication protection.



7.4 NTFS Advanced Features 191
7.4.2 Data Storage Efficiency

While storage capacities have increased significantly in recent years, the amount of
data generated by us have also increased explosively, far exceeding the current
growing storage capacity. It is becoming important in our computer systems to
have efficient approaches for data storage. Various techniques have been proposed
to increase storage efficiency, such as, data deduplication and data compression. In
NTEFS, two important methods have been implemented to achieve storage efficiency,
including using compressed and sparse files to save disk space, which will be
detailed in the following.

7.4.2.1 NTEFS Sparse Files

One way to reduce storage space is through sparse files. Usually, a file contains all
zeros or a part of a file is made completely out of zeros. These zero data are called
sparse data. In order to save disk space, NTFS only writes nonzero data to disk, but
doesn’t allocate physical disk space to store these sparse data (or strings of zeros).
Instead, unallocated sparse data are denoted as empty by metadata (or spare run, a
special type of data run); thus, saving disk spaces. Unlike a normal data run which
contains a starting cluster address and its length in clusters, a spare run only specifies
its length. This is accomplished by setting a file’s sparse attribute, causing NTFS to
deallocate sparse data streams and only maintain other non-zero data as allocated.
The file system would not notice this subtle change when a sparse file is read because
at runtime the metadata representing the empty blocks would treat the de-allocated
sparse data as zeros again and retrieve the allocated data as it was stored. In the
example shown below, total 20 clusters are required for a file. These data runs
without starting cluster addresses are called sparse runs, which don’t occupy phys-
ical disk space. As aresult, 5 cluster disk space is saved after the sparse file attribute
is set for the file (Fig. 7.31).

It is worth noting that if a spare file is copied or moved to a non-NTFS volume,
such as a FAT, it will require more space than before. Thus, it is important to ensure
there is enough space in the destination to allow the operation to be completed. This
is because the file will be converted into its original specified size [10].

7.4.2.2 NTFS Compressed Files and Folders

Another way to reduce the data is through compression. NTFS supports compression
in many different ways. NTEFS can compress files individually, folders (all files
within a folder), and all files stored on a NTFS volume. Windows-based programs
can read and write compressed files without having to determine the compression
state of the file due to having compression being implemented within NTFS. If a file
is compressed in NTFS, the compression flag is set within an attribute header, while
the $DATA attribute of the file stores information about compression [11].



192 7 Examining NTFS File System

Without sparse file attribute set
Data Runs

Datarun | Starting cluster Length
1 100 20

===
Ry

\%r———'l RN
-

With sparse file attribute set

T
(|
11
11
L Data Runs
Data run | Starting cluster | Length
100 6
2 3
On-disk layout > 3 109 5
4 2
5 116 5

=1
|
non zero data cluster | : All zero data cluster
0
L

Assume contiguous clusters are allocated here and the starting cluster address is 100.

Fig. 7.31 Spare attribute

It is worth pointing out that compression only applies to the file content, partic-
ularly non-resident $DATA attribute. This is accomplished by reducing the amount
of disk space used by the file through a concept of compression unit whose size is
specified in the attribute header, shown in Fig. 7.32. For ease of presentation, we
assume that a file is stored contiguously on disk. When the file is compressed in
NTES, the file content that is stored in the $DATA attribute will be divided into
equal sized chunks (or having the same number of clusters per chunk), also known as
compression units. As shown in Fig. 7.32, suppose that the compression unit size is
32 KB = 8 clusters with the given cluster size of 4 KB. We also assume that after
compression, one chunk (or the second one) is shrunk from 32 KB to 19 KB. It
means only 5 clusters are now needed to save this chunk of data instead of the
original 8 clusters. A non-resident $DATA attribute uses data runs to specify the
location (cluster addresses) of the data units allocated to it, as well as the number of
data units (clusters). Traditionally, one data run is sufficient for one data trunk by
simply specifying starting cluster address with the length of run as 8 clusters.
However, two data runs are now required to describe the compressed data chunk.
The first data run is a standard run, describing the location compressed data is stored
on a NTES volume, including starting cluster address with the length of run as
5 clusters. The second one is a spare run which only contains the length of the run
(3 clusters in our case) but without a starting location, which indicates it doesn’t
actually occupy any physical space on disk. As we can see from the above, we may
save 37.5% of storage space by using data compression in the example above.



7.4 NTFS Advanced Features 193

Compression Compression Compression
unit unit unit
(8 clusters) (8 clusters) (8 clusters) Data Runs
Original contents . Datarun | Starting cluster | Length
>
of a file 1 100 24
no comjpression compression no confpression
oy
After : H
compression | : |
- Data Runs
i Data run | Starting cluster | Length
1 100 8
. —) 2 108 5
On-disk layout
3 3
4 8

116

|:| non zero data cluster Compressed data cluster

—__TaasT

1
: Sparse data cluster
|

Assume contiguous clusters are allocated here and the starting cluster address is 100.

Fig. 7.32 Compressed attribute

Review Questions

1. In an NTFS file system, there is a file with 8 clusters, having the first cluster of the
file with VCN ___ and last cluster with VCN ___ . If the file is stored
contiguously and the address of the first cluster is cluster 60, the LCN of the
last cluster is .

2. The following is the hex dump of an index entry

1168 6c007500 64006500 05000000 00000500 l.u. m.e

1184 58004400 00000000 05000000 00000500 XDi vose sess

1200 0d60£f0e9 a5fcccl0l 40c52170 a6fcccll e waie Belp
1216 6c953970 ab6fcccl0l 40c52170 ab6fcccll 1.9 .... B.!p

1232 00000000 00000000 0O00O0O000O0O 0OOOOQOOO S P

1248 06000010 00000000 0103200 00000000 seee weae sees

1264 23000000 00000200 68005600 00000000 Foiw vine WL s
1280 05000000 00000500 9c6e0070 a6fcccll [ RTS 1% - I
1296 de262470 aéfcccll S5ca2d4cT0 a6fceccll &SP ... \.Lp ¥
1312 40c52170 aéfccc0l 60000000 00000000 @.!'p e

1328 60000000 00000000 20000000 00000000 T, A i B
1344 0a036300 61006e00 61006400 61002e00 «eCe A.N. a.d. A...
1360 74007800 74000000 00000000 00000000 tixe Baw

1376 10000000 02000000 00000000 00000000

1392 00000000 00000000 0OOOOOOO 0OOOOQOOO

What is the name of the file included in the entry?
What is the number of MFT entry representing the file included in the entry?
What is the number of MFT entry referring to the file’s parent directory?



194 7 Examining NTFS File System

3. Which of the following MFT entry attribute stores the File Encryption Key
(FEK)?

(a) $STANDARD_INFORMATION
(b) SDATA

(c) $EFS

(d) SLOGGED_UTILITY_STREAM

7.5 Practice Exercise

The objective of this exercise is to perform in-depth analysis of an NTES file system
and manually discover the properties of a file.

7.5.1 Setting Up the Exercise Environment

For this exercise, you will use thumbimage_ntfs.dd provided in the book as the
example disk image that contains an NTFS volume. This disk image will be used in
all the exercises of NTFS related chapters. You will need to upload this disk image to
Forensics Workstation you have built up in Chap. 3.

7.5.2 Exercises

Part A: Disk Analysis with mmls
Use the mmls tool of The Sleuth Kit to figure out the layout of the disk image
provided. Determine the location of the first partition, and fill out the following table
with details of the partition (Table 7.7).

Note that the output of mmls on the disk image describes the start, end and size
of the partitions (in sectors). You need to convert the size of a partition from sectors
to megabytes (MB).

Table 7.7 Details of the first
partition in the disk image
“thumbimage_ntfs.dd”

First partition

Start position in sector

Number of sectors in partition
Size of the partition (MB)
Type of partition




7.6 Helpful Tips 195

Part B: Use dcfldd to Extract the First Partition Image from the Disk Image
Provided
In Part A, you should have already determined that the first partition is formatted
with the NTFES file system.

Q1. Writing down your command(s) issued to extract the first partition from the
USB drive image?

Part C: Analyze File Properties
In the extracted partition, there is a file named canada.txt under the root directory.
Next, analyze the file system image by answering the following questions related
to the file “Canada.txt”:
For “canada.txt™:
Q2. The entry number of the MFT entry which points to the file “canada.txt”:

[
I-E' You will first need to analyze the MFT entry 5, which points to the root

directory of the NTFS file system. Specially, you have to extract and analyze its
index attributes, including $INDEX_ROOT, $INDEX_ALLOCATION and $BIT-
MAP attributes. Then, locate the index entry associated with the file canada.txt,
where the entry number of the MFT entry which points to it can be found.

Q3. How many attributes are contained in this entry?

Hint: You have to iterate each attribute by analyze its starting position and the
length of the attribute until reaching the end of the used portion of the MFT entry.

Q4. How many bytes are used by the second attribute?

Q5. The attribute type for the second attribute:

Q6. The size of content in the second attribute (in decimal bytes):

Q7. One of attributes in this MFT entry is $FILE_NAME. What is the length of
the file name?

Q8. The attribute type for the last attribute:

Q0. Is the last attribute a resident one? (Yes/No):

7.6 Helpful Tips

7.6.1 Locate the Master File Table (MFT) in an NTFS
Volume

MEFT is critical to the NTFS file system. Thus, it is very important to know its
location, but unfortunately, it is not trivial. There are two steps involved in locating
the MFT. The first step is to obtain the address of the starting cluster allocated to the



196 7 Examining NTFS File System

MFT. This is done checking Bytes 44—47 in partition boot sector. The second step is
to look at the first MFT entry, MFT entry O (or $MFT), which is the first 1 KB in the
starting cluster of the MFT. Recall that the MFT entries are 1024 bytes, as standard.
Then, we analyze the $DATA attribute of $SMFT and identify the clusters that are
allocated to the $MFT. The address information of these clusters is stored as the
$DATA attribute content, and is organized in data runs.

7.6.2 Determine the Address of the Cluster Which Contains
a Given MFT Entry

In order to perform a thorough forensic analysis on an NTFS volume, we will need to
check each of the MFT entries. In doing so, we have to locate these MFT entries. At
byte offset 44 (Bytes 44—47) in the partition boot sector, we can find the address of
starting cluster of the MFT. Suppose we know the cluster size. Also, the MFT entries
are 1 KB or 1024 bytes, as standard. Then, we can determine the address C of the
cluster which contains any given MFT entry. This is done using the following
formula:

C = CsartingClusterotmrT + floor (MFT entry#/(ClusterSize /1024))

Where CsartingClusterotmrr 18 the starting cluster address of MFT, floor(x) is the floor
function, MFT entry # is a given MFT entry number, and ClusterSize is the cluster
size in bytes.

In the example below, we want to determine the address of a cluster, denoted by
X, which contains a MFT entry Y, which points to a file named “abc.txt”. Suppose
that the cluster size is 4 KB, which means each cluster has 4 MFT entries. For
example, the starting cluster (or the first cluster) of MFT contains four NTFS system
files, including SMFT (MFT entry 0), $SMFTMirr (MFT entry 1), $LogFile (MFT
entry 2) and $Volume (MFT entry 3). We also denote the starting cluster address of
MFT by S. The relationship between cluster address X and MFT entry number
Y given the starting cluster S of the MFT can be expressed as

X =S + floor(Y/4)

For example, the file “abc.txt” uses the MFT entry 35, here Y = 35, and the first
cluster of MFT is 10,342, here S = 10,342. Then, we know that the MFT entry 35 is
located within Cluster 10,350, specifically in the last 1 KB of Cluster 10,350
(Fig. 7.33).



References 197

1 MFT
-
| aewe | oo |
0 SMFT The entry for the MFT itself
. SMFTMirr Contains a backup of the first entries in the MFT.
Starting cluster
2 SLogFile Contains the journal that records the metadata
S Of MFT transactions
3 SVolume Contains the volume information such as the label,

identifier, and version.

Cluster X =l Y abc.txt Contains the information about the file abc.txt

Fig. 7.33 Relationship between cluster address, MFT entry number and starting cluster of MFT

References

—

11

. “New Technology File System (NTFS)”. http://www.pcguide.com/ref/hdd/file/ntfs/index.htm
. Brian Carrier. “File System Forensic Analysis”. Addison-Wesley Professional, 2005
. The Structure and Function of an Operating System. http://www.sqa.org.uk/e-learning/

COS101CD/page_18.htm

. http://homepage.cs.uri.edu/~thenry/csc487/video/62_MFT_Layout.pdf
. http://www.cse.scu.edu/~tschwarz/coen252_07Fall/Lectures/NTES.html
. Petra Koruga, Miroslav Baca. Analysis of B-tree data structure and its usage in computer

forensics. https://bib.irb.hr/datoteka/484192.B-tree.pdf

. Gyu-Sang Cho. NTFS Directory Index Analysis for Computer Forensics.
.NTFS: Sometimes accurate file times are not in $FILE_NAME but in

$STANDARD_INFORMATION. http://jnode.org/node/2861

. B-tree algorithms. http://www.semaphorecorp.com/btp/algo.html
10.

NTFS Basics. http://ntfs.com/ntfs_basics.htm

. https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx)


http://www.pcguide.com/ref/hdd/file/ntfs/index.htm
http://www.sqa.org.uk/e-learning/COS101CD/page_18.htm
http://www.sqa.org.uk/e-learning/COS101CD/page_18.htm
http://homepage.cs.uri.edu/~thenry/csc487/video/62_MFT_Layout.pdf
http://www.cse.scu.edu/~tschwarz/coen252_07Fall/Lectures/NTFS.html
https://bib.irb.hr/datoteka/484192.B-tree.pdf
http://jnode.org/node/2861
http://www.semaphorecorp.com/btp/algo.html
http://ntfs.com/ntfs_basics.htm
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx

Chapter 8 )
Deleted File Recovery in NTFS e

Learning Objectives
The objectives of this chapter are to:

» Understand principles of file creation and file deletion in NTFS
* Manually recover the deleted files on an NTFS file system based on
remaining metadata information

In this chapter, we continue our analysis of NTFS file system. Particularly, we study
how to recover the deleted files on an NTFS file system based on remaining metadata
information. Also, you will know the challenges facing data recover in NTFS.

8.1 NTFS Deleted Files Recovery

Since it was first introduced in the Windows NT operating system, NTES has
become the default file system for Microsoft operating systems, including Windows
2000, Windows XP, Windows Vista, Windows 7, Windows 8, and the newest
Windows 10 [1]. Due to the popularity of Windows today, it is very often to see
the need for data recovery in computers using NTFS file system due to various
reasons, such as accidental deletion of files from a forensics investigative perspec-
tive. Similar to FAT file system, when a file is deleted, it becomes inaccessible
through regular ways available in the operating system. However, the file data itself
is not being deleted. Further, some important file system metadata information about
the deleted file is not completely wiped out. Unfortunately, recovering deleted files
in NTFS could become very challenging because of several factors. One of them is
the use of directory index, particularly an index of names of the files and
sub-directories within a directory. It uses a B-tree data structure, where a tree node

© Springer Nature Switzerland AG 2018 199
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_8&domain=pdf

200 8 Deleted File Recovery in NTFS

contains many index entries (or keys in terms of B-tree). When a file is deleted from
the directory, the index entry representing the file is removed and the B-tree has to be
adjusted to preserve the B-tree properties if necessary. Therefore, the “Index Entry”
for the deleted file may be overwritten when the tree is resorted. This is different than
what is usually seen with other file systems, such as FAT file system, which always
have the remaining original file name and structure untouched until a new file is
created. In this chapter, we will focus on how to recover deleted files in NTFS file
system using remaining file metadata information.

8.1.1 File Creation and Deletion in NTFS File Systems

For ease of presentation, we will always discuss the scenarios about files in the root
directory. This is because as to files in the other directories, the only extra effort is
that we would need to locate the directory which contains the intended file. This can
be done by going through the entire file path, starting from the top-most directory
(or root directory) to its next sub level until the directory containing the file is
reached.

Also, none of special attributes for the file has been set, such as compression,
sparse. NTFS utilizes a relational database called Master File Table (MFT) which is
similar to FAT directory entries contains an entry for every file on the system. We
assume that the location of MFT is already known to the Operating System here.

8.1.1.1 File Creation in NTFS File System (Fig. 8.1)

In an NTEFS file system, the procedure for the file creation can be illustrated below:

1. Check if the file system has sufficient disk space to store the contents of the newly
created file. If not, an “Insufficient disk space” error message appears and the file
creation fails. Otherwise, a certain number of clusters will be allocated to the file,
and their status becomes allocated and unavailable to other files or folders. It is
worth pointing out that very small files can be wholly contained in the MFT entry
allocated to the file, without the need for a separate cluster for its data and ensure
fast retrieval times. This will be discussed later.

2. Locate an MFT entry that is currently available and allocate it for the new file.

3. Set the MFT entry as occupied and make it not available for others. Initialize it
with standard MFT entry attributes, including $STANDARD_INFORMATION,
$FILE_NAME, $DATA attribute, etc.

4. If the newly created file is very small, for example, less than 700 bytes, the file
data will be wholly contained as the content of $DATA attribute. Then, save the
file content into the $DATA attribute. In this case, SDATA attribute contains file
data itself.



8.1 NTFS Deleted Files Recovery 201

$SLogFile
o swrr B
1
2 SLogFile
\Index
\ > dir 1-200

Cluster Bitma
Bitma
>Bitmap 1.
200 dir1 /
\ \dirl

filel.txt-304

filel.txt SDATA attribute

Cluster 692 | Cluster 693

304| filel.txt >

Fig. 8.1 File creation

However, with a larger file, disk space outside the MFT entry or clusters will
be allocated to store file content. In this case, $DATA attribute shows where that
data is located. As we discussed in previous chapter, NTFS uses data runs to
specify the location of file data, where a data run contains starting address of
cluster run and run length. Then, check MFT’s $Bitmap to find free clusters
needed for the file, using best-fit algorithm, and set corresponding $Bitmap bits to
1. Afterwards, write file content to clusters and update the content of $DATA
attribute with data runs, which indicates where that data is located.

Note that NTFS allocates clusters of disk space to the file. If the file does not
require the entire cluster for storage, the last cluster is left with unused extra space.
For example, on a disk with a cluster size of 4 kilobytes and sector size of 512 bytes,
clusters will always start at a sector number that is a multiple of 8. NTES also
performs pre-allocation of additional clusters for a file under certain conditions in
advance to prevent anticipated future fragmentation as the file grows. This has an
effect on fragmentation rates and may actually cause more harm than good on a
system with low disk space.

5. Go to root directory (MFT entry 5). NTFS uses B-trees for directory indexing.
Read index attributes of MFT entry 5, and traverse the B-tree to determine where
the file should go according to its file name. Afterwards, create a new index entry



202 8 Deleted File Recovery in NTFS

and add the new index entry to the index node (or INDX record) at the appropriate
place alphabetically among the file names already there to maintain the ordering.
The B-tree may need to be readjusted so as to preserve the B-tree properties.

6. As each step is taken, record action in $LogFile.

8.1.1.2 File Deletion (Fig. 8.2)

When a file is deleted in an NTFS file system, the operating system will perform
the following operations:

1. Go to root directory (MFT entry 5) and read index attributes of MFT entry
5. Traverse the B-tree to locate the index entry representing the file to be deleted.
Read the index entry and retrieve the number of the MFT entry number that
represents the file. Afterwards, delete the index entry. The B-tree may need to be
readjusted so as to preserve the B-tree properties.

2. Set the MFT entry for the deleted file as deleted and make it available for others.

3. If the $DATA attribute is non-resident, it means that the file data is stored in
external clusters, as cluster runs. Read data runs and obtains the addresses of these
cluster allocated to the deleted file. Then, set corresponding $Bitmap bits to
0, making these clusters available for others.

4. As each step is taken, record action in $LogFile.

SLogFile
T T
0 SMFT b
1
2 SLogFile
\Index
\ > dir 1-200
Cluster Bitma
SBitmap

...00...

200 dirt /

\dir1l

file1.txt SDATA attribute

Cluster 692 | Cluster 693

304| filel.txt >

Fig. 8.2 File deletion



8.1 NTFS Deleted Files Recovery 203

Note from the procedure described above that Like FAT, the data contained on
disk is not erased as part of the delete process thus increasing the possibility that the
deleted file can be wholly recovered. Also, we assume that we know the location of
the deleted file, which is in the root directory. In reality, we may not know the exact
location of deleted files we want to recover, or in some circumstances we may not
even know whether there exists a deleted file. As we already know that in NTFS
volumes, deleted files are indicated by a special flag in the MFT entry header. Thus,
we will need to scan the MFT as thoroughly as possible to look for the MFT entries
of the deleted files. Thus, their $DATA attributes can be further analyzed to obtain
the addresses of the cluster allocated to a deleted file. Once these clusters can be
retrieved, the only task left is to read and save the contents of each of them in order
and verify their contents. Apparently, it is possible to recover the contents of these
files as far as they are not overwritten. Because the cluster addressing information is
stored in the MFT entry, it is worth noting that unlike FAT, a fragmented file can be
recovered with the same ease as contiguous files using remaining metadata
information.

Recall from Chap. 7 the analysis of the root directory, we have a file named
canada.txt in the root directory. Canada.txt is a very small file whose content is
stored in its $DATA attribute. Figure 8.3 shows a hex dump of the MFT entry 35
pointing to the deleted “Canada.txt”. Apparently, the content of the deleted file is
still stored in its $DATA attribute.

0000000
0000010:
0000020
0000030
0000040:
0000050:
0000060:
0000070:
0000080 :
0000090
00000a0:
00000b0:
00000c0:
00000d0:

4649 4c45 {
0300 0000 [
0000 0000 0000 0000 0400 0000
0500 0000 0000 0000[1000 0000[6000 0000
0000 0000 0000 000D 4800 0000|1800 0000

0070 aéfc ccOl 5 gji;_;gﬂﬁ
f43e lelb cllOe d201]

4c70 aéfc ccOl

0000 0000 0000 0000 0000 0000 0000
0000 0501 0000 0000 0000 0000 0000
0000 0000 JUDDIQOOO 0000 2800 0000
0000 0000 0300 1000 0000 1800 0000
77d]1 9868 elll g@lq 0050 56cO 0008
0000 7800 0000 (QOpPO 1800 0000 0100
4361 6e6l 6461 2c20

0000 Q000
0004 0000
200 0000

Scée
Sca2
2000
oooo
Qo000
0000
041f
8000
6000

©

SDATA Attribute,

0000 1800 0000

i Canada,

which contains the
content of the
deleted file

00000e0:

0000100
0000110
0000120
0000130:
0000140:
0000150
0000160
0000170:
0000180
0000190
00001a0:
00001b0:

4d79 2042
6e74 7279
7274 €169
6f74 2069
6976 €520

6561
2e20
6eéc
6620
6f75

6000 0000
4d79 2042
6e74 7279
7274 €169
674 2069
6976 6520
6lée 6164
0000 0000

1800
6561
2e20
6eéc
6620
6f75
6l2e
0000

7574
4920
7920
45920
7473

Lélée €164 612e 0dOa

0000
7574
4520
7920
4920
7473
Od0a
aooo

€966 T56c 2043 6£75
T76f T56c €420 €365
6d69 7373 2061 206c
6861 6420 746f 206c
6964 6520 6fE6 2043

f££f £££f 8279 4711
4361 6e€l 6461 2c20
6966 756c 2043 6f75
T76f 756c 6420 6365
6d69 7373 2061 206éc
6861 6420 746f Z0ec
6964 6520 6f66 2043
f££ff ££ff 8279 4711
0000 0000 0000 0000

My Beautiful Cou

ntry. I would ce
rtainly miss a 1
ot if I had to 1
ive outside of C
i e Canada,

My Beautiful Cou
ntry. I would ce
rtainly miss a 1
ot if I had to 1
ive outside of C

A: Offset to the first attribute 0x38

B: Flags 0x0000, which means deleted file

C: Non-resident flag 0x00, which means resident

D: File access time 0x01D20EC10B1E3EF4=131183561425174260. It means Wednesd

14,2016 7 p

Fig. 8.3 Example of an MFT entry marked with deleted



204

Start of index node header

280002900v£23» 000 DDEIOGO

8 Deleted File Recovery in NTFS

0 INDX (eue wiae enn.

16 00000000 [40000000][8040000) O i B i

32 00000000 0£000500 00000000 e iiis e

a8 00000000 00000000 00000000 00000000 Lo s

64 00000000 00000000 00000000 00000000 Sneads o

80 00000000 00000000[ 04000000 00000400 Ghad W ed N

96 68005200 00000000 05000000 00000500 RoRe fpppiigrae vans

112 00000000 00000000 00000000 00000000 | e cutryin ths - - - - - -

128 00000000 00000000 00000000 00000000 vere indexrecord s. b

144 00000000 00000000 00000000 00000000 s e

160 00000000 00000000 08032400 41007400 5. Bt

176 74007200 44006500 66000000 00000000 t.rs J——

1168 6c007500 64006500[05000000 00000500 1, —

1184 58004400 00000000 05000000 00000500 X.D. s

1200  [0d60£0e3 a5fcccOl £686ecl0 cl0ed201 o v " dufihdal] = End of used portion of
1216 féB86ecll clled201l 48£f2d4d406 clled20l entry in this . - - indexentry list  (byte
1232 00000000 00000000 00000000 00000000 w ... indexrecord, . offset  1280-1256:24,
1248 06000010 00000000 0103200 00000000 e eae e fhered s starting point
1264 00000000 00000000 10000000 02000000 +—— ="

1280 05000000 00000500 9c6€e0070 a6fcccll sess sars NP seen

1296 de262470 ab6fccc0l 5ca2dc70 a6fcccOl +&5P A SFILE NAME structure from a

1312 £43e120b c102d201] €0000000 00000000| ummmimn- delete index entry and not being

1328 60000000 00000000 20000000 00000000 T .. overwritien yet

1344 0a036300| 61006200 61006400 61002200 ..c. a.n. a.d. a...

1360 74007800) 74000000 00000000 00000000 toXe towr wnve vuns

D

A: Offset to start of index entry list, which is relative to start of node header 0x40

B: Offset to end of used portion of index entry list, which is relative to start of node header 0x04E8=1256

C: Offset to end of allocated index entry list buffer, which is relative to start of node header 0x0FE8=4072

D: File access time 0x01D20EC10B1E3EF4=131183561425174260. It means Wednesday, September 14, 2016 7:49:03pm

Fig. 8.4 Hex dump of Cluster 44 in the example NTFS volume

Also, the hex dump of Cluster 44 is shown in Fig. 8.4. It contains the only index
record or index node in the $INDEX_ALLOCATION attribute of the root directory
after the file “Canada.txt” is deleted.

Bytes 47 (E8 04 00 00) of the index node header, labeled as B in Fig. 8.4, show
offset to end of used portion of index entry list. Here, 0Xx04E8 = 1256, which is
relative to start of node header. It indicates that the used portion of index entries ends
at byte offset 1280 = 1256 + 24, where 24 is the size of INDX header coming before
the index node header in an INDX record. Apparently, the last index entry is now the
one containing the “.” File, which is the second last one from Fig. 7.21 in Chap. 7. In
other words, the last index entry has been deleted after the file it points to is deleted.
In our example, the deleted last index entry is wiped out, and the $SFILE_NAME
structure is kept as it was.

For every file on an NTFS volume, there are the following four timestamps
included in the SFILE_NAME attribute, where their byte offset locations in the
$FILE_NAME structure are included in brackets.

1. File creation time (Bytes 8—15)
2. File modification time (Bytes 16-23)



8.1 NTFS Deleted Files Recovery 205

3. MFT modification time (Bytes 24-31)
4. File access time (Bytes 32-39)

By comparing with Fig. 7.21 in Chap. 7, it can be observed from the Figure above
that file access time in the $FILE_NAME structure of the deleted file has been
changed to 0x01D20EC10B1E3EF4 = 131183561425174260. In an NTFS file
system, timestamps are stored as 8-byte file time values, which represents the
number of 100-nanoseconds since 12:00 A.M. January 1, 1601, also known as
File Time. It means the file is last accessed on Wednesday, September 14, 2016
7:49:03 pm. In our experiment, we deleted the file canada.txt at that time. Further,
note from Fig. 8.3 that another copy of file access time can be found in
$STANDARD_INFORMATION attribute, whose data structure is shown in
Table 8.1. The first 4 bytes of the first attribute (10 00 00 00) shows that it is an
$STANDARD_INFORMATION attribute, here 0x10 = 16. Bytes 0x28-0x2F in
$STANDARD_INFORMATION attribute is the file access time. Apparently, it is
also updated with the same value.

It is worth noting that there are many types of timestamps. In addition to File
Time, another popular one is Unix Timestamp or Epoch, which is the number of
seconds since 12:00 A.M. January 1, 1970. It is a 32-bit number.

From the example above, we can see that after a file is deleted in NTFS, the
contents of the file are actually not erased. Also, the index entry, which points to the
deleted file, was deleted, but the $FILE_NAME structure could not be overwritten
yet. Unfortunately, there is no way for us to link them together. In other words, we
can only conclude that a file named “Canada.txt” has been removed from the root
directory and there is also a deleted file in the NTES volume. The deleted file was
using MFT entry 35. Nonetheless, recall the above discussion, we have about the
timestamps in both $STANDARD_INFORMATION attribute from the MFT entry
that points to the deleted file and the SFILE_NAME structure from the deleted index

Table 8.1 Data structure for SSTANDARD_INFORMATION attribute (The time values are given
in 100 nanoseconds since January 1, 1601, UTC)

Byte range Bytes Description

0-15 16 Generic attribute header
16-23 8 File creation time
24-31 8 File modification time
32-39 8 MFT modification time
40-47 8 File access time

48-51 4 Flags

52-55 4 Max versions

56-59 4 Version number

60-63 4 Class ID

64-67 4 Owner ID

68-71 4 Security ID

72-79 8 Quota charged

80-87 8 Updated sequence number




206 8 Deleted File Recovery in NTFS

entry which points to the deleted file. The changes to file access time could allow us
to link the deleted file’s contents to a file name discovered in index attributes, by
analyzing and correlating other information,, including other timestamps, file types
(or filename extension).

It is worth noting that NTFS uses B-tree for indexing. When a file is deleted from
the directory, the index entry representing the file is removed and the B-tree has to be
adjusted to preserve the B-tree properties if necessary. Therefore, the “Index Entry”
for the deleted file may be overwritten when the tree is resorted. The naming
information of the deleted file could be lost.

In next section, we will discuss data recovery in NTFS file system using
remaining file metadata information. Specifically, we look for these MFT entries
marked as deleted and analyze their $DATA attributes, which contain file data
itself if it is a resident attribute or where that data is located if it is a non-resident
attribute.

8.1.2 Deleted File Recovery in NTFS File System

As discussed above, NTFS file system handled file deletions by setting a special flag
in the MFT entry without actually clearing the data contained in the clusters assigned
to the file. Often software products using these techniques caution users to stop using
the device and to refrain from creating or modifying any more files on it [2, 3]. This
is essential advice because when new storage space is needed to store a new file or to
store additional data for a modified file, the device may utilize some of these clusters
belonging to deleted files. This will result in the old data being overwritten, making it
impossible to recover. However, until this overwriting process occurs, the data
remains largely intact and the problem of recovery is simplified.

For simplicity, we assume that the data contents of the deleted file have not been
overwritten, and are left completely intact. Then further assume that the MFT entry
that points to the deleted file is not overwritten yet and the deleted index entry
representing the deleted file hasn’t been overwritten.

Suppose that we know the cluster size. Deleted file recovery in NTFS can actually
be broken down into two stages. In stage 1, we need to recover the data contents of a
deleted file in NTFS file system by performing the following operations.

Firstly, scan the entire MFT one entry at a time and compile a list of entries with a
deletion marker (Bytes 22-23 of the MFT entry is 0x0000).

Secondly, extract and analyze these MFT entries’ $DATA attributes, which
contain the data contents of the deleted files. If it is a resident attribute, it contains
the file contents. Then, read and save the contents of the $DATA attribute as a
recovered file. If it’s a non-resident attribute, its contents are data runs, which specify
the addresses of the clusters where the file contents live. Once these clusters can be
re-identified, we first need to validate their allocation status. In doing so, we can
check cluster allocation file ($Bitmap). The $BitMap is the seventh entry (MFT entry
6) in the MFT. If any bits in the Bitmap representing the allocation status of these



8.1 NTFS Deleted Files Recovery 207

clusters are set as 1, it means these data clusters have already been overwritten with
new data. In other words, we are unable to successfully recover the deleted file. This
is based on the principle that as only one file can occupy any one cluster on a hard
drive. If other files are using your deleted files storage space, then it is likely that the
original data has been overwritten and permanently destroyed. Otherwise, the only
task left is to read and save the contents of each cluster and verify their contents. It is
worth noting that both contiguous and fragmented files can be recovered with almost
the same amount of effort in NTFS systems.

In stage 2, we search the naming information of the deleted files by performing
the following operations:

* Firstly, scan the MFT to look for the MFT entries which represent the directories
(or folders), including both deleted and existing ones.

* Secondly, extract and analyze these MFT entries’ index attributes, which contain
index entries that include the $FILE_NAME structure. Scan these index attributes
as thoroughly as possible for the deleted index entries and parse out the naming
information of the deleted files.

¢ Finally, match recovered file contents from the $DATA attributes in MFT entries
to their names found in deleted index entries by correlating information, including
timestamps, file types (or filename extension).

Review Questions

1. What is the MFT entry number for the root directory of an NTFS?

2. Which of the following types of timestamps is in 100-nanoseconds since 12:00
A.M. January 1, 1601?

(a) File time

(b) Unix Timestamp
(c) Epoch

(d) None of the above

3. Which of the following attributes in the MFT entry store file contents?

(a) $DATA

(b) $FILE

(c) SINDEX_ROOT

(d) SINDEX_ALLOCATION

4. Which of the following statements is true?

(a) If a $DATA attribute is resident, the size of its attribute content is the file size.

(b) If a $DATA attribute is non-resident, the size of its attribute content is the
file size.

(c) There doesn’t exist a $DATA attribute in a MFT entry which points to a
directory

(d) None of the above



208 8 Deleted File Recovery in NTFS

5. Suppose the following is a hex dump of a $DATA attribute found in a MFT entry
marked with a deleted file

What is the size of the file in bytes?
What is the size of disk space allocated to the file in bytes?

What is the size of slack space for the file in bytes?

What are addresses of the clusters allocated to the deleted file? (Listed in the order
in which they are allocated)
Is this file fragmented? (Yes/No)

8.2 Practical Exercise

The objective of this exercise is to manually recover the deleted files on an NTFS file
system based on remaining metadata information.

8.2.1 Setting Up the Exercise Environment

We’ll continue to use the disk image “thumbimage_ntfs.dd” provided in the book,
particularly extracting the first partition image (or a NTFS file system image)
within it.

8.2.2 Exercises

Part A: File System Layer Analysis
Now analyze the file system image by answering the following questions using the
fsstat command in TSK:
Q1. What is the cluster size (in bytes)?
Q2. What is the MFT entry size (in bytes)?




8.2 Practical Exercise 209

Part B: Mounting and Unmounting File Systems

1. Mount the extracted partition into /mnt/forensics with read write access.

2. Change into the “/mnt/forensics” directory and then delete a file named “canada.
txt” by using the rm command.

3. Unmounting the extracted partition.

Part C: Recovering the Deleted File ‘““canada.txt”

Q3. After the file canada.txt has been deleted, you can discover that its MFT entry
has been marked as deleted, particularly with its byte offset 22-23 replaced with
0x0000.

e Scan the MFT one entry each time and locate the entry pointing to the deleted
“canada.txt” file. Particularly, we look for the one with the value of 0x0000 from
the byte offset 22-23 of each MFT entry. For simplify, you should be able to
locate it by checking the first 50 entries in the NTFS image provided here.

e Analyze the identified MFT entry and extract its SDATA attribute. Parse the
$DATA attribute and obtain the following information, including whether resi-
dent or non-resident  attribute: , file  size:

e If it is a resident attribute, it contains the file contents. Then, read and save the
contents of the $DATA attribute as recovered file.

L [‘ You will need to find out the starting point the $SDATA attribute content and
the content length. Then, you can extract the attribute content by using the dcfldd
utility by specifying the block size (bs) value as 1 byte, the skip value as the starting
point of the $DATA attribute content and the count value as the content length.

If it’s a non-resident attribute, its contents are data runs, which specify the
addresses of the clusters where the file contents live. Once these clusters can be
re-identified, we first need to validate their allocation status. In doing so, we can
check cluster allocation file ($Bitmap). The $BitMap is the seventh entry (MFT entry
6) in the MFT. If any bits in the Bitmap representing the allocation status of these
clusters are set as 1, it means these data clusters have already been overwritten with
new data. In other words, we are unable to successfully recover the deleted file.
Otherwise, read and save the contents of each cluster. It is worth noting that the last
cluster may not be fully utilized by the file. In other words, the last cluster is left with
unused extra space (or slack space) and should not be included into the recovered
file. The size of slack space can be determined by the file size and the size of disk
space allocated to the file.



210 8 Deleted File Recovery in NTFS

Note that once you have successfully completed this exercise, you can verify the
successful recovery of the deleted file by mounting the modified partition image and
seeing whether or not you can view the canada.txt properly. Or, you can calculate the
MDS5 hash value of your recovered file and see whether the resulting hash value is
equal to “2af85496e256e2b917e9af38f9c865d7” in hex. Being equal means that you
have successfully recovered the deleted file “Canada.txt”.

References

1. New Technology File System (NTFES). http://www.pcguide.com/ref/hdd/file/ntfs/index.htm

2. Brian Carrier. File System Forensic Analysis. Addison-Wesley Professional; 1 edition (Mar
27 2005) ISBN-10: 0321268172

3. M. Alazab, S. Venkatraman, P. Watters. Effective Digital Forensic Analysis of the NTFS Disk
Image. Special Issue on ICIT 2009 conference - Applied Computing, 2009


http://www.pcguide.com/ref/hdd/file/ntfs/index.htm

Chapter 9 )
File Carving s

Learning Objectives
The objectives of this chapter are to:

* Understand fundamentals concept and techniques of file carving
* Understand advanced state-of-the-art file carving techniques
* Become familiar with popular open-source file carving tools

In previous chapters, we have learned how file system structures, particularly the
residual file system metadata or information about the deleted files and directories,
can be utilized and analyzed to recover deleted or lost files or data. As discussed in
Chaps. 6 and 8, recovering deleted files from a file system with residual file system
metadata is a simple task; many programs are available to the average home use to do
this. Nevertheless, savvy criminals are aware of the digital trail they left behind and
attempt to delete whatever evidence they can in such a way that a tool which makes
use of file system structure cannot recover. For example, they can simply format the
partition where the file system resides. As a result, it makes these traditional recovery
methods based on file system metadata remnants ineffective. A more sophisticated
data recovery solution which does not rely on this file system structure is therefore
necessary. These new and sophisticated solutions are collectively known as file
carving, and tools, using such technology, are called file carvers. File carving is
the process of reconstructing files based solely on their contents. In other words, the
technique of recovering files from a block of binary data without using any infor-
mation available in the file system structure. As early as 2002, research in digital
forensics focused on the recovery of data files independent of the file metadata was
begun. Using only the content found inside the data blocks themselves, researchers
have attempted to reconstruct files in whole or in part using techniques that will be

© Springer Nature Switzerland AG 2018 211
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_9&domain=pdf

212 9 File Carving

discussed in this chapter. In this chapter, we’ll study file carving, a branch of digital
forensics that reconstructs data from a digital device without any prior knowledge of
the data structure, size, content or type of files located on the storage medium. Also,
we will get familiar with open source file carvers.

9.1 Principles of File Carving

File carving is the newest technique of recovering data from digital devices and does
not rely on any information located in the file system [3, 4, 7]. There are many tools
available, using such technology, and they are called file carvers. File carvers are
able to recover files using only the information available in the data blocks stored on
the disk. A non-fragment file could be carved with the same ease as contiguous files
using traditional methods relying on file system structures because many files have
unique header/footer structures. Using information about their unique headers,
footers (or the file size), and even internal data structure, file carvers reassemble
contiguous data blocks beginning with the file header and ending at the file footer, if
present. This type of file carving technique is also known header/footer carving.
Figure 9.1 shows the file format of the Bitmap image file (BMP).

In Fig. 9.1, it can be seen that a BMP file starts with a unique two-byte header, “42
4D”, and the size of the BMP file in bytes is given next at byte offsets 3—6. Figure 9.2
shows a hex dump of the first 512 bytes of a BMP file by using a Linux utility xxd.
The left side (the 8 digits before each colon) is the offset address, in hexadecimal
format, which is used to locate individual bytes (start at byte offset 0). The middle is
the hex dump data, and the right is the ASCII interpretation of the dump data. Each
byte represents a two-digit hexadecimal number. As can be seen in Fig. 9.2, the first
two bytes are “0x424D”, which is a special marker indicating the beginning of a
BMP file, and 4 bytes of data starting at byte offset 3 is the file size, which is “38
04 04 00”. However, since the computer here uses the little-endian system, the real
value of this 4-byte number is “0x00040438”. It means the file size is 1854 bytes.

9.1.1 Header/Footer Carving

Header/footer carving, also known as file structure-based carving, is based on the
fact that most known files have distinctive header/footer structures which can be
used to identify the start and end of a file. Obviously, it is very straightforward to
recover deleted files by simply putting everything together between the header and
the next corresponding footer as our target file given that most of files are stored in
contiguous blocks (Fig. 9.3).

The growing demand by forensic investigators and corporations to collect digital
evidence from devices with damaged or missing file system structures led to a wave
of file carving tools that could carve contiguous files automatically. For example,



9.1 Principles of File Carving

Bitmap File Header
BITMAPFILEHEADER
Signature
File Size (4 bytes)

424D —>

The Structure of

File Offset to Pixel Array

Reserved] Reserved2

the Bitmap Image File
(BMP)

DIB Header
BITMAPVSHEADER

Older DIB Headers can be substituted

DIB Header Size

’ For the BITMAPVSHEADER

Image Width (w)

Image Height (h)

Planes | Bits/Pixel

Compression

Image Size

X Pixels/Meter

Y Pixels/Meter

Colors in Color Table

Important Color Count

Red Channel Bitmask

Green Channel Bitmask

Blue Channel Bitmask

Color Space Type

Alpha Channel Bitmask

Color Space Endpoints

Gamma for Red Channel

) Note: The size of

Gamma for Green Channel

Gamma for Blue Channel

Color Space Endpoints is 36 Bytes

Intent

ICC Profile Data

ICC Profile Size

Reserved

Color Table
(semi-optional)

. Note: The presence of the Color Table

Color Definition (index 0
Color Definition (index 1
Color Definition (index 2)

is mandatory when Bits/Pixel <8

Note: The size of Color Table Entries
<———1is 3 Bytes if BITMAPCOREHEADER

Color Definition (index n)

GAP2
(Optional)

is substituted for BITMAPVSHEADER

Pad row size to a multiple of 4 Bytes

Image Data v
Pixel Array [x,y]
Pixel[0.h-1] | Pixel[Lh-1] | Pixel[2h-1] | [ Pixel[w-Lh-1] | Padding
Pixel[0,h2] | Pixel[Lh2] | Pixel[2h2] | [ Pixel[w-1.h-2] | Padding
Pixel[0.9 Pixel[1.0 Pixel[2.0 Pixel[w-1.0 Padding
Pixel[0,8 Pixel[1,8 Pixel[2,8 Pixel[w-1,8 Padding
Pixel[0,7 Pixel[1,7 Pixel[2,7 Pixel[w-1,7 Padding
Pixel[0,6 Pixel[1,6 Pixel[2,6 Pixel[w-1,6 Padding
Pixel[0,5 Pixel[1,5 Pixel[2,5 Pixel[w-1,5 Padding
Pixel[0.4 Pixel[ 1,4 Pixel[2,4 . Pixel[w-1,4 Padding
Pixel[0,3 Pixel[1,3 Pixel[2,3 Pixel[w-1,3 Padding
Pixel[0,2 Pixel[1,2 Pixel[2,2 Pixel[w-1,2 Padding
Pixel[0, Pixel[1,1 Pixel[2,1 Pixel[w-1,1 Padding

GAP2
(Optional)

ICC Color Profile (optional
Embedded, variable size
ICC Color Profile Data

(or path to a linked file

Note: The ICC Color Profile may be present
only when BITMAPV5SHEADER is used.

(This diagram wrongly suggests that the size of
Color Profile must be a multiple of 4 Bytes.
It is drawn in that manner only to save vertical Space)

containing
ICC Color Profile Data)
Lol 1 [2T[3T]

Fig. 9.1 The structure of the bitmap image file [1]

213



214 9 File Carving

0000000:'424d|3804 0400 0000 0000 3604 0000 2800 BM8....... 6...(.
0000010: 0000 0002 0000 0002 0000 0100 0800 0000 ....veevrennnnns
0000020: 0000 0000 0000 120b 0000 120b 0000 0000 ......cvevennnns
0000030: 0000 0000 0OOO OOOOC O0OOO 0101 0100 0202 ...cicenccnnnans
0000040: 0200 0303 0300 0404 0400 0505 0500 0606 .....ccvevencnns
0000050: 0600 0707 0700 0808 0800 0909 0900 Dala ....ceceecnnnens
0000060: 0a00 ObOb 0b00 OcOc 0c00 0d0d 0400 Oele ........cveuvun-
0000070: 0e00 OfOf O£f00 1010 1000 1111 1100 1212 ......ccvncnneans
0000080: 1200 1313 1300 1414 1400 1515 1500 1616 ....vevcussvssns
0000090: 1600 1717 1700 1818 1800 1919 1900 lala ....cecencaccnns
00000a0: 1lal0 1blb 1b00 lclc 1c00 1dld 1d00 lele ......-c:ecesss=-
00000b0: 1e00 1f1f 1£00 2020 2000 2121 2100 2222 ...... w L, ST
00000c0: 2200 2323 2300 2424 2400 2525 2500 2626 ".###.$55.%%%.&¢&
00000d0: 2600 2727 2700 2828 2800 2929 2900 2a2a &.""'.(((.))).**
00000e0: 2a00 2b2b 2b00 2c2c 2c00 2d2d 2d00 2e2e *.+++.,,,.-——...
00000£f0: 2e00 2f2f 2£f00 3030 3000 3131 3100 3232 ..///.000.111.22
0000100: 3200 3333 3300 3434 3400 3535 3500 3636 2.333.444.555.66
0000110: 3600 3737 3700 3838 3800 3939 3900 3a3a 6.777.888.999.::
0000120: 3a00 3b3b 3b00 3c3c 3c00 3d3d 3d00 3e3e :.;;;.<<<L.===,>>
0000130: 3e00 3£3f 3f00 4040 4000 4141 4100 4242 >.7?7??.@E@E.AAA.BB
0000140: 4200 4343 4300 4444 4400 4545 4500 4646 B.CCC.DDD.EEE.FF
0000150: 4600 4747 4700 4848 4800 4949 4900 4ad4a F.GGG.HHH.III.JJ
0000160: 4a00 4bdb 4b00 4cd4c 4c00 4d4d 4d00 4ede J.KKK.LLL.MMM.NN
0000170: 4e00 4f4f 4f00 5050 5000 5151 5100 5252 N.0OO.PPP.QQQ.RR
0000180: 5200 5353 5300 5454 5400 5555 5500 5656 R.SSS.TTT.UUU.VV
0000190: 5600 5757 5700 5858 5800 5959 5900 5aSa V.WWW.XXX.YYY.ZZ
00001a0: 5a00 5b5b 5b00 5c5c 5c00 5d5d 5d00 5eS5e Z.[[[.\\\.11].""
00001b0: 5e00 S5f£5f 5f00 6060 6000 &1l6l 6100 6262 ~._ . " ".aaa.bb
00001cO: 6200 6363 6300 6464 6400 6565 6500 6666 b.ccc.ddd.eee.ff
00001d0: 6600 6767 6700 6868 6800 6969 €900 6a6a f.ggg.hhh.iii.jj
00001e0: 6a00 6b6b 6b00 6céc 6c00 6déd 6d00 6ebe j.kkk.lll.mmm.nn
00001f0: 6e00 6f6f 6£00 7070 7000 7171 7100 7272 n.ooco.ppp.dqddq.rr

Fig. 9.2 Bitmap image file Dump Data (the first 512 bytes)

Header Footer

File contents

Fig. 9.3 Header/footer carving

Foremost [14] works by first creating a configuration file which contains file header/
footer information of certain file format. It then tries to match each of the headers
with a corresponding footer. Unfortunately this software will repeatedly search
through data that has previously been matched, increasing the length of time a few
search can take. Richard and Roussev proposed to fix this performance issue by
creating a high performance multiple file systems carver [11]. Foremost spent much
of its time reading and writing to the hard drive; often the slowest piece in a
computer system. The improved file carver, Scalpel [15], first indexes all headers
and footers, then looks for potential matches from within that index which is stored
in memory; a much faster method than repeatedly searching the hard drive. Addi-
tionally, the software also contains improved memory-to-memory copy operations,



9.1 Principles of File Carving 215

as well as faster byte writing output. These improvements made Scalpel a much
more efficient file carving tool. These two tools, however, make no effort to validate
the recovered data, so false positive header/footer matches result in corrupt file
recoveries. Especially in a highly fragmented disk these files contain gibberish at
the end, may be incomplete or not viewable in the target program, thus requiring
additional manual intervention by the investigator to remove the incorrect data
blocks.

Due to the poor performance of header/footer carvers and the lower success rate
for file recovery in less than ideal conditions, utilities for searching the dataset for
specific file signatures were built up. Investigators looking for specific files (e.g. in
cases of intellectual property theft) could load a source file into the carver and then
search the dataset for binary patterns that are similar or the same to the source file.
Expert users could create custom hexadecimal signatures (e.g. for files types
unknown to the carver) to search for and manually stitch data blocks together.

Many of these header/footer carvers are still in use today and have enjoyed wide
commercial success. The most popular among them is EnCase by Guidance Soft-
ware, which is widely used by law enforcement agencies as well as corporations for a
wide variety of forensic investigations [5]. EnCase was successfully used by the FBI
in investigations of Enron and WorldCom and boasts a robust range of carving
targets on a wide variety of platforms including mobile phones and TiVo boxes [6].
Other popular file carvers in this category include Scalpel, Foremost and FTK.

Except for these well-known works based on header and footer recovering, many
detailed works focusing on some specific file types have also been proposed, such as
carving the RAR file [12], the PDF file [13]. Since RAR file is the most commonly
archived file, in [12], Wei et al. designed a carving algorithm based on the informa-
tion and internal structure of the RAR. They applied mapping functions to locate the
header and footer of an RAR file, comparing the size of the file in the RAR file with
the distance between the header and footer of the RAR file or the file size to
determine whether the file is fragmented. After they applied enumeration to
reassemble the two fragments which were extracted, they implemented the CRC of
decompressed data stored in the file header to validate the integrity of RAR file
which is a good reminder for us to do the file validation after a file is extracted. In
[13], Chen et al. aimed at another widely used file type, PDF. Specifically, they
introduced an effective validation method for recovered PDF files by inspecting both
content characters and internal structure.

All the tools previously discussed are great at the recovery of contiguously stored
files, but issues arise, for example, when trying to recover files that have been split
into multiple pieces and stored in different locations across on the disk. Header/
footer carving suffers from two significant limitations which recent file carving
advances have attempted to address. First, it can only recover contiguous files,
which means that non-contiguous files cannot be recovered automatically. Unfortu-
nately, it is very often to see that a file of interest to the forensic investigator is
fragmented, for example, email archives, such as the PST or “Personal Folders” files
for Microsoft Outlook, due to frequent modification and their large sizes. Second, it
requires manual intervention often and as a result requires specially trained



216 9 File Carving

investigators to perform secondary analyses. Recent file carving techniques were
developed to address these limitations [2]. Although, most of them have been
primarily focused on recovering fragmented files, many have also worked on
reducing false positives and automating as many processes as possible in order to
ensure widespread use of the tools by novice users. Significant strides have been
made in recent years in the development of advanced file carvers due, to a large
extent to the Digital Forensic Research Workshop (DFRWS) annual digital forensics
challenges begun in 2005 [8]. In the 2006 challenge, participants were are provided
with a raw binary dataset and challenged to recover a multitude of file types
including JPG, ZIP, and Office documents stored either as fragments or in contig-
uous data blocks. Several prominent file carving algorithms like Bifragment Gap
Carving (BGC) were been developed as a direct result of a DFRWS challenge and
will be discussed next.

9.1.2 Bifragment Gap Carving (BGC)

Although it can become very difficult to recover deleted files that are fragmented, an
interesting approach has been proposed to deal with a specific data recovery scenario
where the deleted file is fragmented into two pieces. When a file is fragmented into
two pieces, one piece (also known as base fragment) contains the file header and the
other (also known as second fragment) file footer (Fig. 9.4). In [9], this was identified
as a bi-fragmented file. The new approach is called Bifragment Gap Carving (BGC).
BGC was first designed and developed by Garfinkel to solve the DFRWS 2006 file
carving challenge. It was the first algorithm successfully tested on real world datasets
and takes a vastly different approach to solving the data reassembly problem.

BGC is based on a dedicated survey. The survey from more than 300 hard drives
used on the second hand market shows that 97% of files were either contiguous or
fragmented into two parts (bi-fragmented) and 50% of recovered fragmented files are
bi-fragmented files. No matter whether or not file system structures exist, it is always
easy to recover deleted or lost contiguous file or data. In [9], Garfinkel concentrated
his efforts on developing an algorithm for bifragmented files (i.e. files fragmented
into two pieces), hence the first part of the name of the algorithm. Similar to header/
footer carving, it first uses the unique header and footer of the file to find the range of

fisectors 1@~ gap —p», frsectors

> Header
Fooler

w
o
Ud
N
-]
~

Fig. 9.4 A bi-fragmented file [15]



9.1 Principles of File Carving 217

Header Footer

f1 blocks

— — —

* Gap

____I _ :STZ____

Sr-e;-1
s; e 2-€

_ Jz blocks

e

Fragmentation point

Fig. 9.5 Gap carving problem formulated with two variables gap size g and fragmentation point e,

the file. “Gap Carving” refers to the algorithm’s technique of choosing a gap size, or
distance between data blocks then testing all possible combinations of data block
sequences using a technique called object validation to see if the candidate sequence
of blocks separated by the selected gap size produces a valid reconstructed file
[15]. If the validation failed, the gap size is incremented and the test repeated until
there are no more data blocks or the validation passes. “Gap Carving” becomes
effective because another finding obtained in the survey is that the gap between the
first fragment and the second fragment is a relatively small number of disk sectors.

Next, we formulate gap carving problem with two variables, gap size g and
fragmentation point e;, shown in Fig. 9.5. We first identifies where the file header
and footer are located. The file header, contained in block s;, is considered the
starting point of the first fragment (base fragment) and the file footer, contained in
block e,, is considered the ending point of the second fragment. A gap, “G”, of
blocks (or clusters) containing non relevant data must therefore exist between the
two pieces of a bi-fragmented file. If the size of a gap and the last cluster of the base
fragment (fragmentation point e;) are fixed, the gap is determined so it can be
removed accordingly to have a candidate recovered file. Afterwards, a test can be
put in to see whether the reconstructed file is valid, aka object validation. An initial
value of G is assigned (1 by default, which means there only exists one block not
belonging to the file) and each possible location of gaps with the same size (value) is
tested from either side of the file. This value sequentially increases until the correct
file sequence is found or the maximum possible gap value, i.e., e>-s;-1, is reached
and all possible combinations of gap sizes and fragmentation points are tried, which
means it fails to carve out the file. The maximum possible gap value appears when
both the base fragment containing the file header and the second fragment containing
the file footer contain only one data block. For example, as shown in Fig. 9.6 below,
a file F is fragmented into two pieces (fragments) separated by two data blocks not
belonging to the file. The first piece (base fragment) contains four data blocks and the
second piece (second fragment) contains two data blocks. Thus, the maximum gap
size is 6.

The above problem, which is abstracted below, can be solved by the following
brute-force algorithm which check all possible gaps, where a gap can be defined by a
fragmentation point e¢; and a gap size g.



218 9 File Carving

Fig. 9.6 Example of
bi-fragmented file

D data block occupied by the file F

I:l data block not belonging to the file F

Problem: Given a deleted bi-fragmented file, where base fragment extends from
blocks s; to e; and the second fragment extends from s to e,, return the recovered
deleted file. Note that the block of address s; containing a file header and another
block of address e, containing the corresponding footer, which are known.

Inputs: Block addresses s; and e;

Outputs: Recovered deleted file or failed.

Algorithm: Checking all the possibilities for gap size G and fragmentation point
e; (Brute Force) for finding the correct gap size and fragmentation point

1. Set initial gap size Gj; to 1.
2. Calculate the maximum gap size Gp,x=€5-51-1
3. For each gap size G from G to Gax,

(a) Remove G blocks at each middle location between two blocks s; and e,, and
reassemble the rest of data blocks between the file header and the file footer as
a candidate recovered file;

(b) Verify whether the candidate recovered file is a valid file. If so, return the file
as the recovered file.

4. Return “failed”.

Generally speaking, BGC is a two-part process—(a) selecting a candidate
sequence of blocks; and (b) validating or decoding the sequence to ensure that it
follows the structured rules for its file type.

9.1.2.1 Selecting a Candidate Sequence of Blocks

The first run of BGC tries to find all contiguous files, i.e. files that are not
fragmented. This is achieved by searching for file headers and file footers in the
binary dataset, then merging all the blocks in between and attempting to validate this
candidate sequence of blocks. If validation is successful, the file is assumed to be
successfully carved and its data blocks are removed from further consideration. The
process is repeated until all contiguous files are recovered. Where the validator fails,
the file is assumed to be fragmented and the data blocks will be left for more an
in-depth reconstruction using gap carving.

BGC attempts to carve files by determining the gap between two fragments,
including its size and location. Knowing where a file starts and ends provides a
maximum gap and a starting point. In gap carving, an initial gap size of g (e.g., a gap



9.1 Principles of File Carving 219

of 1 block) is chosen, then starting with the base fragments of 1 block i.e. data blocks
containing the file headers a candidate sequence of blocks chosen to be combined
with the second fragment beginning with a block that is g distance from the last
block in the base fragment [15]. In other words, g blocks in the middle location
between file header and file footer are considered not part of the file and then
eliminated. The left data blocks are then pieced together as a candidate recovered
file. The gap moves between file header and file footer through the increase of the
size of base fragment to see if two fragments can be reassembled properly. At each
stage the candidate sequence of blocks is validated by object validation. If validation
is successful, the candidate sequence is saved as the recovered file. If the validation
fails, the gap size is incremented and the test is repeated to find the end of base
fragment, aka fragmentation point, or the beginning of the second fragment until a
successful validation occurs or until the maximum value of gap has been tested.
For example, as shown in Fig. 9.7, a bi-fragment file takes up three clusters and
the initial value assigned to G is 1. Step 1 begins with removing the first two clusters
right after file’s header since we assume the base fragment only has one block. The
remaining clusters would be concatenated and tested. When the test result of step 1 is
negative, the algorithm moves one cluster forward (or extends the base fragment one
block) and repeats its concatenation and testing; this would be step 2. This process
repeats until the algorithm reaches the file’s footer. At this point the value of G

File data
Header Footer
Z ]
Stepl | _ —>
=1 Step 2 :_ — J|_> Negative
St(:p 5 L___jl

G=3 Step2 I l I L

Step 3 Positive

Fig. 9.7 Using gaps to concatenate the file



220 9 File Carving

would be increased and the process would restart removing the appropriate amount
of clusters after the file’s header. In the example, when G has a value of 3, the third
step would result in a positive match, and a proper extract of the file can be made.
After the file is recovered, several object validation designs were introduced to
validate the carved file in an effort to eliminate false positives.

9.1.2.2 Object Validation

BGC object validation model uses a series of tests to validate a sequence of data
blocks to determine if it meets the file structure requirements for its assumed file
type. There are many options for validating file or data, individually or in combina-
tion increasing accuracy of file validation. Object validation begins by applying
simple and fast tests to a candidate sequence of blocks, and only proceeding with
more rigorous and slower tests if the preliminary tests are passed [15]. For example,
JPEG files all begin with the same series of hexadecimal numbers FF DE FF
followed by EO or E1 and they all end with FF D9. BGC'’s first pass of JPEG
validations therefore can eliminate the majority of candidates that do not meet this
requirement and can avoid running the expensive tests on candidates that are of other
file types.

The second round of object validation involves the use of container structures for
verifying file types. ZIP files and Microsoft Office documents for example are
container files with several internal sections with distinct predictable structures
that can be validated very quickly. In addition, some container files contain clues
about the total size of the file, thus providing additional guidance to the BGC carver.
Further, a cyclic redundancy check (CRC) code is used in many file formats for
verifying the integrity of the data. CRC is a technique for detecting errors in digital
data, as referred to as data integrity. In the CRC method, a certain number of check
bits, often called a checksum, are appended to the data or file. Whenever the data or
file has been read, we can determine whether or not the check bits agree with the
data, to ascertain with a certain degree of probability whether or not an error occurred
in storage or transmission of the entire data. For example, CRC for zip files,
Microsoft Office 2007 or 2010 file (.docx, .pptx, .xlsx), etc. Thus, we can use
CRC to validate the integrity of recovered data of these file types. The third and
final round of object validation entails the use of decompression and semantic
validation on the candidate sequence of blocks that pass the first and second round
of tests [15]. In addition, manual validation could be performed on the resulted data,
for example, viewing a recovered image to see if it is corrupt or not.

BGC has the automatic effect of reducing the number of false positives that
plagued header/footer carvers because of its object validation that provides con-
tinuing validation of file types at the time of reconstruction. The modular design of
the validator framework also allows for pluggable validators such that if an improved
version of a validator for JPEG files for example is available, it can easily be added
into the algorithm without affecting its overall methodology.



9.2 File Carving Tools 221

The drawback of BGC is its restricted use to files fragmented into at most two
pieces. As Pal et al. note in [10], modifying the BGC algorithm for files fragmented
into three or more pieces becomes exponentially more difficult. Included in the 3%
of files fragmented into more than two pieces are PST, LOG, MDB and other
frequently modified files that are very valuable to a forensic investigator, none of
which can be recovered by BGC. The false-positive rate of BGC is directly related to
the false-positive rate of its validator framework and not every type of file may be
decodable, further limiting the use of BGC to recovering only file types that can be
successfully validated. In addition, BGC cannot recover files with missing headers or
missing data blocks because these files would fail in the validator.

Although this work proposes a promising carving algorithm, it assumes having
the correct file header and footer. Obviously, it is no longer feasible if the file doesn’t
have a unique header/footer structure. In addition, in a realistic scenario, a file may
be huge and therefore, it might be time consuming to try all possible gaps. Moreover,
all aforementioned file carvers become ineffective when dealing with files that have
more than two fragments. The challenge in file carving turns out to be how to recover
the file with more than two fragments. Despite many efforts to tackle the problem of
file carving, especially carving out those files with more than two fragments, file
carving remains an open challenge but of central importance of digital investigation.

9.2 File Carving Tools

There are different carving tools available, many of them open source. Next, we will
introduce three popular file carvers.

9.2.1 Foremost

Foremost [14] was written by US Air Force special agents. It is a very popular file
carver, and works by first creating a configuration file which contains file header/
footer information of certain file format. It then recover files based on these
predefined headers and footers. Specially, it first sifts through disk looking for file
headers defined in the configuration file. Once a header is found, the search then
proceeds to look for its corresponding footer in the configuration file. Figure 9.8
shows an example of file header and footer for JPEG files in Foremost’s configura-
tion file. Note that any line that begins with a ‘# is considered a comment and
ignored. In this example, it means that Foremost is configured to recover JPEG files
in a disk image provided.

The next step is to start Foremost to recover JPEG files in DFRWS 2006
Forensics Challenge test image called “dfrws-2006-challenge.raw” [18].



222 9 File Carving

# more /usr/local/etc/foremost.conf

# GIF and JPG files (very common)

# (NOTE THESE FORMATS HAVE BUILTIN EXTRACTION FUNCTION)

# gif y 155000000 \x47\x49\x46\x38\x37\x61 \x00\x3b

# gif vy 155000000 \X47\x49\x46\x38\x39\x61 \x00\x00\x3b
jpg 'y 20000000 \xfAAxd8\xff\xe0\x00\x10 \xff\xd9
jpg 'y 20000000 \xffAxd8\xff\xe1 \xff\xd9
jpg vy 20000000 \xfA\xd8  \xff\xd9

Fig. 9.8 Foremost configuration file

output

File Edit View Go Bookmarks Help
(= t — ' |
SOpLEeE: < EHome [-U5TE \i Q search

Home

8 Documents i .

% D load i
[ Downloads ipg audit.txt

Music

[ Pictures

@ Videos

(# File System
EJI" Trash
Network

18 Browse Net...

“audit.txt” selected

Fig. 9.9 Results of Foremost examining Test Image for the DFRWS 2006 Forensics Challenge

foremost dfrws-2006-challenge.raw

After Foremost has finished, it will provide a summary what it has done and put it
along with recovered files in a subfolder named output in the directory from where
you called foremost. Figure 9.9 shows an example output folder when using
Foremost to recover JPEG files in data set from DFRWS 2006 Forensics Challenge.
The output folder created by Foremost contains two items, the “jpg” subfolder which



9.2 File Carving Tools 223

contains the recovered jpg files, and the “audit.txt” file which contains a list of all the
files recovered.

9.2.2 Scalpel

Despite the successfulness of Foremost, there are many major performance flaws
that hamper its functionality. This is caused by the factors that Foremost will
repeatedly search through data that has previously been matched, increasing the
length of time a few searches can take and memory usage. Scalpel was introduced by
Richard and Richard and Roussevet [11] to enhance performance and decrease
memory usage. Foremost spent much of its time reading and writing to the hard
drive, often the slowest piece in a computer system. The improved file carver,
Scalpel [15], first indexes all headers and footers, then looks for potential matches
from within that index which is stored in memory; a much faster method than
repeatedly searching the hard drive. Additionally, Scalpel also contains improved
memory-to-memory copy operations, as well as faster byte writing output. These
improvements made Scalpel a much more efficient file carving tool. Nevertheless,
Scalpel keeps the same functionalities as Foremost since Scalpel has been derived
from Foremost and reads the same configuration file.

9.2.3 TestDisk and Photorec

TestDisk [16] is an open source, multi-platform, data recovery tool developed by the
cgsecurity team. It is capable of running on multiple operating systems such as:

e DOS

¢ Windows XP, 7 and 10

¢ Linux

* FreeBSD, NetBSD, OpenBSD
¢ SunOS

¢ MacOSx.

Unlike file carvers specializing in the recovery of deleted or lost files, TestDisk
has many useful features when it comes to data recovery. They are as follows:

 Fix Partition table

* Recover deleted partition

» Recover Fat32 boot sector from backup

¢ Rebuild Fat12/16/32 boot sector

¢ Fix Fat Tables

* Rebuild NTFS boot sector

* Recover NTFS boot sector from its backup



224 9 File Carving

e Fix MFT using MFT mirror

* Locate EXT2/3/4 backup superblock

* Undelete files from Fat, exFAT, NTFS and ext2 file systems

* Copy files from deleted FAT, exFAT, NTFS and EXT2/3/4 partitions.

There is another open source application that is offered by cgsecurity, which
focuses only on file recovery. The application is called PhotoRec [17], which
essentially ignores the file system and goes directly for the data. This application
is quite similar to TestDisk since it is also used for data recovery. The main
difference between the two is that PhotoRec is strictly only for files while TestDisk
offers many other options in which the users can choose from. Also, PhotoRec
stands for Photo Recovery, and was originally designed to recover lost pictures or
lost files from digital camera memory. PhotoRec is superior when recovering deleted
or lost photos and pictures. Actually, PhotoRec is a companion program to TestDisk,
and provides file recovery functionality for TestDisk. However, TestDisk supports
more data recovery functions, such as deleted or lost partition recovery.

Next, let’s go through the TestDisk application and see how it works. Let’s
consider a scenario where you have to recover data from a USB drive where you
accidentally deleted the partition. The USB drive originally had one partition
formatted with NTFS file system, shown below (Fig. 9.10).

First, make an image of USB drive using dcfldd.

In order to create an image of a USB flash drive, you need to find out the device
name for the USB drive you inserted into your Forensics workstation, which is a
Linux VM. In Linux, Linux disks and partition names have their own basic naming
scheme, for example, the master disk on IDE primary controller is named /dev/hda
and the slave disk on IDE primary controller is named /dev/hdb; and the first SCSI
disk (SCSI ID address-wise) is named /dev/sda.

Drive Tools

Home  Share  View Manage ~ 0

D » ThisPC » ITFORENSICS (D:) » photos

= Xisodong-Linjpg

€ * 1w ThisPC » ITFORENSICS (D) v & | | Search ITFORENSICS (I »
— A Name Photo folder  pate medified Type

Il Desktop phetos S/2T/2018 253 PM File folder
& Downloads papers S/2T/2018 %55 PM
% Recent places Research paper folder
0& Homegroup
» This PC » ITFORENSICS (D:) » papers
& This PC ' Date modified Type
Ig Desktop L a26-scrivens.pdf

v
Pt < o
5 L p2a2-tu.paf

Fig. 9.10 Test USB drive with one partition formatted as NTES file system, which contains two
folders, one photos folder and another research papers folder



9.2 File Carving Tools 225

Also, after you plug in your USB drive to your USB port, your USB drive is
connected to your host computer first instead of your Forensics workstation. For
VMWare, each removable device can be connected either to the host or to one virtual
machine. Therefore, you have to go to VM > Removable Device and choose your
device and then connect the device to your virtual machine. Afterwards, your virtual
machine will add new block device into /dev/ directory. To find out what name your
USB block device file have you can run fdisk command:

fdisk -1

In this example, shown in Fig. 9.11, the USB drive that will be imaged is located
at /dev/sdb, and the logical volume that the image will be saved on is /dev/mapper/
vg-lv_root.

[rocot@localhost student]# fdisk -1 (o)

Disk /dev/sda: 32.2 GB, 32212254720 bytes

255 heads, 63 sectors/track, 3916 cylinders, total 62914560 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000bl694

Device Boot Start End Blocks Id System
/dev/sdal * 2048 1026047 512000 83 Linux
/dev/sda2 1026048 41943039 2045849¢ 8e Linux LVM
/dev/sda3 41943040 62914559 10485760 Be Linux LVM

Disk /dev/mapper/vg-lv_swap: 2113 MB, 2113929216 bytes

255 heads, 63 sectors/track, 257 cylinders, total 4128768 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Diskl!devfmapperfvg-lv rootl 18.8 GB, 18824036352 bytes

255 heads, 63 sectors/track, 2288 cylinders, total 36765696 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Diskl/dev/sdb: 127 MB] 127139840 bytes

4 heads, 6l sectors/track, 1017 cylinders, total 248320 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System
[root@localhost student]d J] e
=

Fig. 9.11 List of disks/partitions of forensics workstation after test USB drive is inserted



226 9 File Carving

Note that when imaging the USB drive, every precaution must be used to prevent
data on USB drive from being corrupted or overwritten, for example, using use write
blocker.

The next step is to use the dcfldd utility to create an image copy of the USB drive.

dcfldd if=/dev/sdb of=/home/student/datatraveller.img hash=md5 hashlog=/
home/student/hashlog.txt

where /dev/sdb is the device name of the USB drive to be imaged, “datatraveller.
img” is the name of the file used to store the USB drive image and located within a
folder of /home/student. Also, the hash option specifies what kind of cryptographic
hash function(s) will be applied to the acquired data, and in our example, the hash
function used is MDS5. The hashlog option specifies where the output of the hashing
should be stored; in our example, it will be saved into a text file in the same directory
as the disk image.

After imaging is done, you can check the mdS hash value by looking at the file
“hashlog.txt”.

cat/home/student/hashlog.txt
Total (md5): 91c896ec3c836bf82424fdf7e8134332

It can be verified by computing the MDS5 hash value of the USB drive image using
the following command

mdSsum datatraveller.img
91c896ec3c836bf82424fdf7e8134332 datatraveller.img

It can be evident that the hash value in the file hashlog.txt is the same as the one
calculated above.

Second, launch TestDisk by loading the USB drive image acquired above using
the following command.

testdisk datatraveller.img



9.2 File Carving Tools 227

(use then pr

|>Disk datatraveller.img — 127 MB / 121 M

* Select the “Proceed” option and Press ENTER to continue.

* Select the partition table type to continue. The option chosen in this example is
Intel/PC partition. Note that it is very important to choose the correct partition
type. If the user selects the wrong type then the data recovery process will most
likely fail.



228 9 File Carving

e This is the main menu of TestDisk, which provides the user with the various
options. Select the “Analyze” option. It allows for the analysis of the current
partition structure and search for lost partitions, which is the objective of this
example.

I>[Quick Search]

* No partitions are showing. Select the “Quick Search” option and press ENETR to
continue.



9.2 File Carving Tools 229

* Confirm whether TestDisk search for the partition created by Vista or later. Press
Y if yes/not sure. N otherwise.

* After the scan is over, all the partitions found by “Quick Search” will be
displayed. Also, if any detected partition is not corrupted, it will be displayed
in green. It can be observed that the deleted partition is detected by TestDisk.
Next, we will restore deleted partition and press ENETR to continue.



230 9 File Carving

>[ Write ]

* Select the “Write” option, and Press ENTER to continue.

* Confirm write partition table to the disk image by pressing Y

Now, we have restored the deleted partition in the USB driver image.
Finally, restore the image with fixed partition onto USB drive.

dcfldd if=/home/student/datatraveller.img of=/dev/sdb

Once it is done, the deleted partition is restored and you are able to access all your
files on your USB drive again.



9.3 Practical Exercise 231

Review Questions

1.
2.
3.

What is file carving?

What is Header/footer carving?

What is the main difference between file carving and file recovery techniques
using file system information about files and directories?

. Bifragment Gap Carving (BGC) is a promising algorithm for effectively carving

out a file from unallocated disk spaces. Explain how BGC works and discuss the
limitations and drawbacks of BGC. If necessary, give an example and/or a
diagram to help in your explanation.

. Consider a deleted bi-fragmented file containing the following data blocks:

File data

(/A

Header |1/ /| Feow

(a) If you use BGC to recover the above file with the initial gap size of 2, what is
the number of tries needed to successfully recover the deleted file?

(b) Suppose that the second block of the file is damaged or overwritten. As a
result, BGC has to try all possible gaps before it exists but fails to recover the
file, since file validation should never succeed. What is the total number of
tries before BGC exits? Assume the initial gap size is 1.

. What is object validation? Give one example of object validation techniques and

explain how it works.

9.3 Practical Exercise

The objective of this exercise is practise file carving skills on some publically
available dataset.

9.3.1 Setting Up Practical Exercise Environment

1.

Download a compressed Digital Forensics Tool Testing Image [19], “11-carve-
fat.zip”, and extract it for a “raw” partition image of a FAT32 file system, “11-
carve-fat.dd”, and upload it to Forensics Workstation. To download it, go to
http://dftt.sourceforge.net/test1 1/index.html.


http://dftt.sourceforge.net/test11/index.html

232 9 File Carving

2. Download and Install Scalpel on Forensics Workstation. To download Scalpel,
go to https://github.com/sleuthkit/scalpel. Please see Appendix A in Chap. 3 for
detailed instructions on how to install software in Linux.

After properly installing Scalpel and testing image, you can proceed to complete the
following exercises.

9.3.2 Exercises

Part A—Evidence Hashing

Use mdSsum to calculate the hash value of the raw partition image of a FAT32 file
system (“11-carve-fat.dd”) and answer the following question:

Q1. What is the MD5 hash value of the raw partition image used in the exercise?

Part B—Data Carving with Scalpel

Configure Scalpel to carve out PDF and JPG graphic files from the image (“11-
carve-fat.dd”) and answer the following questions:

Q2. How many PDF files are recovered by Scalpel?

Q3. How many JPG files are recovered by Scalpel?

Q4. Is a file with a MDS5 hash of “cOde7a481fddfa03b764fa4663dc6826” one of

recovered JPG files? (Yes/No)
Q5. Is a file with a MDS5 hash of “80dc29617978b0741fa2ad3e452a6f9d” one of
recovered PDF files? (Yes/No)

Q6. There is a PDF file in the image (“11-carve-fat.dd”) called “lin_1.2.pdf” whose
md5 hash value is “e026ec863410725balf5765a1874800d” in hex. What is the
size of the file “lin_1.2.pdf”?

References

—

. BMP file format. https://en.wikipedia.org/wiki/BMP_file_format

2. A. Pal and N. Memon. The evolution of file carving. IEEE Signal Processing Magazine, vol.
26, no. 2, pp. 59-71, March 2009

3. Z. Lei. Forensic analysis of unallocated space. Master’s Thesis, University of Ontario Institute
of Technology, 2011

4. C. Beek. Introduction to File Carving. McAfee White Paper. Available at: http://www.mcafee.
com/ca/resources/white-papers/foundstone/wp-intro-to-file-carving.pdf

5. Guidance Software. Investigations of individuals. Available: http://www.guidancesoftware.
com/computer-forensics-ediscovery-individual-investigation.htm

6. X. Lin, C. Zhang, T. Dule. On Achieving Encrypted File Recovery. In: X. Lai, D. Gu, B. Jin,
Y. Wang, H. Li (eds) Forensics in Telecommunications, Information, and Multimedia.
e-Forensics 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol 56. Springer, Berlin, Heidelberg

7. File carving - forensics wiki. Available: http://www .forensicswiki.org/wiki/File_Carving

8. Digital Forensics Research Workshop 2005. http://old.dfrws.org/2005/index.shtml


https://github.com/sleuthkit/scalpel
https://en.wikipedia.org/wiki/BMP_file_format
http://www.mcafee.com/ca/resources/white-papers/foundstone/wp-intro-to-file-carving.pdf
http://www.mcafee.com/ca/resources/white-papers/foundstone/wp-intro-to-file-carving.pdf
http://www.guidancesoftware.com/computer-forensics-ediscovery-individual-investigation.htm
http://www.guidancesoftware.com/computer-forensics-ediscovery-individual-investigation.htm
http://www.forensicswiki.org/wiki/File_Carving
http://old.dfrws.org/2005/index.shtml

References 233

9.

10.

11.

12.

13.

14.
15.
16.

17.

18.
19.

S. L. Garfinkel. Carving contiguous and fragmented files with fast object validation. Digital
Investigation, vol. 4, pp. 2-12, 2007

A. Pal, H. T. Sencar and N. Memon. Detecting file fragmentation point using sequential
hypothesis testing. Digital Investigation, vol. 5, pp. S2-S13, 2008

G. Richard and V. Roussev. Scalpel: A Frugal, High Performance File Carver. DFRWS 2005
USA

Y. Wei, N. Zheng, and M. Xu. “An Automatic Carving Method for RAR File Based on Content
and Structure”, Second International Conference on Information Technology and Computer
Science, 2010, pp. 68-72

M. Chen, N. Zheng, X. Xu, Y.J. Lou, and X. Wang. “Validation Algorithms Based on Content
Characters and Internal Structure: The PDF File Carving Method”, International Symposium on
Information Science and Engineering, Dec. 2008, vol. 1, pp. 168-172

Foremost (http://foremost.sourceforge.net/)

Scalpel. https://github.com/sleuthkit/scalpel

“TestDisk - Partition Recovery and File Undelete”, Cgsecurity.org, 2017. [Online]. Available:
http://www.cgsecurity.org/wiki/TestDisk. [Accessed: 06- Apr- 2017]

“PhotoRec - Digital Picture and File Recovery”, Cgsecurity.org, 2017. [Online]. Available:
http://www.cgsecurity.org/wiki/PhotoRec#Operating_systems. [Accessed: 06- Apr- 2017]
DFRWS 2006 Challenge: http://old.dfrws.org/2006/challenge/submission.shtml

Digital Forensics Tool Testing Images. http://dftt.sourceforge.net/


http://foremost.sourceforge.net/
https://github.com/sleuthkit/scalpel
http://cgsecurity.org
http://www.cgsecurity.org/wiki/TestDisk
http://cgsecurity.org
http://www.cgsecurity.org/wiki/PhotoRec#Operating_systems
http://old.dfrws.org/2006/challenge/submission.shtml
http://dftt.sourceforge.net/

Chapter 10 )
File Signature Searching Forensics s

Learning Objectives
The objectives of this chapter are to:

* Understand concept of file signature
* Understand procedures and forensic technique of file signature searching
* Know how to use open-source tools for file signature searching forensics

As a forensics technique that searches for known files or documents, file signature
searching technique is widely used to find evidence of the theft of confidential
company files (documents) or detect the existence of malware by comparing
unknown software (program) under investigation with a repository of known
instances. In this chapter, we will study procedures and forensic technique of file
signature searching. Specifically, you will learn how to generate hashes from a file,
to create index on the hash database (Ignored databased and Alert databased), and to
search for file with specific hash value. Also, you will become familiar with open-
source tools for file signature searching forensics, including hfind, mdSsum, and
shalsum.

10.1 Introduction

File signature search is a common technique used in forensic analysis to identify or
verify existence of a known file in a disk used by a suspect. In doing so, we assume
that we have a large number of files in custody, either good (trustworthy ones) or
bad (inappropriate or harmful ones). Then, databases are created to include the hash
values of all the known files, also known as hash databases. Afterwards, the forensic
analyst would use the hash function (e.g. MDS5 hash function) to generate a hash

© Springer Nature Switzerland AG 2018 235
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_10&domain=pdf

236 10 File Signature Searching Forensics

value (or file signature) of the file and compare it to a hash database. A good hash
database to reference is NIST National Software Reference Library (NSRL) [1],
which contains hashes of commercial software packages and files found in operating
systems and software distributions. These files are known to be good since they came
from trusted sources and are typically found on authorized systems. The analyst
would calculate the MDS5 hash of the given file and search the md5 hash databases. If
there is a hit, it means the given file is known to investigator.

Note that in computing, file signature also refers to data used to identify the file
type of a file, particularly file headers (the beginning bytes of the file content) or file
footer (the ending bytes of the file content) [2]. For example, a file beginning with
“25 50 44 46” (in hex) means a pdf file, and the magic number “25 50 44 46” (or file
header here) is known as file signature of pdf files. It can be distinguished from the
concept of file signature used in the book, which refers to a magic number (or the
hash value of the file), uniquely identifying the file itself instead of its file type.

In the industry, the process of comparing entries against approval registry is
called “whitelisting.” “Blacklisting” is the opposite of whitelisting, where the prac-
tices is to identify entries from untrusted sources. In this chapter, we dub the whitelist
of hashes Ignored database and blacklist of hashes Alert database, respectfully.
Instances that would flag the file suspicious are malicious software (Malware) or
inappropriate content.

A hash value or simply the hash, also known as message digest or simply the
digest, is a usually shorter fixed-length value that is the output of a cryptographic
hash function. For example, the MDS5 algorithm [3], a widely used hash function,
generates hash values which are only 128-bit long. It can be used to detect data
modifications and tampering or uniquely identify data. A cryptographically secure
hash function A(x) must satisfy the following properties:

1. It takes arbitrary length of data and produces a fixed-length output;

2. Given a message m of arbitrary length, there is a computationally efficient way to
calculate i(m) but it’s infeasible to go the other way. It is also known as one-way
or pre-image resistance property;

3. Given a hash value y, it is computationally infeasible to find a message m with
h(m) = y. It is also known as second pre-image resistant or weak collision
resistance property;

4. Tt is computationally infeasible to find any pair of messages m; and m;, such that
h(m;) = h(my). It is also known as collision resistant or strong collision resistance

property;

10.2 File Signature Search Process

It is very common for investigators to look for some suspicious file in suspected
computer, so a straightforward method to look for a file is to go through and analyze
each data bit and bit, but it would be too time consuming and inefficient. Therefore,
the best practice is to automate the process by prebuilding a database of file



10.2 File Signature Search Process 237

Alert Database

Search for known Flag these
files based their matched files
signatures in the
suspect disk o
File Signature Search [ bad
. - " Calculate the hashes of :
2 the files of interest ! .
il . “os— hits
L
e
Lo Good
Hard disk image File Signature Search l

Ignore Database

Ignore these
matched files

Fig. 10.1 File signature search process overview

signatures (hashes of files) and comparing them with the hash of the target file. This
is also called File Signature Search. The Sleuth Kit (TSK) provides a tool called
“hfind”, which can be used to perform file signature search and will be detailed in the
next section.

The file signature search process typically follows Fig. 10.1 workflow, where an
analyst acquires a questionable amount of files. This could be hundreds of thousands
of files, and going through manually in order to deduce whether it’s good or bad
would be impossible. Instead, we can simply calculate the hash values of these files
being investigated. Further, we assume that we have already created two hash
databases, one containing the hash values of all the known good files, known as
Ignore Database, and another including the hash values of all the known bad files,
known as Alert Database. Then, we search both Ignore Database and Alert
Database for the hash values we calculated for the files being investigated. If the
search finds a hit in the Alert Database, there is a known bad file among the files
under investigation. In other words, more attentions must be paid and further
investigation is required. Nevertheless, if there is a hit in the Ignore Database, it
means a good file which has been found so we simply ignore it. As a result, we can
quickly filter many known files out of a large amount number of files being
investigated. Benefit of using hash is it is deliberately difficult to reconstruct two
different messages having the same hash (as shown in Fig. 10.2 when a character is
changed in the input) but is very easy to compute a block of data at any size into a
fixed length output or hash; thus, enable fast database lookup by detecting duplicated
record. Another big advantage is that we don’t have to sift through millions of files
found on the hard disk used by a suspect. Instead, we can quickly narrow down to a



238 10 File Signature Searching Forensics

Input Digest

The red fox cryptographic

jumps r —p hash || rps 7558 7851 4r32 Dice
the blue dog function 76B1 79A9 ODR4 AEFE 4819
The red fox cryptographic

jumps devr —» hash || FoD3 7eDB sAR2 cePr o1sE
the blue dog function D401 COA9 7D9A 46AF FBAS
The f'e CWPF\OQ?phiC 8ACA D682 D588 4C75 4BF4
jumps — as —

the blue dog function 1799 D88 BCF8 92B9 GA6C

Fig. 10.2 Hash generated is never the same

small number of files which are still unknown to us. This is because there are many
system files and the ones resulted from software installations, and these files can be
quickly identified and then excluded or ignored. By doing so, our precious time and
effort can be put to investigate these unknown files.

There are two common hash functions used to generate hashes (or signatures) of
files in forensic investigation, which are md5 and sha-1. The investigator would
create two hash databases (common source is from NIST National Software Refer-
ence Library), one with repository of known software, file profile, and file signature
dubbed “Ignore Database”; and a second one with repository of known bad
software, file profile, and file signature dubbed “Alert Database”. The analyst
would then create a hash value for the suspicious file being investigated, and traverse
through the hash databases. If there is a hit from Ignore database, then analyst
known file is good. If there is a hit from Alert database, then analyst know file is bad
and further investigation and analysis is required on the suspect’s hard drive.

10.3 File Signature Search Using hfind

Hfind is a TSK tool that is used to look up hash values in a hash database using a
binary search algorithm. This allows one to easily create a hash database and identify
if a file is known or not. It can work with the NIST National Software Reference
Library (NSRL) and the output of “mdSsum”, which is the utility come with most
Linux distributions and used to compute and check MD5 hash values of a file.

Next, we explain how file signature search works, using open source tools, hfind
and mdSsum.



10.3 File Signature Search Using hfind 239
10.3.1 Create a Hash Database Using md5sum

On your Windows machine, start PuTTY and connect to your forensic workstation
(virtual machine). Suppose that all the files under /usr/local/bin (not including files in
the subfolders) are good, create a hash database using the following command.

mdSsum /ust/local/bin/* > Ignore.db

where “Ignore.db” is the created hash database file to be considered “Ignore
Database” in our example.

Note that mdSsum may complain by saying an entity in specified folder is a
directory and you can simply ignore these warnings.

Figure 10.3 shows part of the file from line to line, each line containing a
32-hex-character MDS5 hash and its corresponding file of which the hash is
calculated.

15410d750a34bbee70d2685e8a8b2417 /usr/local/bin/blkcalc G
2dcd3a59%ae2ad2ddeaef5df7ec8b86éd4 fusr/local/bin/blkcat
2981831cB81d2d41dce39ee96645c02df /usr/local/bin/blkls
9870a2ldéaldSa36fa6d4cd2d827a694e Jusr/local/bin/blkstat
8009£a0098378e3b06b974£1d£f671216 /usr/local/bin/dcfldd
22ec728326458a33deB8b69391beblced /usr/local/bin/disk_sreset
71d85877838a93eb5836dadcdbadcd44c /usr/local/bin/disk_stat
325cTcdef86£f£f64c01943bd0422f915e /usr/local/bin/ffind
4edcblb46873d91b8101£f£fc82227d776 /usr/local/bin/fls
cfl0e3caBbc94le38e3aacéb87de3blc fusr/local/bin/fsstat
9af5cbld27b2062050ece5db31lca32f2 /usr/local/bin/hfind
2a4a3d45025976356a770£82239d6c60 /usr/local/bin/icat
855eb0£f0c8bl15d0efchb480d16072afc3 /usr/local/bin/ifind
69930dab764f187e0£f56a8380d36d34¢c /usr/local/bin/fils
7cc75d01e0c6683ec3287af4c52734c8 /usr/local/bin/img_cat
2f4315e2b2ac065010759£4139c9%de35 /usr/local/bin/img stat
5e2a20b0552012elac36d41leTbf77£04 /usr/local/bin/istat
0239351elab22702022a3ee3731c% aa /usr/local/bin/jcat
c5d5f7ebfedc6clas07821fa301lbefde  /usr/local/bin/jls
1bbfee99%bb7a7f468c2c00abf3a50592 fusr/local/bin/mactime
de9c2bfelc62efef93234db93a755674 /usr/local/bin/mmcat
3268a0979%bad7e6459c9c9c808b2f% b fusr/local/bin/mmls
ac6dl726a749713156c0d5435£13£253 /usr/local/bin/mmstat
17338ffaa3e3e07c7bb045c76ab3c62e /usr/local/bin/nc
17338ffaa3e3e07c7bb045c76ab3c62e /usr/local/bin/netcat
30d2322f59b76d17a7£fc96aa5822b598 /usr/local/bin/pv
3c76de3c3cB7e759cd6299ceb5ad9dc9e  /usr/local/bin/sigfind
3aa77cb8b05e2af54call40c5222cal3 /usr/local/bin/sorter
021045503881d8728£79dba7£70030e4 /usr/local/bin/srch_strings
[root@localhost fssfl# [ S
E—

Fig. 10.3 Hash database



240 10 File Signature Searching Forensics
10.3.2 Create an MD5 Index File for Hash Database

Next we use a TSK tool, hfind, which uses a binary search algorithm to lookup
hashes in a hash database, for example NIST NSRL, “Ignore.db” created above.
Thus, an index must be created to do faster searching through the database, which is
important if using large databases. The following command will create a MDS5 index
using the newly created MD5 hash database.

hfind -i md5sum Ignore.db
Index Created

An index file called “Ignore.db-md5.idx” will be created and can be found in the
current folder.

Now, we can perform file signature search through the indexed database “Ignore.
db”.

10.3.3 Search Hash Database for a Given Hash Value

Suppose we have a file /home/student/abc.dat in custody and want to know whether
it is good.

First, we need to calculate the hash value of the file/home/student/abc.dat using
the following command

mdSsum /home/student/abc.dat
2fb5de8146328ac2b49e3ffa9cOce5a3 /home/student/abe.dat

where “2fb5de8146328ac2b49e3ffa9cOce5a3” is the resulted MDS hash value of
the file/home/student/abc.dat. Recall that a MD5 hash value is 128 bits (or 32
hexadecimal digits) in length.

Then, we do file signature search through the database “Ignore.db” using the
following command.

hfind Ignore.db 2fb5de8146328ac2b49e3ffa9cOce5a3
2fb5de8146328ac2b49e3ffa9cOceSa3 Hash Not Found

In the above example, we can conclude that the file/home/student/abc.dat is not a
known good file. In other words, a further investigation is needed for the file. Or, you
may see the following output from the command above.



10.4 Practice Exercise 241

hfind Ignore.db 9af5cb1d27b2062050ece5db31ca32f2
9at5¢cb1d27b2062050ece5Sdb31ca32f2 /ust/local/bin/hfind

Now it means the file under investigation is a known good file, which is the TSK
utility Afind.

Review Questions

. How long in bits is a MDS5 hash?

. Does the MD5 hash function always generate a fixed length hash?

. What is the “weak collision resistance” property of a hash function?

. What does NSRL stand for?

. Why not simply use grep to search for file signature from a list of hashes of all
known files? Instead, before any file signature search can be performed, we have
to do some preparation by creating mdSsum hash databases and as well creating
the index on the databases.

6. True or False (no need to explain)

[ O I S

(a) Hash functions use secret keys.
(b) Message integrity means that the data must arrive at the receiver exactly
as sent.

10.4 Practice Exercise

The objective of this exercise is to practise file signature searching technique using
hfind and md5sum.

10.4.1 Setting Up the Exercise Environment

* Login to your Forensics workstation

* Create a shell script provided in the appendix and run the shell script to generate
test files for file hash databases, one set of files for Ignore Database and another
set for Alert Database.

10.4.2 Exercises

Part A: Create Ignore Database and Alert Database

Create two mdSsum hash databases, one for good files (or Ignore Database) and
another for bad files (or Alert Database) by using the mdSsum tool and as well create
the index on the databases by using the hfind tool.



242 10 File Signature Searching Forensics

Q1. Write down the command used to create the mdS5sum hash database
(or Ignore Database) named “Ignore.db”.

Q2. Writing down your command(s) issued to create the index on Ignore
Database.

Q3. Write down the command used to create the md5sum hash database (or Alert
Database) named “Alert.db”.

Q4. Writing down your command(s) issued to create the index on Alert
Database.

Part B: Searching for File Signatures
Search for the following file signatures using hfind and answer the following
questions. Note that all the file signatures (or the hash values of the files) are in
hexadecimal.

QS. Is a file with a MDS5 hash of “cOde7a481fddfa03b764fa4663dc6826” a good
one (or contained in the Ignore Database)?

Q6. Is a file with a MDS5 hash of “574e321c1dfcb742849d6e2347003f41” a bad
one (or contained in the Alert Database)?

Q7. Finally, randomly choose one file you have created in the exercise, and use
md5Ssum to calculate its MDS5 hash value. Then, use hfind to search the resulted Md5
hash value against two hash databases (Ignore Database and Alert Database) you
have created. Are you able to find a match to the mdS hash of your chosen file?

(Yes/No). Please provide details on your Yes or No answer.

Appendix A: Shell Script for Generating Files for File Hash
Database

Usage

# ./fssf.sh numberOfFiles typeOfFile

where numberOfFiles means the total number of files to generate and typeOfFile
is the type of files to generate, either “0” for good or “1” for bad.

It generates a list of either good or bad files for the experimental practice in this
chapter. You must specify how many files you want to generate and what type of
files you want, including good files for Ignored database and bad files for Alert
database. The shell script can be found in the end.

For example,

Jssf.sh 100 0



Appendix A: Shell Script for Generating Files for File Hash Database 243

It means the total 100 good files will be generated and saved into a subfolder
named good (bad if specifying 1 as the type of file) of the current working folder.

#!/bin/bash
mynooffiles=$1
mytypeoffiles=§2
# Validate input arguments
# including number of arguments and the type of files to generate
if [ "$#" -1t 2 ]; then
echo "usage: ./fssf.sh numberOfFiles typeOfFile"
echo "where numberOfFiles means the total number of files to generate and typeOfFile is the type of files to generate, either 0 for
good or 1 for bad."
echo "For example,"
echo "./fssf.sh 100 0"
echo "It means the total 100 good files will be generated and saved into a subfolder named good (bad if specifying 1 as the type
of file) of the current working folder."
exit 1
elif [ "$2" -ne "0" ] && [ "$2" -ne "1" ]; then
echo "usage: ./fssf.sh numberOfFiles typeOfFile"
echo "where typeOfFile is the type of files to generate, either 0 for good or 1 for bad."
exit 1
fi
# Create subfolder for the newly created fiels to be saved into
if [ "$2" -eq "0" Jithen
if [ -d "./good" ]; then
# Will remove older folder first
rm -rf good
fi
mkdir good
elif [ "$2" -eq "1" ];then
if [ -d "./bad" ]; then
# Will remove older folder first
rm -rf bad
fi
mkdir bad

x=1
while [ $x -le $mynooffiles ]
do
echo "Welcome $x times"
if [ "$2" -eq "0" Jsthen
foo="./good/good_$x"
else
foo="./bad/bad_$x"
fi
cmd="dcfldd if=/dev/urandom of=$foo bs=512 count=2"
echo $cmd
eval $cmd

x=$(($x+1))

done




244 10 File Signature Searching Forensics

References

1. NIST National Software Reference Library (NSRL). http://www.nsrl.nist.gov
2. File signature. https://en.wikipedia.org/wiki/File_
3. Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996


http://www.nsrl.nist.gov
https://en.wikipedia.org/wiki/File_

Chapter 11 ®)
Keyword Forensics s

Learning Objectives
The objectives of this chapter are to:

* Understand the forensic technique of Keyword Searching

* Understand concepts of the Regular Expression

* Become familiar with the tools involved in keyword searching process,
including srch_strings, grep, blkcat, ifind, and istat

Keyword searching is a common technique used in forensic investigation to quickly
examine a disk image or data archive acquired from a suspect’s computer and narrow
down the region of interest within files, deleted data, and slack spaces. This is
accomplished by traversing through a hard disk image using a known keyword
(e.g. pornography, confidential); thus, locating the allocated spaces dedicated to the
suspicious file and then retrieving it. It is typically completed at the early state of
digital investigation in order to create a foundation of where the investigation should
start.

For example law enforcement recovered the laptop computer used by Boston
bombing suspect Dzhokhar Tsarnaev [1]. They had to scour through the contents of
the laptop to determine if it contains any evidence pointing Dzhokhar and his
accomplice, Tamerlan Tsarnaev (Dzhokhar’s brother) to Boston bombing and
there is any indication of terrorism. Using keyword searches could be very effective
instead of manually going through all the files on the laptop.

Actually, searching keywords of interest is very common for computer users too.
This can be done using search function provided in OSs, such as Windows Search,
and applications, such as Microsoft Outlook. The most intuitive method for keyword
searching is to provide a single keyword, and have the tool search for occurrences of
that keyword within a document. This is basically how the Linux grep tool works.
While it seems fairly straightforward to perform keyword search—enter keywords of

© Springer Nature Switzerland AG 2018 245
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_11&domain=pdf

246 11 Keyword Forensics

interest you want to search for and then perform the search, a forensic keyword
search process is much more complicated than a regular keyword search in our daily
computer use. For example, the text or files can be encoded in Unicode so they have
to be decoded to extract printable characters (or strings). Also, we may have to
search a pattern of strings instead of an exact match due to many reasons. On the one
hand, the suspect may misspell or mistype a word. On the other hand, several
meaningful sentences can express the same thing and feelings. Thus, we need to
search using a Regular Expression in order to retrieve any string that approximately
matches a given search pattern.

In this chapter, we’ll learn forensic keyword search process, how to use the tools
that are openly available for keyword searching. Also, we will learn how to create a
repository of “dirty word” keyword(s) to search the disk image from, how to find the
questionable file’s meta-data structure location that has allocated the given disk unit
(or data unit) based on the search results, and how to obtain detail information on the
meta-data structure of the file.

11.1 Forensic Keyword Searching Process

The forensic keyword search process typically follows the workflow shown in
Fig. 11.1, where an analyst acquire a questionable/volatile hard drive and creates a
repository of keyword(s), also known as “dirty words”, to search the disk image [6].
However, it’s a challenge to find a string type keyword when the hard image disk is

disk or partition image Text file

, Srch_strings

>

Keyword search
—

GREP

Keyword
occurrence

Dertermine data
unit containing

Display the contents _ blkcat keywords
of data unit(s)
istat ifind
Display the properties De.:termme the file
of the file in which dirty ~ 9irty keyword(s)
keyword(s) reside reside in

Fig. 11.1 Keyword search process overview



11.2  Grep and Regular Expressions 247

comprise of binary data. Therefore, we first need to extract printable data from a
binary image disk, for example, using TSK’s srch_strings command [5], where the .
asc file outputted (a text file) is then used to find all the occurrences of keywords. The
output .asc file contains all the printable data along with their locations in the disk
image. Afterwards, we can search the keyword within the .asc file, for example,
using the grep command. If a match is found, the analyst perform further analysis by
discovering the meta-data structure for the file that occupies the disk unit where
keyword resides. The next section goes into extensive detail on how grep functions.
Other noteworthy functions involved includes:

* “blkcat” used to display contents of data unit containing keywords;
* “ifind” used to find meta-data structure that allocates or points to a given data unit;
e “istat” used to display details of a given meta-data structure.

Henceforth, analyst can view data by either (a) retrieving the data unit that
contains the dirty keywords (using blkcat) or (b) figuring out which file dirty
keyword(s) reside in (using ifind) and the details of the file meta-data structure
(using istat).

11.2 Grep and Regular Expressions

The grep (stand for “Globally search a Regular Expression and Print”) command is a
Linux tool used to find input files (or standard input when there is no file to name) for
a given line of data. It matches based on a regular expression, which is a method for
specifying a set of strings. The basic usage of grep command is to search for a
specific string, represented by a regular expression in specified file(s), and following
are examples of grep commands that can be executed [2] (Table 11.1):

Regular expression provides a basic and extended standard syntax for creating
patterns designed specifically to lookup a set of strings from a list of elements or to
verify if a given string follows a particular arrangement (e.g. postcode, email
address, phone number, ect) [7]. Literally, Basic Regular Syntax (BRE) and
Extended Regular Syntax (ERE) work together. However, BRE requires that the
metacharacters () and { } be designated and \{\}, whereas ERE does not [3]. Also,
ERE introduces more metacharacters, including “?”, “+”, and “I”.

For example, a basic regular expression “[a-z]” matches any single lowercase
character while an extensive regular expression “/”(https?:VV)?([\da-z\.-]+)\.([a-Z\.]
{2,6 H([M\W \.-1*)*V?$/” matches “http://”, “https://”, or neither of them, followed by
a series of digits and letters, followed by a single dot and more digits and letters after
another single dot, finally followed by a single “/”. A break down of the later
example is shown in Fig. 11.2, which can be observed that it matches urls. Please
refer the appendix located at the end of this chapter to view a table describing each
meta-characters.



248 11 Keyword Forensics

Table 11.1 Examples of how to use grep [2]

grep forensics files | {search files for lines with “forensics”}

grep 'forensics?' {search files for lines with “forensics” or “forensic”}

files

grep '*orensics' {“forensics” at the start of a line}

files

grep 'forensics$' {“forensics” at the end of a line}

files

grep 'orensics$' {lines containing only “forensics”}

files

grep '[Fflorensics' {search for “Forensics” or “forensics”}

files

grep "\ files {search files for lines with “f”, “\” escapes the }

grep '7$' files {search for blank lines}

grep '[0-9][0-9] {search for triples of numeric digits}

[0-9]' files

grep—f dws.txt {The—f option specifies a file where grep reads patterns. In this example,
files the search patterns are contained in a file called dws.txt, one per line}

J T

Fig. 11.2 Regular express brake down of “/A (https?:VW)?([\da-z\.-]+)\.([a-z\.]1{2,6 ) ([V\w \.-]*)*V?
$/7 [4]

11.3 Case Study

In the following case, we assume that authorities confiscate a suspect’s disk and you
are asked to analyze it using its disk image provided by the law authority. Suppose
that the image called “thumbimage_fat.dd” provided with this book is the disk image
provided to you. Your mission is to find out whether or not it contains sensitive data
and information. If so, you will have to go further and discover more details related
to the keyword, for example, which data unit containing keywords, which file
containing keywords if applicable. For ease of illustration, we assume that a key-
word “overview” is the sensitive data which we are interested in.

As shown in Fig. 11.1, we first need to extract printable data from a binary image
disk using TSK’s srch_strings command. For simplicity, we only analyze the
partition in the disk image. Thus, we will extract the partition from
“thumbimage_fat.dd” using mmls and dcfldd. You may refer to Chap. 4 on how to



11.3 Case Study 249

Fig. 11.3 Example of part 430 Remove disks or other media.
of output ascii file 461 Disk error

474 Press any key to restart

512 RRaA

996 rrAa

3075 MSD0S5.0

3143 NO NAME FAT32 3

3356 fXEXfXFX

3365 3f;F

3427 f@Iu

3433 BOOTMGR

3502 Remove disks or other media.

3533 Disk error

3546 Press any key to restart

use mmls tool to discover the layout of the disk and then use dcfldd to extract a
partition. Suppose that the image “fatimage.dat” is the partition extracted. Next, we
extract printable data from “fatimage.dat” using the following command

srch_strings -t d fatimage.dd > fat-kw.ascii.str

where the “-t d” option specifies a location for the discovered string to be output
and the location is using byte offset in decimal from the beginning of the partition
(or the FAT file system in this example). Figure 11.3 show part of the output ascii file,
each line containing a byte offset (decimal) and its corresponding string found there.

Now we can use grep to search keywords we are interested in. In our example, we
will search a particularly word “overview” using the following command. Note that
search should be case insensitive here.

grep -i overview fat-kw.ascii.str
4196469 1. Overview

[T3SLL)

where the “-i” specifies that the matching will be case insensitive. It can be
observed that the word “Overview” appears in a string located at the byte offset
4196469. Nevertheless, hard disk uses sector address to locate an area on disk,
whereas a file system uses cluster or block number to identify a data unit on disk.
Thus, we need to convert byte offset to sector address and then cluster or block
address. Regarding conversion of byte offset to sector address in a partition, you can
divide the offset by the sector size i.e. 512 bytes and determine the sector address by
obtaining the floor (rounded down) integer number of the quotient. Thus, we have

sector address = floor(4196469/512) = 8196



250 11 Keyword Forensics

[root@localhost tools]# blkcat -h fatimage.dd 8196 1 &
0 2061206e 756d6265 72206fce 20686967 a n umbe r of hi

ig
16 68207072 6£66696c 65206361 73657320 h pr ofil e ca ses
32 616e6420 69732062 65636f6d 69626720 and is b ecom ing
48 77696465 €c792061 63636570 74656420 wide ly a ccep ted
64 61732072 656c6961 626c6520 77697468 as r elia ble with
80 69622055 5320616e 64204575 726£7065 in U § an d Eu rope
96 616e2063 €£757274 20 3 46

an ¢ ourt sys tems

112 2e0d0a0d 0a312e20 .1. _Over view
128 0d0a0dl0a 49622074 €863520635 © ec/9 «++. In t he e arly
144 20313938 30732070 6572736f 6e616c20 198 0s p erso nal
160 636£6d70 75746572 73206265 67616220 comp uter s be gan
176 746£2062 65206d6f 72652061 63636573 to b e mo re a cces
192 7369626c €520746f 20636f6e 73756d65 sibl e to con sume
208 72732061 6e642c20 73756273 65717565 rs a nd, subs eque
224 €6eT46cT9 2c206265 €7616e20 T46f2062 ntly , be gan to b
240 65207573 65642066 €£722063 72696d69% e us ed f or ¢ rimi
256 6e616c20 61637469 76697479 2028666f nal acti vity (fo
272 72206578 €16d706c 6€52c2074 6£206865 r ex ampl e, t o he
288 6c702063 6£f6d6d69 74206672 61756429 lp ¢ ommi t fr aud)
304 2e204174 20746865 2073616d 65207469 . At the sam e ti
320 6d652c20 73657665 72616c20 6e657720 me, seve ral new
336 22636f6d 70757465 72206372 69646573 "com pute r cr imes
352 22207765 72652072 6€5636f67 6e697a65 " we re r ecog nize
368 64202873 75636820 €1732068 61636b6% d (s uch as h acki
384 6267292e 20546865 20646973 6369706c ng). The dis cipl
400 696e6520 6£662063 6£f6d7075 74657220 ine of c ompu ter
416 666£7265 6736963 7320656d 65726765 fore nsic s em erge
432 64206475 72696e67 20746869 73207469 d du ring thi s ti
448 64652061 73206120 €6d657468 6£642074 me a s a meth od t
464 6£207265 636£7665 7220616e 6420696e o re cove r an d in
480 76657374 69676174 65206469 67697461 vest igat e di gita
496 6c206576 €964656e 63652066 6£722075 1l ev iden ce f or u
[root@localhost tools]# I v
S

Fig. 11.4 Example of output of blkcat tool

where floor() is floor function, which outputs the largest integer less than or equal to
the input.

Now we know the word “overview” resides in a sector whose address is 8196.
Henceforth, we will conduct a more in-depth investigation. First, we can view the
contents of data unit (or a sector here) using blkcat command. It can be evident in
Fig. 11.4 that the word “Overview” is found at byte offset 120-127.

Next, let’s figure out which file the word resides in. First, we can find the meta-
data structure that has allocated the above disk unit using the following command.

ifind -f fat -d 8196 fatimage.dd
3

Second, we can find the name of the file (or directory) using the above metadata
structure 3 using the following command.



11.3 Case Study

[root@localhost tools]# istat -f fat fatimage.dd 3
Directory Entry: 3

Allocated

File Attributes: File, Archive

Size: 8827

Name: readme.tiXt Ce————

Directory Entry Times:

Written: Sat Jan 8 18:53:00 2011
Accessed: Sun Jan 22 00:00:00 2012
Created: Sun Jan 22 21:59:16 2012
Sectors:

8194 8195 8196 8197 8198 8199 8200 8201
8202 8203 8204 8205 8206 8207 8208 8209
8210 8211

[root@localhost tools]# l

~

Fig. 11.5 Example of output of istat tool

ffind fatimage.dd 3
/readme.txt

251

It can be observed that a file called “readme.txt” in the root directory contains the
word “Overview”.
Or, we can display the details of the file meta-data structure using istat command
(Fig. 11.5).

Review Questions

1. Assuming a text file contains five lines. Each line starts with “line”, followed by
its line number. For example, the first line starts with “linel”. What is the number

2.

of lines in the file which match with the pattern line[1-3]?

(@) 0
(b) 1
(c) 2
(d 3

Write a command that uses grep with regular expressions to search a particular

word “forensics” using case insensitivity in all files in the current directory?

3. Write a command that uses grep with regular expressions to look for computer
science course number, which starts with a string “cs” followed by a triple of

numeric digits, at the beginning of a line in a file called ‘csprogram.txt’.
. Which of the following regular expressions will match the pattern “forensics”

only at the beginning of a line?



252 11 Keyword Forensics

(a) “Morensics

(b) forensics”

(c) forensics

(d) All of the above

5. Which of the following TSK tools is used to print the strings of printable
characters in files?

(a) blkcat

(b) ifind

(c) istat

(d) srch_strings

11.4 Practice Exercise

The objective of this exercise is to learn how to do forensic keyword research
with TSK.

11.4.1 Setting Up Practical Exercise Environment

For this exercise, we will use a disk image (“thumbimage_fat.dd”) provided with this
book and will need to upload this disk image to Forensic Workstation we have built
up in Chap. 3. Also, we need to extract a partition (or the only partition) from the
disk image, and the partition is formatted with an FAT file system.

11.4.2 Exercises

Part A: Extract the Partition(s) from Disk Image
Extract all the partitions from the USB drive image “thumbimage_fat.dd” provided
in the book by using the dcfldd tool.

Hint: There is only one partition in the above USB drive image, and you have to
know the starting point and length of a partition in order to extract it. You can use
TSK’s mmls tool to determine the layout of a disk, particularly the locations of its
partitions.

Q1. Writing down your command(s) issued to extract the partition from the USB
drive image “thumbimage_fat.dd”?

Q2. What is the file system type for the extracted partition?

Q3. What is the size of the file system for the extracted partition? (in MB)



11.4 Practice Exercise 253

Part B: File System Layer Analysis
Retrieve the details associated with the file system on the extracted partition above.
Hint: To retrieve the details associated with a file system, you can use the “fsstat”
tool in TSK.
Q4. What is the cluster size? (in KB)
Q5. What is the Volume ID?
Q6. What is the amount of disk space for the FAT file system? (in KB)

Part C: Searching for Keywords

In order for a disk or partition image to be searched by using a search tool like
“grep”, we will need to print the strings of printable characters in the disk image into
a text file, and then a search can be performed against the text file instead of the
image file. TSK provides a tool called “srch_strings” to print the strings of printable
characters in files, and investigator will also need to print the location of the string so
that the location (or the byte offset) can be used later to locate the data unit which
contains any keywords of interest to the investigation.

Afterwards, you can search the resulted text file, based on your defined keywords
by using the “grep” command. It is worth noting that if we were to simply perform a
grep on the image we would not have made any of these hits at all. Thus, we will
search the text file resulted from the command “srch_strings”.

For illustrative purposes, we assume that “Wikipedia” is the dirty word we are
interested in. Then, you can define the keywords of interest to you as your “dirty
word” file by adding the following keywords into a file called “dirtywords.txt”.
Wikipedia

If hits were found, the locations of these hits are also known. The locations are in
byte offset, but we need to know an address of the disk unit (or sector/block/cluster
number) in order to use TSK to perform any further investigation including:

(a) Displays the contents of a data unit containing the keywords, which can be
achieved by using the TSK tool “blkcat”;

(b) Find the meta-data structure that has allocated a given disk unit, which can be
achieved by using the TSK tool “ifind”;

(c) Display details of the meta-data structure of the file, which contains the data unit.
It can be achieved by using the TSK tool “istat”;

Answer the Following Questions
Q7. How many hits?
Q8. Select one hit and record its byte offset in decimal.
Q9. What is the sector address of the data unit where the keywords reside?
Q10. Convert the above sector number to a cluster number (or address).
Q11. Write down the full command issued to view the contents of the data unit
where the keywords reside.



254

11 Keyword Forensics

Q12. Write down the full command issued to find the meta-data structure that has
allocated the given disk unit where the keywords reside.
Q13. What is the name of the file that occupies the data unit where the keywords

reside?

Q14. What is the size of the file that occupies the data unit where the keywords
reside? (in bytes)

Q15. How many clusters are occupied by the file that occupies the data unit where
the keywords reside?

Q16. What is the slack space of the file that occupies the data unit where the
keywords reside? (in bytes)

Appendix: Regular Expression Metacharacters [2, 4]

Metacharacter | Description

A Matches the following item at the beginning of a text line

$ Matches the preceding item at the end of a text line
Matches any single character

[...] A bracket expression. Matches a single character in the bracketed list or range

[~ Matches a single character that is not contained within the brackets

) Defines a marked subexpression. A marked subexpression is also called a block
or capturing group. BRE mode requires

* Matches the preceding item zero or more time

{m} The preceding item is matched exactly m times. BRE mode requires \{m\}

{m,} The preceding item is matched N or more times. BRE mode requires \{m,\}

{m,n} Matches the preceding item at least m and not more than n times. BRE mode
requires \{m,n\}

\ The escape of special meaning of next character

The next three metacharacters are only for extended regular expression

Metacharacter | Description
? Matches the preceding character, metacharacter, or expression zero or one time
+ Matches the preceding character, metacharacter, or expression one or more

times. There is no limit to the amount of times it can be matched

Matches the character, metacharacter, or expression on either side of it

Note that to use the grep command to search for metacharacters, you have to use a
backslash (V) to escape the metacharacter. For example, the regular expression “A\.”
matches lines that start with a period.



References 255

References

1. FBI agent: Tsarnaev’s computer contained extremist materials. http://www.chicagotribune.com/
news/nationworld/chi-boston-bombing-suspect-computer-extremist-materials-20150319-story.
html

. http://www.robelle.com/smugbook/regexpr.html

. https://en.wikipedia.org/wiki/Regular_expression

. https://www sitepoint.com/regexper-regular-expressions-explained/

. srch_strings. http://man.he.net/man1/srch_strings

. Keyword searching and indexing of forensic images. http://pyflag.sourceforge.net/Documenta
tion/articles/indexing/index.html

7. http://www.zytrax.com/tech/web/regex.htm

AN AW


http://www.chicagotribune.com/news/nationworld/chi-boston-bombing-suspect-computer-extremist-materials-20150319-story.html
http://www.chicagotribune.com/news/nationworld/chi-boston-bombing-suspect-computer-extremist-materials-20150319-story.html
http://www.chicagotribune.com/news/nationworld/chi-boston-bombing-suspect-computer-extremist-materials-20150319-story.html
http://www.robelle.com/smugbook/regexpr.html
https://en.wikipedia.org/wiki/Regular_expression
https://www.sitepoint.com/regexper-regular-expressions-explained/
http://man.he.net/man1/srch_strings
http://pyflag.sourceforge.net/Documentation/articles/indexing/index.html
http://pyflag.sourceforge.net/Documentation/articles/indexing/index.html
http://www.zytrax.com/tech/web/regex.htm

Chapter 12 ®)
Timeline Analysis s

Learning Objectives
The objectives of this chapter are to:

* Understand the fundamentals of timeline analysis and its processes
* Become familiar with popular tools to perform timeline analysis
* Be able to analyze filesystem timeline using Autopsy

Digital forensics requires applying computer science to answer investigative ques-
tions, such as when a digital artifact occurs. It is very helpful, therefore to arrange
events on a computer system chronologically so as to tell what happened to an
incident occurred [1]. It is referred to as timeline analysis. Timeline analysis is the
process of analyzing event data to determine when and what has occurred on a
computer system for forensic purposes. In this chapter, we’ll learn fundamentals of
timeline analysis. The standard process for filesystem timeline analysis will be
introduced. Also, you will become familiar with popular tools to perform timeline
analysis.

12.1 Principle of Timeline Analysis

12.1.1 Timeline

Due to the rapid development of digital technologies and their pervasiveness in
everyday life, more computer forensics techniques are required to answer questions
related to an investigation from different aspects. One question commonly asked in
digital forensics is “what happened and when?”. One of the simplest ways to answer

© Springer Nature Switzerland AG 2018 257
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_12&domain=pdf

258 12 Timeline Analysis

Fig. 12.1 A timeline is an
approach for representing a

set of events in sequential TI M E LI N E

arrangement

€
X

m

this question is to organize events chronologically. The sequence ordered by time is
called a timeline. In other words, a timeline is an approach for representing a set of
events in sequential arrangement [2], sometimes described as a project artifact as
shown in Fig. 12.1. Timelines can use any time scale, depending on the subject
and data.

Obviously, we must first extract timestamps associated with events to create a
timeline. The most common timestamp sources are file system times [2]. MAC times
are pieces of filesystem metadata used to record events and event times regarding a
particular file. MAC times refer to three types of time that metadata records; M—
modification time, A—access time, and C—created time. Thus, the creation of
timeline can be seen as a process of iterating over the files and their metadata and
outputting a chronologically ordered event sequence, for example, showing when a
file had been created, modified and accessed or deleted. This kind of timeline allows
us to have a global overview of the events occurring before, during and after a given
incident. However, events occurring on a certain file system can be enormous and
complicated to analyze. The complexity of events makes the interpretation of the
timeline difficult and therefore decision making can be erroneous. Thus, timeline
must be intuitive in how it organizes relevant information in a very convenient way
so that better assisting in forensic investigations.

Traditionally, we collect larger archives of data; later simplifying their represen-
tation to assist decision making. Digging deeper in a forensic volume we aim to
collect as much related information as possible from artifacts or data logs. These are
used to create larger more complex time lines. We call these super time lines. Super
time lines will be discussed later.



12.1 Principle of Timeline Analysis 259

12.1.2 Timeline Event

Timeline analysis is any investigation processes that involve timeline data. In other
words, timeline data is used when any time-related investigative questions need to be
answered, for example, when was a file deleted?, when did a user visit a website?, or
when was the last time that a user logged into your system? Prior to conducting your
own timeline analysis it would be prudent to explore the components of timeline
data. A primary component of timeline data is events; these are often used as the
primary data sources for timeline analysis. These are collected by timelines along
with their associated timestamps. Events can be classified into three categories:

* Filesystems
*  Web activity
* Miscellaneous

Timeline data is significant for a forensic investigation. This can shed light on
when files or resources were created, accessed or deleted. Chronological evidence
may expose whether a perpetrator had sufficient exposure to any resources to
commit an offense. Now, we will explore each of events categories in further detail.

12.1.2.1 Filesystems

A filesystem controls how the data is stored and retrieved in computer systems. A
filesystem organizes the files and keeps track of them on disk or in partitions. If
partitions or disks are used as file systems, the disk or partition should be initialized
before usage. This process is called formatting or making a filesystem, which writes
data structures to the disk [3].

Filesystems determine the structure of data on disk. These data structures differ
among various filesystems. Despite differences, timeline databases collect informa-
tion of important events. These include file modified events, file accessed events and
file created events. File created events occur when an instance of a file has been
created. Data on file creation events cannot be changed unless modified through third
party software. File modified events occur when an instance of file is written or
modified. Renaming a file does not change the modification timestamp. File
Accessed events occur when files are read or overwritten. Most timeline analysis
tools can extract the events mentioned above.

12.1.2.2 Web Activity

Web Activity is a broad categorization of internet browsing activity. This includes
but is not limited internet web page browse actions, downloads, cookies, bookmarks,
history and searches. Download events occur when users download files from
remote servers. Cookies save events occur when the user is logging into web



260 12 Timeline Analysis

systems. Bookmark events occur when the user saves pages to the bookmark.
History events occur when the user visits pages and search events occur when the
user uses address bar for searching.

12.1.2.3 Miscellaneous

There are a number events vital to digital forensics which cannot be fitted into the
categories above. These are usually labeled as miscellaneous. These are often e-mail
events, recent file events, installed program, devices attached, and so on. These
activities are usually trivial but vital in timeline investigation and analysis.

From this section we have a brief understanding of the data sources and some
aspects of timeline analysis. However, collecting event data is only the first step in
timeline analysis. In the following section we introduce more definitions and time-
line analysis tools by discussing timeline definition.

12.2 Timeline Analysis Process

Timeline analysis is the process of collecting and analyzing event data to determine
when and what has occurred on a filesystem for forensic purposes. Results are
organized chronologically to illustrate a chain of events in a concise manner.
Timeline analyses generally comprise of two stages.

— First is time and event collection (or timeline creation), where information on
events and their associated times are collected from numerous sources and
organized into a database.

— The second is organization and analysis (or timeline analysis), where information
is sorted and filtered based on the requirements of the investigation and
represented in a manageable fashion.

Data sources may include system logs, MAC times, firewall logs, and
application data.

12.2.1 Timeline Creation

As previously discussed, we ask “what happened and when?” We conjecture that a
timeline is consisted of two parts including time data and event data. Examples of
timestamps sources are event logs, registry files, internet history, email files, recycle
bin, thumbs.db file, chat logs, restore points, capture files, and archive files. For a
better demonstration we discuss the timeline in TSK (The Sleuth Kit®). In TSK the
software uses time stamps to store the time data including atime, mtime, ctime and
the crtime.



12.2 Timeline Analysis Process 261

* Atime (Access time) stamp contains data of last access time to a file.

e Mtime (Modification time) stamp contains data of last modification time to a file.

» Ctime stamp represents different meaning in different file system. In NTFS it
means the last time the MFT was modified. In EXT3 it means inode changes. In
FAT the time stamp means the time when the file is created.

e Crtime stamp means the time a file was created in NTFS and it is used for file
deletion in EXT3 and not used in FAT.

From the time stamp we know the milestones on the timeline. This solves the
problem of “When” in the timeline analysis. Events occurring at certain instances
solve the issue of “What”. The event context contains the data to describe the events
related to a certain time stamp.

12.2.2 Timeline Analysis

As mentioned before, one of the solutions to the shortcomings of traditional timeline
analysis is expanding it with information from multiple sources to get a better picture
of the events. This is called super timeline. Having analyzed a timeline, there should
be criteria to constrain the quality of the timeline analysis. There are three factors
which can determine the quality of timeline analysis. They are size or volume of
collected information, data representation and time to perform analysis.

In the first step of timeline analysis, investigator should prepare the data source
for investigation. It is usually an image or a copy of hard disk. It should be imported
into the investigation software. Tools usually provide an overall investigation of the
timeline. Analysis usually focuses on a small fraction of time. So investigators
should zoom the timeline for further investigation. There are three kinds of zooming
in timeline analysis. They are temporal zooming, event type zooming, and descrip-
tion level zooming. Temporal zooming are techniques to investigate the timeline in
different time scale. By zooming the time scale investigator not only investigate the
timeline by hour but also by seconds. Event type zooming enables investigator to
inspects the timeline by events classification. Description level zooming can provide
the content data inside the timeline at different levels of description. After zooming
to a proper scale investigator need to filter the targeted events for investigation. Filter
aims to reduce the volume of data and to hide uninteresting events. An investigator
uses timeline context analysis or other analysis methods to reach their target. We
then conclude the investigation and visualizing our data for further analysis. The
process of standard timeline analysis is shown in Fig. 12.2.

Until now, we introduced a standard process of timeline analysis. The process of
timeline analysis can be different based on demands and the target of the investiga-
tion. The standard process can satisfy common situations in timeline analysis.



262 12 Timeline Analysis

Start analysis Zooming Filter
Analysis
End analysis Visualization Conclusion —,

Fig. 12.2 Standard timeline analysis process

disk or

partition image Timeline creation Timeline analysis
"y fsorils N [BODY file | mactime [ Timeline | Timeline
w creation creation " analysis

Fig. 12.3 MAC timeline analysis procedure

12.2.3 MAC Timeline Creation and Analysis with TSK

The most popular data sources for timeline analysis are MAC times. In this section,
we will provide a simple case study to show how to build MAC timelines from
filesystem metadata for a given system image, particularly the only partition format-
ted with FAT file system within the disk image “thumbimage_fat.dd” provided in the
book. As mentioned before timeline analysis forensics is important to ease investi-
gation and make the examiners to get the big picture of what exactly happened in
chronological order. MAC times are pieces of filesystem metadata used to record
events and event times regarding a particular file. The procedure for MAC timeline
analysis consists of timeline creation then timeline analysis, shown in Fig. 12.3. In
MAC timeline creation, we first extract information from unallocated inodes and
unallocated directory entries, whereas MAC Timeline analysis examines file event
and time data to reconstruct the events which have occurred on a system. Timeline
Creation phase consists of two stages [7]:

Stage 1—BODY file creation: BODY file is an intermediate file when creating a
timeline of file activity. It is a pipe (“I”) delimited text file that contains one line
for each file (or other even type, such as a log or registry key), shown in Fig. 12.4.
For example, the TSK tools fIs and ils all output this data format [4]. Each line of
ouput has the following format: “MDS5Inamelinodelmode_as_stringlUIDIGIDI
sizelatimelmtimelctimelcrtime”. In Fig. 12.4, we can clearly see that the UNIX
epoch is used for times. The UNIX epoch, also known as Unix timestamps, stands
for the number of seconds from January 1, 1970, but it’s not user friendly.

Stage 2—Timeline creation: It runs the TSK tool mactime to turn the body file into
something a bit more user friendly. The mactime tool reads this file and sorts the



12.2  Timeline Analysis Process 263

me /st té fls -r -f fat -m / fatimage.dd
0|/ endme txt (deleted]|3|r/rzwxrwx'ux|0|0|8827|1327203400[1294530780|0|132728?557
0| /SMBR| 3840499 |v/v--—---——- |I0j01512101010]|0
0| /SFAT1| 3840500 | v/v===m==u=-= 1010]1480256]0|010]10
0| /SFAT2|3840501 |v/v-====m===m 10101480256]0]010]|0
OI/SOrphanFlleal3840502|Vi\4’ --------- Iojojojolojojo
: /home/student§

Fig. 12.4 Example body file

nt# mactime -b bf.txt

Xxx Xxx OC 8827 ..c. rwx 0 3 /_eadme.txt (deleted)
Sat Jan 0 8827 m. rwx 0 3 /_sadme.txt (deleated)
Sun Jan 2 8827 .a.. rwx 0 3 /_eadme.txt (deleted)
Sun Jan 2 8827 ... rwx 0 3 /_eadme.txt (deleted)

Fig. 12.5 Example timeline

contents (therefore the format is sometimes referred to as the “mactime format”).
Specifically, these epoch timestamps will be converted to more human readable
dates, shown in Fig. 12.5. Most significant, we start to see meaningful events (file
deletion) are associated with timestamps.

Timeline analyses are useful in how we represent IT forensic evidence. Once
relevant evidence has been extracted they can be used to acquit or indict an accused
based on results. With the dynamic and unstable nature of file systems, timeline
analysis provide a perspective into what was done on a system, when and for
how long.

Now, we show how to build MAC timelines from filesystem metadata for the
given FAT system image from the disk image “thumbimage_fat.dd” provided in the
book. We assume the image named “fatimage.dd” is the extracted FAT file system
image. First, we create some events by mounting the extracted FAT file system onto
Forensics Workstation and then deleting the “readme.txt” file. Afterwards, we
unmount the file system.

# mount -o rw fatimage.dd /mnt/forensics/
# cd /mnt/forensics/

# rm -f readme.txt

#cd ..

# umount /mnt/forensics

Note that after you delete the readme.txt file, you must move out of the folder of /
mnt/forensics before unmounting the file system.

Now we can create the body file from the extracted FAT file system by using the
TSK tool fls, shown in Fig. 12.4



264 12 Timeline Analysis

For the purpose of further investigation, we save the body file into a text file
named bf.txt by running the TSK tool fis using output redirection.

#fls -r -f fat -m / fatimage.dd > bf.txt

Afterwards, we can create timelines by using the TSK tool mactime. Specifically,
we turn the body file into something a bit more user friendly, shown in Fig. 12.5.

Until now, we can clearly see that there is a deleted file in the FAT file system,
which is obvious since we just deleted it in this example. We also see a list of actions
happened to the file along with when they occurred.

12.3 Forensic Timeline Analysis Tools

In forensic analysis, timeline information will prove crucial, these include point of
creation, modification, access and deletion. Timeline Analysis is a process of
collating extracted data, using time-stamps from the file system and other sources
such as log files and internal file meta-data. In simpler words timeline analysis is
designed to recover all the chronological events which occurred on the disk. Some
tools have been developed to perform automated timeline analysis such as Leading
Forensic Analysis Tools, Log2timeline, SIMILE Visual Timeline, EnCase, and
Forensic Tool Kit (FTK). These tools have their own strengths and shortcomings.

Regardless of differences between tools, all are designed to achieve efficient
timeline analysis. The criteria of evaluating the quality of timeline analysis is to
focus on two aspects. These are investigation time and data volume reduction. One
goal of timeline analysis is to reduce investigation time and to collect a smaller
volume of data set to inspect. Although investigation time and data set volume are
very useful in timeline analysis evaluation, investigators should make intuitive plan
based on their investigative requirements. Timeline creation and analysis should be
proposed to meet the forensic investigation requirements.

To achieve the goals of better quality in timeline analysis, many tools have been
developed to solve problems. We can categorize these tools to the following
categories [2]. Then we will provide a brief description of number of them:

— Timelines based on file system times—e.g. EnCase, Sleuth Kit

— Timelines including times from inside files—e.g. Cyber Forensic Time Lab
(CFTL), Log2timeline

— Visualizations—e.g. EnCase, Zeitline, Aftertime



12.4 Case Study 265
12.3.1 Log2timeline

Log2timeline [5] is timeline analysis tool developed by Kristenn Gudjonsson. This
tool is open source and developed using Perl language. This framework is designed
to parse events from log files of suspect systems and create an output file that used to
produce a timeline. The output file contains time and date information for files in the
system with csv format.

12.3.2 EnCase

EnCase [6] is a commercial framework provide many features for forensics inves-
tigations. Guidance Software company developed different versions of this product.
One of these features by EnCase is timeline creation which is a useful tool. Using
Encase, examiner can parse event logs and export it to csv output file. Encase parser
can perform customized commands to extract the needed data.

12.4 Case Study

Time line analysis is widely applied in crime investigation and computer forensics.
So we assume a real world problem as the lab exercise. We assume that Bob is a
photographer and he is also one of your best friend. He takes about 600 wedding
photos for a few couples in 1 day. Normally not all the photos will be presented to his
customers. First he should select around 100 satisfactory photos to an independent
folder for customer’s selection. Then the photographer select and fix 12 photos as
reference and recommendation to its users. After the photograph works Bob divided
his work into three folder and save the files into USB flash memory. The ALL
PHOTO folder contains all photos and will be submitted to his company as a backup.
The SELECTED folder contains the photos for user selection. The Demo folder
contains the 12 photo for demo. After doing the job, Bob leaves his laptop in his
bedroom and his young son deletes all photos in the demo folder accidentally.
Finding photos from the hundreds of photos are time consuming. So Bob asks you
to help him to locate the deleted files in a short time. We can use time line analysis to
investigate the events in file system.

To investigate the file system in the USB flash memory, we first insert the flash
memory into the computer. Then we open the Autopsy software and create a new
investigation case as Fig. 12.6.



266 12 Timeline Analysis

PR Steps Cave Info

1. Case Info
' I Create New Case T Adduonal Information
: Enter New Case Information:

Casetiame:  FrcPhotn
Open Recent Case

= Base Diectorys | Er'fiem foider flew Foider|, Browse
Case Type: (W) Sngleuser || Multiaser
| Open Bxisting Case Case data wil be stored in the folowing drectary
t ® e foder Vi Polder FrndPhato
OPEN | EXTENSIBLE | FAST Gose |
Mot > Einish Cancel

Fig. 12.6 Creation of new case

Pasn et Pe vt e (47570) Amercabus T v

Wt e S PaT B v
S e WP bt Gt ol it 4 ed]

Fig. 12.7 Add data source to the autopsy

Then we give the investigation case a name and click the next button. Then we
input the case number and case examiner. Then we select the local disk and target
USB flash disk as data source. In this section we use the standard process of timeline
analysis. The process in Figs. 12.6 and 12.7 are preparation for the timeline analysis.

After we select the source from the USB flash disk, we configure the ingest
modules to determine the coverage of the investigation. In our lab we choose the
default configuration (Fig. 12.8).

After initial preparation we should have a visualized timeline result. Then we
should zoom it into a proper scale as to determine critical events. We will then filter
the file modified events and analyze the scaled timeline. Finally we can determine
which files are related to the file modified events as shown in Fig. 12.9. From this
figure we can see the file modified events and then select the files we want. This
problem was solved by using timeline analysis.

Review Questions

1. Describe in your own words, what is timeline analysis?

2. List three categories of timeline events and then describe each of them?
3. List five examples of timestamp sources.

4. What is MAC Timeline Analysis Process?



12.5 Practice Exercise

267

[rr—

Mouen
FRerp=—ra

HHRHE
[
i

T procrs s ek sovme B v e i senries.

Fig. 12.8 Ingest configuration and timeline generation

= - = == [P ——— can vt SRS | b 5 Lo § 5 e @
Do e o | o TR oty i e g e ] e 2
R e - :
- o ! et} il el
B | T e e
e i ] - = =l
. : ==
= g
: I
- uin @ £ Gl -
=
- ‘

Fig. 12.9 Timeline analysis processes

12.5 Practice Exercise

The objective of this exercise is to build MAC timelines from filesystem metadata.

12.5.1 Setting Up the Exercise Environment

For this exercise, you need to prepare a custom file system image

¢ Create a 100 MB file with random values

# dcfldd if=/dev/zero bs=1M count=100 of=fat.dd

* Format the file with the FAT32 file system

# mkfs.vfat -F 32 fat.dd



268 12 Timeline Analysis

where “fat.dd” is now a FAT32 file system. Note that you can use the TSK tool
fsstat to check with it. For example,

# fsstat -f fat fat.dd

¢ Mount the file system as read/write

# mount -o loop,rw fat.dd /mnt/forensics

e Create two 1 KB random files in it

# cd /mnt/forensics
# dcfldd if=/dev/urandom of=filel.dat bs=512 count=2
# dcfldd if=/dev/urandom of=file2.dat bs=512 count=2

Note that it is highly recommended that you introduce a delay when you create
the second file to make this experiment more visible.

* Delete two files you created

# rm -f file 1.dat
# rm -f file 2.dat

Note that it is highly recommended that you introduce a delay when you delete
the second file to make this experiment more visible.

¢ Unmount the file system

#cd ..
# umount /mnt/forensics

12.5.2 Exercises

In this exercise, you are required to build MAC timelines from the FAT file system
you have created, and answer the following questions:



References 269

Table 12.1 MAC meaning
by FAT file system

m a ¢ b

Written | Accessed | Not applicable | Created

Q1. How many files are found in the image?
Q2. Which file is created first, “file 1.dat” or “file 2.dat”?
Q3. What is the exact date and time when “file 1.dat” is created?

Note that you can find out the MAC meaning by FAT file system in Table 12.1.

References

~N N AW

. Derek Edwards. Computer Forensic Timeline Analysis with Tapestry. https://www.sans.org/

reading-room/whitepapers/tools/computer-forensic-timeline-analysis-tapestry-33836

. Hargreaves, C., & Patterson, J. (2012). An automated timeline reconstruction approach for digital

forensic investigations. Digital Investigation, 9, S69-S79

. https://en.wikipedia.org/wiki/File_system

. https://wiki.sleuthkit.org/index.php?title=Body_file

. https://github.com/log2timeline/plaso

. https://www.guidancesoftware.com/encase-forensic

. Timeline Analysis Part I: Creating a Timeline of a Live Windows System http:/

thedigitalstandard.blogspot.com/2010/03/creating-timeline-of-live-windows.html


https://www.sans.org/reading-room/whitepapers/tools/computer-forensic-timeline-analysis-tapestry-33836
https://www.sans.org/reading-room/whitepapers/tools/computer-forensic-timeline-analysis-tapestry-33836
https://en.wikipedia.org/wiki/File_system
https://wiki.sleuthkit.org/index.php?title=Body_file
https://wiki.sleuthkit.org/index.php?title=Body_file
https://github.com/log2timeline/plaso
https://www.guidancesoftware.com/encase-forensic
http://thedigitalstandard.blogspot.com/2010/03/creating-timeline-of-live-windows.html
http://thedigitalstandard.blogspot.com/2010/03/creating-timeline-of-live-windows.html

Chapter 13 )
Data Hiding and Detection s

Learning Objectives
The objectives of this chapter are to:

* Understand motivations behind data hiding techniques
* Know common data hiding techniques
* Know how to search for and recover hidden data

Much of digital forensics involves the recovery of information from electronic
sources. This is often tedious work and requires great attention to detail. In previous
chapters, we have studied techniques of how to recover deleted data. While criminals
or mischievous computer users often cover their unlawful activities by deleting data
or files which could hold them responsible, another commonly used tactic by them is
to hide data. Data hiding is the act of storing information in such a way that hampers
the awareness of the content and/or existence. There exist a number of techniques
that allow users to hide information from other users. There are numerous reasons
why data must be hidden for a period of time. Motivations will vary from person to
person. For example, it can be done for matters of privacy. Some environments may
be openly hostile to encrypted traffic, enforcing censorship on communications.
Societies view some content as embarrassing or scandalous. However, it becomes
crucial to detect hidden data and recover them from electronic devices as evidence to
prosecute wrongdoers when data hiding is used to cover any illegal activities.
Therefore, as a digital investigator, it is essential to understand how evidence can
be hidden. In this chapter, we will focus on data hiding fundamentals. We will study
data hiding techniques and also discuss analysis techniques for hidden data.

© Springer Nature Switzerland AG 2018 271
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_13&domain=pdf

272 13 Data Hiding and Detection
13.1 Data Hiding Fundamentals

Cryptography is another technique of secret writing and transforms a data in
plaintext into a ciphertext, which is unreadable to anyone except authorized people.
While encryption is used to ensure confidentiality, ciphertexts can be found to be
identified by casual observers. A number of tools and strategies exist to aid in
plaintext recovery, also known as cryptanalysis. To hide information is to conceal
it from a casual observer. Data hiding differs from encryption. Data can be encrypted
then hidden, only to be found by the creator or others that know of its whereabouts.
Furthermore, using encryption may draw attention to a particular file. It may also
raise flags in environments where encryption is frowned upon. Hiding rather than
encrypting data often allows us to transmit and stores confidential information
without raising the scrutiny of others. If we imagine hidden content as items
which we can hide in a box. Locking such a box can be considered encrypting its
contents. If the box is in our possession, with the right tools and time we can open
it. If the box is hidden, we would have to search for box prior to attempting to break
into it. Furthermore, if we are unaware of the box’s existence which is the crux of
data hiding, then accessing the contents of the box becomes much more difficult.

It is also important that we acknowledge that data can be hidden for more
nefarious purposes. In the both the real and digital world, criminal activities are
better performed secretly. Encrypting illicit activity is practical. However, with
adequate knowledge of a cryptosystem and enough time, ciphertext can be
deciphered. Here is where hiding rather than or in conjunction with encryption can
be advantageous.

There are a number of illicit motivations for hiding data:

. Financial Fraud

. Communicating explicit or nefarious activity

. Sales in elicit and illegal products such as drugs and weaponry

. Instructions on developing dangerous material such as explosive devices
. Recruitment and communication with terrorist groups

. Child pornography

AN B W

When discussing data hiding, conversations are often limited to steganography.
Steganography refers to the art of electronically hiding data within another cover or
media. This was derived from the Greek words steganos and graphein, which mean
to conceal or protect and writing respectively. Data hiding however, is not limited to
steganography. A number of alternatives that will be discussed later in this chapter,
which is the focus of this chapter. The concept and techniques of steganography will
later be described in Chap. 21.

Forensic investigators are often tasked in recovering hidden incriminating evi-
dence. As computer systems mature, new methodologies for hiding can emerge or
become obsolete. Some techniques may only exist for specific operating system
versions or OSes with specific patches. Keep abreast with research and vulnerabil-
ities which can be exploited to hide data. Steganalysis or uncovering hidden data can



13.1 Data Hiding Fundamentals 273

be remarkably more difficult than cryptanalysis. Consider the earlier example of a
locked boxes, a hidden box and a box which we are unaware of are increasingly
more difficult to access. Similarly, we cannot attempt data recovery when we are
unaware of data existence. However, by incorporating certain tools and best prac-
tices, uncovering hidden data can be more attainable.

13.1.1 Hidden Files and Folders

This is one of the more trivial techniques used to hide information. However, you are
more likely to come across it in your forensic work. Most operating systems ship
with features to allow users and administrators to hide files and folders. This feature
allows us to hide configuration files and the like. Let us look at a simple method for
hiding files on a Windows machine.

In your Windows machine, create a folder in with your file browser. Right Click
on the folder to select properties. From here we select “Hidden” check box to hide
your folder (Fig. 13.1). This is quite a simple method. However, it is also easy to
address if we intend to search for hidden files by enabling your file explorer to show
files and folders with the hidden attribute. There are however, more concrete
methods for hiding your holders.

On your Windows machine open the command prompt or cmd. Find the path to
the directory which you wish to hide. You can do by copying the file location in your
file explorer. We will be using the attrib command to hide our folder.

O name . Folder to be Hidden Properties x
[ Folder to be Hidden Generdl Shaing Securty Previous Versions  Customize

[Folder to be Hdden

Type Fibe folder

Locateon: Ci\Users\abel\ Desidop'\Test
Size Obytes

Szeondsik: DObyles

Containg 0 Fles, 0 Folders

Created: September 22, 2016, 10.55.07 AM

Arbutes:  [B] Read-cnly (Only apples to fles in folder)

ok ] [ cancel | [ ooy

Fig. 13.1 Simple method for hiding a folder on Windows platform



274 13 Data Hiding and Detection

#To hide a folder and its contents

> attrib +s +h “C:\Users\User Name\Folder Location”
#To reveal a folder and its contents

> attrib -s -h “C:\Users\User Name\Folder Location”

The attrib command is a more concrete method for hiding folder. If others choose
to display hidden folders and files, the files hidden with the above commands should
remain hidden. As a digital forensic analyst you can write scripts with the artrib
command to unveil hidden files.

13.1.2 Masks and Altering Names

While many may go to great lengths to hide files, some may simply alter file names.
A common example is to rename folders with less conspicuous titles. For instance
one may hide a series of controversial files in a directory guised as work. In digital
forensics it is pertinent that you remain aware of such practices. Renaming tech-
niques are quite common with malware. They vary from changing the icon image of
the file to renaming the file as null. There are of course more complex methods for
hiding files, a few of which we will examine in this section.

Upon saving the file as an image, all attempts to preview and open the file as an
image will be unsuccessful. However, you will still be able to open your document
as a text file to edit its contents (Figs. 13.2 and 13.3).

B Testea 2
4 » ThisPC » Desktop » Test v B | SearchTest 2
Organize « MNew folder - o
= — - J Music & Mame : Date modified vpe
| "Secret Message™ - o
&= Pictures Test.txt ]
B Videos
38 Local Disk (C) ¥ < 3
File name: | Test.jpeg
Save as type | All Files (") -
~ Hide Folders Encoding: ANSI - Cancel

Fig. 13.2 Changing the file extension of our text file to hide its contents

= Testjpeg
Test.txt

Fig. 13.3 The secret text file now appears as a JPEG image in your browser



13.1 Data Hiding Fundamentals 275
13.1.3 Volume Slack

A partition or logical drive has been formatted with a file system before it can be
available for data storage. Usually, an entire partition is fully occupied by the file
system. However, it is possible that not the entire partition or logical drive is used,
and some space is left unformatted. Under normal conditions, this unformatted space
cannot be allocated to files. It is called volume slack, which is the unused space
between the end of file system and end of the partition where the file system resides.

Volume slack is not accessible from the Operating System (OS) in a normal way,
and can be used to hide data. Therefore, disk partition(s) must be examined carefully
for volume slack. If we discover there is a size difference between the disk partition
and the file system residing in the partition, we can determine that there is volume
slack. Then, a further examination is needed to determine if hidden information
exists inside it.

13.1.4 Slack Space

File systems organize disk space into allocation units (or clusters (FAT and NTFS
for Windows) or blocks (Ext for Linux)), where each is composed of a sequence of
sectors on a disk. Since the file system allocates disk space to a file in clusters but the
file size is an even multiple of the cluster size, there ends up being unused space in
the end of the last cluster allocated to the file. This space is called slack space, and
will not be used by other files.

Slack space is not accessible from the OS in a normal way, and can be used to
hide data. Also, from a security standpoint, unused space can contain previous data
from a deleted file that can contain valuable information. Therefore, slack space must
be examined carefully for possible hidden data or remnant of the previous file which
used the space, especially, when it contains non-zero data.

13.1.5 Clusters in Abnormal States

After a disk has been in use for a while, it is inevitable that little portion of hard disk
becomes unreadable. As a result, these damaged disk space should be avoid to store
data. Usually, a modern OS scans a disk periodically for corrupted disk space or bad
blocks (sectors), for example, using use the CHKDSK tool in Windows. These
corrupted disk space is marked as bad by the OS. For example, Windows maintains
a reference of the bad clusters on NTFS volumes in the file $BadClus, one NTFS
metadata (or system) file. No data will be written to the clusters listed in the
$BadClus since these clusters are considered as bad/faulty by the NTFS file system.



276 13 Data Hiding and Detection

However, this functionality can be also exploited by criminals to intentionally mark
a good cluster as bad in the file $BadClus and store hidden data into it.

Also, recall file systems organize disk space into clusters, where each is com-
posed of several sectors. Apparently a single bad sector will get an entire cluster
marked as bad, although the rest of the cluster is good. Thus, it is occasionally
possible to recover a partial of the cluster.

Similarly, files systems keep track of the allocation status of all clusters within
them. For example, in NTFS file systems, another NTFS metadata file, $BitMap,
maintains the allocation status of all clusters on NTFS volumes. In reality, an
allocated cluster should be associated with a file in a file system. However, it is
possible that a cluster is marked as allocated or used but there is no file occupying
and using it. It is called an orphaned cluster. Since orphaned clusters are flagged as
being used, no data will be written to them. Apparently, data can be hidden
into them.

Therefore, clusters in abnormal state, including bad clusters and orphaned clus-
ters must be examined carefully for possible hidden data.

13.1.6 Bad MFT Entries

This is a technique that is specific for NTFS file system. NTFS uses the Master File
Table (MFT), which contains an entry for every file and folder on NTFS volume.
Each MFT entry starts with a signature “FILE”, indicating it is a good entry. When
an MFT entry is corrupted, it starts with a signature “BAAD”. Similar to bad clusters
in a file system, NTFS will not allocate a bad MFT entry to a file or directory. Thus,
criminals can exploit it to hide data into MFT entries which are intentionally marked
as being bad by them.

13.1.7 Alternate Data Streams

This is another technique that is specific for NTFS file system. In the NTES file
systems, data streams contain the data for the file. A data stream is encapsulated into
a $DATA attribute, also known as the data attribute. Usually, there is only one
$DATA attribute for each file, and the data stream in it is referred to as the primary
data stream. It is also called the unnamed data stream since it is a data stream without
a name (or with the empty name string). Nevertheless, NTES supports multiple data
streams. Among them, only one unnamed data stream per MFT entry is allowed,
which is the one in the default data attribute. The data streams in any additional data
attributes must be named and dubbed alternate data streams (ADSs). There are
numerous use cases for ADSs. For example, ADS is used to store summary
information for files.



13.1 Data Hiding Fundamentals 271

C:NUsers\lElsersDesktopiTestdecho “Secret Message" > Randon.txt:hidden.txt

Directory of C:NUsers\lEUser\Desktop:\Test

B9/14-2816 B5:11 AN <DIR>
B9/14-2016 ©5:11 AN <DIR> .o
197142816 ©5:11 AM @ Random.txt
1 Fileds) # hyt
2 Di 3D 121.613.910.016 hy

iNUsersslElsersDesktopiTest >

Fig. 13.4 Creating a simple alternate data stream

ADS was intended to create compatibility between Macintosh Hierarchical File
System (HFS) and NTFS. Unfortunately, this technique is not detectable by file
browsers and information. In other ways, there are no regular ways in Windows
Explorer to access ADS in a file. Apparently, with ADS, multiple hidden files can be
attached to a file. Additionally, the multitude of hidden files do not affect space
allocation calculations. There is however, a much darker side to ADS files. They can
be used to execute malicious .exe files but will not show up in Windows Explorer
(or the Command Prompt). Making matters worse, ADSs are simple to create. They
can easily be created through scripts or via the command prompt with a colon [:]
appended to the cover file [10]. The following is an example of creating an ADS file

13.1.7.1 Creating an ADS File

On your Windows machine open a command prompt. Create a new ADS file with a
stored secret message using the following command.

echo “Secret Message” > Random.txt:hidden.txt

In Fig. 13.4 we store the message Secret Message in the file “hidden.txt” which is
appended to “Random.txt”. Notice that the dir command does reveal the existence of
hidden.txt which is hidden in an alternate data stream.

As observed above, ADS can be easily abused by criminals to hide data and
malicious applications (malware). Thus, we must scan NTFS volumes thoroughly
and search for ADSs. Afterwards, these ADSs are further recovered and then
analyzed to determine existence of hidden data and malicious applications.

13.1.7.2 Recovering ADS Files

Next, let us attempt to recover “hidden.txt” and its contents.



278 13 Data Hiding and Detection

# Try to locate hidden.txt in your directory

> dir

# Did you locate the file? Next let us attempt to output the contents of hidden.
Ixt

> notepad Random.txt:hidden.txt

# Were you able to recover your secret message?

13.2 Data Hiding and Detection in Office Open XML
(OOXML) Documents

While there are many methods listed above to hide data, there are still several
different approaches to consider. Another popular way is to hide data in some
special file types. Next, we take Office Open XML (OOXML) document as an
example to illustrate how to perform Data Hiding and detection in OOXML docu-
ments. Office Open XML (OOXML) is a zipped, XML based file format for
representing spreadsheets, charts, presentations and word processing documents
[1]. It is introduced by Microsoft into Office 2007 and has been used in office
2007/2010. The OOXML format enables the generated document to be fully com-
patible with other cross platform business applications. While it offers greater
benefits over its predecessor, its unique internal file structure also opens the door
for data hiding in Microsoft Office documents based on OOXML. Due to the
popularity of Microsoft Office documents such as word or excel files, they have
become a strong preference for mischievous users to cover data for hiding informa-
tion because these document files could be easily ignored [11].

13.2.1 OOXML Document Fundamentals

OOXML file format consists of a compressed ZIP file, called package. The ZIP
compression decreases the size of the document up to 75% and is more robust to
error handling [2]. It allows an ease of managing and repairing of individual
segmented files within a package. For example, you can open MS Word 2007
document that uses OOXML format, and locates the XML part that represents the
body of the Word document. An updated Office document can be created by altering
the part using any technology capable of editing XML. An OOXML file is based on
the following: Package, part, relationship [3].

Package A package is a Zip container that holds XML and other data parts, as
defined by OPC (Open Packaging Conventions) specifications [2, 4]. The package



13.2  Data Hiding and Detection in Office Open XML (OOXML) Documents 279

can have different internal directory structure and names depending on the type of
the document. Some of the elements are shared across all MS Office applications
such as document properties, charts, style sheets, hyperlinks, diagrams, and draw-
ings. Other elements are specific to each application, such as worksheets in Excel,
slides in PowerPoint, or headers and footers in Word.

A basic package contains an XML file called “[Content_Types].xml” at the root,
along with three directories: “_rels”, “docProps”, and document type specific direc-
tory. For example, in MS Word 2007 document, the “word” directory has been
created and contains the “document.xml” file, which is the starting path of the
document. These folders have all the files located in the package and zipped together
to form a single instance of the document. Every part in a package has a unique URI
(Uniform Resource Identifier) part name along with specified content type. A part’s
content type explicitly defines the type of data stored and reduces ambiguity and
duplication issues inherent with file extensions. Package can also include relation-
ships that define association between the package, parts and external resources.

Parts The component parts of an MS Office document correspond to one file in a
package. It can be of any type including text, image etc. [2, 4]. The extension “.rels”
is reserved for storing relationship information of package parts. It is stored in “/rels”
subfolders. Three names are reserved by package for organizing its files, i.e., “_rels”
subfolder carrying relationship information with “.rels” file extension and file name
“[Content_Type].xml”. Where, “[Content_Types].xml” file provides MIME
(Multipurpose Internet Mail Extensions) type information for parts used in the
OOXML document. It also defines mapping based on the file extensions, along
with overrides for specific parts other than default file extensions. This enables an
application and third party tools to determine the contents of any part to process
accurately. File “docProps/app.xml” contains application centric properties such as
application type “Microsoft Office Word” etc. File “docProps/core.xml” contains
OOXML document core properties such as machine name, creation and modification
dates etc. File “word/document.xml” is the main part of any word document.

Relationships Relationship items specify that how a particular collection parts
come together to form a document. This is achieved by verifying connection
between source part and target part. For example, through a relationship, a user
can identify the connection between a slide and an image that appears on that slide.
Relationship files play an important role in MS Office XML formats. Every docu-
ment part is referred to by at least one relationship. The use of relationships makes it
possible to discover how one part relates to another part without looking at the
content of the parts.

All relationships, including the relations associated with the root package, are
represented as XML files. They are stored inside a package (e.g., _rels\rels). The use
of relationships makes it possible to discover how one part relates to another part
without looking at the content of the parts. Relationships are composed of four
elements: An identifier (Id), an optional source (package or part), relationship type



280 13 Data Hiding and Detection

(URI style expression), and a target (URI to another part). Two types of relationship
files usually exist in a package. These are:

/_rels/.rels: Root level “_rels” folder contains relationship file which carries infor-
mation of parts for the package. For example “_rels/.rels” file defines the starting
part of the document, i.e., “word/document.xml”.

[partname].rels: Each part may have its own relationships. The part specific
relationship can be looked in “word/_rels” subfolder, a sibling of the file with
original file name appended to it with “rels” extension. For example, “word/
_rels/document.xml.rels”.

A typical package relationships file “.rels” contains XML code. For simplicity,
we only present XML code for “document.xml” part as follows:

<Relationships
xmlns="http://schemas.openxmliformats.org/package/2006/relationships">
<Relationship Id="rId1"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/of

ficeDocument" Target="word/document.xml" />

</Relationships>

In above code, “Relationship Id” attribute value “rId1” is default for main
document part, which is the starting part of a document. Once the document is
being launched, the OOXML editor looks for an OOXML parser depending on
document type. In this case, the type specifies that MS Word ML is used for MS
Word document. Another attribute “Target” specifies path or location of beginning
part, i.e., “document.xml”.

13.2.2 Data Hiding in OOXML Documents

Data hiding in OOXML can be classified into different categories: Data hiding using
OOXML relationship structure, data hiding using XML format features, data hiding
using XML format features and OOXML relationship structure, data hiding using
OOXML flexibility for embedded resource architecture, and data hiding using
OOXML flexibility of swapping parts. We use MS Word 2007 document, as an
example, to illustrate these techniques in this section. Notably, the methodology can
be easily extended to any documents in MS Office 2007 or OOXML file format.



13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 281

j‘_m_mmmmwmmm

= ] ) = e el : A Fna -
B :cm Cate Bod +[n - iao] = E'E‘:Ift\!hril ;m aagbcenx AaBbC Aabee AAD aassce s
Poste J bomatpunter Bl Ui x o V-A EETRE| S-S teme [Thesen Hessgl Hoseyr  Ter Suetme o w [y seea -

Opboud Fort i Paagaph e 5| ey

Fig. 13.5 MS Office 2007 raised an error stated that problems with the contents

13.2.2.1 Data Hiding Using OOXML Relationship Structure

As described above, the MS Office 2007 document is composed of xml and other
files. These files are known as parts and compressed together using ZIP format.
These parts are also organized using the relationship information found in relation-
ship files inside an OOXML document. To satisfy relationships within a document,
all parts have to be a target of valid relationship entry. Parts, which are not the target
of a valid relationship entry, are treated as an unknown part [5]. These parts are not to
be ignored when reading the document by MS Office 2007 application. They raised
an error that the document is corrupt as shown in Fig. 13.5. MS Office 2007 also
facilitates user by giving an option to recover the document and removes the
unknown parts, as shown in Fig. 13.6.

In similar way, any relationship not defined within the ECMA376 Standard is
considered to be an unknown relationship. These relationship entries are accepted in
OOXML document and raise no errors. Documents containing unknown relation-
ship information are opened normally and the relationship entry can be found inside
a relationship file.

Next we provide specific example of data hiding in MS Word 2007 document by
using information of OOXML document relationship structure. The OOXML doc-
ument works as a carrier for the hidden data.

Step 1: Unzip the OOXML document using any zip utility software. This shows that
OOXML document contains several XML files and other objects.

Step 2: Insert files which wish to hide in the unzipped OOXML document archive.
These files can be added to any folder or sub folder of the document.



282 13 Data Hiding and Detection

H9 08 &, -
| Home | bwe Pptlpd Reewe Maeg  Reees  Vew Moot -

LY CUIC ) 1 [ el g Hrna-
B ;cm Gl o) i RN T R RS o assbex AaBBC AaBbce AQD aasbce e
P ot Pt | AL g2 M- A EERE ) S D | vemat | These tessngi  Meseg2 | Tee | Sune o Cese Rt

Syles~

Capboand Ferd Faagraph 0 Styies

Fig. 13.6 MS Office 2007 gives an option to recover the document by removing unknown parts

Step 3: Define types of added files into OOXML documents content type file. It is
not necessary to define file types multiple times if it already exists in the content
type file.

Step 4: Define relationship entry for inserted files into package relationship file, i.e.,
“_rels/.rels”. The attributes of relationship entries are “Id”, “Type”, and “Target”.
The relationship attribute “Id” must be unique as it connects the document and the
target files, whereas “Type” attribute is some character which is not defined in
OOXML standard such as “a”, “b” etc. The “Target” attribute contains the
complete path or location from the document’s root folder for the inserted files.

Step 5: all the files are zipped together with an extension of “.zip”, which later is
renamed to “.docx”.

For example, we created a document containing some text and image and saved it
as “Uparts&Rels”. Next, by using WinZip utility we unzipped this document and
inserted “sysinternals.zip”, “mask.jpeg” and “BYE.mp3” as our hidden files in the
root folder of the document. After inserting these files we updated the
“[Content_Types].xml” file for inserting files types. The content type file can be
found inside root folder named “[Content_Types].xml”. Before opening a document,
the OOXML parser validates that the files present in the package are defined in
“[Content_ Types].xml” file. The code for defining hidden file types into
“[Content_Type].xml” file is highlighted with existing code in Fig. 13.7.

The package level relationship file ““_rels/.rels” is used for creating relationships
of hidden files within a package. The relationship entry attributes such as Id, Type,
and Target are defined in relationship file, as shown in Fig. 13.8.

As seen above, the relationship Id of “BYE.mp3” is “rd102” and Type is “http://
schemas.openxmlformats.org/officeDocument/2006/Relationships/c”.  We  use
values that do not exist in the OOXML specifications such as “a, b, ¢”, etc., when


http://schemas.openxmlformats.org/officeDocument/2006/Relationships/c
http://schemas.openxmlformats.org/officeDocument/2006/Relationships/c

13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 283

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<Types
xmins="http://schemas.openxmliformats.org/package/2006/content-
types">

<Override PartName="/word/footnotes.xml" ContentType="....... "/>

<Default Extension="jpeg" ContentType="image/jpeg" />
<Default Extension="rels" ContentType="application/vnd.openxmliformats-
package.relationships+xml" />

<Default Extension="xml" ContentType="application/xml" />
<Default Extension="zip" ContentType="application/zip" />
<Default Extension="mp3" ContentType="application/mp3" />

<Default Extension="jpg" ContentType="application/jpg" />
<Override PartName="/word/document.xml" ContentType="...1csu " />

Fig. 13.7 Modified “[Content_Types].xml” file

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<Relationships
xmins="http://schemas.openxmiformats.org/package/2006/relationships">

<Relationship Id="rId3" Type="..." Target="docProps/app.xml" />
<Relationship Id="rId2" Type="..." Target="docProps/core.xml" />
<Relationship Id="rId1" Type="..." Target="word/document.xml" />

éelationship Id="rId100"

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/a
" Target="word/media/sysinternals.zip" />

<Relationship Id="rId101"
Type="http://schemas.openxmliformats.org/officeDocument/2006/Relationships/b
" Target="mask.jpg" />

<Relationship Id="rId102"

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/c"
Qrget=“word/BYE.mp3" />

</Relationships>

Fig. 13.8 Modified relationship file (.rels)

setting a type. After these modifications, the OOXML document is opened normally
without a warning. Also, if user amends the document and updates it, the hidden data
remains in the document. The MS Office application considers unknown parts and
unknown relationships as valid parts and relationships of a package.



284 13 Data Hiding and Detection

As explained earlier, hidden data must satisfy all the relationships in the package.
Otherwise, it is visible in document. Also, if only an inserted file type is defined in
Content Type file and its relationship is not created in relationship file, the document
opens normally. Office application does not give any warning. Inserted file still
exists inside the package. In this case, if user updates or makes some changes in the
word document, then the inserted file will be eliminated by the application. So for
keeping the existence of inserted file, its relationship needs to be created in
relationship file.

This data hiding method is the natural result of an explicit relationship in
OOXML. The key point of this hiding process is to assign a fresh Id to new target.
This results the target being overlooked by the MS Office application. The new Id is
not referenced in the relationship part. So the main source part is not aware of the
new content. Then, the hidden data is not shown on screen and neither can it be
eliminated by MS Office application because these hidden data has an Id and
satisfies relationship structure of OOXML document. At this point, if relationships
between main MS Office document file and hidden data are defined, the hidden data
becomes more difficult to discover.

This data concealment approach also sidesteps the document inspection feature
“Inspect document” available in MS Office 2007 applications.

13.2.2.2 Data Hiding Using XML Format Feature

XML comment feature is used to leave a note or to temporarily edit out a portion of
XML code. Although XML is supposed to be self-describing data, you may still
come across some instances where an XML comment might be necessary. OOXML
documents do not generate any comments in XML files whereas XML comments
feature can easily be used for data hiding purpose by some mischievous user. This
involves technique of adding comments directly to zip archive using comment
feature of zip file format and adding XML comments to the XML file [6]. In both
cases, these comments are ignored by MS Office 2007 application and these
comments are discarded when document is written back out.

For Example, we created one document contains some text and an image. Then,
unzip it using any zip utility. A secret message is added using comments feature in
one of the XML file. The secret message is as follows:

<!-- This is a secret message-->

The secret message is encoded using base64 encoding scheme. It turns to be as
follows:

PCEtLSBUaGIzIGIzZIGEgc2VjemVOIG11c3NhZ2UtLT4=

We add this data to any of the XML file. The comments cannot appear at the very
top of the document in XML according to XML standard. Only the XML declaration
can come first such as:

Document inspection feature of MS Office 2007 allows removing of comments
from the document. Whereas, by using this approach, the document inspection
feature fails to identify and remove comments embedded using base64 encoding



13.2  Data Hiding and Detection in Office Open XML (OOXML) Documents 285

scheme. This technique also enables to hide some file in an OOXML document
using base64 encoding scheme. The quality of this data hiding technique is relatively
low as XML files carry base64 encoded data. They can be easily noticed if the
document is unzipped.

13.2.2.3 Data Hiding Using XML Format Feature and OOXML
Relationship Structure

Ignorable attribute is also an important feature of MS Office 2007 applications
[4]. Compatibility rules are very important for any associated XML element. Com-
patibility rules are associated with an element by means of compatibility rule
attributes. These control how MS Office 2007 parser shall react to elements or
attributes from unknown namespaces. The principal compatibility rule attribute is
the Ignorable attribute. MS Office 2007 treats the presence of any unknown element
or attribute as an error condition by default [4, 6]. However, unknown elements or
attributes identified in an Ignorable attribute shall be ignored without error.

The Ignorable attribute specifies which XML namespace prefixes encountered in
a markup file may be ignored by an OOXML processor. Elements or attributes,
where the prefix portion of the element name is identified as “ve:Ignorable”, will
not raise an error when processed by an OOXML processor. The “ve” XML
namespace is the recommended prefix convention to use when mapping the
XAML (Extensible Application Markup Language) compatibility namespace
“http://schemas.openxmlformats.org/markup-compatibility/2006”. The “ve:Ignor-
able” attribute supports markup compatibility both for custom namespace mapping
and for XML versioning.

This data concealment technique supports any kind of data such as image, audio
or video file to be hidden by taking advantage of XML format feature and OOXML
relationship structure. This technique coerces XAML parser to treat that element and
attributes that do not exist. It will not generate an error. By default, Ignorable
element is entirely ignored including its attributes and contents. This data conceal-
ment process requires the following steps.

Step 1: An OOXML document is unzipped using WinZip utility.

Step 2: Add an image which needs to be hidden in sub folder named “word/media”.
This sub folder usually contains all images used inside a document.

Step 3: Create metadata for hidden image inside main document file “document.
xml” to make it look legitimate.

Step 4: Use ignorable attribute to define this in declaration section of main document
file, i.e., “document.xml”. Place this tag before and after creating metadata for
hiding image.

Step 5: Amend the part relationship file “document.xml.rels” with creating relation-
ship attributes such as “Id”, Type” and “Target”. The “Id” must be unique. Other
attributes “Type” and “Target” contain information of image type and location.


http://schemas.openxmlformats.org/markup-compatibility/2006

286 13 Data Hiding and Detection

Fig. 13.9 Added Image
shown with other files in g Ignore_
OOXML document

, _rels
. docProps
4 |, word
, _rels An image is inserted inside a

media document as image2

&) imagel
&) image2 & /

. theme

Step 6: All the files are zipped together with an extension of “.zip”, which later is
renamed to “.docx”.

For example, we create and save a document containing image and some text
data, named as “Ignore.docx”. After unzipping this document, we add an image
which needs to be hidden inside a document under “word/media” subfolder as
shown in Fig. 13.9.

After inserting an image in “word/media” subfolder, the main document file is
updated with the metadata code for an inserted image. For simplicity, we copy the
metadata code of first image inserted using MS Office application and paste it as a
separate block for hidden image in “document.xml” file. Ignorable attribute is
defined inside a main document declaration section to hide this image, as shown in
Fig. 13.10. The code highlighted in red is used to define ignorable namespace, which
markup consumer does not understand. After defining the ignorable attribute
namespace, the ignorable tag is placed before and after the metadata of second
image need to be hidden, as shown in Figs. 13.10 and 13.11. The hidden image is
“Garden.jpeg”. Its metadata tag in document.xml file is shown in Fig. 13.12.

Finally, the part relationship file “document.xml.rels” is updated with a valid
relationship entry of an inserted image along with its type and target information. In
this case, the highlighted relationship entry having Id “rId5” is added in relationship
file with type “http://schemas.openxmlformats.org/officeDocument/2006/relation
ships/image” and target “media/image 2.jpeg” values. It is shown in Fig. 13.13
with highlighted code for this entry.

The image is successfully hidden by using Ignorable attribute. However, only
using XML feature such as ignorable attribute does not guarantee of keeping hidden
image with the document. The relationship must be created to keep this hidden
image intact with the document. The content type file is not required to amend with
image type if same type of image is inserted. If inserted image type is different from
the first image, the content type file needs to be updated with hidden image type. The
sample code for updating content type is as follows: The “[Content_Types].xml” file
is located at root level in the package.


http://schemas.openxmlformats.org/officeDocument/2006/relationships/image
http://schemas.openxmlformats.org/officeDocument/2006/relationships/image

13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 287

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<w:document xmlns:ve="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"
xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing"
xmlns:w10="urn:schemas-microsoft-com:office:word"
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"

xmlns:wne="http://schemas.microsoft.com/office/word/2006/wordml"

xmlins:p1=""http://schemas.openxmlformats.org/MyExtension/p1" ve:Ignorable="p1" >

Fig. 13.10 Beginning section of main document file “document.xml”

<w:sectPr w:rsidR="00401AD8" w:rsidRPr="0091776E" w:rsidSect="00DC51FF">
<w:pgSz w:w="12240" w:h="15840" />

<w:pgMar w:top="1440" w:right="1440" w:bottom="1440" w:left="1440" w:header="720"

w:footer="720" w:gutter="0" />
<w:cols w:space="720" />
<w:docGrid w:linePitch="360" />
</w:sectPr>

</w:body>

</w:document>

Fig. 13.11 End section of main document file “document.xml”



288 13 Data Hiding and Detection

<pl:IgnoreMe>

<w:p w:rsidR="00401AD8" w:rsidRPr="0091776E"
w:rsidRDefault="0091776E" w:rsidP="0091776E">
<w:pPr>

<w:tabs>

<w:tab w:val="left" w:pos="1155" />

</w:tabs>

</w:pPr>

<w:ir>

<w:lastRenderedPageBreak />

<w:drawing>

<wp:inline distT="0" distB="0" distL="0" distR="0">
<wp:extent cx="5943600" cy="4457700" />
<wp:effectExtent 1="19050" t="0" r="0" b="0" />
<wp:docPr id="2" name="Picture 1" descr="Garden.jpg" />
<wp:cNvGraphicFramePr>

<a:graphicFramelLocks
xmins:a="http://schemas.openxmlformats.org/drawingml/2006/main"
noChangeAspect="1" />

</wp:cNvGraphicFramePr>

<a:graphic
xmins:a="http://schemas.openxmlformats.org/drawingml|/2006/main">
<a:graphicData
uri="http://schemas.openxmlformats.org/drawingml/2006/picture">
<pic:pic
xmlns:pic="http://schemas.openxmlformats.org/drawingml|/2006/picture">
<pic:nvPicPr>

<pic:cNvPr id="0" name="Garden.jpg" />
<pic:cNvPicPr />

</pic:nvPicPr>

<pic:blipFill>

<a:blip r:embed="rId5" cstate="print" />
<a:stretch>

<a:fillRect />

</a:stretch>

</pic:blipFill>

<pic:spPr>

<a:xfrm>

<a:off x="0" y="0" />

<a:ext cx="5943600" cy="4457700" />

</a:xfrm>

<a:prstGeom prst="rect">

<a:avlst />

</a:prstGeom>

</pic:spPr>

</pic:pic>

</a:graphicData>

</a:graphic>

</wp:inline>

</w:drawing>

</W:ir>

</w:p>

</pl:IgnoreMe>

Fig. 13.12 Sample metadata of hidden image



13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 289

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<Relationships
xmins="http://schemas.openxmliformats.org/package/2006/relationships">

<Relationship Id="rId3"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/web
Settings" Target="webSettings.xml" />

<Relationship Id="rId7"
Type="http://schemas.openxmliformats.org/officeDocument/2006/relationships/the
me" Target="theme/themel.xml" />

<Relationship Id="rId2"
Type="http://schemas.openxmliformats.org/officeDocument/2006/relationships/setti
ngs" Target="settings.xml" />

<Relationship Id="rId1"
Type="http://schemas.openxmliformats.org/officeDocument/2006/relationships/styl
es" Target="styles.xml" />

<Relationship Id="rId6"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/font
Table" Target="fontTable.xml" />

<Relationship Id="rId5"
Type="http://schemas.openxmliformats.org/officeDocument/2006/relationships/ima
ge" Target="media/image2.jpeg" />

<Relationship Id="rId4"
Type="http://schemas.openxmliformats.org/officeDocument/2006/relationships/ima
ge'" Target="media/imagel.jpeg" />

</Relationships>

Fig. 13.13 Relationship file showing entry for hidden image

Needs to be
<Default Extension: "jpe}ontentType:Gmage/jpeg' /> updated

Data hiding using this technique is really hard to trace as it conforms all the
association to the main document file. The relationship entry also exists in relation-
ship file. Additionally, file does not raise any doubt of illegitimate data hidden inside
an OOXML document with the insertion of metadata code of hidden image in
“document.xml”.

13.2.2.4 Data Hiding Using OOXML Flexibility for Embedded
Resource Architecture

The Custom XML feature is one of the most powerful features of OOXML docu-
ments for business scenario and document centric solutions [6]. It supports integra-
tion of documents with business process and data to get true interoperability of



290 13 Data Hiding and Detection

<?xml version="1.0" encoding="UTF-8"

customXm standalone="yes" ?>
_rels
customXml <Relationships
xmlns="http://schemas.openxmliformats.org/
<03 iteml package/2006/relationships">

<o itemPropsl
- Rsibes <Relationship Id="rId1"

_rels Type="http://schemas.openxmliformats.org/o
fficeDocument/ 2006/ relationships/customX

& . | o
B et mlProps" Target="itemPropsi.xml" />
docProps
word </Relationships>
Document contains customXml part relationship file
CustomXML data generated
by MS Office.

Fig. 13.14 Document Structure with Custom XML data and its part relationship code

documents. This allows you to embed business semantics in such a way that it is
discoverable. Implementers not interested in using that feature can skip over it easily.
You can even easily extract your data using one simple generic XSLT (Extensible
Stylesheet Language Transformations). A package is permitted to contain multiple
custom XML data storage parts.

The ability to embed and interweave business data into transportable and
humanly readable documents is extremely useful. Take for instance the efforts to
standardize the embedding of patient medical data into PDF documents, (aka
PDF/H). Records For Living has been able to take advantage of Open XML’s
capabilities with regards to its support of custom schemas to integrate two industry
standards: Ecma’s Open XML and the ASTM’s Continuity of Care Record (CCR).
The combination is powerful: Patients can use personal health record (PHR) soft-
ware to exchange live reports with their doctors in a way that is both human and
machine readable [1].

This feature also empowers data concealment using OOXML flexibility for
embedded resources inside MS Office 2007 document. The Custom XML data is
also generated by OOXML document in some cases. The object embedding feature
of OOXML document requires generation of Custom XML data for handling
information of that object. The default layout of the unzip OOXML document
which contains Custom XML data is shown in Fig. 13.14.

By default an OOXML document creates custom XML folder at root to store
custom XML data files. This folder contains two XML files, “iteml.xml” and
“itemProps1.xml”. The part relationship file of custom XML data is generated at
“customXml” folder under “customXml/_rels” subfolder as “iteml.xml.rels”. It
contains relationship entry for “itemProps1.xml” file, as shown in Fig. 13.15. The
part relationship file of main document “document.xml.rels” is also updated with an



13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 291

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<Relationships
xmins="http://schemas.openxmliformats.org/package/2006/relationships">

<Relationship Id="rId8"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/theme" Target="theme/themel.xml" />

<Relationship Id="rId3"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/settings" Target="settings.xml" />

<Relationship Id="rId7"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/fontTable" Target="fontTable.xml" />

<Relationship Id="rId2"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/styles" Target="styles.xml" />

ZRelationship Id="rId1" \

Type="http://schemas.openxmliformats.org/officeDocument/2006/relationship >

customXml" Target="../customXml/item1.xml" />

<Relationship Id="rId6"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/endnotes" Target="endnotes.xml" />

/\

<Relationship Id="rId5"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/footnotes" Target="footnotes.xml" />

<Relationship Id="rId4"
Type="http:/ /schemas.openxmlformats.org/officeDocument/2006/relationship
s/webSettings" Target="webSettings.xml" />

</Relationships>

Fig. 13.15 Part relationship file code “document.xml.rels”

entry of second custom XML file, i.e., “iteml.xml” with Id “rIld1” as shown in
Fig. 13.15.
The steps of data hiding using Custom Xml feature are as follows:

Step 1 Create and save an OOXML document named “CustomXML.docx”. It
contains text and image.

Step 2 Create a folder at root named “customXml” and insert some text file needed to
hide in OOXML document. The text file is in XML format, which looks legiti-
mate Custom XML data.

Step 3 Create a subfolder named “customXml/_rels” and one relationship file for
hidden text file.

Step 4 All the files are zipped together with an extension of “.zip”. Later, it is
renamed as “.docx”.



292 13 Data Hiding and Detection

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<w:document
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships/cus
tomXml"
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main">
<w:body>

<w:p wirsidR="00DCS51FF" w:rsidRDefault="00C2303E">

<w:ir>

</w:r>
</w:p>

</w:body>

Fig. 13.16 Sample code of “hiddendata.xml” file

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Id="rId100"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/custom
XmlData" Target="/customXML/test.xml" />

</Relationships>

Fig. 13.17 Sample code of customXml part relationship file

For example, we use this technique to hide some text data inside MS Office
document. We create “customXml” folder at root of the package and insert one text
file named “hiddendata.xml”, as shown in Fig. 13.16.

Next we satisfy its relationship constraint by creating its relationship file inside a
“customXml/ _rels” subfolder, named as “hiddendata.xml.rels” shown in Fig. 13.17.
If we do not skip its entry in part relationship file of main document, the Inspect
Document feature can easily identify the custom XML data. It allows user to discard
the custom XML data.

This technique allows insertion of any text file in xml format contains hidden data
with its internal sub-relationship. The key point to identify whether it is hidden data
or not is to see that whether CustomXml type entry is presented in part relationship



13.2  Data Hiding and Detection in Office Open XML (OOXML) Documents 293

Prepase the document fox distrivation
i}, 1= = ]| To ek e coaumentfor e seced corent, ik e,
Vi 30 0 GoMmEnt propeties, such =1 T - 7
5 o 1Tl Atho, nd e EE| 1 Commenty e e s s
= Trspects the document for comments, versions, fevision marks, and ink annotations.
-, apect Document
H g Checkthe documentforbiden metadata ﬁ @
a Mmé Press F1 fof maee beip. Trspecs
ﬂ“"!’ LB wnerease the secusty of e B -
adding encaption. ) Custom XHL Dats
o s | Besticpeminion Tespects for custom 1ML data stored with fis document.
i Grast peogle access while restridting ther ¥
ability fo 81, copy, and print | Headers, Fookers, and Watermarks
ﬂ Prgpare ¥ | L Add a Digital Signature Trspects the document for inflrmaion i headers, footers, and mitemaris,
Envare the integriy of the donment by
- addieg bn insble Sigtal sigeutuse. &l ol
¥ | Hidden
o %muw Tnspects fr
Letseaders inaw the donsment is final and
d Pypish » make it read-snly,
#in Compatibility Checker
5 NP Check for eatures nol sepparted by earer
] Dese ersions of Word.
12 ord optons | X et ||
[rma | [ g

Fig. 13.18 Inspect document feature of MS Office 2007

file of main document. The hidden data under customXml folder is not linked with
the main document file “document.xml”.

The MS Office document gives feature that allows you to remove custom XML
data associated with the document. This feature is named as Inspect document,
which removes custom XML data, hidden data and other personal information
from MS Office document. The snapshot of this feature is shown in Fig. 13.18.
The inspect document feature functionality is to search customXml type in part
relationship file of main document (“document.xml.rels”). Once it is found, the
associated data using target information is deleted. Also, customXml folder with
its contents is discarded. The document inspection feature of MS Office 2007 is
unable to detect custom XML data in this scenario as it sidesteps the document
inspection feature of MS Office 2007 application.

13.2.2.5 Data Hiding Using OOXML Flexibility of Swapping Parts

Images are the most popular cover objects used for data hiding. Many image file
formats exist for different applications. The MS Office 2007 uses “png”, “jpeg”,

“gif” and “emf” formats for storing images inside a document [7]. The flexibility of
data hiding using OOXML architecture of swapping parts allows swapping of
images between two OOXML documents. It supports two data hiding scenarios as
follows.



294 13 Data Hiding and Detection

Scenario 1

Step 1 The OOMXL document is unzipped using WinZip utility.

Step 2 Swap an image with the original image found in “word/media” subfolder.
Ensure that the swapped image follows the same name of the original image. The
inserted image is transformed according to OOXML image transformation stan-
dard before swapping.

Step 3 The content type file is needed to be updated if swapped image is of another
format.

Step 4 All the files are zipped together with an extension of “.zip” and later renamed
as “.docx”.

Scenario 2

Step 1 The OOMXL document is unzipped using WinZip utility.

Step 2 An original image found inside “word/media” subfolder is used to embed
files using any image stego software.

Step 3 All the files are zipped together with an extension of “.zip” and later renamed
as “.docx”.

The swapped image has to be transformed or compressed first before swapping.
Otherwise, OOXML document raises an error. The best way is to add desired image
into MS Office 2007 document and save the document. An image is automatically
transformed by the application in this way. Later, unzip this document and swap the
image with another image presented in different document, as shown in Fig. 13.19.

This facilitates mischievous users to swap images of two documents. They can
embed files into an existing image by using any available image steganography tool.

Document 1: Contains image

without hidden data

Fig. 13.19 Swapping of image between two OOXML documents

+ B WoSteg.zip 2+ B WoSteg.zip
, _rels , _rels
. docProps . docProps
4 |, word 4 |, word
, _rels | _rels
. media . media |
] imagel.gif \I ) &) imagel.gif
. theme . theme

Document 2: Contains image
with hidden data




13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 295

Swapping of images cannot be detected by using any feature of MS Office 2007
application. Hence, it seems that manual scrutiny of the images is required to ensure
that it does not carry any hidden data. MS Office 2007 is unable to detect the changes
made into an image file.

13.2.3 Hidden Data Detection in OOXML Documents

Several types of hidden data and personal information can be saved in an MS Office
2007 document [8, 9]. This information might not be immediately visible when
viewing the document in MS Office 2007 application. But it might be possible for
other people to detect the information. The detection logic of hidden data is entirely
dependent on the data hiding techniques. It involves investigation of multiple XML
files of OOXML document. In this section, we describe several hidden data detection
methods in OOXML documents based on the above data hiding techniques.

13.2.3.1 Detecting Hidden Data Using OOXML Relationship Structure

This technique requires detection logic to ensure that all package parts and relation-
ships are verifiable against the OOXML standard. This also confirms that all parts
must associate with their relevant counter parts or the main document file. The
properties of unknown parts and unknown relationships can be used for detecting
hidden data by using this approach. It requires detection query to scan both the
relationship files, package level “.rels” and part level “document.xml.rels”. This
identifies relationship type, which is not defined in the ECMA-376 standard. This
undefined relationship “Type” is separated with its attributes such as “Id” and
“Target”. The “Target” attribute identifies the unknown part. Its location is shown
in Fig. 13.20.

Unknown
.L Relationship
- Type

'L
.t
.
.

<Relationship Id="rId100" an®

Type="http://schemas.openxmlformats.org/officeDocument/ 2006/
tionships/a"
@mask.jpeg" />
e, Unknown

T Part

Fig. 13.20 Unknown relationship and unknown part



296 13 Data Hiding and Detection

Fig. 13.21 Detection logic
for unknown parts and
unknown relationships
technique

The detection logic of unknown parts and unknown relationships is explicitly
shown in Fig. 13.21.

13.2.3.2 Detecting Hidden Data Using XML Format Feature
and OOXML Relationship Structure

This logic discovers the hidden data by using ignorable attribute. In order to detect
the hidden image, the query first scans main document file “document.xml” for
ignorable attribute. If it is found, all the metadata code inside ignorable attribute tag
is separated. As the main document file “document.xml” contains “r:embed” attri-
bute, which carries same value of part relationship file “document.xml.rels” attribute
“Id”. In this metadata code, the query looks for “r:embed” attribute value and
matches it with part relationship file “Id” attribute value. The matched relationship
“Id” attribute “Target” contains name and location of hidden image using ignorable
attribute. The OOXML parser ignores processing of metadata tags within ignorable
attribute. It is worthy mentioning that hidden image inside the document seems to be
normal as its corresponding metadata also presents in main document file along with
its relationship information in part relationship file.

13.2.3.3 Detecting Hidden Data Using OOXML Flexibility For
Embedded Resource Architecture

The package relationship file “.rels” and part relationship file “document.xml.rels”
are used to validate and ensure that all the parts inside the package are associated
with main document file. The unassociated parts with main document are considered
as hidden data. They can be detected by checking its relationship with the main



13.2 Data Hiding and Detection in Office Open XML (OOXML) Documents 297

Fig. 13.22 Detection logic
for CustomXml technique

Sub folders -

document exists. The custom XML data generated by the word document is not
detected as hidden data, as shown in Fig. 13.22.

From the viewpoint of computer forensics, it is very important to confirm the
existence of any data, which are not examined by specific applications. In computer
forensic investigations, investigators may assume that all data in electronic docu-
ment files can be examined by their applications. However, it is not enough to
investigate electronic document files only through their associated applications.
Because data, that cannot be examined or detected by most applications, can still
exist in the file.

Notably, most of the descriptions focus on MS Word 2007 files in this chapter.
However, in the case of MS Office PowerPoint and Excel 2007 files, these hidden
data can also be detected using the same algorithms.

Review Questions
1. Which is the following statements about slack space is true?

(a) Slack space is considered unallocated space.

(b) Slack space is only in the end of the last cluster allocated to a file.
(c) Slack space is only in the end of the first cluster allocated to a file.
(d) Slack space is equivalent to volume slack.

. Describe in your own words, what is slack space?

. Describe in your own words, what is volume slack?

. What is orphaned cluster?

. What is Alternate Data Stream?

. The following figure shows an output of the TSK meta data layer tool istat

AN AW



298 13 Data Hiding and Detection

MFT Entry Header Values:
Entry: 64 Sequence: 1
$LogFile Sequence Number: 0
Allocated File

Links: 1

S$SSTANDARD INFORMATION Attribute Values:
Flags: Archive

Owner ID: 0

Created: Tue Sep 20 06:47:40 2016
File Modified: Tue Sep 20 06:47:40 2016
MFT Modified: Tue Sep 20 06:47:40 2016
Accessed: Tue Sep 20 06:47:55 2016

$FILE_NAME Attribute Values:
Flags: Archive
Name: readme.txt

Parent MFT Entry: 5 Sequence: 5
Allocated Size: 16384 Actual Size: 0
Created: Tue Sep 20 06:47:40 2016

File Modified: Tue Sep 20 06:47:40 2016
MFT Modified: Tue Sep 20 06:47:40 2016

Accessed: Tue Sep 20 06:47:40 2016

Attributes:

Type: $STANDARD INFORMATION (16-0) Name: N/A Resident size: 48
Type: SFILE_NAME (48-3) Name: N/A Resident size: 86

Type: SSECURITY DESCRIPTOR (80-1) Name: N/A Resident sjize: 80
15123

; SDATA (128-2) me: $Data Non-Resident size:
14216 14217 14218 1421 I
File size (in bytes)

Clusters allocated to the file

Suppose that the cluster size is 4 KB. Please answer the following questions by
filling in the blanks with the correct response.

(a) What is the number of clusters allocated to the file?
(b) What is the size of the file? (in bytes)
(c) There is slack space in the file? (Yes/No)
(d) If so, what is the size of slack space for the file? (in bytes)
and, which cluster contains the slack space for the

file? (in bytes)

13.3 Practical Exercise

The objective of this exercise is to learn how to hide data as well as recover hidden
data using some open source tool.



13.3  Practical Exercise 299
13.3.1 Setting Up the Exercise Environment

For this exercise, we will use a data hiding tool, Bmap, which can utilize slack space
to hide data. You download Bmap from the following site onto Forensic Workstation
and install it

https://packetstormsecurity.com/files/17642/bmap-1.0.17.tar.gz.html

13.3.2 Exercises

Create a 1058 byte file of random data, called “myfile.dat” in the current working
directory using the following command.

> dcfldd if=/dev/urandom of=myfile.dat bs=1 count=1058

where /dev/urandom is a special file (device) that serves as a pseudo random
number generator, a PRNG, in Linux.
Obtain the actual file size of the file “myfile.dat” using Is command:

> Is -1 myfile.dat

Q1. What is the file size of “myfile.dat"? (in bytes)
Obtain the size of disk space allocated to the file “myfile.dat” using du command:

> du myfile.dat

Q2. What is the size of the disk space used by the file “myfile.dat”? (in bytes)

Note that the du command measures file space in 1 KB units by default. It means
that if the output displayed is 8, then the size will be 8 x 1024 bytes = 8192 bytes or
8 KB.

Q3. What is the size of slack space for the file? (in bytes)



https://packetstormsecurity.com/files/17642/bmap-1.0.17.tar.gz.html

300 13 Data Hiding and Detection

Next, use bmap to hide a secret message “This is Secret Message” into slack

space of the file using the following command:

> echo "This is Secret Message" | ./bmap --mode putslack myfile.dat
stuffing block 1110943

file size was: 1058

slack size: 3038

block size: 4096

For simplicity, we assume that you have installed bmap in the current directory.
Note that if you view the content of the file “myfiel.dat”, for example, using the

cat command, you will not find the secret message you have hidden inside it.

Next, use bmap to reveal the hidden message in the slack space using the

following command:

> ./bmap --mode slack myfile.dat
getting from block 1110943

file size was: 1058

slack size: 3038

block size: 4096

This is Secret Message

It can be observed that the hidden secret message has been successfully

recovered.

References

L.

2.

F. Rice, “Open XML file formats,” Microsoft Corporation, online at http://msdn.microsoft.
com/en-us/library/aa338205.aspx, last accessed April 14, 2011.

A. Castiglione, A. De Santis and C. Soriente, “Taking advantages of a disadvantage: Digital
forensics and steganography using document metadata,” Journal of Systems and Software, vol.
80, no. 5, pp. 750-764, May 2007.

. B. Park, J. Park, S. Lee, “Data concealment and detection in Microsoft Office 2007 files,” digital

investigation, no. 5, pp. 104—114, 2009.

. “ECMA OOXML documentation,” online at http://www.ecma-international.org/publications/

standards/Ecma-376.htm, last accessed April 14, 2011.

. B. Park, J. Park and S. Lee, “Data Concealment & Detection in Microsoft Office 2007 files,”

Digital Investigation, vol. 5, no. 3/4, pp. 104-114, March 2009.

. S.L. Garfinkel and J.J Migletz, “New XML-Based Files Implications for Forensics,” Security &

Privacy, IEEE, vol. 7, no. 2, pp. 38—44, March-April 2009.


http://msdn.microsoft.com/en-us/library/aa338205.aspx
http://msdn.microsoft.com/en-us/library/aa338205.aspx
http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ecma-international.org/publications/standards/Ecma-376.htm

References 301

7. T. Ngo, “Office Open XML Overview,” ECMA TC45 white paper, online at http://www.ecma-
international.org/mews/TC45_current_work/OpenXML%20White%20Paper.pdf, last accessed
April 14, 2011.

8. Microsoft, “Remove personal or hidden information,” online at http://office.microsoft.com/en-
us/word/HP051901021033.aspx, last accessed April 14, 2011.

9. Microsoft, “The remove hidden data tool for Office 2003 and Office XP,” online at http://
support.microsoft.com/kb/834427, last accessed April 14, 2011.

10. http://www.bleepingcomputer.com/tutorials/windows-alternate-data-streams/
11. Muhammad Ali Raffay. Data hiding and detection in office open XML (OOXML) documents.
Master’s thesis, University of Ontario Institute of Technology, 2011.


http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
http://www.ecma-international.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf
http://office.microsoft.com/en-us/word/HP051901021033.aspx
http://office.microsoft.com/en-us/word/HP051901021033.aspx
http://support.microsoft.com/kb/834427
http://support.microsoft.com/kb/834427
http://www.bleepingcomputer.com/tutorials/windows-alternate-data-streams/

Part 111
Forensic Log Analysis



Chapter 14 )
Log Analysis s

Learning Objectives
The objectives of this chapter are to:

* Know two popular logging mechanisms, Syslog and Windows Event Log,
and understand how they work

* Know how to configure syslog

» Be able to collect, parse and analyze logs

* Understand SIEM works

The preceding chapters have mainly focused on the most common source of digital
evidence, computer storage devices. Another important source of digital evidence is
log files. One of the keys to success in conducting an effective digital investigation
on a computer system is to know what is happening on the system. Computer
systems and applications generate logs when something happens or needing for
attention (e.g., a computer system being configured to record user login attempts.).
These logs can provide solid forensic evidence to reveal a user’s misbehaving
activities and discover how, when and where of an incident and help identify
cybercriminals. In this chapter, you’ll learn two major logging mechanisms, Syslog
and Windows Event Log, and how they work. Also, you’ll learn Security Informa-
tion and Event Management System (SIEM). Finally, you’ll know how to collect,
parse, and analyze logs.

© Springer Nature Switzerland AG 2018 305
X. Lin, Introductory Computer Forensics,
https://doi.org/10.1007/978-3-030-00581-8_14


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00581-8_14&domain=pdf

306 14 Log Analysis
14.1 System Log Analysis

Computer systems and applications generate large amount of logs to measure and
record information for the duration of the monitoring period. System log data is one
of the most valuable, containing a categorical record of user transactions, customer
activity, sensor readings, machine behavior, security threats, fraudulent activity and
more. When security breaches happen, logs may be the best line of defense [1].
System logs are also one of the fastest growing, most complex areas of big data,
especially with the rapid development of distributed computing. The large amount of
logs, which is generated by various systems, are a very computationally intensive
task for mining by analyzing them. Precisely mining and analyzing logs data will
efficiently improve system security, strengthen system defense capability, and
attacks forensics.

Windows Event Log and Linux/Unix syslog are the two major logging mecha-
nisms. Usually, they are deployed simultaneously in the complex network physical
environment for log management, and both of them can be custom configured by the
end users. There are tools available to integrate Windows Event Log and Linux/Unix
syslog to make log management more efficient in today’s enterprise environment.
For example, SolarWinds Event Log Forwarder for Windows is able to automati-
cally forward Windows event logs as syslog messages to a syslog collector [2]. How-
ever, some common analytics challenges are caused by traditional log data
management and limited by current technologies. Along with some of these chal-
lenges, which includes log generation, collection, transport, storage, analyzing and
forecasting in the perspective of security will be presented in this section.

14.1.1 Syslog

Syslog (System Logging) is a standard for message logging, and is widely used on
Unix and Linux as well as many security products, such as Firewall, Intrusion
Detection System (IDS). The syslog log messages are classified by two categories:
Facility and severity [5]. The “severity” is used to indicate the priority, which is
shown in the following table (Table 14.1).

Table 14.1 Syslog message Numerical code | Severity

severities -
0 Emergency: system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages
7 Debug: debug-level messages




14.1 System Log Analysis 307

Table 14.2 Syslog message facilities

Numerical code Facility Description

0 kern the kernel

1 user “user” processes (no specific)

2 mail sendmail

3 daemon “system” daemons, such as ‘routed’
4 Auth security and authorization-related

5 syslog Syslog internal messages

6 LPR BSD line-printer daemon

7 news usenet news system

8 uucpe for the (ancient) UUCP (unix-to-unix copy) service
9 Cron the cron daemon

10 authpriv similar to ‘auth’, logged to secure file
11 ftp FTP daemon

16-23 localO—local7 used for local/other daemons

The “facility” describes the part of the system or application which generated the
log message, which is shown in the following table (Table 14.2).

When a user tries to log into a Linux machine, for example, by using ssh (secure
shell), the user is authenticated by entering his/her username/password. Then, an
authentication event will be logged no matter whether it is a successful or failed login
attempt. The followings are some examples of syslog messages of login successes/
failures:

Oct 16 17:10:30 localhost sshd[5124]: Accepted password for root from
192.168.220.1 port 1643 ssh2

Oct 16 17:10:31 localhost sshd[5127]: pam_unix(sshd:session): session opened
for user root by root(uid=0)

Oct 16 17:10:51 localhost sshd[5154]: pam_unix(sshd:auth): authentication fail-
ure; logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.220.1user=root

Oct 16 17:10:53 localhost sshd[5154]: Failed password for root from
192.168.220.1 port 1645 ssh2

Oct 16 17:10:59 localhost sshd[5154]: Failed password for root from
192.168.220.1 port 1645 ssh2

Obviously, if we can keep monitoring those log messages, it is likely that we can
detect many attacks/abuses. For example, if we find many failed login attempts
against a user account in a short period, it is highly like that the system is under
password guess attack.

Although the syntax and semantics of data in log messages are usually vendor-
specific, all of them should follow the syslog protocol (RFC 5424). The protocol
utilizes a layered architecture, which allows the use of any number of transport
protocols for transmission of syslog messages. Without this protocol, each other
standard needs to define its own syslog packets format and transport mechanism,
which may cause subtle compatibility issues. Syslog protocol defines three layers,



308 14 Log Analysis

1. Collect source 2. Filter device vender-specific 3. Write to log text massages 4. Archive and
deviceinfo P data by regular expression == log { source(s_name); filter(f_name); t=={ transfer log file
source s_name {...} filter f_name{-+"} destination(d_name) } destination d_name{...}

Fig. 14.1 Syslog mechanism processing flow

* syslog content—the management information contained in a syslog message

* syslog application—handles generation, interpretation, routing, and storage of
syslog messages

* syslog transport—puts messages on the wire and takes them off the wire

Syslog processing flow can be generally revealed by several stages. Firstly,
source objects information must be collected. After raw data being filtered by the
vender-specific mechanism that usually is regular expression, the events information
should be written into log text massage. Meanwhile, if log files will be archived or
transferred, the further activities should be logged with destination information as
well (Fig. 14.1).

When syslog was first introduced, it only supported UDP for log message
delivery. It means that there is no guarantee that the log messages will be success-
fully delivered to its predefined destination(s). Later, enhanced versions of the syslog
protocol have emerged as promising logging mechanisms for a wide range of
computing devices today, having more functionality than their ancestor. For exam-
ple, Syslog-ng (Syslog Next Generation) extends basic syslog protocol with new
features including content-based filtering, logging directly into a database, reliable
transport using TCP and secure transmission using TLS (Transport Layer Security)
[6]. Another enhanced version worth mentioning is rsyslog, and the most notable
enhancement by rsyslog is its high-performance and great security features [7]. Now-
adays, many Linux distributions have pre-built package of either Syslog-ng or
rsyslog available. For example, Kali Linux used in our book has rsyslog package
installed. Hereafter we will use rsyslog for log analysis.

Sample log collection deployment scenarios using syslog work like the follow-
ing: Log messages are generated by an ‘originator’ and forwarded on to a ‘collector’.
The syslog collector is usually a centralized logging server or service for centralized
logging and event management.

Centralized Logging has many advantages. First, it allows logs from different
systems to be checked on a single system, and as a result it might become easier to
find out the root cause of incidents. Most importantly, it still provides trail when the
originator is compromised. This is because that it is very common that a hacker
always clears log files after having done something on the compromised computer
system.

14.1.1.1 Configuring and Collecting Syslog

On UNIX and Linux, syslog includes a configuration file [8]. The default configu-
ration file for syslog, rsyslog and syslog-ng are /etc/syslog.conf, /etc/rsyslog.conf



14.1 System Log Analysis 309

and /etc/syslog-ng/syslog-ng.conf, respectively. Note that only administrators with
root permission can modify the configuration file.

While rsyslog is an “advanced” version of syslog, its config file, “rsyslog.conf”,
remains the same as the one used by syslog. In other words, if you copy a “syslog.
conf” file directly into “rsyslog.conf™, it still works. However, /etc/syslog-ng/syslog-
ng.conf has a totally different structure compared to the other two.

The configuration file indicates what logs and where to save. It is a text file, and
every line in this file is called a rule. We take /etc/rsyslog.conf as an example, and
each line or rule has the following format

selector <Tab> action

Specifically, the selector selects what logs will be recorded and saved, whereas
the action describes how logs will be saved. It means rules map selectors to actions,
which allows the Linux system logging facility (here rsyslog daemon) to send
messages of certain types to different locations. Note that lines that start with “#’
are comments and blank lines are ignored. Multiple selectors with the same action
can be combined with a semicolon. Also, it is worth mentioning here that selector
and action are separated by a TAB character, not a whitespace character.

The “selector” has the following format

facility.priority

where facility indicates the program sending the message or whose log and
priority indicates the severity level of the message or what log. Special values can
be used in a selector. For example, * stands for all possible values, and none stands
for no priority of the given facility. Note that message is logged if its priority is at
least as severe as the priority specified. Also, multiple facilities with the same
priority can be separated by commas. For example, you might want to log anything
(mail and authpriv) of level info or higher, using the selector “mail,authpriv.info”.
Common facilities include user, kern, mail, daemon, auth, lpr, news, uucp, and cron.
The severity levels listed from most importance to least important are: emerg, alert,
crit, err, warning, notice, info, debug, and none.

The action describes how messages will be logged, including log files, console,
and remote hosts.

An example of the format would be:

auth,authpriv.*<Tab>/var/log/auth.log

It means all the user authentication messages including login logs are written to a
file named auth.log in the folder of /var/log.

Next, we take a look at how to put user authentication messages into /var/log/
forensics.log, by doing the followings:

(a) Log into Forensics Workstation as root
(b) Change into /etc
(c) Edit “rsyslog.conf” by using an editor, for example, vi or emacs, and add the
following line in the “rsyslog.conf™ file
auth,authpriv.*<Tab>/var/log/forensics.log



310 14 Log Analysis

Note that the separator used in the above line is TAB.

(d) Restart rsyslog service
/etc/init.d/rsyslog restart

Note that restart of the rsyslog daemon is required to have the just added
configuration active.

14.1.1.2 Viewing the Log Files

(a) Issue the following command
tail -f /var/log/forensics.log

(b) Generate some logs by logging into Forensics Workstation with both correct and
wrong passwords. You should see output that show your login activities.

This is an example for audit event, which records a failed attempt as well as
successful login/logoff of user with UID of 0 to log in as the root user (Fig. 14.2).

In this example, we can clearly see that a user log-in or log-off event will generate
many messages. Unfortunately, it becomes a challenge to us when we analyze
system logs.

14.1.2 Windows Event Log

Unlike UNIX syslog Windows system logs are structured. Logging on Windows
system is viewable through the ‘Event Viewer’. Event logs differ for different
variants, but windows 10 made important improvements on security. In the console
tree, open Windows Logs, and then click Security. The results pane lists individual
security events, which shows as Fig. 14.3. Aside from basic logging on system

Jun 17 10:23:40 kali sshd[1555]: pam_unix(sshd:auth): authentication failure;
logname= uid=0 euid=0 tty=ssh ruser= rhost=192.168.44.1 user=root
Jun 17 10:23:42 kali sshd[1555]: Failed password for root from 192.168.44.1 port 4546
Failed Login ssh2

Attempt Jun 17 10:25:01 kali CRON[1559]: pam_unix(cron:session): session opened for user
root by (uid=0)
Jun 17 10:25:01 kali CRON[1559]: pam_unix(cron:session): session closed for user

root
Jun 17 10:26:39 kali sshd[1563]: Accepted password for root from 192.168.44.1 port
Success ful 4548 ssh2
uccessiy Jun 17 10:26:39 kali sshd[1563]: pam_unix(sshd:session): session opened for user root
login S
by (uid=0)
Jun 17 10:26:39 kali systemd-logind[450]: New session 25 of user root.
User log Jun 17 10:26:43 kali sshd[1563]: pam_unix(sshd:session): session closed for user root
off Jun 17 10:26:43 kali systemd-logind[450]: Removed session 25.

Fig. 14.2 Audit event logs of a failed attempt login and a successful login/logoff



14.1 System Log Analysis 311

Bl
File Action View Help
w= | xim HE
[l Event Voewer fLocal) Security  Number of cvente 24314 Actions
- Cuttem Views .
Y B Severholes Keywords Date and Time Source EventID Task Category | | Secunty al
T Administrative Events || O\ Ausit Success 4122016 102134PM Microsoft Win... 5058 Other System Events 5 Open Seved Log.
v [l Windows Logs fhhudn Faire 412016 102EMPM Mitrosoft Wen 5061 System Integrity ¥ Creste Custom View...
o] Apphcation @ At Success 41272016 e 134 PM Macrosoft Wn_ 5058 Otheer Systemn Events Impart Custom View
] Securiny G Aud Failure 4122016 W124TPM Microsoft Win.. 5061 System Integrity
] Setup A fudt Success ANV2016IR124TPM Microsoh Wen 5085 Other System Events ChoorLog-..
[ System B At Failure 471272016 101247 PM Mecrosoft Win— 5061 System Integrity ¥ Filter Cusrent Log—
[] Forwaeded Events B, At Success  ANIZ016 12T PM Microtoft Wan... 5058 Other System Events ] Prepeties
~ (5 Applicaticns and Services Lo | 0 5o Failure 41122016 21414 PM Microsoft Win_ 5061 System Imtegrity Dﬂ i
1 Ciseo @, audt Success 4122016 %1414 PM Microsoft Win. 5058 Other System Events -
l'.!”'”"":"""; O pisdt Success 412018 E1414 PV Mscrosey Wan_ T8 User Accourt Mamage... el Save Al Events s...
(5] Hewtet1-Packar @, fudit Success 4122016 %1414 PM Microsoft Win.. 4757 User Account Manage... Antach » Tuik To this Log...
7] HP Hotkey Suppont B i 0 Sl B Yo AT Lluse Seceues Masass =
=1 H° Scttare Framework | f——————— View L
Event 5061, Mecrotcht Windows security suditing. x

[ Intemet Explorer - | [ Retresh

71 Key Management Semvics | | Generst Detaits
| Mhicrosctt B Hep »
[E] Microscht Office Aberts - .
= aphic opernatien. Py Event 5061 =
| Microsct-S0L ServesDate Ry e 2000, MR B 0
] Microsoht-SCServesDate | [Subject: Tl Event Properties
5] Prefmptive R CE ¥ T artach Task To This Event.
Rl T
i ]' m— Log Name: Security b Cepy k
[E] Windews Powershell Source: Microsoft Windows security Logged A122016 11247 PMA Tl Save Setected Events_
7 Subtcrptions Event I0: 5061 Task Category: System Integrty 6 Refresh
Levet Infcematicn Kiyweeds Audit Fasdhare B e v
User; WA Computer Sandhya
OpCode: infe

Miore Informaticn:  Event Log Online Help.

Fig. 14.3 Security logs on Windows 10 system

crashes, component failures, logging in and out, system file accesses, security
logging also can covers application and per-application logs that are requested by
applications.

The current Windows logging infrastructure of desktop and server operating
system is composed of Tracel.ogging and Event Logging framework [4]. The new
released framework of TraceLLogging builds on Event Tracing for Windows (ETW)
and provides a simplified way to instrument code. However, the security log, which
is designed for use by the system, generates in Event Logging framework.

The system grants access based on the access rights granted to the account under
which the thread is running. Users can read and clear the Security log if they have
been granted the SE_SECURITY_NAME privilege, and only the Local Security
Authority (Lsass.exe) has write permission for the Security log, and no other
accounts can request this privilege. Logging for the authentication events category
must enable the AuthzReportSecurityEvent function to generate logs. And audit
parameters can be custom defined in AUDIT_PARAM_TYPE function as well
(Fig. 14.4).

However, Windows cannot limit the privilege of administrator as SELinux [12,
13], the only way to prevent a 