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Preface

The first edition considered only linear elastic behavior of structures. This

assumption is reasonable for assessing the structural response in the early

stage of design where one is attempting to estimate design details. As a

design progresses, other critical behavioral issues need to be addressed.

The first issue concerns geometric nonlinearity which results when a

flexible member is subjected to axial compression loading as well as trans-

verse loading. This combination causes a loss in axial stiffness for the

member, which may result in a loss in stability for the structural system.

Euler buckling is an example of this type of nonlinear behavior.

The second issue is related to the behavior of the material used to fabricate

structural members. Steel and concrete are the most popular materials for

structural applications. These materials have a finite elastic range, i.e., they

behave elastically up to a certain stress level. Beyond this level, their stiffness

decreases dramatically and they experience significant deformation that

remains when the specimen is unloaded. This deformation is referred to as

“inelastic deformation.” The result of this type of member behavior is the fact

that the member has a finite load carrying capacity. From a structural system

perspective, it follows that the structure has a finite load capacity. Given the

experience with recent structural failures, structural engineers are now being

required to estimate the “limit” capacity of their design using inelastic

analysis procedures. Computer-based analysis is essential for this task.

We have addressed both issues in this edition. Geometric nonlinearity is

basically a displacement issue, so it is incorporated in Chap. 10. We derive

the nonlinear equations for a member; develop the general solution, special-

ize the solutions for various boundary conditions; and finally present the

generalized nonlinear “member” equations which are used in computer-

based analysis methods. Examples illustrating the effect of coupling between

compressive axial load and lateral displacement (P-delta effect) are included.

This treatment provides sufficient exposure to geometric nonlinearity that we

feel is necessary to prepare the student for professional practice.

Inelastic analysis is included in Part III which deals with professional

practice; we have added an additional chapter focused exclusively on inelas-

tic analysis. We start by reviewing the basic properties of structural steel and

concrete and then establish the expressions for the moment capacity of

beams. We use these results together with some simple analytical methods
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to establish the limit loading for some simple beam and frames. For complex

structures, one needs to resort to computer-based procedures. We describe a

finite element-based method that allows one to treat the nonlinear load

displacement behavior and to estimate the limiting load. This approach is

referred to as a “pushover” analysis. Examples illustrating pushover analyses

of frames subjected to combined gravity and seismic loadings are included.

Just as for the geometric nonlinear case, our objective is to provide sufficient

exposure to the material so that the student is “informed” about the nonlinear

issues. One can gain a deeper background from more advanced specialized

references.

Aside from these two major additions, the overall organization of the

second edition is similar to the first edition. Some material that we feel is

obsolete has been deleted (e.g., conjugate beam), and other materials such as

force envelopes have been expanded. In general, we have tried to place more

emphasis on computer base approaches since professional practice is moving

in that direction. However, we still place the primary emphasis on developing

a fundamental understanding of structural behavior through analytical

solutions and computer-based computations.

Audience

The intended audience of this book is that of students majoring in civil

engineering or architecture who have been exposed to the basic concepts of

engineering mechanics and mechanics of materials. The book is sufficiently

comprehensive to be used for both undergraduate and higher level structures

subjects. In addition, it can serve students as a valuable resource as they study

for the engineering certification examination and as a reference later in their

careers. Practicing professionals will also find the book useful for self-study,

for review for the professional registration examination, and as a

reference book.

Motivation

The availability of inexpensive digital computers and user-friendly structural

engineering software has revolutionized the practice of structural engineer-

ing. Engineers now routinely employ computer-based procedures throughout

the various phases of the analysis and design detailing processes. As a result,

with these tools engineers can now deal with more complex structures than in

the past. Given that these tools are now essential in engineering practice, the

critical question facing faculty involved in the teaching of structural engi-

neering is “How the traditional teaching paradigm should be modified for the

computer age?” We believe that more exposure to computer-based analysis is

needed at an early stage in the course development. However, since the

phrase “garbage in garbage out” is especially relevant for computer-based

analysis, we also believe that the student needs to develop, through formal
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training in analysis methodology, the ability to estimate qualitatively the

behavior of a structure subjected to a given loading and to confirm qualitative

estimates with some simple manual computations.

Based on a review of the current structural engineering academic litera-

ture, it appears that the current set of undergraduate textbooks are focused

mainly on either (1) teaching manual analysis methods and applying them to

simple idealized structures or (2) reformulating structural analysis methods

in terms of matrix notation. The first approach is based on the premise that

intuition about structural behavior is developed as one works through the

manual computations, which, at times, may seem exhaustive. The second

approach provides the basis for developing and understanding computer

software codes but does not contribute toward developing intuition about

structural behavior.

Clearly there is a need for a text that provides a balanced treatment of both

classical and modern computer-based analysis methods in a seamless way

and also stresses the development of an intuitive understanding of structural

behavior. Engineers reason about behavior using simple models and intuition

that they have acquired through problem-solving experience. The approach

adopted in this text is to develop this type of intuition through computer

simulation which allows one to rapidly explore how the structure responds to

changes in geometry and physical parameters. We believe this approach

better prepares the reader for the practice of structural engineering.

Objectives

Structural engineers have two major responsibilities during the design pro-

cess. First, they must synthesize the structural system, i.e., select the geome-

try and the type of structural members that make up the structure. Second,

they must size the members such that the structure can comfortably support

the design loading. Creating a structural concept requires a deep knowledge

of structural behavior. Sizing the members requires information about the

internal forces resulting from the loading. These data are acquired through

intelligent application of analysis methods, mainly computer-based methods.

With these responsibilities in mind, we have selected the following

objectives for this book:

• Develop the reader’s ability to analyze structures using manual computa-

tional procedures.

• Educate the reader about structural behavior. We believe that a strong

analytical background based on classical analysis methodology combined

with computer simulation facilitates the development of an understanding

of structural behavior.

• Provide the reader with an in-depth exposure to computer-based analysis

methods. Show how computer-based methods can be used to determine,

with minimal effort, how structures respond to loads and also how to

establish the extreme values of design variables required for design

detailing.
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• Develop the reader’s ability to validate computer-based predictions of

structural response.
• Provide the reader with idealization strategies for reducing complex

structures to simple structural models.

• Develop an appreciation for and an awareness of the limitations of using
simple structural models to predict structural behavior through examples

which illustrate behavioral trends as structures become more complex.

Organization

We have organized this text into three parts. Parts I and II are intended to

provide the student with the necessary computational tools and also to

develop an understanding of structural behavior by covering analysis

methodologies, ranging from traditional classical methods through

computer-based methods, for skeletal-type structures, i.e., structures com-

posed of one-dimensional slender members. Part I deals with statically

determinate structures; statically indeterminate structures are covered in

Part II. Certain classical methods which we consider redundant have been

omitted. Some approximate methods which are useful for estimating the

response using hand computations have been included. Part III is devoted

to structural engineering issues for a range of structures frequently encoun-

tered in practice. Emphasis is placed on structural idealization, how one

identifies critical loading patterns, and how one generates the extreme values

of design variables corresponding to a combination of gravity, live, wind,

earthquake loading, and support settlement using computer software

systems.

Brief descriptions of the subject content for each part are presented below.

Part I discusses statically determinate structures. We start with an intro-

duction to structural engineering. Statically determinate structures are

introduced next. The treatment is limited to linear elastic behavior and static

loading. Separate chapters are devoted to different skeletal structural types

such as trusses, beams, frames, cables, curved members, footings, and

retaining walls. Each chapter is self-contained in that all the related analysis

issues for the particular structural type are discussed and illustrated. For

example, the chapter on beams deals with constructing shear and moment

diagrams, methods for computing the deflection due to bending, influence

lines, force envelopes, and symmetry properties. We find it convenient from

a pedagogical perspective to concentrate the related material in one location.

It is also convenient for the reader since now there is a single source point for

knowledge about each structural type rather than having the knowledge

distributed throughout the text. We start with trusses since they involve the

least amount of theory. The material on frames is based on beam theory, so it

is logical to present it directly after beam theory. Cables and curved members

are special structural types that generally receive a lower priority, due to time

constraints, when selecting a syllabus. We have included these topics here, as
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well as a treatment of footings and retaining walls, because they are statically

determinate structures. We revisit these structures later in Part III.

Part II presents methods for analyzing statically indeterminate structures
and applies these methods to a broad range of structural types. Two classical

analysis methods are described, namely, the force (also referred to as the

flexibility) method and the displacement (or stiffness) method. We also

present some approximate analysis methods that are based on various types

of force and stiffness assumptions. These methods are useful for estimating

the structural response due to lateral loads using simple hand computations.

Lastly, we reformulate the traditional displacement method as a finite ele-

ment method using matrix notation. The finite element formulation (FEM) is

the basis of most existing structural analysis software packages. Our

objectives here are twofold: first, we want to enable the reader to be able to

use FEM methods in an intelligent way, and second, we want the reader to

develop an understanding of structural behavior by applying analysis

methods to a broad range of determinate and indeterminate skeletal

structures. We believe that using computer analysis software as a simulation

tool to explore structural behavior is a very effective way of building up a
knowledge base of behavioral modes, especially for the types of structures

commonly employed in practice.

Part III discusses typical structural engineering problems. Our objective
here is to expose the reader to a select set of activities that are now routinely

carried out by structural engineers using structural engineering software.

These activities are related to the approach followed to establish the “values”

for the design variables. Defining these values is the key step in the engi-

neering design process; once they are known, one can proceed to the design

detailing phase. Specific chapters deal with horizontal structures such as

multi-span girder, arch, and cable-stayed bridge systems, modeling of

three-dimensional vertical structures subjected to lateral loading, and vertical

structures such as low- and high-rise buildings subjected to gravity loading.

The topics cover constructing idealized structural models, establishing the

critical design loading patterns for a combination of gravity and live loading,

using analysis software to compute the corresponding design values for the

idealized structures, defining the lateral loading due to wind and earthquake

excitation for buildings, and estimating the three-dimensional response of

low-rise buildings subjected to seismic and wind loadings.

Course Suggestions

The following suggestions apply for students majoring in either civil engi-

neering or architecture. Depending on the time available, we suggest

organizing the material into either a two-semester or a three-semester

sequence of subjects.
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Our recommendations for the three-semester sequence are as follows:

Structures I

The goal of this subject is to provide the skills for the analysis of statically

determinate trusses, beams, frames, and cables and to introduce some

computer-based analysis methods.

Chapters 1, 2, part of 3, part of 4, and the first part of 5

Structures II

The objectives of this subject are to present both classical and computer-

based analysis methods for statically indeterminate structures such as multi-

span beams, gable frames, arches, and cable-stayed structures subjected to

various loadings. The emphasis is on using analysis methods to develop an

understanding of the behavior of structures.

Chapters 9, 10, 11, 12, 6, and the last part of 5

Structures III

This subject is intended to serve as an introduction to the practice of

structural engineering. The material is presented as case studies for the two

most common types of structures, bridges, and buildings. Issues such as

geometrical configurations, idealized structural models, types and distribu-

tion of loadings, determination of the values of the design variables such as

the peak moment in a beam, force envelopes, and inelastic behavior are

discussed. Both the superstructure and the substructure components are

considered. Extensive use of computer software is made throughout the

subject. Recitation classes dealing with the design detailing of steel and

concrete elements can be taught in parallel with the lectures.

Chapters 13, 14, 15, 16, 7, and 8

The makeup of the two-semester sequence depends on how much back-

ground in mechanics and elementary structures the typical student has and

the goal of the undergraduate program. One possibility is to teach Structures I

and II described above. Another possible option is to combine Structures I

and II into a single subject offering together with Structures III. A suggested

combined subject is listed below.

Structures (Combined I + II)

Chapters 3, 4 (partial), 9 (partial), 10, 11, and 12
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Features of the Text

Organization by Structural Type

The chapters are organized such that an individual chapter contains all the

information pertaining to a particular structural type. We believe this organi-

zation facilitates access to information. Since the basic principles are generic,

it also reinforces these principles throughout the development of successive

chapters.

Classical Analysis Methods

In-depth coverage of classical analysis methods with numerous examples

helps students learn fundamental concepts and develop a “feel” and context

for structural behavior.

Analysis by Hand Computation

The book helps teach students to do simple hand computing, so that as they

move into doing more complex computational analysis, they can quickly

check that their computer-generated results make sense.

Gradual Introduction of Computer Analysis

The text provides students with a gradual transition from classical methods

to computational methods, with examples and homework problems designed

to bring students along by incorporating computational methods when

most appropriate to in-depth coverage of finite element methods for skeletal

structures.

Example Problems

Example problems in each chapter illustrate solutions to structural analysis

problems, including some problems illustrating computer analysis. Most of

the example problems are based on real scenarios that students will encounter

in professional practice.

Units

Both SI and customary US units are used in the examples and homework

problems.

Homework Problems that Build Students’ Skills

An extensive set of homework problems for each chapter provides students

with more exposure to the concepts and skills developed in the chapters. The
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difficulty level is varied so that students can build confidence by starting with

simple problems and advancing toward more complex problems.

Comprehensive Breadth and Depth, Practical Topics

The comprehensive breadth and depth of this text means it may be used for

two or more courses, so it is useful to students for their courses and as a

professional reference. Special topics such as the simplifications associated

with symmetry and antisymmetry, arch-type structures, and cable-stayed

structures are topics that a practicing structural engineer needs to be

familiar with.

Cambridge, MA Jerome J. Connor

Lowell, MA Susan Faraji
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Fig. 5.21Millau Viaduct, Author: Delphine DE ANDRIA, Date: 18.11.2007,

from FreeMages. Accessed in May 2012 from http://www.freemages.co.uk/

browse/photo-916-millau-viaduct.html. This work is licensed under a

Creative Commons Attribution 3.0 Unported License.
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Fig. 6.5 Alcantara Toledo Bridge, Puente de Alcántara, Toledo, Spain.

This image was originally posted to Flickr on December 19, 2006 and

published under a Creative Commons Attribution License. It was accessed

in February 2012 from http://commons.wikimedia.org/wiki/File:Puente_

Alcantara_toledo.jpg

Fig. 6.7 Eads Bridge, USA. This image was originally posted to Flickr by

Kopper at http://flickr.com/photos/94086509@N00/2745897992. It was

reviewed on January 18, 2011 (2011-01-18) by the FlickreviewR robot and

confirmed to be licensed under the terms of the cc-by-2.0 (Creative

Commons Attribution 2.0). It was accessed in February 2012 from http://

commons.wikimedia.org/wiki/File:Eads_Bridge-1.jpg

Fig. 6.8 Salginatobel Bridge, Switzerland. Bild (Figure) 1.4-45 Ansicht der

Salginatobelbrücke. P. 81 in Mehlhorn, G. et al. “Brückenbau auf dem Weg

vom Altertum zum modernen Brückenbau,” in Handbuch Brücken. Gerhard

Mehlhorn (Ed). Berlin, Heidelberg. Springer-Verlag (2010)

Fig. 6.9a New Gorge Arch, West Virginia. This image was originally

posted to Flickr by nukeit1 at http://flickr.com/photos/88893304@N00/

244750516. It was reviewed on November 14, 2007 (2007-11-14) by the

FlickreviewR robot and confirmed to be licensed under the terms of the

cc-by-2.0 (Creative Commons Attribution 2.0). It was accessed in February

2012 from http://commons.wikimedia.org/wiki/File:New_River_Gorge_

Bridge_West_Virginia_244750516.jpg
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Fig. 8.4 Gravity retaining wall. Courtesy of HNTB Corporation, 31 St. James

Avenue, Suite 300 Boston, MA 02116, USA

Chapter 13

Fig. 13.1a Multi-span curved steel box girder bridge. Courtesy of HNTB

Corporation, 31 St. James Avenue, Suite 300, Boston, MA 02116, USA
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Fig. 13.1c The John James Audubon Bridge crossing the Mississippi River.

This image is credited to the Louisiana TIMED Managers and was accessed

in April 2012 from http://commons.wikimedia.org/wiki/File:Audubon_

Bridge2.jpg

Fig. 13.34 Typical cable-stayed scheme. This work has been released into the

public domain by its author, Kelly C. Cook. This applies worldwide. The

image was accessed in February 2012 from http://commons.wikimedia.org/

wiki/File:Sunshine_Skyway_from_Tampa_Bay.jpeg

Problem 13.9 Puente del Alamillo in Seville, Spain. This work has

been released into the public domain by its author, Consorcio Turismo

Sevilla. This applies worldwide. The image was accessed in March 2012

from http://en.wikipedia.org/wiki/File:Puente_del_Alamillo.jpg
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Part I

Statically Determinate Structures

A structure is an assemblage of components which are connected in such a way that the structure can

withstand the action of loads that are applied to it. These loads may be due to gravity, wind, ground

shaking, impact, temperature, or other environmental sources. Structures are everywhere in the built

environment. Buildings, bridges, tunnels, storage tanks, and transmission lines are examples of a

“structure.” Structural engineering is the discipline which is concerned with identifying the loads that

a structure may experience over its expected life, determining a suitable arrangement of structural

members, selecting the material and dimensions of the members, defining the assembly process, and

lastly monitoring the structure as it is being assembled and possibly also over its life.

In Part I, we first present an overview of structural engineering so that the reader can develop an

appreciation for the broad range of tasks that structural engineers carry out and the challenges that

they face in creating structures which perform satisfactorily under the loadings that they are subjected

to. We then discuss a particular subgroup of structures called statically determinate structures. This

subgroup is relatively easy to deal with analytically since only equilibrium concepts are involved.

Also, most structures belong to this category. Trusses, beams, frames, cables, curved members,

shallow foundations, and vertical retaining walls are described in separate chapters. The last two

topics are not normally covered in elementary texts, but we have included them here for

completeness.

In general, all structures can be classified as either statically determinate or statically indetermi-

nate. Part II describes techniques for dealing with statically indeterminate structures.

Part III describes how the methodologies presented in Parts I and II are applied to “engineer”

various types of bridges and buildings. This section is intended to identify the key issues involved in

structural engineering practice.
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Abstract

A structure is an assemblage of components which are connected in such a

way that the structure can withstand the action of loads that are applied to

it. These loads may be due to gravity, wind, ground shaking, impact,

temperature, or other environmental sources. Examples of structures

employed in civil infrastructure are buildings, bridges, dams, tunnels,

storage tanks, and transmission line towers. Non-civil applications include

aerospace structures such as airplane fuselages, missiles; naval structures

such as ships, offshore platforms; and automotive structures such as cars

and trucks. Structural engineering is the discipline which is concerned

with identifying the loads that a structure may experience over its

expected life, determining a suitable arrangement of structural members,

selecting the material and dimensions of the members, defining the

assembly process, and lastly monitoring the structure as it is being assem-

bled and possibly also over its life.

In this chapter, we describe first the various types of structures. Each

structure is categorized according to its particular function and the config-

uration of its components. We then discuss the critical issues that a

structural engineer needs to address when designing or assessing the

adequacy of a structure. The most important issue is preventing failure,

especially a sudden catastrophic failure. We describe various failure

modes: initial instability, material failure, and buckling of individual

structural components. In order to carry out a structural design, one

needs to specify the loading which is also a critical concern. Fortunately,

the technical literature contains considerable information about loadings.

We present here an overview of the nature of the different loads and

establish their relative importance for the most common civil structures.

Conventional structural design philosophy and the different approaches

for implementing this design strategy are described next. Lastly, we

briefly discuss some basic analytical methods of structural engineering

and describe how they are applied to analyze structures.
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1.1 Types of Structures and Structural Components

Structures are everywhere in the built environment. Buildings, bridges, tunnels, storage tanks, and

transmission lines are examples of a “structure.” Structures differ in their makeup, i.e., the type and

configuration of the components, and also in their function. Our approach to describing a structure is

based on identifying a set of attributes which relate to these properties.

1.1.1 Structural Components

The components are the basic building blocks of a structure. We refer to them as structural elements.

Elements are classified into two categories according to their geometry [1]:

1. Line Elements—The geometry is essentially one-dimensional, i.e., one dimension is large with

respect to the other two dimensions. Examples are cables, beams, columns, and arches. Another

term for a line element is member.

2. Surface Elements—One dimension is small in comparison to the other two dimensions. The

elements are plate-like. Examples are flat plates, curved plates, and shells such as spherical,

cylindrical, and hyperbolic paraboloids.

1.1.2 Types of Structures

A structure is classified according to its function and the type of elements used to make up the

structure. Typical structures and their corresponding functions are listed in Table 1.1 and illustrated in

Fig. 1.1. A classification according to makeup is listed in Table 1.2 and illustrated in Fig. 1.2.

1.2 Critical Concerns of Structural Engineering

Of primary concern to a structural engineer is ensuring that the structure will not collapse when

subjected to its design loading. This requires firstly that the engineer properly identify the extreme

loading that the structure may experience over its design life and secondly, ensure that the forces

generated internally within the structure due to external loading satisfy the conditions for force
equilibrium. In general, a structure will deform, i.e., change its shape, when loaded. It may also

Table 1.1 Structures classified by function

Structural type Function

Building Provide shelter above ground

Bridge Provide means of traversing above ground over a site

Tunnel Provide means of traversing underground through a site

Tower Support transmission lines and broadcasting devices

Retaining walls Retain earth or other material

Containments Provide means of storage of materials, also enclose dangerous devices such as nuclear reactors

Platforms Provide a platform for storage of materials and machinery either onshore or offshore
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move as a rigid body if not properly restrained. Certain structures such as airplanes and automobiles

are designed to move. However, civil structures are generally limited to small motion due to

deformation, and rigid body motion is prohibited. Identifying the design loads is discussed later in

this chapter. We focus here on the force equilibrium requirement for civil structures.

1.2.1 Reactions

Civil structures are connected to the ground at certain points called supports. When the external

loading is applied to the structure, the supports develop forces which oppose the tendency of the

Fig. 1.1 Examples of typical structures classified by function
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structure to move. These forces are called reactions [2]. The nature and number of reactions depends

on the type of support. Figure 1.3 shows the most common types of idealized structural supports for

any planar structure. A roller support allows motion in the longitudinal direction but not in the

transverse direction. A hinge prevents motion in both the longitudinal and transverse directions but

allows rotation about the pin connection. Lastly, the clamped (fixed) support restrains rotation as well

Fig. 1.1 (continued)
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as translation with two reaction forces and one moment. Three-dimensional supports are similar in

nature. There is an increase from 2 to 3 and from 3 to 6 in the number of reactions for the 3D hinge

and a clamped support.

1.2.2 Initial Stability

If either the number or nature of the reactions is insufficient to satisfy the equilibrium conditions, the

structure is said to be initially unstable. Figure 1.4a illustrates this case. The structure consists of a

triangular arrangement of members that are pinned at their ends. This combination of members forms

a rigid body. However, the arrangement is supported on two roller supports which offer no resistance

to horizontal motion, and consequently the structure is initially unstable. This situation can be

corrected by changing one of the roller supports to a hinge support, as shown in Fig. 1.4b. In general,

a rigid body is initially stable when translational and rotational motions are prevented in three

mutually orthogonal directions.

Even when the structure is adequately supported, it still may be initially unstable if the members

are not properly connected together to provide sufficient internal forces to resist the applied external

forces. Consider the four member pin-connected planar structure shown in Fig. 1.5a. The horizontal

force, P, cannot be transmitted to the support since the force in member 1-2 is vertical and therefore

cannot have a horizontal component. Adding a diagonal member, either 1-3 or 2-4, would make the

structure stable.

In summary, initial instability can occur either due to a lack of appropriate supports or to an

inadequate arrangement of members. The test for initial instability is whether there are sufficient

reactions and internal member forces to equilibrate the applied external loads. Assuming the structure

is initially stable, there still may be a problem if certain structural components fail under the action of

the extreme loading and cause the structure to lose its ability to carry load. In what follows, we discuss
various failure scenarios for structures which are loaded.

Table 1.2 Structures classified by makeup

Structural type Composition

Frame • Composed of members rigidly or semirigidly connected in rectangular or triangular patterns

• May be contained in a single plane (plane frame, plane grid), or in a 3D configuration (space

frame)

Truss • A type of framed structure where the members are connected together at their ends with

frictionless pins (plane or space truss)

Girder/beam • Composed of straight members connected sequentially (end to end)

• An additional descriptor related to the type of member cross section is used

Examples are plate girders, box girders, and tub girders

Arch • Curved beams (usually in one plane)

Cable • Composed of cables and possibly other types of elements such as girders

Examples are cable-stayed bridges and tensioned grids

Shell • Composed of surface elements and possibly also line elements such as beams

The elements may be flat (plate structures) or curved (spherical or cylindrical roof structures)
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Fig. 1.2 Structures classified by makeups
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Fig. 1.2 (continued)
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Fig. 1.3 Typical supports for planar structures

Fig. 1.4 Examples of unstable and stable support conditions—planar structure
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1.2.3 Loss of Stability Due to Material Failure

In the first scenario, the level of stress in a component reaches the ultimate stress for the material,

causing a material failure, which, in turn, triggers a failure of the component. This type of failure

depends on the stress–strain relationship for the material. Figure 1.6 illustrates the tensile

stress–extensional strain response of tension specimens fabricated from two different types of

materials [3, 4]. The behavior of the first material is essentially linear up to a peak stress, σf, at
which point the material fractures and loses its ability to carry any load. This behavior is referred to as

brittle behavior and obviously is not desirable from a structural behavior perspective.

The second response is completely different. The initial behavior is linear up to a certain stress

value defined as the yield stress, σy. For further straining, the stress remains essentially constant.

Eventually, the material stiffens and ultimately fails at a level of strain which is considerably greater

than the yield strain, εy. This behavior is typical for ductile materials such as the steels used in civil

structures. In practice, the maximum allowable strain is limited to a multiple of the yield strain. This

factor is called the ductility ratio (μ) and is on the order of 5. Ductile behavior is obviously more

desirable since a member fabricated out of a ductile material does not lose its load capacity when

yielding occurs. However, it cannot carry additional loading after yielding since the resistance

remains constant.

From a design perspective, the structural engineer must avoid brittle behavior since it can result in

sudden catastrophic failure. Ductile behavior and the associated inelastic deformation are acceptable

provided that the ductility demand is within the design limit. Limit state design is a paradigm for

dimensioning structural components that assumes the component is at its limit deformation state and

calculates the force capacity based on the yield stress [5]. This topic is dealt with in Chap. 16.

Fig. 1.5 Stabilizing an

initially unstable planar

structure

Fig. 1.6 Stress–strain

behavior of brittle and

ductile materials
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1.2.4 Buckling Failure Mode

Another possible failure scenario for a structural component is buckling. Buckling is a phenomenon

associated with long slender members subjected to compressive loading [3, 4]. We illustrate this

behavior using the member shown in Fig. 1.7a. As the axial loading is increased, the member remains

straight until a critical load value is reached. At this point, the member adopts a deflected configura-

tion (Fig. 1.7b) with the load remaining constant. The member force remains essentially constant as

the end deflection, e, is increased (Fig. 1.7c). This load deflection behavior is similar to inelastic

action in the sense that the member experiences a large deflection with essentially no increase in load.

For flexible members, the critical load for buckling (Pcr) is generally less than the axial compressive

strength based on yielding, therefore buckling usually controls the design.

1.2.5 Priorities for Stability

Finally, summarizing and prioritizing the different concerns discussed in the previous sections, the

highest priority is ensuring the structure is initially stable. If not stable, the structure will fail under an

infinitesimal load. The second priority is avoiding buckling of the members. Buckling can result in

large deformation and significant loss in load capacity for a member, which could cause the structure

to lose its ability to support the applied loading. The third priority is limiting inelastic deformation of

members under the extreme design loading. Although there is no loss in load capacity, the member

cannot provide any additional load capacity, and therefore the deformation will increase significantly

when the external loading is increased. We discuss this topic further in Sect. 1.4 where we present

design philosophies.

1.3 Types of Loads

As described above, structures must be proportioned so that they will not fail or deform excessively

under the loads they may be subjected to over their expected life. Therefore, it is critical that the

nature and magnitude of the loads they may experience be accurately defined. Usually, there are a

number of different loads, and the question as to which loads may occur simultaneously needs to be

addressed when specifying the design loading. In general, the structural engineer works with codes,

which specify design loadings for various types of structures. General building codes such as the

“International Building Code” [6] specify the requirements of governmental agencies for minimum

Fig. 1.7 Behavior of a

flexible member
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design loads for structures and minimum standards for construction. Professional technical societies

such as the American Society of Civil Engineers (ASCE) [7], the American Concrete Institute (ACI)

[8], the American Institute of Steel Construction (AISC) [9], and the British Standards Institute (BSI)

[10] publish detailed technical standards that are also used to establish design loads and structural

performance requirements. In what follows, we present an overview of the nature of the different

loads and provide a sense of their relative importance for the most common civil structures.

1.3.1 Source of Loads

Loads are caused by various actions: the interaction of the structure with the natural environment;

carrying out the function they are expected to perform; construction of the structure; and terrorist

activities.

1.3.1.1 Interaction with the Environment
Interaction with the natural environment generates the following types of loads:

• Gravity—gravitational force associated with mass

• Snow—gravity-type loading

• Wind—steady flow, gusts

• Earthquake—ground shaking resulting from a seismic event

• Water—scour, hydrostatic pressure, wave impact

• Ice—scour, impact

• Earth pressure—soil–structure interaction for foundations and underground structures

• Thermal—seasonal temperature variations

The relative importance of these sources depends on the nature of the structure and the geograph-
ical location of the site. For example, building design is generally governed by gravity, snow, wind,

and possibly earthquake loads. Low-rise buildings in arctic regions tend to be governed by snow

loading. Underground basement structures and tunnels are designed for earth pressure, hydrostatic

pressure, and possibly earthquake loads. Gravity is the dominant source of load for bridge structures.

Wave and ice action control the design of offshore platforms in coastal arctic waters such as the coasts

of Alaska and Newfoundland. Structures located in California need to be designed for high seismic

load. Structures located in Florida need to be designed for high wind load due to hurricanes. Thermal

loads occur when structural elements are exposed to temperature change and are not allowed to

expand or contract.

1.3.1.2 Function
Function-related loads are structure specific. For bridges, vehicular traffic consisting of cars, trucks,

and trains generates gravity-type load, in addition to the self-weight load. Office buildings are

intended to provide shelter for people and office equipment. A uniformly distributed gravity floor

load is specified according to the nature of the occupancy of the building. Legal offices and libraries

tend to have a larger design floor loading since they normally have more storage files than a normal

office. Containment structures usually store materials such as liquids and granular solids. The

associated loading is a distributed internal pressure which may vary over the height of the structure.

1.3 Types of Loads 13



1.3.1.3 Construction
Construction loading depends on the process followed to assemble the structure. Detailed force

analyses at various stages of the construction are required for complex structures such as segmented

long-span bridges for which the erection loading dominates the design. The structural engineer is

responsible for approving the construction loads when separate firms carry out engineering and

construction. A present trend is for a single organization to carry out both the engineering design

and construction (the design-build paradigm where engineering companies and construction

companies form a joint venture for the specific project). In this case, a team consisting of structural

engineers and construction engineers jointly carries out the design. An example of this type of

partnering is the construction of the Millau Viaduct in southwestern France, shown in Fig. 1.8. The

spans were constructed by cantilevering segments out from existing piers, a technically challenging

operation that required constant monitoring. The bridge piers are the highest in the world: the central

pier is 280 m high.

1.3.1.4 Terrorist Loads
Terrorist loads are a new problem for structural engineers, driven primarily by the need to protect

essential facilities from terrorist groups. Design criteria are continuously evolving, and tend to be

directed more at providing multilevel defense barriers to prevent incidents, rather than to design for a

specific incident. Clearly, there are certain incidents that a structure cannot be designed to safely

handle, such as the plane impacts that destroyed the World Trade Center Towers. Examining

progressive collapse mechanisms is now required for significant buildings and is the responsibility

of the structural engineer.

Fig. 1.8 Millau Viaduct
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1.3.2 Properties of Loadings

The previous discussion was focused on the source of loadings, i.e., environmental, functional,

construction, and terrorist activity. Loadings are also characterized by attributes, which relate to

properties of the loads. Table 1.3 lists the most relevant attributes and their possible values.

Duration relates to the time period over which the loading is applied. Long-term loads, such as

self-weight are referred to as dead loads. Loads whose magnitude or location changes are called

temporary loads. Examples of temporary loads are the weight of vehicles crossing a bridge, stored

items in buildings, wind and seismic loads, and construction loads.

Most loads are represented as being applied over a finite area. For example, a line of trucks is

represented with an equivalent uniformly distributed load. However, there are cases where the loaded

area is small, and it is more convenient to treat the load as being concentrated at a particular point. A

member partially supported by cables such as a cable-stayed girder is an example of concentrated

loading.

Temporal distribution refers to the rate of change of the magnitude of the temporary loading with

time. An impulsive load is characterized by a rapid increase over a very short duration and then a drop

off. Figure 1.9 illustrates this case. Examples are forces due to collisions, dropped masses, brittle

fracture material failures, and slamming action due to waves breaking on a structure. Cyclic loading

alternates in direction (+ and �) and the period may change for successive cycles. The limiting case

of cyclic loading is harmonic excitation where the amplitude and period are constant. Seismic

excitation is cyclic. Rotating machinery such as printing presses, electric generators, and turbines

produce harmonic excitation on their supports when they are not properly balanced. Quasi-static

loading is characterized by a relatively slow build up of magnitude, reaching essentially a steady

state. Because they are applied slowly, there is no appreciable dynamic amplification and the

structure responds as if the load was a static load. Steady winds are treated as quasi-static; wind

gusts are impulsive. Wind may also produce a periodic loading resulting from vortex shedding. We

discuss this phenomenon later in this section.

The design life of a structure is that time period over which the structure is expected to function

without any loss in operational capacity. Civil structures have long design lives vs. other structures

such as motorcars, airplanes, and computers. A typical building structure can last several centuries.

Bridges are exposed to more severe environmental actions, and tend to last a shorter period, say

50–75 years. The current design philosophy is to extend the useful life of bridges to at least 100 years.

Table 1.3 Loading attributes

Attribute Value

Duration Temporary or permanent

Spatial distribution Concentrated or distributed

Temporal distribution Impulsive; cyclic; quasi-static

Degree of certainty Return period; probability of occurrence

Fig. 1.9 Temporal

variation of loading. (a)
Impulsive. (b) Cyclic.
(c) Quasi-static

1.3 Types of Loads 15



The Millau viaduct shown in Fig. 1.8 is intended to function at its full design capacity for at least

125 years.

Given that the natural environment varies continuously, the structural engineer is faced with a

difficult problem: the most critical natural event, such as a windstorm or an earthquake that is likely to

occur during the design life of the structure located at a particular site needs to be identified. To

handle this problem, natural events are modeled as stochastic processes. The data for a particular

event, say wind velocity at location x, is arranged according to return period which can be interpreted

as the average time interval between occurrences of the event. One speaks of the 10-year wind, the

50-year wind, the 100-year wind, etc. Government agencies have compiled this data, which is

incorporated in design codes. Given the design life and the value of return period chosen for the

structure, the probability of the structure experiencing the chosen event is estimated as the ratio of the

design life to the return period. For example, a building with a 50-year design life has a 50 % chance

of experiencing the 100-year event during its lifetime. Typical design return periods are�50 years for
wind loads and between 500 and 2500 years for severe seismic loads.

Specifying a loading having a higher return period reduces the probability of occurrence of that

load intensity over the design life. Another strategy for establishing design loads associated with

uncertain natural events is to increase the load magnitude according to the importance of the

structure. Importance is related to the nature of occupancy of the structure. In ASCE Standards

7-05 [7], four occupancy categories are defined using the potential hazard to human life in the event of

a failure as a basis. They are listed in Table 1.4 for reference.

The factor used to increase the loading is called the importance factor, and denoted by I. Table 1.5
lists the values of I recommended by ASCE 7-05 [7] for each category and type of loading.

For example, one increases the earthquake loading by 50 % for an essential structure (category 4).

1.3.3 Gravity Live Loads

Gravitational loads are the dominant loads for bridges and low-rise buildings located in areas, where

the seismic activity is moderate. They act in the downward vertical direction and are generally a

combination of fixed (dead) and temporary (live) loads. The dead load is due to the weight of the

construction materials and permanently fixed equipment incorporated into the structure. As

Table 1.4 Occupancy categories

Category Description

I Structures that represent a low hazard to human life in the event of a failure

II All structures outside of categories I, III, and IV

III Structures that represent a substantial hazard to human life in the event of failure

IV Essential structures. Failure not allowed

Table 1.5 Values of I

Category

Wind

Snow EarthquakeNon-horizontal Horizontal

I 0.87 0.77 0.80 1.00

II 1.00 1.00 1.00 1.00

III 1.15 1.15 1.10 1.25

IV 1.15 1.15 1.20 1.50
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mentioned earlier, temporary live loads depend on the function of the structure. Typical values of live

loads for buildings are listed in Table 1.6. A reasonable estimate of live load for office/residential

facilities is �100 lbs/ft2 (4.8 kN/m2). Industrial facilities have higher live loadings, ranging up to

600 lbs/ft2 for foundries.

Live loading for bridges is specified in terms of standard truck loads. In the USA, bridge loads are

defined by the American Association of State Highway and Transportation Officials (AASHTO)

[11]. They consist of a combination of the Design truck or tandem, and Design lane load.

The design truck loading has a total weight of 72 kip (323 kN), with a variable axle spacing is

shown in Fig. 1.10. The design tandem shall consist of a pair of 25 kip (112 kN) axles spaced 4 ft

(1.2 m) apart. The transverse spacing of wheels shall be taken as 6 ft (1.83 m). The design lane load

shall consist of a load of 0.64 kip/ft2 (30.64 kN/m2) uniformly distributed in the longitudinal direction

and uniformly distributed over a 10 ft (3 m) width in the transverse direction.

1.3.4 Wind Loading

1.3.4.1 Wind Pressure Distribution
The effect of wind acting on a building is represented by a pressure loading distributed over the

exterior surface. This pressure loading depends on the geometry of the structure and the geographic

location of the site. Figure 1.11 illustrates the flow past a low-rise, single story, flat roof structure. The

sharp corners such as at point A causes flow separation, resulting in eddies forming and turbulence

zones on the flat roof, side faces, and leeward face. The sense of the pressure is positive (inward) on

the incident face and negative (outward) in the turbulence zones.

In general, the magnitude of the pressure varies over the faces, and depends on both the shape of

the structure and the design wind velocity at the site. The influence of shape is illustrated by Fig. 1.12,

which shows the effect of roof angle on the pressure distribution. When θ > 45�, there is a transition
from negative to positive pressure on face AB of the inclined roof. This shift is due to the flow

separation point moving from A to B for steeply inclined roofs.

1.3.4.2 Wind Velocity
The effect of the site is characterized firstly by the topography at the site, and secondly by the regional

wind environment. Exposure categories are defined to describe the local topography and to establish

the level of exposure to wind. ASCE 7-05 adopts the following definitions of exposure categories.

Table 1.6 Uniformly distributed live loads (ASCE 7-05)

Occupancy Magnitude lbs/ft2 (kN/m2)

Computer equipment 150 (7.18)

Dormitories 80 (3.83)

File room 125 (6.00)

Court rooms 50–100 (2.4–4.79)

Scientific laboratories 100 (4.79)

Public rooms 100 (4.79)

Rest rooms 60 (2.87)

Laundries 150 (7.18)

Foundries 600 (28.73)

Ice manufacturing 300 (14.36)

Transformer rooms 200 (9.58)

Storage, hay, or grain 300 (14.36)
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Fig. 1.10 Characteristics

of the AASHTO

design truck

Fig. 1.11 Flow lines and

pressure distributions due

to wind
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Category B: Site located within an urban or suburban area having numerous closely spaced

obstructions similar in size to a single family dwelling, and extending at least 2600 ft from the site.

Category D: Site located in a flat unobstructed area or on a water surface outside hurricane prone

regions, and extending at least 5000 ft from the site.

Category C: All cases where exposure categories B and D do not apply.

Regional wind environments are represented by maps containing wind speed data for a specified

return period and exposure category. Figure 1.13 shows US data for the 50-year wind speed observed

at 10 m elevation corresponding to Exposure C. The higher wind speeds along the East and Gulf

Coasts reflects the occurrence of hurricanes in these regions. Typical 50-year wind speeds are on the

order of 100 miles per hour (45 m/s).

Given a site, one can establish the 50-year wind speed at 10 m elevation using Fig. 1.13. In general,

the wind velocity increases with distance from the ground. A typical approximation is a power law:

V zð Þ ¼ V
z

z

� �1=α
ð1:1Þ

where z is the elevation above the ground,V is the velocity measured at elevation z, and α � 7. For US

data, one takes z ¼ 10m and V given by Fig. 1.13.

1.3.4.3 Pressure Profiles
The next step is to establish the vertical pressure distribution associated with this velocity distribu-

tion, and then modify it to account for the shape of the building. Pressure and velocity are related by

Bernoulli’s Equation, which is a statement of conservation of energy. Specialized for steady irrota-

tional inviscid flow of a weightless fluid, the Law states that [12]

E ¼ Energy per unit volume ¼ pþ 1

2
ρV2 ð1:2Þ

is constant along a streamline. Here, p is the pressure energy, ρ is the mass density, and 1/2ρV2 is

the kinetic energy per unit volume. Assuming the pressure is zero in the free stream flow regime

away from the structure, and taking point (1) in the free stream and point (2) at the structure, one

obtains

p2 ¼
1

2
ρ V2

1 � V2
2

� � ð1:3Þ

The free stream velocity, V1, is defined by (1.1). Considering the flow to be stopped by the

structure, (V2 � 0), it follows that the maximum pressure energy associated with the free stream

velocity is estimated as

Fig. 1.12 Wind pressure

profiles for a gable roof.

(a) θ < 45�. (b) θ > 45�
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p2ð Þmax ¼
1

2
ρV2

1 ¼ pstag ð1:4Þ

This pressure is called the stagnation pressure and is generally expressed in terms of the reference

velocity, V, at z ¼ 10 m and a function k(z) which defines the vertical distribution.

pstag ¼
1

2
ρV

2
k zð Þ ð1:5Þ

ASCE 7-05 tabulates values of k(z) vs. z.

The actual pressure distribution is influenced by the geometric shape which tends to change both

the magnitude and sense of the pressure. Figures 1.11 and 1.12 illustrate this effect for flat and gable

roof structures. Design codes handle this aspect by introducing “shape” factors for different regions of

the structural surface. They also include a gust factor for “dynamic” loading, and an importance factor

for the structure. The final expression for the design pressure has the following general form:

Pdesign ¼ IGCp zð Þpstag ð1:6Þ

where Cp(z) is the pressure coefficient that accounts for the shape, G is the gust factor, and I is the

importance factor corresponding to the occupancy category. Values for these parameters are code

dependent. The determination of the design pressure can be labor intensive if one wants to account

Fig. 1.13 Basic wind

speed miles per hour (meter

per second) for the East

coast of the USA
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fully for the spatial distribution of design pressure. A reasonable estimate can be obtained using the

simplified procedure illustrated in the following example which is appropriate for low-rise buildings.

Example 1.1 Wind Pressure Distribution on a Low-Rise Gable Roof Structure

Given: The structure shown in Fig. E1.1a. There are four surface areas included in the sketch. Zone

(1) is the windward face, zone (2) is the leeward face, and zones (3) and (4) are on the gable roof.

Fig. E1.1a

Determine: The wind pressure distribution on the interior zone away from the ends. Assume

V ¼ 100mph and exposure C

Solution: Applying (1.5) leads to

pstag ¼ 0:00256ð Þ 104� �
k zð Þ ¼ 25:6k zð Þ lb=ft2� �

Values of k(z) and the corresponding pstag are listed below

z (ft) k (z) pstag (lb/ft
2)

15 0.85 21.8

20 0.90 23.0

25 0.94 24.1

30 0.98 25.1

We assume the structure is Category III and use I ¼ 1.15. For low-rise buildings with h < 60 ft,

the factors G and Cp are combined and specified as constant for each zone. Using data from ASCE

7-05, the values are

Zone GCp IGCp

1 0.53 0.609

2 �0.43 �0.495
3 �0.69 �0.794
4 �0.48 �0.552
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Lastly, we compute the design pressure using (1.6). The ASCE 7-05 code assumes that pdesign
varies on the windward force (zone 1), but specifies constant distributions for the other zones. The

details are listed below.

Zone 1 pdesign ¼ 0.609 (25.6) k(z) ¼ 15.59 k(z)

Zone 2 pdesign ¼ �0.495 (25.6) k(30) ¼ �12.42 psf

Zone 3 pdesign ¼ �0.791 (25.6) k(30) ¼ �19.92 psf

Zone 4 pdesign ¼ �0.552 (25.6) k(30) ¼ �13.85 psf

Pressure distributions generated with (1.6) define the quasi-static wind load, which acts predomi-

nately in the horizontal (lateral) direction. For low-rise buildings, gravity loads are the dominant loads

and generally control the structural dimensioning process for vertical members. Since the wind loads

are horizontal, whereas the gravity loads are vertical, lateral structural bracing systems such as shown

in Fig. 1.14 need to be incorporated in certain types of structures such as a braced frames. This topic is

addressed further in Chaps. 11, 14, and 15.

1.3.4.4 Vortex Shedding Pressure
The action of a steady wind on a structure is represented by quasi-static forces. However, a steady wind

also creates periodic forces due to the shedding of vortices from the turbulence zones at the leeward

face [12]. Consider the rectangular cross-section plan view shown in Fig. 1.15. As the incident flow

velocity increases, eddies are created at the upper and lower surfaces and exit downstream. This

shedding pattern develops a cyclic mode, shedding alternately between the upper and lower surfaces,

which result in an antisymmetric pressure distribution. The net effect is a periodic force, Ft, acting in

the transverse direction with frequency, fs. An estimate for the shedding frequency is

f s cycles per secondð Þ � 0:2V

D
ð1:7Þ

where D is a representative dimension in the transverse direction, and V is the free stream velocity.

Vortex shedding is a major concern for tall buildings and slender long-span horizontal structures

since these structures are flexible and consequently more susceptible to transverse periodic excitation

with a frequency close to fs. Low-rise buildings are stiffer and relatively insensitive to vortex

shedding-induced transverse motion.

1.3.5 Snow Loading

Design snow loads for a structure are based on ground snow load data for the region, where the

structure is located. Snow loads act on the roof zones of structures. For a flat roof, defined as a roof

with a slope angle less than 5�, the snow load is represented as a uniform downward pressure, pf. The

Fig. 1.14 Lateral bracing

system
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magnitude of pf depends on the exposure category and regional environment at the site, as well as the

importance of the structure. We express pf as

pf ¼ Cpg ð1:8Þ

where pg is the ground snow pressure given by Fig. 1.16a and C is a factor that incorporates the

exposure and importance parameters. A typical value of C is �1. The ground snow pressure varies

from 0 in the southeastern zone of the USA up to �100 psf in northern New England.

A sloped roof is defined as a roof with a slope angle greater than 5�. The snow load on a sloped roof

is expressed in terms of the horizontal projected area rather than the actual surface area. Figure 1.16b

illustrates this definition.

The sloped roof pressure depends on the slope angle as well as the other parameters mentioned

earlier.

ps ¼ CSpf ð1:9Þ
where Cs is a slope coefficient. In general, Cs � 1. For θ ≲ 30�, one usually assumes Cs � 1 and

takes ps � pf.

When the roof has projections as illustrated in Fig. 1.17, a nonuniform snow loading can result due

to the drifting on both the windward and leeward faces produced by wind. Drifts are modeled as

triangular surcharge loadings. The details are code dependent.

1.3.6 Earthquake Loading

The structural engineer’s task is to design structures such that they can resist the ground shaking

associated with an earthquake without collapsing. Since an earthquake may occur anytime during the

design life, the first task is to identify the magnitude of peak ground acceleration (ρga) that has a
specified probability of occurrence during the design life. A common value is 2 % probability of

occurrence in 50 years, which corresponds to a return period of 2500 years. Earthquake ground

motion is site specific in that it depends on the location and soil conditions for the site. Sites near

known faults and sites on soft soils such as soft clay experience more intense ground motion. Factors

such as the importance of the building, the geographic location of the site, and the type of soil must be

taken into account when specifying the design magnitude for ρga.
In order to understand how buildings respond to ground motion, one needs to examine the dynamic

response. Consider the three-story frame shown in Fig. 1.18a. We approximate it with the simple

beam/mass system defined in Fig. 1.18b. This approximation, known as a single degree-of-freedom

Fig. 1.15 Vortex shedding

patterns—plan view
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Fig. 1.16 Snow loadings on sloped and flat roofs. (a) Flat roof. (b) Sloped roof

Fig. 1.17 Snow drift

profiles
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model, provides useful information concerning the influence of certain structural properties on the

response.

The ground acceleration is defined as ag. This motion causes the mass to vibrate. We define aT,max

as the peak total acceleration of the mass (Fig. 1.19). If the frame is very stiff, aT,max is essentially

equal to ag,max, the peak ground acceleration. When the frame is very flexible, aT,max is small in
comparison to ag,max. It follows that the stiffness of the structure has a significant influence on the

peak total acceleration response. The peak acceleration also depends on the geographic location and

the soil conditions at the site. Data concerning earthquake accelerations is published by the US

Geological Survey on their Web site [13]. This site contains an extensive set of earthquake ground

motion records for the USA and other major seismically active regions throughout the world.

The motion of the mass generates an inertia force which is resisted by the lateral shear force in the

system. The maximum value of the lateral shear force is denoted as Vmax.

Fig. 1.18 A typical

three-story frame and the

corresponding one

degree-of-freedom model

Fig. 1.19 Peak lateral

inertia force
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Vmax ¼ MaT,max ¼ W
aT,max

g

� �
ð1:10Þ

Given the structural weight, W, and the peak total acceleration, one can estimate the peak total

lateral load that the structure will experience due to seismic excitation. This load is assumed to be

distributed linearly throughout the height of the structure, as indicated in Fig. 1.20, and used to

generate an initial structural design. The final design is checked with a more refined dynamic analysis.

Seismic design is an advanced topic within the field of structural engineering. We discuss this topic in

more detail in Chap. 14.

1.4 Structural Design Philosophy

Conventional structural design philosophy is based on satisfying two requirements, namely safety and

serviceability [7]. Safety relates to extreme loadings, which have a very low probability of occur-

rence, on the order of 2 %, during a structure’s life, and is concerned with the collapse of the structure,

major damage to the structure and its contents, and loss of life. The most important priority is

ensuring sufficient structural integrity so that sudden collapse is avoided. Serviceability pertains to

medium to large loadings, which are likely to occur during the structure’s lifetime. For service

loadings, the structure should remain operational. It should suffer minimal damage, and furthermore,

the motion experienced by the structure should not exceed specified comfort levels for humans and

motion-sensitive equipment mounted on the structure. Typical occurrence probabilities for service

loads range from 10 to 50 %.

Safety concerns are satisfied by requiring the resistance, i.e., the strength of the individual

structural elements to be greater than the demand associated with the extreme loading. Once the

structure is dimensioned, the stiffness properties are derived and used to check the various service-

ability constraints such as elastic behavior. Iteration is usually necessary for convergence to an

acceptable structural design. This approach is referred to as strength-based design since the elements

are dimensioned initially according to strength requirements.

Applying a strength-based approach for preliminary design is appropriate when strength is the

dominant design requirement. In the past, most structural design problems have fallen in this

Fig. 1.20 Seismic lateral

load profile
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category. However, the following developments have occurred recently that limit the effectiveness of

the strength-based approach. Firstly, the trend toward more flexible structures such as tall buildings

and long-span horizontal structures has resulted in more structural motion under service loading, thus

shifting the emphasis toward serviceability. Secondly, some new types of facilities such as micro

device manufacturing centers and hospital operating centers have more severe design constraints on

motion than the typical civil structure. For example, the environment for micro device manufacturing

must be essentially motion free. Thirdly, recent advances in material science and engineering have

resulted in significant increases in the strength of traditional civil engineering materials. However, the

material stiffness has not increased at the same rate. The lag in material stiffness vs. material strength

has led to a problem with satisfying the requirements on the various motion parameters. Indeed, for

very high strength materials, the motion requirements control the design. Fourthly, experience with

recent earthquakes has shown that the cost of repairing structural damage due to inelastic deformation

is considerably greater than anticipated. This finding has resulted in a trend toward decreasing the

reliance on inelastic deformation to dissipate energy and shifting to other type of energy dissipating

and energy absorption mechanisms.

Performance-based design [14] is an alternate design paradigm that addresses these issues. The

approach takes as its primary objective the satisfaction of motion-related design requirements such as

restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness

and motion control devices to achieve these design targets as well as satisfy the constraints on

strength. Limit state design can be interpreted as a form of performance-based design, where the

structure is allowed to experience a specific amount of inelastic deformation under the extreme

loading.

1.5 Basic Analytical Tools of Structural Analysis

Engineering a structure involves not only dimensioning the structure but also evaluating whether the

structure’s response under the construction and design loadings satisfy the specified design criteria.

Response evaluation is commonly referred to as structural analysis and is carried out with certain

analytical methods developed in the field of Engineering Mechanics and adopted for structural

systems. In this section, we review these methods and illustrate their application to some simple

structures. Most of this material is covered in textbooks dealing with Statics and Mechanics of

Materials [2–4] and Structural Analysis [15–17]. Heyman’s text [18] contains an excellent descrip-

tion of the “underlying science of Structural Engineering.”

1.5.1 Concept of Equilibrium: Concurrent Force System

We begin with a discussion of static equilibrium conditions for solid bodies. This topic is relevant to

structural engineering since structures are solid bodies subjected to loads, and we need to ensure that a

structure remain at rest, i.e., that it is in a state of equilibrium.

The simplest case is a body subjected to a set of concurrent forces. By definition, the lines of action

of the forces comprising a concurrent force system intersect at a common point. Figure 1.21 illustrates

this case. For static equilibrium, the resultant of the force system must be a null vector.

R ¼ F1 þ F2 þ F3 ¼ 0 ð1:11Þ
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We convert the vector equilibrium over to a set of algebraic equations by resolving the force

vectors into their components with respect to an arbitrary set of orthogonal directions (X, Y, Z ). This

operation leads to

X3
i¼1

Fi,x ¼ F1,x þ F2,x þ F3,x ¼ 0

X3
i¼1

Fi,Y ¼ F1,Y þ F2,Y þ F3,Y ¼ 0

X3
i¼1

Fi, z ¼ F1, z þ F2, z þ F3, z ¼ 0

ð1:12Þ

We find it more convenient to work with (1.12) rather than (1.11).

When all the force vectors are in one plane, say the X � Y plane, the force system is called a planar

force system and (1.12) reduces to two equations. Most of the force systems that we deal with will be

planar systems.

1.5.2 Concept of Equilibrium: Nonconcurrent Force System

The next level of complexity is a body subjected to a nonconcurrent planar force system. Referring to

Fig. 1.22, the forces tend to rotate the body as well as translate it. Static equilibrium requires the

resultant force vector to vanish and, in addition, the resultant moment vector about an arbitrary point

to vanish.

R ¼ F1 þ F2 þ F3 ¼ 0

Mo ¼ 0
ð1:13Þ

Resolving the force and moment vectors into their X, Y, Z components leads to six scalar equations,

three for force and three for moment. When the force system is planar, say in the X � Y plane, (1.13)

reduce to three scalar equations

Fig. 1.21 Concurrent

force system
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X3
i¼1

Fi,x ¼ 0

X3
i¼1

Fi,Y ¼ 0

X
Mo ¼ 0

ð1:14Þ

where o is an arbitrary point in the x � y plane. Note that now for a planar system there are three

equilibrium conditions vs. two for a concurrent system. Note also that since there are three equilib-

rium equations, one needs to apply three restraints to prevent planar rigid body motion.

Example 1.2 Equilibrium Equations

Given: The rigid body and force system shown in Fig. E1.2a. Forces Ax, AY, and BY are unknown.

Fig. E1.2a

Determine: The forces Ax, AY, and BY

Fig. 1.22 Nonconcurrent

force system
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Solution: We sum moments about A, and solve for BYX
MA ¼ �40 1:5ð Þ � 200 2ð Þ þ BY 5ð Þ ¼ 0

BY ¼ þ92) BY ¼ 92kN "
Next, summing forces in the X and Y directions leads to (Fig. E1.2b)X

Fx!þ ¼ Ax þ 200 ¼ 0) Ax ¼ �200) Ax ¼ 200kN←X
Fy"þ ¼ AY þ 92� 40 ¼ 0) AY ¼ �52) AY ¼ 52kN #

Fig. E1.2b

1.5.3 Idealized Structure: Free Body Diagrams

Generating an idealization of an actual structure is the key step in applying the equilibrium equations.

Given a structure acted upon by external loads and constrained against motion by supports, one

idealizes the structure by identifying the external loads and supports, and replacing the supports with

their corresponding unknown reaction forces. This process is called constructing the free body

diagram (FBD). Figure 1.23a, b illustrates the details involved.

One applies the equilibrium equations to the FBD. Note that this diagram has four unknown

reaction forces. Since there are only three equilibrium equations, one cannot determine all the

reaction forces using only the equilibrium conditions. In this case, we say that the structure is

statically indeterminate.

Constructing an FBD is an essential step in applying the equilibrium equations. The process is

particularly useful when the structure is actually a collection of interconnected structural components

such as a framed structure. One first generates an FBD for the entire structure and then works with

separate FBDs for the individual members. We illustrate this approach throughout the text.

1.5.4 Internal Forces

Consider the body shown in Fig. 1.24a. Suppose we pass a cutting plane as indicated and separate the

two segments. We represent the action of body “n” on body “m” by a force ~F and moment ~M. From

Newton’s third law, the action of body m on body n is opposite in sense.

Once the reaction forces are known, we can determine ~F and ~M by applying the equilibrium

conditions to either segment. These force quantities are called “internal forces” in contrast to the
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reactions which are “external forces.” Note that the magnitude of the internal forces varies with the

location of the cutting plane. The following example illustrates the process of computing internal

forces.

Fig. 1.23 Constructing

the free body diagram

(FBD)

Fig. 1.24 Definition of

internal forces
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Example 1.3

Given: The body and loading shown in Fig. E1.3a.

Fig. E1.3a

Determine: The internal forces at Sects. 1-1 and 2-2

Solution: First, we determine the reactions at A and B by applying the equilibrium conditions to

entire body AB (Fig. E1.3b).

Fig. E1.3b

The static equilibrium equations areX
Fx ¼ 0 Ax ¼ 0X
FY ¼ 0 AY þ BY ¼ 30X

Mabout A ¼ 0 8 20ð Þ þ 16 10ð Þ � 24BY ¼ 0

We solve for BY, BY ¼ 20
3
þ 2

3
10ð Þ ¼ 13:3kip "

and then AY AY ¼ 16:7kip "
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Next, we work with the FBDs shown below. We replace the internal force vector with its normal

and tangential components, F and V (Figs. E1.3c and E1.3d).

Fig. E1.3c Left segment-cutting plane 1-1

Applying the equilibrium conditions to the above segment leads toP
Fx!þF1�1 ¼ 0P
Fy"þ ¼ 0 V1�1 þ 16:7 ¼ 0) V1�1 ¼ 16:7kip #P
Mabout 1�1 ¼ 0 M1�1 � 16:7 6ð Þ ¼ 0) M1�1 ¼ 100:2kip ft counterclockwise

Applying the equilibrium conditions to the segment shown below leads toP
Fx!þF2�2 ¼ 0P
Fy"þ ¼ 0 V2�2 � 20þ 16:7 ¼ 0) V2�2 ¼ 3:3kip #P
Mabout 2�2 ¼ 0 M2�2 � 12 16:7ð Þ þ 4 20ð Þ ¼ 0) M2�2 ¼ 120:4 kip ft counterclockwise

Fig. E1.3d Left segment-cutting plane 2�2

Note that the sense of V1�1 and V2�2 are opposite to the directions we chose initially.

1.5.5 Deformations and Displacements

When a body is subjected to external loads, internal forces are developed in order to maintain

equilibrium between the internal segments. These forces produce stresses which in turn produce

strains that cause the body to change its shape and displace from its unloaded position.
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Consider the member shown in Fig. 1.25. We apply an axial force which generates the axial stress,

σ, equal to

σ ¼ F

A
ð1:15Þ

where A is the cross-sectional area. The resulting strain depends on E, the modulus of elasticity for the

material [3, 4].

ε ¼ σ

E
ð1:16Þ

By definition, the extensional strain is the relative change in length.

ε ¼ ΔL
L

ð1:17Þ

Then,

ΔL ¼ Lε ¼ L

AE

� �
F ð1:18Þ

We refer to the movement due to strain as the displacement and denote it by u. It follows thatΔL is

equal to u. Finally, we write (1.18) as

u ¼ L

AE

� �
F ð1:19Þ

Strains are generally referred to as deformations since they relate to a change in shape. This

example illustrates that displacements are a consequence of deformations which are due to forces.

Note that deformations are dimensionless quantities whereas displacements have geometric units

such as either length (translation) or angle (rotation). The coefficient of F in (1.19) has units of

displacement/force. We interpret this coefficient as a measure of the flexibility of the member. Here,

we are defining flexibility as displacement per unit force. The inverse of flexibility is called stiffness.

Stiffness relates the force required to introduce a unit displacement. Inverting (1.19) leads to

F ¼ AE

L

� �
u ð1:20Þ

It follows that the stiffness of an axial loaded member is equal to AE
L .

Stiffness and flexibility are important concepts in structural engineering. We use them to reason

qualitatively about the change in behavior of a structure when we introduce modifications to the

geometry and structural members. Obviously, to reduce displacements, one makes the structure

stiffer. How this is achieved is one of the themes of this text.

Fig. 1.25 Unreformed and

deformed states
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1.5.6 Structural Behavior: Structural Analysis

When a structure is subjected to an external loading, it responds by developing internal forces which

lead to internal stresses. The stresses generate strains, resulting in displacements from the initial

unloaded position. Figure 1.26 illustrates the displacement process for a beam-type member subjected

to a transverse loading. This process continues until the internal stresses reach a level at which the

external loading is equilibrated by the internal forces. The final displacement profile corresponds to

this equilibrium state.

Structural analysis is concerned with quantifying the response of structures subjected to external
loading. The scope includes determining the magnitude of the reactions, internal forces, and

displacements. The analysis is generally carried out in the order shown in Fig. 1.26.

Fig. 1.26 Simple beam

response
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1.5.6.1 Study Forces
In the study of forces, we apply the equilibrium equations to various FBDs. We work initially with the

FBD for the structure treated as a single body and determine the reactions. Once the reactions are

known, we select various cutting planes and determine the corresponding internal forces. This phase

involves some heuristic knowledge as to “the best” choice of cutting planes.

1.5.6.2 Study Displacements
Displacements are the geometric measures that define the position of the structure under the applied

external loading. Displacements are a consequence of internal stresses and are usually expressed in

terms of the internal forces. The form of the “force-displacement” relations depends on the type of

structural member, e.g., a truss member and a beam. We discuss this topic in more detail in Chaps. 2

and 3. In what follows, we illustrate these computations for some fairly simple structures.

Example 1.4

Given: The structure defined in Fig. E1.4a. Member AB is a rigid member. It is connected to a hinge

support at A, and supported at B by a cable, BC.

Determine: The reactions, cable tension, and vertical displacement at B. Assume EC ¼ 200 Gpa,

AC ¼ 600 mm2, h ¼ 4 m, L ¼ 10 m, and P ¼ 80 kN

Fig. E1.4a

Solution: We start with the FBD of the entire structure shown in Fig. E1.4b. We note that the cable

force is tension. Requiring the sum of the moments of the forces with respect to point A to vanish

leads to the TC
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Fig. E1.4b

X
Mabout A ¼ L

2
P� LTC ¼ 0

+

TC ¼ P

2

Next, we determine the reactions at A using force summations.

X
FY ¼ 0 Ay þ TC � P ¼ 0) Ay ¼ P

2X
Fx ¼ 0 Ax ¼ 0

The vertical displacement of B is equal to the extension of the cable. Noting (1.19), the expression

for vB is

vB ¼ h

AcEc

� �
TC ¼ h

AcEc

P

2

� �
¼ 4; 000

600ð Þ 200ð Þ
80

2

� �
¼ 1:33mm #

In what follows, we illustrate the application of the general analysis procedure to the idealized

structure defined in Fig. 1.27. Member ABCD is considered to be rigid. It is supported by a hinge at A

and springs at C and D. The force, P, is constant. Replacing the hinge support and springs with their

corresponding forces results in the FBD shown in Fig. 1.27b. There are four unknown forces; AX, AY,

Fc, and Fd. Setting the resultant force equal to zero leads to

AX ¼ 0

AY þ Fc þ Fd ¼ P
ð1:21Þ

Next, we require that the moment vanish at A.

l

4
P ¼ l

2
Fc þ lFd ð1:22Þ

Since there are more force unknowns than force equilibrium equations, the structure is statically

indeterminate.
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We generate additional equations by examining how the structure deforms. Deformation is a

consequence of applying a force to a material. Deformation is associated with a change in shape.

Figure 1.28 illustrates various deformation modes: the first is extension of a spring; the second is

shear. A rigid body is an idealized case: the deformations are considered to be negligible.

An important phase in the analysis of a deformable body is the study of deformations. One first

identifies the displacement variables that define the “deformed” position and then, using geometric

analysis, establishes the expressions relating the deformations of the deformable structural elements

with the displacements. We illustrate this process for the structure defined in Fig. 1.29.

Fig. 1.27 Rigid member

on springs

Fig. 1.28 Deformation modes. (a) Extension. (b) Shear
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Member ABCD is assumed to be rigid and therefore remains straight when the load is applied.

Deformation occurs in the springs at C and D, causing ABCD to rotate about the hinge at A. There is

only one independent displacement variable. We take it to be the rotation angle θ shown in Fig. 1.29.
With this choice of sense, the springs compress. When θ is small, the spring deformations can be

approximated as linear functions of θ. This approximation is valid for most cases.

ec ¼ l

2

� �
θ

ed ¼ lθ

ð1:23Þ

The last step in the analysis involves relating the deformations and the corresponding internal

forces. For this example structure, the internal forces are the spring forces, Fc and Fd. In general, the

relationship between the force and deformation of a component is a function of the makeup of the

component (i.e., the material used and the geometry of the component). Here, we assume the behavior

is linear and write

Fc ¼ kcec

Fd ¼ kded
ð1:24Þ

where kc and kd are the spring stiffness factors. Note that the units of k are force/length since e has

units of length.

At this point, we have completed the formulation phase. There are seven equations, (1.21)–(1.23),

relating the seven variables consisting of the four forces, one displacement, and two deformations.

Therefore, the problem is solvable. How one proceeds through the solution phase depends on what

variables one wants to determine first.

Starting with (1.23), we observe that the reaction Av can be determined once the spring forces are

known. Therefore, we hold this equation in reserve, and focus on the remaining equations. We can

combine (1.23) and (1.24) by substituting for the deformations. The resulting equations together with

(1.24) are

Fc ¼ kc
l

2

� �
θ, Fd ¼ kdlð Þθ ð1:25aÞ

l

4
P ¼ l

2
Fc þ lFd ð1:25bÞ

The most convenient strategy is to substitute for Fc, Fd in the second equation. Then,

l

4
P ¼ l

l

4
kc þ kd

� �
lθ

and

Fig. 1.29 Deformation–

displacement relations
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θ ¼ P

4kd þ kcð Þl ð1:26Þ

Finally, the spring forces corresponding to this value of θ are

Fc ¼ kc
2 4kd þ kcð Þ P

Fd ¼ kd
4kd þ kcð Þ P

ð1:27Þ

An alternate strategy is to solve first for one of the spring forces. Suppose we take Fc as the primary

force variable. Using (1.25b), we solve for Fc.

Fc ¼ 1

2
P� 2Fd ð1:28Þ

Another equation relating Fc and Fd is obtained by eliminating θ in (1.25a). The steps are

θ ¼ 1

kc l=2ð ÞFc ð1:29Þ

and

Fd ¼ 2kd
kc

Fc ð1:30Þ

Equation (1.30) represents a constraint on the spring forces. The deformations of the springs are

not arbitrary; they must satisfy (1.23), which can be written as:

ed ¼ 2ec ð1:31Þ
Finally, substituting for Fd in (1.28) and solving for Fc leads to

Fc ¼ 1=2

1þ 4kd=kc

� �
P ð1:32Þ

The rotation angle is determined with (1.29) and Fc with (1.30).

We refer to the first solution procedure as the displacement or stiffness method. It is relatively

simple to execute since it involves only substitution. Most of the structural analysis computer

programs are based on this method. The second procedure is called the force or flexibility method.

Some manipulation of the equations is required when the structure is statically indeterminate and

consequently the method is somewhat more difficult to apply in this case. However, the Force Method

is more convenient to apply than the displacement method when the structure is statically determi-

nate, since the forces can be determined using only the equilibrium equations. The approach in part I

of the text is based on the Force Method. Later in part II, we discuss the Force and Displacement

methods in more detail.

1.5.7 The Importance of Displacements

Displacements are important for two reasons. Firstly, the serviceability requirement for structures is

usually specified as a limit on the magnitude of certain displacements. Secondly, for indeterminate

structures, one cannot determine the internal forces using only the equations of static equilibrium.
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One needs to consider the displacements and internal forces simultaneously. This topic is addressed in

part II of the text. The following example illustrates one of the strategies employed for a statically

indeterminate beam.

Example 1.5: A Statically Indeterminate Beam

Given: The beam shown in Fig. E1.5a.

Fig. E1.5a

Determine: The reactions.

Solution: First, we construct the FBD for the beam (Figs. E1.5b and E1.5c).

Fig. E1.5b

Considering summation of forces in the X and Y directions and summation of moments about A,

we obtain the following three equations.X
Fx!þ ¼ 0 ) Ax ¼ 0X
Fy"þ ¼ 0 ) Ay þ Cy þ Dy ¼ PX
Mabout A ¼ 0 ) L

4
P ¼ L

2
Cy þ LDy

We have only two equations for the three vertical reactions, Ay, Cy, and Dy. Therefore, we cannot

determine their magnitude using only the force equilibrium equations.

The Force (or Flexibility) method for this problem is based on releasing one of the roller supports,

say support C, replacing it with an unknown force, Cy, and allowing point C to move vertically under

the action of the applied loads. First, we take Cy ¼ 0 and apply P. Point C moves an amount Δc
��
p

shown in the figure below. Then, we take P ¼ 0, Cy ¼ 1, and determine Δc
��
v

the corresponding
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movement at C due to a unit upward force at C. Assuming the support at C is unyielding, the net

movement must be zero. Therefore, we increase the force Cy until this condition is satisfied. Once Cy

is known, we can find the remaining forces using the equations of static equilibrium. In order to carry

out this solution procedure, one needs to have a method for computing displacements of beams. These

methods are described in Chap. 3.

Fig. E1.5c

1.6 Summary

1.6.1 Objectives of the Chapter

• Provide an overview of the set of issues that a structural engineer needs to address as a practicing

professional engineer.

• Introduce the basic analytical methods of structural analysis and describe how they are applied to

determine the response of a structure.

1.6.2 Key Issues and Concepts Introduced

• A structure is an assemblage of structural components which are arranged in such a way that the

structure can withstand the action of the loads that are applied to it. Structures are classified

according to their makeup such as trusses, frames, and their functions such as bridges, office

buildings.
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• The primary concern of a structural engineer is to ensure that the structure will not collapse during

its expected lifetime. This requires firstly that the engineer properly identify the extreme loading

that the structure is likely to experience over its design life, and secondly, that the structure is

dimensioned so that it has adequate capacity to resist the extreme loading.

• Structures are restrained against rigid body motion by supports. When the structure is loaded,

reaction forces are developed by the supports. A minimum of three nonconcurrent reaction forces

are necessary to prevent rigid body motion for a planar structure.

• Initial instability occurs when the reactions are insufficient or the members are not properly

arranged to resist applied external forces. In this case, the structure will fail under an infinitesimal

load. This condition can be corrected by modifying the supports or including additional members.

• Loss of stability under loading can occur when a primary structural member loses its capacity to

carry load due to either elastic buckling or failure of the material. There are two modes of material

failure: “brittle” and “ductile.” Brittle failure occurs suddenly with a complete loss in load

capacity. One should avoid this mechanism. Ductile failure is evidenced by substantial inelastic

deformation and loss in stiffness. The limit state design procedure allows for a limited amount of

inelastic deformation.

• Loads applied to civil structures are categorized according to direction. Vertical loads are due to

gravitational forces and are defined in terms of the weight of objects. Lateral loads are produced by

natural events such as wind and earthquake. The relative importance of these loads depends on the

nature of the structure and the geographical location of the site.

• Loads are also generated during the construction of the structure. The design loading for certain

types of structures such as segmented concrete girders is controlled by the construction process.

Most structural failures occur during the construction process.

• Loads are also classified according to the time period over which the loads are applied. Long-term

loads, such as self-weight, are called “dead “loads. Loads whose magnitude or location changes

are called “live” loads. Typical live loads are produced by vehicles crossing bridges, and people

occupying buildings.

• Extreme loads such as wind and earthquakes are defined in terms of their return period, which is

interpreted as the average time interval between occurrences of the event. One speaks of the

50-year wind, the 50-year earthquake, etc. The magnitude of the load increases with increasing

return period.

• The design life of a structure is the time period over which the structure is expected to function

without any loss in functionality. Bridges are designed to last at least 100 years. Industrial

buildings are expected to have design lives usually greater than 100 years. The probability that a

structure will experience an extreme event over its design life is approximately equal to the ratio of

the design life to the return period.

• The effect of wind acting on a building is represented by a pressure loading distributed over the

external surfaces. The magnitude and spatial variation of the pressure depends on the shape of the

building and the local wind environment. Positive pressure is generated on windward vertical

forces and steeply inclined roofs. Turbulence zones occur on flat roof and leeward faces and result

in negative pressure.

• Design codes specify procedures for computing the spatial distribution of wind pressure given the

expected extreme wind velocity at the geographic location. The wind velocity tends to be larger in

coastal regions. A typical wind velocity for coastal regions of the USA is 100 miles per hour. The

corresponding wind pressure is approximately 20 psf.

• Snow loading is represented as a uniform download pressure acting on the roof zones of a

structure. Design snow pressure is based on ground snow data for the region where the structure
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is located. Snow is an important loading for the northern part of the USA, Canada, and Eastern

Europe.

• Earthquakes produce sudden intense short-term ground motion which causes structures to vibrate.

The lateral floor loading is due to the inertia forces associated with the acceleration generated by

the ground shaking and is generally expressed as (Wf/g)amax, whereWf is the floor weight, and amax

is the peak value of floor acceleration. Seismic engineering is specialized technical area which is

beyond the scope of this textbook. However, the reader should be knowledgeable of the general

seismic design strategy.

• Conventional structural design philosophy is based on satisfying two requirements: safety and

serviceability. Safety relates to extreme loading and is concerned with preventing collapse and loss

of life. Safety is achieved by providing more resistance than is required for the extreme loading.

Serviceability relates to loading which occurs during the structure’s lifetime. One needs to ensure

that the structure remains operational and has no damage.

• Motion-Based Design, also called performance-based design, is an alternate design methodology

that takes as its primary objective the satisfaction of motion-related design requirements such as

displacement and acceleration. The goal here is to provide sufficient stiffness and energy dissipa-

tion mechanisms to limit the motion under extreme loading.

• Structural analysis is concerned with quantifying the response of a structure subjected to external

loading. This effort involves determining the reactions, internal forces, and displacement

profiles. One generally carries out the analysis in two steps: study of forces and study of

displacements. In the study of forces, one applies the force equilibrium equations to isolated

segments of the structure called FBDs. Selecting appropriate FBDs is a skill acquired through

practice. In the study of displacements, one first uses a geometric-based approach to express the

deformation measures in terms of displacement measures. The displacement measures are then

related to the internal forces by introducing certain material properties such as the elastic modulus.

These relations allow one to determine the displacements, given the internal forces. We apply this

approach throughout part II of the text. It provides the basis for the analysis of statically indeter-

minate structures.
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Statically Determinate Truss Structures 2

Abstract

We begin this chapter by reviewing the historical development of truss

structures. Trusses have played a key role in the expansion of the highway

and railroad systems during the past two centuries. From a mechanics

perspective, they are ideal structures for introducing the concepts of

equilibrium and displacement. We deal first with the issues of stability

and static determinacy, and then move on to describe manual and

computer-based techniques for determining the internal forces generated

by external loads. A computational scheme for determining the

displacements of truss structures is presented next. Given a structure,

one needs information concerning how the internal forces vary as the

external live load is repositioned on the structure for the design phase.

This type of information is provided by an influence line. We introduce

influence lines in the last section of this chapter and illustrate how they are

constructed for typical trusses. This chapter focuses on linear elastic

structural analysis. Nonlinear structural analysis is playing an increasingly

more important rule in structural design. However, we believe an

understanding of linear analysis is essential before discussing the topic

of nonlinear analysis.

2.1 Introduction: Types of Truss Structures

Simple two-dimensional (2-D) truss structures are formed by combining one-dimensional linear

members to create a triangular pattern. One starts with a triangular unit, and then adds a pair of

members to form an additional triangular unit. This process is repeated until the complete structure is

assembled. Figure 2.1 illustrates this process for the case where all the members are contained in a

single plane. Such .structures are called plane trusses; the nodes are also called “Joints.”
Three members connected at their ends form a rigid structure in the sense that, when loaded, the

change in shape of the structure is due only to the deformation of the members. It follows that a
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structure constructed in the manner described above is also rigid provided that the structure is suitably

supported.

Simple three-dimensional (3-D) space trusses are composed of tetrahedral units. Starting with a

tetrahedral unit, one forms an additional tetrahedral unit by adding three linear elements, as illustrated

in Fig. 2.2. When the structure is suitably supported to prevent rigid body motion, the assemblage is

rigid. The question of suitable supports is addressed later in the chapter.

Examples of simple planar trusses are shown in Fig. 2.3. Starting with the initial triangle abc, one

adds the nodes d, e, etc.

Trusses may also be constructed by using simple trusses as the “members,” connected together by

additional members or joints. These structures are called compound trusses. Figure 2.4 shows several
examples of compound trusses, where the simple trusses are shown as shaded areas.

A truss geometry that does not fall in either the simple or compound category is called a complex

truss [1]. Examples are shown in Fig. 2.5. This type of truss is not used as frequently as either simple

or compound trusses.

2.1.1 Structural Idealization

Trusses are components of larger structural systems, such as buildings, bridges, and towers. In order

to evaluate the behavior under loading, one needs to identify the main structural components of

Fig. 2.1 Simple planar

truss construction

Fig. 2.2 Simple space

truss construction

Fig. 2.3 Simple planar

trusses
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the system and determine how the external load is transmitted from one component to another.

This process is called “structural idealization;” it is a key step in the analysis process. In what follows,

we illustrate idealization strategies for typical bridges and roof systems.

Figure 2.6 shows a typical single span truss bridge system. The key components are the two simple

planar trusses, the lateral bracing systems at the top, sides, and bottom levels and the flooring system

consisting of floor stringers/beams and deck slab. Loading applied to the deck slab is transmitted

through the stringer/beam system to the bottom nodes of the two planar trusses. The major percentage

of the analysis effort is concerned with analyzing a simple truss for dead weight, wind, and traffic

loading.

Roofing system for buildings such as warehouses, shopping centers, and sports facilities employ

trusses to support the roof envelope. Figure 2.7 illustrates a scheme for a typical roofing system for a

single-story industrial building. The roof system consists of steel decking attached to purlins which,

in turn, are supported at the top nodes of the planar trusses. Loading applied to the roof area in a bay is

transmitted through the purlins to the trusses adjacent to the bay, and eventually to the supports.

Bracing is incorporated to carry the lateral loading which may act either in the longitudinal or

Fig. 2.4 Compound

planar trusses

Fig. 2.5 Complex planar trusses
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transverse direction. The primary effort for this structural system is concerned with analyzing a single

planar roof truss for the tributary area loading applied at the top chord nodes.

2.1.2 Historical Background

The first application of truss type structures is believed to be in Egyptian boats built between 3100 and

2700 BC. Egyptian boat builders used trusses constructed by tying the members together with vines to

form the sides and attached the outer hull to these structures. The Romans used wood trusses for

bridges and roofs. Examples are a bridge over the Danube (circa 106 AD) and the entrance to the

Pantheon (circa 120 AD). The next time frame is that of the Middle Ages. Examples of trusses are

found in English cathedrals (Salisbury Cathedral, circa 1258 AD) and great halls (Westminster

Palace, circa 1400). Deployment of wooden trusses continued through the Gothic and Renaissance

periods, mainly to support roofs. The Engineers of these time periods intuitively understood the

rigidity provided by the triangular form, but lacked a theory that they could apply to evaluate the

response for a given load.

A major contribution to the theory is the work of Leonardo da Vinci (1452–1519), who formulated

the concepts of force and moment as vectors and showed that forces can be combined using a

graphical construction that is now called the force parallelogram. From the early 1600s to the

Fig. 2.6 Single span truss

bridge system

Fig. 2.7 Typical industrial

building roofing system
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mid-1800s, many advances in the development of a scientific basis for a theory of structures were

made. Key contributors were Newton (1642–1729), Hooke (1635–1703), Galileo Galilei (first

useable formula for strength of a cantilever beam-1638), Euler (theory of buckling of columns-

1757), Bernoulli (bending deformation of a beam-1741), Navier (produced an integrated theory of

Structural Mechanics—1826), and Mobius (published the Textbook of Statics—1837).

Wooden bridge truss structures were popular in the early 1800s, especially in the USA. There are

many examples of covered wooden bridges in Vermont and New Hampshire. Figure 2.8 illustrates

some typical structural schemes.

Fig. 2.8 Covered wood bridges
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There was a flourishing industry in New England producing wooden bridge trusses, many of which

were exported to Europe.. As with many emerging technologies, competition from other emerging

technologies occurred and eventually took over the market for the product. The first impetus for

change was the Industrial Revolution which occurred in the early 1800s. The concept of the railroad

was invented during this period. This invention created a demand for more robust and more durable

bridges to carry the heavier moving loads over longer spans. Cost also became an issue. Up to this

time, wooden bridges were designed to carry light pedestrian and horse and carriage traffic over

relatively short spans. Their expected life was short, but since they used local materials and local

labor, they were not expensive and durability was not an issue. However, they were not adequate for

the railroad traffic and other solutions were needed.

Another technology that was evolving in the late 1700s was iron making. Processes for making

cast and wrought iron cheaper than existing methods were developed in the 1780s. Methods for

shaping wrought iron into shapes that could be used as truss members were also invented simulta-

neously. These inventions set the stage for the use of iron members in trusses during the early 1800s.

Initially, wrought iron was used for tension elements and wood for compression elements. Gradually,

cast iron replaced wood for compression elements. The first all iron truss bridge in the USA was built

in 1840 by Squire Whipple, a leading bridge designer in the USA at that time. He is also known for his

book Essay on Bridge Building, published in 1847, the first publication on Structural Theory by a US

author. Some other designers active in the 1840s were W. Howe, T. Pratt, A. Fink in North America,

and J. Warren in the UK. Trusses of this era were given the name of the individual who designed or

constructed them. Examples are shown in Fig. 2.9.

Starting around 1850, iron trusses were used not only for bridges but also for other long-span

structures such as market halls, exhibition buildings, and railway stations. Notable examples are the

Crystal Palace, the Eiffel tower, and the Saint Pancras station (Fig. 2.10).

During the period from 1850 to 1870, an improved version of iron called steel was invented.

This material was much stronger than cast iron; more ductile than wrought iron, and quickly

displaced iron as the material of choice. The first all steel truss bridge in the USA was built for the

Chicago and Alton Railroad in 1879. The structure consisted of a series of Whipple trusses with a

total length of 1500 ft spanning over the Mississippi River at Glasgow, Missouri. The first major

long-span steel bridge was the Firth of Forth Bridge built in Scotland in 1890. Another similar

Fig. 2.9 Examples of

named trusses
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Fig. 2.10 Examples of

structures made of iron

trusses. (a) Crystal Palace.
(b) Eiffel Tower. (c) Saint
Pancras station

2.1 Introduction: Types of Truss Structures 53



cantilever style truss bridge was built over the St. Lawrence River in Quebec, Canada in

1919. The initial steel structures used eyebars and pins. Rivets replaced pins as connectors

in the late 1800s.

High-strength bolts and welding are now used to connect the structural members in today’s

modern steel constructions. Figure 2.11 illustrates typical bolted and welded connections. Connection

details are usually designed by the steel fabricator and checked by the structural engineer. The goal in

connection design is to minimize steel erection time.

Steel truss bridges were the dominant choice for long-span crossings until the mid-1900s when

another structural form, the cable-stayed bridge, emerged as a competitor. Cable-stayed bridges

have essentially captured the market for spans up to about 900 m. Segmented concrete girder

construction has also emerged as a major competitor for somewhat shorter spans. Plane trusses

now are used mainly for prefabricated joists, for gable roof systems, and for spanning long interior

distances in buildings and sporting facilities such as convention halls and stadiums. Three-

dimensional space trusses are used in dome type structures such as shown in Fig. 2.13, and also

for towers. One of the most notable examples of the space truss concept is the Eiffel Tower in

Paris, France.

Fig. 2.11 Typical pin joint connections. (a) Frictionless pin. (b) Bolted connection. (c) Welded connection

Fig. 2.12 Example of early steel bridges—Firth of Forth Bridge, Scotland
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2.2 Analysis of Planar Trusses

In this section, we focus on introducing analysis and behavior issues for planar trusses. The discussion

is extended in the next section to deal with three-dimensional space structures.

The analysis of trusses is based on the following idealizations that ensure that the forces in the

members are purely axial:

1. The loads and displacement restraints are applied only at the nodes.

2. The members are connected with frictionless pins so that the members can rotate freely and no

moment exists at the ends.

3. The stress due to the weight of the members is small in comparison to the stress due to the applied

loads.

4. Each member is straight and is arranged such that its centroidal axis coincides with the line

connecting the nodal points.

With these restrictions, it follows that a member is subjected only to an axial force at each end.

These forces are equal in magnitude and their line of action coincides with the centroidal axis of the

member. There is only one unknown per member, the magnitude of the force. The resulting state is

uniform axial stress throughout the member. Depending on the loading, the member force may be

either tension or compression. Figure 2.14 illustrates free body diagrams for a truss member and its

associated nodes.

Fig. 2.13 Three-dimensional truss roof system

2.2 Analysis of Planar Trusses 55



2.2.1 Equilibrium Considerations

The equilibrium requirements .for a body subjected to a non-concurrent force system are specified in

Sect. 1.5.2. In general, the resultant force vector and the resultant moment vector with respect to an

arbitrary moment center must vanish. One can apply these requirements either to the complete truss or

to the individual nodes.

Each node of a plane truss is acted upon by a set of coplanar concurrent forces. There are no

moments since the pins are frictionless and the lines of action of the forces intersect at the node.

For equilibrium of a node, the resultant force vector must vanish. In Squire Whipple’s

time (1840s), equilibrium was enforced using Leonardo da Vinci’s graphical method based

on the force polygon. Now, one applies an analytical approach based on resolving the force

vectors into components and summing the components. The corresponding scalar equilibrium

equations are X
Fn ¼ 0

X
Fs ¼ 0 ð2:1Þ

where n and s are two arbitrary nonparallel directions in the plane. Figure 2.15 illustrates this

notation.

Fig. 2.14 Free body diagram of a truss member and its associated nodes. (a) Tension. (b) Compression

Fig. 2.15 Concurrent

force system at a node
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2.2.2 Statically Determinate Planar Trusses

In general, three motion restraints are required to prevent rigid body motion of a planar truss. Two of

these restraints may be parallel. However, the third restraint cannot be parallel to the other two

restraints since, in this case, the truss could translate in the direction normal to the parallel restraint

direction. Each restraint generates an unknown force, called a reaction. Therefore, the minimum

number of reactions is 3.

Examples of typical support motion restraints and the corresponding reactions are shown in

Fig. 2.16.

There are two scalar equilibrium equations per node for a plane truss. Assuming that there are

j nodes, it follows that there are a total of 2j equilibrium equations available to determine the

force unknowns. We suppose there are m members and r reactions. Then, since each member

and each reaction involves only one unknown force magnitude, the total number of force unknowns

is equal to m + r.

When the number of force unknowns is equal to the number of equilibrium equations,

the structure is said to be statically determinate. If m + r < 2j, the truss is unstable since there

are an insufficient number of either member forces or reactions or possibly both to equilibrate the

applied loads. It follows that a plane truss is statically determinate., unstable, or indeterminate when

mþ r ¼ 2 j Staticallydeterminate

mþ r < 2 j Unstable

mþ r > 2 j Statically indeterminate

ð2:2Þ

Fig. 2.16 Types of supports for planar trusses. (a) Hinge support (two restraints ) two reactions). (b) Roller Support

(one restraint ) one reaction). (c) Rigid link
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A word of caution: a statically determinate truss may also be unstable if the reactions are not properly

aligned so as to prevent rigid body motion of the truss. We discuss this point in more detail in the

following section.

2.2.3 Stability Criterion

In this section, we examine in more detail the question of whether a planar truss structure is initially

stable. Assuming a plane truss has mmembers, r reactions, and j joints, there are 2j force equilibrium

equations that relate the known (given) joint loads and the (m + r) unknown forces. Ifm + r < 2j, the
number of force unknowns is less than the number of equilibrium equations that the forces must

satisfy. Mathematically, the problem is said to be underdetermined or inconsistent. One cannot find

the exact solution for an arbitrary loading, except in the trivial case where the magnitude of all the

loads is zero, and consequently the forces are zero. Once a nontrivial load is applied, the structure

cannot resist it, and motion ensues. The descriptor “initial instability” is used to denote this condition.

Even when m + r ¼ 2j, a truss may still be unstable if the motion. restraints are not properly

arranged to prevent rigid body motion of the structure. There may be an insufficient number of

restraints or the restraints may be aligned in such a way that rotation of a segment is possible. The

stability of a complex truss depends on the geometrical arrangements of the members. Even though

the truss satisfies the condition, m + r ¼ 2j, and has sufficient restraints, it still may be unstable. The

instability condition becomes evident when one attempts to determine the member forces using the 2j

force equilibrium equations. The solution is not unique when the structure is unstable.

When m + r > 2j and the structure is suitably. restrained against rigid body motion, the structure

is said to be statically indeterminate. This terminology follows from the fact that now there are more

force unknowns than equilibrium equations, and not all the forces can be determined with only

equilibrium considerations. One needs some additional equations. We address this type of problem in

Part II.

In what follows, we illustrate the initial stability criteria with typical examples. Stability can be

defined in a more rigorous way using certain concepts of linear algebra, a branch of mathematics that

deals with linear algebraic equations. This approach is discussed in Sect. 2.6

Example 2.1 Simple Trusses

Given: The structures. shown in Fig. E2.1a–d

Fig. E2.1

Determine: Whether the structures are initially stable, determinate, or indeterminate.

Solutions:

Case (a): There are five members, three reactions, and four nodes. Then applying (2.2)
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mþ r¼ 8

2j¼ 8

The structure is determinate and initially stable.

Case (b):

mþ r¼ 9

2j¼ 8

There is one extra force and therefore the structure is initially stable and indeterminate to the first

degree.

Case(c): The stability criterion appears to be satisfied.

mþ r¼ 8

2j¼ 8

However, the number of supports is insufficient to prevent rigid body motion in the horizontal

direction. Therefore, the structure is initially unstable.
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Case (d): The stability criterion appears to be satisfied.

mþ r¼ 8

2j¼ 8

However, the three displacement restraints are concurrent (point A), and therefore the structure

can rotate at point A. It follows that the structure is initially unstable.

Example 2.2 A Compound Truss

Given: The structure shown in Fig. E2.2a. This compound truss is actually a combination of two

simple trusses.

Fig. E2.2a

Determine: Is the structure statically determinate?

Solution: The structure is statically determinate and stable.

mþ r¼ 24

2j¼ 24

Example 2.3 A Complex Truss
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Given: The complex truss defined in Fig. E2.3a.

Fig. E2.3a

Determine: Is the truss statically determinate?

Solution: There are three restraints, six joints, and nine members.

mþ r¼ 12

2j¼ 12

The truss appears to be stable. Note that the condition, m + r ¼ 2j is necessary but not sufficient to

ensure stability of this truss. Sufficient conditions are discussed further in Sect. 2.6.

In what follows, we describe two classical hand computation-based procedures for finding the

member forces in simple and compound trusses due to an applied loading. .These approaches are

useful for gaining insight as to how loads are carried by structures. That is the most important aspect

of structural engineering that one needs to master in order to be a successful practitioner. Also,

although most current structural analysis is computer based, one still needs to be able to assess the

computer-generated results with a simple independent hand computation.

2.2.4 Method of Joints: Planar Trusses

Each joint of a plane truss is subjected to a concurrent force system. Since there are two equilibrium

equations for a 2-D concurrent force system, one can solve for at most two force unknowns at a

particular joint. The strategy for the method of joints is to proceed from joint to joint, starting with the

free body diagram of a joint that has only two unknowns, solving for these unknowns, and then using

this newly acquired force information to identify another eligible joint. One continues until equilib-

rium has been enforced at all the joints. When all the joints are in equilibrium, the total structure will

be in equilibrium. This analysis procedure was first described in Squire Whipple’s 1840 Essay on

Bridge Building.

Enforcing the equilibrium conditions is simplified if one works with the force components referred

to a common reference frame. Once one component is known, it is a simple step to determine the

magnitude of the other component and the force. As an illustration, we consider the member shown in

Fig. 2.17. The ratio of force components is equal to the ratio of the projected lengths. This equality

follows from the fact that the direction of the force is the same as the direction of the line. Here, we

are taking the horizontal and vertical directions as the common reference frame.
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Fy

Fx
¼ Ly

Lx
¼ tan θ

Similarly, the force is determined using

F ¼ Fx

cos θ
¼ Fy

sin θ

Another simplification is possible when the joint has only three members, two of which are

colinear, and there is no applied load at the joint. Figure 2.18 illustrates this case. There is only one

force acting at an angle to the direction of the two common members, and equilibrium in the normal

direction (n) requires the magnitude of this force to be zero. The other two forces must have the same

magnitude.

When applying the method of joints, it is convenient to first determine the reactions by enforcing

global equilibrium on the total structure. With the reactions known, it may be easier to locate a joint

having only two unknown member forces.

In what follows, we present a set of examples that illustrate how the method of joints is efficiently

applied.

Example 2.4 Three-Member Truss Analyzed by the Methods of Joints

Given: The truss and loading defined by Fig. E2.4a.

Fig. 2.17 Force

components

Fig. 2.18 Zero force

member
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Determine: The reactions and member forces.

Fig. E2.4a

Solution: We first find the reactions at joints a and b. Moment summation about joint a leads to the

y reaction at b. Force summations provide the remaining two reaction forces. The results are shown in

Fig. E2.4b.

X
FX ¼ 0! þ Rax þ 10 ¼ 0 ) Rax ¼ �10 ∴ Rax ¼ 10kip X
FY ¼ 0 " þ Ray þ 15� 2:5 ¼ 0 ) Ray ¼ �12:5 ∴ Ray ¼ 12:5kip #

Fig. E2.4b Reactions

One can start at any joint since they all have just two unknown member forces. We pick joint b

(Fig. E2.4c). Summation of forces in the y direction gives Fbc,y ¼ 2.5 kip. Then, summing forces in

the x direction requires Fba being compressive and equal to 2.5 kip. We indicate a tensile member

force with an arrow pointing away from the joint. The opposite sense is used for compression.

One converts the force components to the force magnitude using the Pythagorean Theorem,

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
.

X
Fy ¼ 0 Fbc,y ¼ 2:5 " Then Fbc,x ¼ 2:5 ∴ Fbc ¼ 2:5

ffiffiffi
2
p

kip tensionð ÞX
Fx ¼ 0 Fba ¼ 2:5 kip compressionð Þ
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Fig. E2.4c Joint b

There is only one unknown member force left, Fca. One can work with either joint a or joint c. We

pick joint c. The free body diagram for joint c is shown in Fig. E2.4d. Equilibrium in the x direction
requires Fca,x ¼ 12.5 kip.X

Fx ¼ 0 Fca,x ¼ 12:5 ∴Fca ¼ 12:5
ffiffiffi
2
p

kip tensionð Þ

Fig. E2.4d Joint C

Note that in this example we do not need to use the remaining equilibrium equations (one for joint

c and two for joint a) since we used instead three global equilibrium equations to calculate the

reactions. The total number of joint equilibrium equations is equal to six (two per joint � three

joints). If we use three equations for global equilibrium, there are only three independent equations

left to apply to the joints. The final results are shown on the sketch below. Tensile forces are denoted

with a + sign, and compressive forces with a � sign.
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Fig. E2.4e

Example 2.5 Five-Member Truss Analyzed by the Methods of Joints

Given: The truss defined in Fig. E2.5a.

Determine: The reactions and member forces for the loading shown.

Fig. E2.5a

Solution:We first find the reactions and then proceed starting with joint a, and then moving to joints

c and d.
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Fig. E2.5b

SMa = 0  +     – 27(4) – 18(8) – Rc(8) = 0  Þ  Rc = – 31.5 \ Rc = 31.5 kip ¯

Fig. E2.5c
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Fig. E2.5d Joint a P
Fx ¼ 0 Fad cos αþ Fab cos β þ 18 ¼ 0

P
Fy ¼ 0 Fad sin αþ Fab sin β þ 4:5 ¼ 0

8<
: ) Fad ¼ �31:5kN

Fab ¼ 16:1kN




Fig. E2.5e Joint c
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P
Fx ¼ 0 Fcd cos αþ Fcb cos β ¼ 0

P
Fy ¼ 0 Fcd sin αþ Fcb sin β � 31:5 ¼ 0

8<
: ) Fcd ¼ �31:5kN

Fcb ¼ 56:35kN




Fig. E2.5f Joint d X
Fy ¼ 0 Fbd ¼ 37:8kN compressionð Þ

The final forces are listed below.

Example 2.6 Five-Member Truss Analyzed by the Methods of Joints

Given: The truss defined in Fig. E2.6a.

Determine: The reactions and member forces for the loading shown.
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Fig. E2.6a Bridge truss

Solution: We note that the structure and loading are symmetrical with respect to a vertical axis

through points e and d. It follows that the forces in symmetrically located members are equal, and

therefore we need to find the forces in only ½ of the structure. Joints c, e, and f are special in the sense

that two incident members are colinear. Then, noting Fig. 2.18,

Fcb ¼ 10kN tensionð Þ Fed ¼ 0 Ffg ¼ 10kN tensionð Þ

Fig. E2.6b

There are multiple options. We can first find the reactions and then proceed inward, starting with

joint a, and then moving to joints c and b. An alternate approach would be to start at joint d, find the

y component of Fbd, and then move to joint b.

Fig. E2.6c Reactions

We list the results for the first approach below. We first find Fba,y with the vertical equilibrium

condition at joint a. Then, we find Fac from the horizontal component of Fba.
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X
Fy ¼ 0 Fba,y ¼ 15kN # Then Fba,x ¼ 15kN!

∴ Fba ¼ 15
ffiffiffi
2
p

kN compressionð ÞX
Fx ¼ 0 Fac ¼ 15kN tensionð Þ

Fig. E2.6d Joint a

At joint c, we note from the sketch that Fdc ¼ 15 kN (tension).

Fig. E2.6e Joint c

At joint b, we note from the sketch that Fdb must be in tension and Fbe must be in compression.

Fig. E2.6f Joint b

We first find Fdb,y with the vertical equilibrium condition at joint b.X
Fy ¼ 0 Fdb,y ¼ 5 #

Then, Fdb,x ¼ 5 ∴Fdb ¼ 5
ffiffiffi
2
p

kN tensionð Þ.
Then, we apply the horizontal equilibrium equation at joint b.X

Fx ¼ 0 Fbe ¼ 20kN compressionð Þ
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The resultant member forces are shown below. Note that, for this loading, the members in the

top zone (the top chord) are in compression and the bottom chord members are in tension.

The interior vertical and diagonal members are in tension. When iron was used as a structural

material, cast iron, which is relatively weak in tension, was employed for the top chord members

and wrought iron, which is relatively strong in tension, for the verticals, diagonals, and bottom

chord members.

Fig. E2.6g

If the truss structure is inverted as shown below, the sense of the member forces is also reversed.

This geometric arrangement is preferred for bridge crossings when the clearance below the structure

is not a problem.

Fig. E2.6h

Example 2.7 A Cantilever Truss Analyzed by Methods of Joints

Given: The truss and loading defined by Fig. E2.7a.

Determine: The member forces for the loading shown.
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Fig. E2.7a

Solution: First, we determine the zero force members. Starting at joint c, we observe that Fcb ¼ 0.

Then, moving to joint b, it follows that Fbe ¼ 0.

Fig. E2.7b Zero force members

In this case, we do not need to first find the reactions. We can start at joint a.

Fig. E2.7c Joint a X
Fy ¼ 0 Fba,y ¼ 30! Fba,x ¼ 40 ∴ Fba ¼ 50kip tensionð Þ
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Given Fba, we determine FacX
Fx ¼ 0 Fac ¼ 25kip compressionð Þ

Next, we move to joint d and determine Fdf

Fig. E2.7d Joint dX
Fx ¼ 0 Fdf,x ¼ 40 ∴Fdf,y ¼ 80 Fdf ¼ 40

ffiffiffi
5
p

kip tensionð Þ

With Fdf known, we can determine FdeX
Fy ¼ 0 Fde ¼ 110kip compressionð Þ

At joint e, we determine Fef and Feg.

Fig. E2.7e Joint e
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The last joint is joint f. We first determine Ffg,xX
Fx ¼ 0 Ffg,x ¼ 15 ∴Ffg,y ¼ 20 Ffg ¼ 25kip compressionð Þ

Then,
X

Fy ¼ 0 Ffh ¼ 100kip tensionð Þ

Fig. E2.7f Joint f

The final forces are listed below.

Fig. E2.7g
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Example 2.8 Gable Roof Truss Analyzed by the Method of Joints

Given: The truss and loading defined by Fig. E2.8a.

Determine: The member forces.

Fig. E2.8a

Solution: Fig. E2.8a shows a typical truss structure for supporting roof (top joints) and ceiling

(bottom joints) loads. Members cb and gf function to transfer loads to the top joints (b and f). Their

force magnitudes are

Fbc ¼ 5kN tensionð Þ Fgf ¼ 5kN tensionð Þ
All the remaining joints have at least three unknown member forces and reactions. Therefore, we

start the analysis by first finding the reactions.

Fig. E2.8b Reactions

Given the reactions, we start at joint a. Force Fba must be compression and Fba,y ¼ 22.5 #. Then,
Fba,x ¼ 22:5  and Fba ¼ 22:5

ffiffiffi
2
p

kN compressionð Þ. It follows that, Fac is in tension and equal

to 22.5 kN.
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Fig. E2.8c Joint a

We then move on to joint b. Members ab and bd are colinear, and member be is normal to this

common direction. Summing forces in the normal direction results in

X
Fn ¼ 0 Fbe ¼ 10þ 5ð Þ cos α ¼ 15

ffiffiffi
2
p

2
kN compressionð Þ

Next, summing forces in the tangential direction leads to Fbd.X
Ft ¼ 0 Fbd ¼ 22:5

ffiffiffi
2
p
� 10þ 5ð Þ cos α ¼ 15

ffiffiffi
2
p

kN compressionð Þ

Fig. E2.8d Joint b

The last force is Fde. We use joint d shown in Fig. E2.8e. Summing forces in the y direction leads to

Fde ¼ 20 kN (tension)
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Fig. E2.8e Joint d

The final forces are listed below.

Fig. E2.8f

2.2.5 Method of Sections

If one wants to determine only the force in a particular member, applying the method of joints might

not be convenient since in general it involves first finding the force in other members. For example,

consider the truss shown in Fig. 2.19a. Suppose the force in member ef is desired. One possible

strategy is to first determine the reactions at joint a, then proceed to joints b, c, d, and lastly e, where

the Y component of Fef can be determined once Fed is known. Another possible strategy is to start at

joint j, and then precede to joints i, h, g, and f. Either approach requires some preliminary computa-

tion that provides information on forces that may or may not be of interest.

The method of sections is an analysis procedure that avoids this preliminary computation. One

passes a cutting plane through the truss, isolates either the left or right segment, and applies the

equilibrium equations for a rigid body to the segment. The choice of cutting plane is critical. It must

cut the particular member whose force is desired, and other members that are concurrent. This

restriction is necessary since there are only three equilibrium equations for planar loading, and

therefore, one can only determine three unknowns.

We illustrate this method for the truss defined in Fig. 2.19a. We start by determining the reaction at

a. To determine Fef, we use the vertical cutting plane 1-1 and consider the left segment shown in

Fig. 2.19c. Summing forces in the Y direction leads to:
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X
Fy ¼ 0 "þ Fef cos aα ¼ P1 þ P2 � Ray ð2:3Þ

We point out here that the function of the diagonal members is to equilibrate the unbalanced

vertical forces at the sections along the longitudinal axis. These forces are called “shear” forces.

If the force in member df is desired, one can use the moment equilibrium condition with respect to

joint e which is the point of concurrency for members ef and eg.X
Mabout e ¼ 0 hFdf ¼ ℓP1 � 2ℓRay ð2:4Þ

Similarly, for member eg, we use moment equilibrium about joint f:X
Mabout f ¼ 0 hFeg ¼ 3ℓRay � 2ℓP1 � ℓP2 ð2:5Þ

For parallel chord trusses (top and bottom chords are parallel), the function of the chords is to

equilibrate the unbalanced moments at the various sections. One chord force is compressive, the other

force is tensile. For downward vertical loading, the top chord is generally in compression, and the

bottom is in tension. The method of section is convenient in the sense that it allows one to easily

identify the sense of a particular member force.

Fig. 2.19 (a) An example

of a truss. (b) Cutting

vertical plane. (c) Truss
segment for method of

sections
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Example 2.9 Application of the Method of Sections to a Parallel Chord Truss

Given: The structure and loading shown in Fig. E2.9a

Determine: The force in members Fgd, Fgf, and Fdc.

Fig. E2.9a

Solution: We start by determining the reactions.

SMa = 0  +       2(3) + 4(6) + 3(9) – Re(12) = 0    Þ  Re = 4.75 kN �

Fig. E2.9b

Then, we pass a vertical cutting plane through the panel between joints d and c and consider the

left segment. Enforcing equilibrium leads to:

Fig. E2.9c
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X
Fy ¼ 0 Fgd,y ¼ 1:75 "

Therefore, Fgd,x ¼ 2.1875 and Fgd ¼ 2.8 kN (tension)X
Mat g ¼ 0 Fcd 2:4ð Þ � 2 3ð Þ þ 4:25 6ð Þ ¼ 0 Fcd ¼ �8:125

Therefore, Fcd ¼ 8.125 kN (compression)X
Fx ¼ 0 Fgf � 8:125þ 2:1875 ¼ 0 Fgf ¼ þ5:9375

Therefore, Fgf ¼ 5.9375 kN (tension).

Fig. E2.9d

Example 2.10 The Method of Sections Applied to a Roof Truss

Given: The structure shown in Fig. E2.10a.

Determine: The member forces Fdb, Fbe, and Fce.

Fig. E2.10a

Solution: We determine the reactions first.
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Fig. E2.10b

To determine the member forces Fdb, Fbe, and Fce, we use a vertical cutting plane. The appropriate

segment is shown in Fig. E2.10c. Various options are possible. We choose first to determine Fdb by

summing moments about e. Then, summing moments about b leads to Fce. Lastly, we can find Fbe by

summing either X or Y forces.

Fig. E2.10c

The calculations for this analysis procedure are listed below:
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SMb = 0  +     – 2Fce + (18.5) 4 = 0
                      Fce = 37 kN (Tension)

P
FY ¼ 0 " þ �Fbe,y � 12� 12:5þ 18:5 ¼ 0

Fbe,y ¼ �6 ) Fbe ¼ Fbe,y

sin α
¼ 13:41kN compressionð Þ

Example 2.11 Analysis of K-Type Trusses with the Method of Sections

Given: The truss defined in Fig. E2.11a.

Determine: The member forces Fab, Fbe, Fed, and Fcd.

Fig. E2.11a

Solution: We determine reactions first.

A vertical section such as①—① cuts four unknown forces and does not lead to a solution. There

are no vertical cutting planes that involve only three unknown forces. Therefore, one has to be more

creative with the choice of planes. For this type of truss, plane ②—② is the appropriate choice.

Isolating the left segment and summing moments about joint c results in Fab:

Fig. E2.11b

82 2 Statically Determinate Truss Structures



Fig. E2.11c

Then summing X forces,X
Fx ¼ 0 Fcd ¼ �Fab ¼ þ6 ∴Fcd ¼ 6kN tensionð Þ

The diagonal forces Feb and Fed are found using section①—①. Summing moments about joint d

leads to Feb:

SMd = 0  +      4(Fab + Feb,x) –10(8) + 8(12) = 0    4(–6 + Feb,x) + 16 = 0

Feb,x ¼ þ2 ∴Feb ¼ Feb,x

cos α
¼ 2:24kN tensionð Þ

Fig. E2.11d

We find Fed by summing x forces, and noting that the horizontal components of the chord forces

must cancel. X
Fx ¼ 0 Fed,x ¼ �Fed,x ∴Fed ¼ 2:24kN compressionð Þ

Fig. E2.11e
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If one wants all the member forces, one can apply multiple cutting planes or combinations of the

method of joints and method of sections. How one proceeds is a matter of personal preference.

Example 2.12: A Hybrid Analysis Strategy

Given: The truss defined in Fig. E2.12a

Determine: All the member forces using a combination of the method of joints and the method of

sections.

Fig. E2.12a

Solution: We note that the structure and loading are symmetrical with respect to a vertical axis

through points c and g. It follows that the forces in symmetrically located members are equal, and

therefore we need to find the forces in only ½ of the structure. We start by determining the reactions.

The member forces Fbc, Fhc, and Fhg can be determined by passing vertical cutting plane 1-1 and

enforcing the equilibrium equations.

Fig. E2.12b
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Considering the left segment and enforcing equilibrium leads to:

Section 1-1:X
Mat h ¼ 0 Fbc cos γð Þ 6ð Þ þ 15 8ð Þ ¼ 0 Fbc ¼ 10

ffiffiffi
5
p

kip compressionð ÞX
Fy ¼ 0 Fhc ¼ 4

ffiffiffi
2
p

kip tensionð ÞX
Fx ¼ 0 Fhg ¼ 16kip tensionð Þ

We then enforce equilibrium at joints a and h.

Equilibrium at joint a:

X
Fy ¼ 0 Fab,y ¼ 15 # ∴Fab ¼ 25kip compressionð ÞX
Fx ¼ 0 Fah ¼ �Fab,x ¼ 20kip tensionð Þ

Equilibrium at joint h:

X
Fy ¼ 0 Fbh ¼ �Fch,y ¼ 4kip compressionð Þ

The final member forces are listed below.
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Fig. E2.12c

2.2.6 Complex Trusses

Complex trusses are defined as truss structures that cannot be classified as either simple or compound

trusses. In order to determine the member forces, one has to establish the complete set of nodal force

equilibrium equations expressed in terms of the member forces. If the truss is statically determinate,

the number of equations will be equal to the number of force unknowns, and theoretically one can

solve these equations for the force unknowns. However, if one cannot determine the member forces,

the statically determinate truss is said to be geometrically unstable. In what follows, we expand on

this point.

Consider the planar truss shown in Fig. 2.20a. There are nine members, three reactions, and six

nodes. Then,

2j¼ 12

mþ r¼ 9þ 3 ¼ 12

and the truss is statically determinate. It also has a sufficient number of reactions to prevent rigid body

motions.

We use 3 of the 12 equilibrium equations to determine the reactions, leaving 9 equations available

to solve for the 9 member forces. P
Fx ¼ 0 R1x ¼ P P
Mat 1 ¼ 0 R5 ¼ P

2
"

P
Fy ¼ 0 R1y ¼ P

2
#
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Enforcing equilibrium at joints 2–6 results in the following nine equations:

Joint 2

P
Fx ¼ 0 cos αð ÞF 2ð Þ þ cos αð ÞF 9ð Þ ¼ �PP
Fy ¼ 0 � F 1ð Þ þ sin αð ÞF 2ð Þ � sin αð ÞF 9ð Þ ¼ 0

(

Joint 3

P
Fx ¼ 0 cos αð ÞF 2ð Þ � cos αð ÞF 3ð Þ ¼ 0P
Fy ¼ 0 sin αð ÞF 2ð Þ þ sin αð ÞF 3ð Þ þ F 7ð Þ ¼ 0

(

Joint 4

P
Fx ¼ 0 cos αð ÞF 3ð Þ þ cos αð ÞF 8ð Þ ¼ 0P
Fy ¼ 0 sin αð ÞF 3ð Þ � F 4ð Þ � sin αð ÞF 8ð Þ ¼ 0

(

Joint 5

P
Fx ¼ 0 cos αð ÞF 5ð Þ þ cos αð ÞF 9ð Þ ¼ 0P
Fy ¼ 0 F 4ð Þ � sin αð ÞF 5ð Þ þ sin αð ÞF 9ð Þ ¼ �

P

2

8<
:

Joint 6
X

Fx ¼ 0 cos αð ÞF 5ð Þ � cos αð ÞF 6ð Þ ¼ 0
n

ð2:6Þ

Fig. 2.20 (a) Planar truss geometry. (b) Reactions. (c) Joint equilibrium. (d) Modified geometry. (e) Joint equilib-
rium. (f) Member forces
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We express (2.6) in matrix form

BF ¼ C ð2:7Þ
where

F ¼

F 1ð Þ

F 2ð Þ

F 3ð Þ

F 4ð Þ

F 5ð Þ

F 6ð Þ

F 7ð Þ

F 8ð Þ

F 9ð Þ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

C ¼

�P
0

0

0

0

0

0

�P
2

0

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

B ¼

0 cos α 0 0 0 0 0 0 cos α

�1 sin α 0 0 0 0 0 0 � sin α

0 � cos α cos α 0 0 0 0 0 0

0 sin α sin α 0 0 0 1 0 0

0 0 cos α 0 0 0 0 cos α 0

0 0 sin α �1 0 0 0 � sin α 0

0 0 0 0 cos α 0 0 0 cos α

0 0 0 1 � sin α 0 0 0 sin α

0 0 0 0 cos α � cos α 0 0 0

2
666666666666666666664

3
777777777777777777775

The coefficient matrix, B is singular (the determinate of B equals 0). Therefore, a unique solution

for the unknown forces does not exist for an arbitrary nodal load. The truss is said to be geometrically

unstable since the elements of B depend only on the geometric pattern.

In order to eliminate the instability, one needs to change the geometry. We modify the truss by

changing the vertical position of node 3 as shown in Fig. 2.20d. The individual nodal force systems

are defined in Fig. 2.20e and the corresponding nodal force equilibrium equations are listed in (2.8).

Note the change in the coefficients.
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Joint 2

X
Fx ¼ 0 cos βð ÞF 2ð Þ þ cos αð ÞF 9ð Þ ¼ �PX
Fy ¼ 0 � F 1ð Þ þ sin βð ÞF 2ð Þ � sin αð ÞF 9ð Þ ¼ 0

8<
:

Joint 3

X
Fx ¼ 0 � cos βð ÞF 2ð Þ þ cos βð ÞF 3ð Þ ¼ 0X
Fy ¼ 0 sin βð ÞF 2ð Þ þ sin βð ÞF 3ð Þ þ F 7ð Þ ¼ 0

8<
:

Joint 4

X
Fx ¼ 0 cos βð ÞF 3ð Þ þ cos αð ÞF 8ð Þ ¼ 0X
Fy ¼ 0 sin βð ÞF 3ð Þ � F 4ð Þ � sin αð ÞF 8ð Þ ¼ 0

8<
:

Joint 5

X
Fx ¼ 0 cos αð ÞF 5ð Þ þ cos αð ÞF 9ð Þ ¼ 0X
Fy ¼ 0 F 4ð Þ � sin αð ÞF 5ð Þ þ sin αð ÞF 9ð Þ ¼ �P

2

8<
:

Joint 6
X

Fx ¼ 0 cos αð ÞF 5ð Þ � cos αð ÞF 6ð Þ ¼ 0
n

ð2:8Þ

In this case, the coefficient matrix B is nonsingular (det B 6¼ 0), and it follows that the structure is

geometrically stable:

B ¼

0 cos β 0 0 0 0 0 0 cos α

�1 sin β 0 0 0 0 0 0 � sin α

0 � cos β cos β 0 0 0 0 0 0

0 sin β sin β 0 0 0 1 0 0

0 0 cos β 0 0 0 0 cos α 0

0 0 sin β �1 0 0 0 � sin α 0

0 0 0 0 cos α 0 0 0 cos α

0 0 0 1 � sin α 0 0 0 sin α

0 0 0 0 cos α � cos α 0 0 0

2
666666666666666664

3
777777777777777775

Solving (2.8) using a computer software system [2] leads to the member forces listed below.

F ¼ B�1C ¼

2P

1:41P

1:41P

1:5P

2:24P

2:24P

�2P
�1:12P
�2:24P

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

)

F 1ð Þ
F 2ð Þ
F 3ð Þ
F 4ð Þ
F 5ð Þ
F 6ð Þ
F 7ð Þ
F 8ð Þ
F 9ð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

¼

2P

1:41P

1:41P

1:5P

2:24P

2:24P

�2P
�1:12P
�2:24P

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

For P ¼ 10 kN and h ¼ 6 m, the member forces are listed in Fig. 2.20f.

Assembling the nodal force equilibrium equations usually is a tedious operation, especially for

three-dimensional space structures. The process can be automated by using matrix operations. We

will describe one approach later in Sect. 2.6.
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2.3 Computation of Deflections

2.3.1 Introduction

The deflections of the joints are due to the change in length of the members that make up the truss.

Each member is subjected to an axial force which produces, depending on the sense, either an

extension or a contraction along the member. We call these movements “axial deformation.” The

study of deflection involves two steps. Firstly, we determine the axial deformation due to the applied

loading. This step involves introducing the material properties for the members. Secondly, we need to

relate the deflections to the axial deformations. This step is purely geometric. In what follows, we

develop procedures for determining the axial deformation due to an axial force, and the joint

deflections resulting from a set of axial deformations. The latter procedure is carried out here using

a manual computation scheme. A computer-based scheme is described in the next section.

2.3.2 Force–Deformation Relationship

Consider the axially loaded member shown in Fig. 2.21. We suppose an axial force, F, is applied, and

the member extends an amount e. Assuming the material is linear elastic, e is a linear function of F.

We estimate the proportionality factor by first determining the stress, then the strain, and lastly the

extension. We discussed this approach in Chap. 1. The steps are briefly reviewed here.

1. Stress

σ ¼ F

A

where A is the cross-sectional area

2. Strain

ε ¼ σ

E
¼ F

AE

where E is young’s modulus

3. Extension

eforce ¼ Lε ¼ FL

AE

where L is the member length

Fig. 2.21 Axially loaded

member
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The member may also experience an extension due to a temperature change or a fabrication error.

Introducing these additional terms, the total extension is expressed as

e ¼ eforce þ etemperature þ efabrication error ð2:9Þ
where

eforce ¼ FL

AE

etemperature ¼ αΔTL

efabrication error ¼ e0

α is the coefficient of thermal expansion, ΔT is the temperature change, and e0 represents the

fabrication error. The total extension, e, is the quantity that produces the displacement of the node.

2.3.3 Deformation–Displacement Relations

Consider the planar truss structure shown in Fig. 2.22. Suppose the members experience deformation

and one wants to determine the final position of node B. Our approach is based on first temporarily

disconnecting the members at B, allowing the member deformations to occur, and then rotating the

members such that they are reconnected. The movements of the nodes from the original configuration

to the new configuration are defined as the displacements. These quantities are usually referred to a

global reference frame having axes X and Y and corresponding displacement components u and v.

For structural materials such as steel, the extensions are small in comparison to the original length.

Then, the member rotations will also be small. Noting Fig. 2.22b, and the above assumptions, it

follows that the displacements are related to the deformations by

u � eAB

v � eBC
ð2:10Þ

The simplicity of this results is due to the fact that the structure’s geometry is simple (the members

are orthogonal to the coordinate axes).

We consider the single member AB defined in Fig. 2.23. Our strategy is to track the motion of the

end B as it experiences an extension, e. The final length is (L + e) where e is the extension. We

assume Δθ is small and project the final length onto the original direction. This step provides a first-

order estimate for the extension in terms of the nodal displacements.

Fig. 2.22 Initial and

deformed geometries. (a)
Initial geometry. (b)
Deformed configuration
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e � u cos θ þ v sin θ ð2:11Þ
We consider next a two-member planar truss shown in Fig. 2.24. Since the member orientations

are arbitrary, the deformation–displacement relations will involve all the displacement components.

Applying (2.11) to the above structure leads to

e1 ¼ u cos θ1 þ v sin θ1

e2 ¼ �u cos θ2 þ v sin θ2
ð2:12Þ

Given the member forces, one computes the extensions e1 and e2 and finally determines the

displacements by solving (2.12).

u¼ e1
sin θ2

sin θ1 cos θ2 þ cos θ1 sin θ2
� e2

sin θ1
sin θ1 cos θ2 þ cos θ1 sin θ2

v¼ e1
cos θ2

sin θ1 cos θ2 þ cos θ1 sin θ2
þ e2

cos θ1
sin θ1 cos θ2 þ cos θ1 sin θ2

Fig. 2.24 Geometry—

two-member truss

Fig. 2.23 Extension

displacement relationships
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2.3.4 Method of Virtual Forces

The formulation described in the previous section is not convenient for manual computation, even for

fairly simple trusses. However, there is an alternative procedure called the Virtual Force Method,

which avoids the need to solve simultaneous equations. Engineers prefer this approach since it is

based on executing a set of force equilibrium analyses, a task that they are more familiar with.

The Method of Virtual Forces is a procedure for determining the deflection at a particular point in a

structure given that the member forces are known. A general proof of the method can be found in

[3]. We apply the method here for truss type structures. Later in the following chapters, we apply the

procedure to beam and frame type structures. The method is restricted to static loading and geomet-

rically linear behavior, i.e., where the displacements are small. This is not a serious restriction for

civil structures such as building and bridges.

Consider a typical truss shown in Fig. 2.25a. Suppose the deflection, dA, in a specified direction at

point A is desired. One applies a virtual force, δPA, at A in the specified desired direction and

computes the corresponding member forces, δF, and reactions, δR, using only the static equilibrium

equations. Usually, one takes δPA to be a unit load. Note that this virtual force system is “specialized”

for the particular displacement that one is seeking. The displacement is determined using the

following expression:

dAδPA ¼
X

members

eδF�
X

reactions

d δR ð2:13Þ

where e is the total extension defined by (2.9), d is the support movement, and δR the corresponding

reaction. When the supports are unyielding, d ¼ 0, and the statement simplifies to

Fig. 2.25 (a) Desired
deflection—actual force

system F. (b) Virtual
force system δF
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dAδPA ¼
X

members

eδF ð2:14Þ

Given the actual forces, one evaluates e with (2.9), then determines the product, e δF, and lastly

sums over the members. Applying (2.13) is equivalent to solving the set of simultaneous equations

relating the deformations and the displacements. The following example illustrates this point.

Example 2.13 Computation of Deflection—Virtual Force Method

Given: The plane truss shown in Fig. E2.13a. Assume A ¼ 1300 mm2 and E ¼ 200 GPa for all

members.

Determine: The horizontal displacement at c (uc).

Fig. E2.13a Geometry and loading

Solution: Applying (2.14), the horizontal displacement at node c (uc) is determined with

ucδP ¼
X

eforceδFu ¼
X FL

AE

� �
δFu

The actual and virtual forces are listed below.

Fig. E2.13b Actual forces, F
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Fig. E2.13c Virtual forces, δF

Using this data, and assuming AE is constant, the computation proceeds as follows:

Member L F δFu eforce ¼ FL

AE
e δFu

ab l �10 0 �10 l

AE
0

bc l �40 0 �40 l

AE
0

cd l �50 �1 �50 l

AE
50

l

AE

da l 0 0 0 0

ac l
ffiffiffi
2
p

40
ffiffiffi
2
p ffiffiffi

2
p

80
l

AE
80

ffiffiffi
2
p l

AE

uc ¼
X

eforceδFu ¼ l

AE
80

ffiffiffi
2
p
þ 50

� �
The plus sign indicates the deflection is in the direction of the unit load. For A ¼ 1300 mm2,

E ¼ 200 GPa, and l ¼ 3 m, the displacement is

uc ¼
3 103
� �

1300 200ð Þ 80
ffiffiffi
2
p
þ 50

� �
¼ 1:88mm!

We point out that the virtual force (δF) results identify which member deformations contribute to

the corresponding deflection. In this case, only two-member deformations contribute to the horizontal

displacement.

Example 2.14 Computation of Deflection—Virtual Force Method

Given: The plane truss shown in Fig. E2.14a. Assume E ¼ 200 GPa.
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Determine: The value of A required to limit the vertical displacement at e (ve) to be equal to 10 mm.

Assume AE is constant for all members.

Fig. E2.14a Geometry and loading

Solution: Using (2.14) the vertical displacement at node e (ve) is determined with

veδP ¼
X

eforceδFv ¼
X FL

AE

� �
δFv

The actual and virtual forces are listed below.

Fig. E2.14b Actual forces, F

Fig. E2.14c Virtual forces, δF
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Using this data, and assuming AE is constant, the following computations are carried out:

Member L F δFv eforce ¼ FL
AE eforceδFv

ab l 0 0 0 0

bc l 0 0 0 0

cd l �30 �1 �30 l
AE 30 l

AE

da l �10 �1 �10 l
AE 10 l

AE

ac l
ffiffiffi
2
p

30
ffiffiffi
2
p ffiffiffi

2
p

60 l
AE 60

ffiffiffi
2
p

l
AE

ce l 30 1 30 l
AE 30 l

AE

ed l
ffiffiffi
2
p �10 ffiffiffi

2
p � ffiffiffi

2
p �20 l

AE 20
ffiffiffi
2
p

l
AEP

eforceδF ¼ l
AE 80

ffiffiffi
2
p þ 70

� �

ve ¼
X

eforceδFv ¼ l

AE
80

ffiffiffi
2
p
þ 70

� �
The plus sign indicates the deflection is in the direction of the unit load. For E ¼ 200 GPa, and

l ¼ 3000 mm, the required area is

Arequired ¼ l

veE
80

ffiffiffi
2
p
þ 70

� �
¼ 3000ð Þ

10 200ð Þ 80
ffiffiffi
2
p
þ 70

� �
¼ 275mm2

Example 2.15 Computation of Deflection—Virtual Force Method

Given: The plane truss shown in Fig. E2.15a. Assume A ¼ 3000 mm2 and E ¼ 200 GPa for all

members.

Determine: The vertical displacement at c (vc) due to the loading shown and a settlement of 10 mm at

support a.

Fig. E2.15a

Solution: Using (2.13), the vertical displacement at c (vc) is determined with vc

vc ¼
X

members

eδFv �
X

reactions

d δR
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The actual and virtual forces are listed below.

Fig. E2.15b Actual forces, F

Fig. E2.15c Virtual forces, δF

Using this data, and assuming AE is constant, the computation proceeds as follows:

Member L (mm) F δFv L F δFv

ab 6708 �100.6 �1.12 756(10)3

bc 6708 �87.2 �1.12 655(10)3

cd 6708 �87.2 �1.12 655(10)3

de 6708 �100.6 �1.12 756(10)3

ef 7500 90 1.0 675(10)3

fg 9000 60 1.0 540(10)3

ga 7500 90 1.0 675(10)3

bg 3354 �26.8 0 0

gc 7500 30 0 0

cf 7500 30 0 0

fd 3354 �26.8 0 0
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X
LFδFv ¼ 4712 10ð Þ3

vc ¼ 1

AE

X
LFδFv

� �
� δRa vað Þ ¼ 1

3000 200ð Þ 4; 712; 000ð Þ � 0:5ð Þ �10ð Þ ¼ þ12:85mm

∴vc ¼ 12:85mm #

Example 2.16 Computation of Deflection—Virtual Force Method

Given: The plane truss shown in Fig. E2.16a. Member bc and cf also have a fabrication error of

+0.5 in.

Determine: The vertical component of the displacement at joint g (vg). Take A ¼ 2 in.2 and

E ¼ 29,000 ksi for all the members.

Fig. E2.16a

Solution: The actual and virtual forces are listed below.

Fig. E2.16b Actual forces, F
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Fig. E2.16c Virtual forces, δF

Using this data, the following computations are carried out:

Member L (in.) L/A F δFv
L
AFδFv e0 in. e0 δFv

ab 120 60 �25 �0.83 1245 0 0

bc 161 80.5 �22.36 �0.75 1350 +0.5 �0.375
cd 161 80.5 �22.36 �0.75 1350 0 0

de 120 60 �25 �0.83 1245 0 0

ef 96 48 20 0.67 643 0 0

fg 144 72 16 0.83 960 0 0

gh 144 72 16 0.83 960 0 0

ha 96 48 20 0.67 643 0 0

bh 72 36 �4 0.166 �24 0 0

cg 144 72 0 1 0 0 0

df 72 36 �4 0.166 �24 0 0

ch 203.6 101.8 5.65 �0.235 �135.7 0 0

cf 203.6 101.8 5.65 �0.235 �135.7 +0.5 �0.1175P
L
AFδFv ¼ 8077

P
e0δFv ¼ �0:49

vgload ¼
X

eforceδFv ¼
X L

AE
F

� �
δFv ¼ 8077

29, 000
¼ þ0:278 in:) vgload0:28 in: #

vg fabrication error ¼
X

e0δFv ¼ �0:49 in:) vg fabrication error ¼ 0:49 in: "

vg loadþfabricationð Þ ¼ þ0:278� 0:49 ¼ �0:21 in:) vg loadþfabricationð Þ ¼ 0:21 in: "

Example 2.17 Deflection of a Gable Truss

Given: The plane truss shown in Fig. E2.17a. The truss has variable cross sections, such that

A ¼ 6500 mm2 for top chord members, A ¼ 3900 mm2 for bottom chord members, A ¼ 1300 mm2

for diagonal members, and A ¼ 650 mm2 for vertical members, l ¼ 3 m, P ¼ 10 kN, and

E ¼ 200 GPa.
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Determine: The vertical displacement of node j (vj) and the horizontal displacement of node g (ug).

Fig. E2.17a Geometry and loading

Solution: The actual and virtual forces are listed below.

Fig. E2.17b Actual forces F

Fig. E2.17c Virtual forces δFv

Fig. E2.17d Virtual forces δFu

The computations are organized using the spreadsheet format listed below. Note that the upper and

lower chords and only the central member contribute to the central vertical deflection. And only the

lower chord contributes to the horizontal support deflection. The plus sign indicates the deflection is

in the direction of the unit load.

Member L (mm) A (mm2) L/A F (kN) δFu δFv (L/A)F δFu (L/A)F δFv

ab 3059 6500 0.47 �127.5 0.0 �2.55 0 152.8

bc 3059 6500 0.47 �102.0 0.0 �2.55 0 122.2

cd 3059 6500 0.47 �76.5 0.0 �2.55 0 91.7

de 3059 6500 0.47 �76.5 0.0 �2.55 0 91.7

ef 3059 6500 0.47 �102.0 0.0 �2.55 0 122.2

fg 3059 6500 0.47 �127.5 0.0 �2.55 0 152.8

gh 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6

hi 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6

ij 3000 3900 0.77 100.0 1.0 2.5 77 192.5

jk 3000 3900 0.77 100.0 1.0 2.5 77 192.5

kl 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6
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Member L (mm) A (mm2) L/A F (kN) δFu δFv (L/A)F δFu (L/A)F δFv

la 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6

bl 600 650 0.92 0.0 0.0 0.0 0 0

ck 1200 650 1.85 5.0 0.0 0.0 0 0

dj 1800 650 2.77 20.0 0.0 1.0 0 55.4

ei 1200 650 1.85 5.0 0.0 0.0 0 0

fh 600 650 0.92 0.0 0.0 0.0 0 0

bk 3059 1300 2.35 �25.5 0.0 0.0 0 0

cj 3231 1300 2.48 �26.9 0.0 0.0 0 0

ej 3231 1300 2.48 �26.9 0.0 0.0 0 0

fi 3059 1300 4.71 �25.5 0.0 0.0 0 0

The remaining computations involve dividing by E.

X L

A

� �
FδFu

� �
¼ 538:8kN=mm

∴ug ¼
X

∑eforce δFu ¼ 1

E

X
∑

L

A

� �
FδFu

� �
¼ 538:8=200 ¼ 2:69mm!

X L

A

� �
FδFv

� �
¼ 2136:2kN=mm

∴vj ¼
X

∑eforce δF ¼ 1

E

X
∑

L

A

� �
FδFv

� �
¼ 2136:2=200 ¼ 10:7mm #

We pointed out earlier that the distribution of member forces depends on the orientation of the

diagonal members. We illustrate this behavior by reversing the diagonal pattern for the truss defined

in Fig. E2.17a. The member forces corresponding to the same loading are listed in Fig. E2.17e.

Suppose the vertical deflection at mid-span is desired. The corresponding virtual force system is

shown in Fig. E2.17f.

Fig. E2.17e Diagonal pattern reversed—actual forces F

Fig. E2.17f Diagonal pattern reversed—virtual forces δFv

Member L (mm) A (mm2) L/A F δFv (L/A)F δFv

ab 3059 6500 0.47 �127.5 �2.55 153

bc 3059 6500 0.47 �127.5 �2.55 153

cd 3059 6500 0.47 �102 �2.55 122.2
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Member L (mm) A (mm2) L/A F δFv (L/A)F δFv

de 3059 6500 0.47 �102 �2.55 122.2

ef 3059 6500 0.47 �127.5 �2.55 153

fg 3059 6500 0.47 �127.5 �2.55 153

gh 3000 3900 0.77 125.0 2.5 240.6

hi 3000 3900 0.77 100 2.5 192.5

ij 3000 3900 0.77 75 2.5 144.4

jk 3000 3900 0.77 75 2.5 144.4

kl 3000 3900 0.77 100 2.5 192.5

la 3000 3900 0.77 125 2.5 240.6

bl 600 650 0.92 �10 0.0 0

ck 1200 650 1.85 �15 0.0 0

dj 1800 650 2.77 0 1.0 0

ei 1200 650 1.85 �15 0.0 0

fh 600 650 0.92 �10 0.0 0

bk 3059 1300 2.35 27 0.0 0

dk 3498 1300 2.69 29 0.0 0

di 3498 1300 2.69 29 0.0 0

fi 3059 1300 2.35 27 0.0 0

Using the data listed above, the mid-span deflection calculations are

X L

A

� �
FδFv

� �
¼ 2011kN=mm

∴vj ¼
X

∑eforceδFv ¼ 1

E

X
∑

L

A

� �
FδFv

� �
¼ 2011=200 ¼ 10mm #

The examples presented to this point have been concerned with loads. Structures are also subjected

to seasonal (and daily) temperature changes and it is of interest to determine the corresponding nodal

displacements. A unique feature of statically determinate structures is their ability to accommodate

temperature changes without experiencing member forces. When subjected to a temperature change,

a statically determinate structure adjusts its geometry in such a way that there are no forces
introduced in the members. From a design perspective, this behavior is very desirable since member

forces, i.e., stresses, are due only to the loads. However, one may need to compute the deflected shape

due to temperature change from some initial state. The effect of temperature change is to produce an

additional extension in a truss member given by:

etemperature ¼ αΔT L

where α is a material property, defined as the coefficient of thermal expansion, and ΔT is the

temperature change from the initial state. Then, the form of the Principle of Virtual force specialized

for only temperature and unyielding supports reduces to

d δP ¼
X

etemperature

� �
δFð Þ ð2:15Þ

The computational procedure is similar to the approach discussed earlier. We evaluate (α ΔT L) for

the members. Then, given a desired deflection, we apply the appropriate virtual loading and compute δF
for the members. Lastly, we evaluate the summation. The following example illustrates the details. This

discussion applies only for statically determinate trusses.A temperature change introduces internal forces

in statically indeterminate trusses. Analysis procedures for this case are discussed in Chaps. 9 and 10.
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Example 2.18 Computation of Deflection Due to Temperature

Given: The plane truss shown in Fig. E2.18a.

Determine: The vertical displacement at joint d due to temperature increase of ΔT ¼ 65 �F for all

members. Assume A ¼ 2 in.2, E ¼ 29,000 ksi, and α ¼ 6.5 (10�6)/�F.

Fig. E2.18a

Solution: The corresponding virtual force system is listed below.

Fig. E2.18b Virtual forces δF

Member L (in.) e ¼ αΔTL δFv e δFv

ab 214.7 0.091 �1.12 �0.102
bc 214.7 0.091 �1.12 �0.102
cd 135.7 0.057 0.707 0.04
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Member L (in.) e ¼ αΔTL δFv e δFv

da 135.7 0.057 0.707 0.04

bd 96 0.041 2 0.082P
eδF ¼ �0:042

vd ¼
X

etemperature δFv ¼ αΔT Lð ÞδFv ¼ �0:042) vd ¼ 0:042 in: "

2.4 Influence Lines

Consider the plane bridge truss shown in Fig. 2.26a. To design a particular member, one needs to

know the maximum force in the member due to the design loading. The dead loading generally acts

over the entire structure, i.e., on all the nodes. For this loading component, one places all the dead

load on the structure and carries out a single analysis for the member forces. The live loading, by

definition, can act anywhere on the structure and therefore one needs to determine the location of the

live loading that produces the maximum force in the member that is being designed. A systematic

approach to locating the critical position of the live loading is based on first constructing an influence

line for the member force. This construction involves a series of analyses, one for each possible

location of live loading. The live load is usually taken as a single force, of unit magnitude, which is

moved from node to node across the structure. The resulting influence line is a plot of the member

force as a function of the location of the applied load. Figure 2.26b illustrates the possible nodal

positions of a vertical load applied to the bottom chord, and the corresponding member forces. Given

this data, one can construct an influence line for any of the member forces.

The process described above assumes the loading is a concentrated load applied at the nodes. For

bridge structures, the live loading is actually applied to the deck which transmits the load to the

transverse beams, and finally to the nodes. The deck is usually simply supported on the transverse

beams, so the complete deck-beam system is statically determinate and one can determine the

reactions at the nodes using only the equations of statics. We illustrate this computation using the

structure shown in Fig. 2.27a. We suppose a truck loading is passing over the span.

Consider the position shown in Fig. 2.27b. The wheel loads act on the deck segments gf and fe. The

live load vehicle analysis reduces to just applying loads to the nodes adjacent to the vehicle since the

deck segments (gf and fe) are simply supported. Noting Fig. 2.27c, the equivalent nodal loads are

R1 ¼ 1� x

l

� �
P1

R2 ¼ x

l

� �
P1 þ 2� x

l
� h

l

� �
P2

R3 ¼ x

l
þ h

l
� 1

� �
P2

Note that the reactions are linear functions of x, the position coordinate for the truck.

We define Fj as the force in member j. Applying separate unit loads at nodes g and f leads to Fjjg
and Fjjf. Then, according to the equations listed above, the force due to a unit load at x is

Fj

��
x
¼ 1� x

l

� �
Fj

��
g
þ x

l

� �
Fj

��
f
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The most convenient way to present these results is to construct a plot of Fj vs. x, where Fj is the

force in member j due to a unit load at x, and x is taken to range over the nodes on the bottom chord.

We need to apply these loads only at the nodes since the plot is linear between adjacent nodes. Plots

of this type are called influence lines. Figure 2.28a shows the influence line for chord member ab. This

Fig. 2.26 (a) Truss
geometry. (b) Load.

positions and

corresponding member

forces
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visual representation is convenient since one can immediately identify the critical location of the

load. For the chord member, ab, the maximum magnitude occurs when the load is applied at

mid-span. Also, we note that the force is compression for all locations.

Given an actual loading distribution, one evaluates the contribution of each load, and then sums the

contributions. If the actual live load consisted of a uniform loading, then it follows that one would

load the entire span. The maximum force due to the truck loading is determined by positioning the

truck loads as indicated in Fig. 2.28b. In general, one positions the vehicle such that the maximum

vehicle load acts on node f.

The influence line for member fg is plotted in Fig. 2.28c. In this case, the member force is always

tension.

The function of the diagonal members is to transmit the vertical forces from node to node along the

span. This action is called “shear.” The influence line for a diagonal is different than the influence

lines for upper and lower chord members, in that it has both positive and negative values. Figure 2.28d

shows the result for diagonal af. A load applied at node g generates compression, whereas loads at

nodes f and e produce tension. Lastly, a symmetrically located diagonal with opposite orientation,

such as cf vs. af, has an influence line that is a rotated version of its corresponding member (see

Fig. 2.28d vs. Fig. 2.28e).

Fig. 2.27 (a) Truss
geometry. (b). Loaded

position. (c) Free body
diagram-transverse beam

2.4 Influence Lines 107



Because the influence lines for diagonals have both positive and negative values, one needs to

consider two patterns of live load in order to establish the peak value of the member force.

For member af, the extreme values are

Load at node f F ¼ ffiffiffi
2
p

=2

Load at node g F ¼ ffiffiffi
2
p

=4

For member cf, the extreme values are

Loads at node e F ¼ ffiffiffi
2
p

=4

Loads at node f F ¼ ffiffiffi
2
p

=2

If a uniform load is applied (see Fig. 2.28f), the peak force values for both members will be:

Fmax ¼ þ
ffiffiffi
2
p

=2

As mentioned earlier, diagonal members function to transmit vertical loads to the end supports.

We showed above that the sense of the diagonal force depends on the orientation of the member. The

sense of the diagonal force is important since slender members behave differently under compression

vs. tension. A slender member subjected to compressive load will fail by buckling rather than by

yielding since the buckling load is considerably less than the yield force. Therefore, from a design

perspective one should avoid using slender compression members. For truss type structures, this

problem can be avoided by selecting an appropriate diagonal orientation pattern.

Fig. 2.28 (a) Influence line for cord member ab. (b) Vehicle positioning for Fab

��
max. (c) Influence line for chord

member fg. (d) Influence line for diagonal member af. (e) Influence line for diagonal member cf. (f) Uniform unit load
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As an example, consider the two diagonal patterns shown in Fig. 2.29a, b. The sense of the member

forces due to a uniform live load is indicated by C (compression) and T (tension).

Pattern (a) is more desirable since all the interior diagonals are in tension. However, some of the

vertical members are in compression. Pattern (b) has alternating sense for the diagonals; the vertical

hangers are all in tension. In general, for both truss types the top chord forces are compression and the

bottom chord forces are tension. Figure 2.29c, d show similar results for inclined chord trusses. The

designators “Pratt,” “Warren,” and “Howe” refer to the individuals who invented these geometrical

forms.

Example 2.19

Fig. 2.29 Force pattern

for various truss

geometries. (a) Pratt truss.
(b) Warren truss. (c) Pratt
truss. (d) Howe truss
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Given: The structure and truck loading shown in Fig. E2.19a.

Fig. E2.19a

Determine: The maximum force in members ab and fg due to the truck loading.

Solution: We first determine the influence lines for a unit vertical force applied along the bottom

nodes.

Fig. E2.19b Influence line for member ab

Fig. E2.19c Influence line for member fg

Then, we position the truck loading as indicated in Figs. E2.19d and E2.19e

Fabmax
¼ 16 �1ð Þ þ 8 �0:69ð Þ ¼ �21:52 ∴Fabmax

¼ 21:52kN compression

Ffgmax
¼ 16 0:75ð Þ þ 8 0:59ð Þ ¼ þ16:72 ∴Ffgmax

¼ 16:72kN tension
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Fig. E2.19d

Fig. E2.19e

Example 2.20 Live Load Analysis for a Gable Roof Structure

Given: The gable roof structure shown in Fig. E2.20a.

Fig. E2.20a Structural geometry and nodal loads

Determine:

(i) Tabulate all the member forces due to the individual unit nodal forces applied to the top chord.

We refer to this type of table as a force influence table.

(ii) Use the force influence table to draw the influence lines for member cd and fg.

(iii) Calculate the reactions and member forces for members cd and fg for P1 ¼ P5 ¼ 7:5kN, and

P2 ¼ P3 ¼ P4 ¼ 15kN.
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Solution:

Part (i) the member forces due to the individual unit nodal loads are listed in Fig. E2.20b.

Fig. E2.20b Force results for different unit load positions

The complete set of member force results are listed in the following Table. One uses this table in

two ways. Firstly, scanning down a column shows the member which is most highly stressed by the

loading acting at the position corresponding to the column. Scanning across a row identifies the

loading which has the maximum contribution to the member force.

Force influence table

Member P2 ¼ 1 P3 ¼ 1 P4 ¼ 1

ab �1.68 �1.12 �0.56
bc �0.56 �1.12 �0.56
cd �0.56 �1.12 �0.56
de �0.56 �1.12 �1.68
ef 0.5 1.0 1.5

fg 0.5 1.0 1.5

gh 1.5 1.0 0.5

ha 1.5 1.0 0.5

bh 0 0 0

cg 0.5 0 0.5

df 0 0 0

bg �1.12 0 0

gd 0 0 �1.12
Ray 0.25 0.5 0.75

Re 0.75 0.5 0.25
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Part (ii) One can interpret the force influence table as representing the complete set of influence lines

for the individual members. We use this data to draw influence line for member cd and fg.

Fig. E2.20c Influence line for member cd

Fig. E2.20d Influence line for member fg

Part (iii) By using the force influence table, the corresponding forces in members cd and fg and

reactions are determined as follows:

Fcd ¼ 15 �0:56ð Þ þ 15 �1:12ð Þ þ 15 �0:56ð Þ ¼ �33:6 ∴Fcd ¼ 33:6kN compression

Ffg ¼ 15 0:5ð Þ þ 15 1:0ð Þ þ 15 1:5ð Þ ¼ 45 ∴Ffg ¼ 45kN tension

Ray ¼ 7:5þ 15 0:25ð Þ þ 15 0:5ð Þ þ 15 0:75ð Þ ¼ 30 ∴Ray ¼ 30kN "
Re ¼ 7:5þ 15 0:75ð Þ þ 15 0:5ð Þ þ 15 0:25ð Þ ¼ 30 ∴Re ¼ 30kN "
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2.5 Analysis of Three-Dimensional Trusses

2.5.1 Introduction

Most structural systems such as highway bridges and roof systems can be considered to be composed

of a set of planar trusses. However, there are exceptions, such as towers and domed structures, which

cannot be decomposed into planar components and consequently one needs to deal with three-

dimensional combinations of members. These structural types are called space structures.

The basic unit for a 3-D space truss is the tetrahedron, a geometrical object composed of six

members that form four triangular faces. Figure 2.30 illustrates this object. We form a 3-D structure

by attaching members to existing nodes. Each new node requires three members. Provided that the

structure is suitably supported with respect to rigid body motion, the displacements that the structure

experiences when loaded are due only to deformation of the members.

Space truss structures are used for vertical structures such as towers and long-span horizontal

structures covering areas such as exhibition halls and covered stadiums. They usually are much more

complex than simple plane trusses, and therefore more difficult to analyze.

The equilibrium analysis for three-dimensional trusses is similar to that for planar structures

except that now there are three force equilibrium equations per node instead of two equations. One

can apply either the method of joints or the method of sections. Manual analysis techniques are

difficult to apply for large-scale space structures, and one usually resorts to computer-based analysis

procedures. Our immediate objectives in this section are to discuss how a space structure needs to be

restrained in order to prevent rigid body motion and to illustrate some manual calculations using the

methods of joints. We present a computer-based method in the next section.

2.5.2 Restraining Rigid Body Motion

A rigid three-dimensional body requires six motion constraints to be fully constrained; three with

respect to translation, and three with respect to rotation. We select an orthogonal reference frame

having directions X, Y, and Z. Preventing translation is achieved by constraining motion in the X, Y,

and Z directions as illustrated in Fig. 2.31. Even when suitably restrained against translation, the body

Fig. 2.30 Tetrahedron

units for 3-D trusses
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can rotate and we need to provide additional constraints which eliminate rotation about the X, Y, and

Z axes. To prevent rotation about an axis, say the X axis, one applies a translational constraint in a

direction which does not pass through X. This rule is used to select three additional constraint

directions, making a total of six restraints. If one introduces more than six restraints, the structure

is said to be statically indeterminate with respect to the reactions. Various examples illustrating the

selection of restraints are listed below (Fig. 2.32).

Fig. 2.31 Restraints for a

3-D rigid object

Fig. 2.32 Types of supports for space trusses. (a) Hinge joint. (b) Slotted roller. (c) Roller. (d) Rigid link
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Example 2.21 Various Restraint Schemes

Given: The 3-D truss shown in Fig. E2.21a, b.

Determine: Possible restraint schemes.

Fig. E2.21 (a) 3-D truss. (b) x � y plan view. (c) x � z plan view

Solution: The preferred way of displaying 3-D objects is to work with projections on the X � Y and

X � Z planes, referred to as the “plan” and “elevation” views. The projections corresponding to the

object defined in Fig. E2.21a are shown in Fig. E2.21b, c.

The choice of restraints is not unique. One can employ a 3-D hinge which provides full restraint

against translation, or roller type supports which provide restraint against motion in a particular

direction. Suppose we place a 3-D hinge at joint a. Then, a is “fixed” with respect to translation in the

X, Y, and Z directions.

Fig. E2.21d 3-D hinge at a

With these restraints, the body can still rotate about either line a-b or line a-c, or a line parallel to

the Z axis through a. The first two modes are controlled with Z restraints applied at b and c. The third
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mode is controlled with either an X or Y restraint applied at either b or c. Figure E2.21e shows the

complete set of displacement restraints chosen.

Fig. E2.21e Complete set of restraints

Other possible restraint schemes are shown in Figs. E2.21f, E2.21g, and E2.21h. Our strategy is to

first restrain translation and then deal with the rotation modes.

Fig. E2.21f Alternative restraint scheme #1

Fig. E2.21g Alternative restraint scheme #2

Fig. E2.21h Alternative restraint scheme #3
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2.5.3 Static Determinacy

The approach we followed in Sect. 2.2.2 for 2-D Plane trusses is also applicable for 3-D trusses. One

just has to include the additional variables associated with shifting from two to three dimensions.

Each member of a truss structure has a single force measure, the magnitude of the axial force.

However, for 3-D trusses, there are three equilibrium equations per node instead of two for a plane

truss. Defining m as the number of members, r as the number of reactions, and j as the number of

nodes, it follows that the number of force unknowns and the number of force equilibrium equations

available are

Forceunknowns ¼ mþ r

Forceequilibriumequations ¼ 3j

The structure is statically determinate when m + r ¼ 3j. If m + r > 3j, there are more force

unknowns than available equilibrium equations and the structure is designated as statically indeter-

minate. Lastly, if m + r < 3j, there are less force unknowns than required to withstand an arbitrary

nodal loading, and the structure is unstable, i.e., it is incapable of supporting an arbitrarily small

loading.

mþ r

< 3J unstable

¼ 3J determinate

> 3J indeterminate

8>><
>>:

In addition to these criteria, the structure must be suitably restrained against rigid body motion.

Example 2.22 A Stable Determinate Truss

Given: The truss defined in Fig. E2.22a, b.
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Fig. E2.22 3-D truss. (a) x � y plan view. (b) x � z plan view

Determine: The stability

Solution: For the structure shown above, there are eight members, seven reactions, and five joints.

m ¼ 8 r ¼ 7 j ¼ 5

mþ r ¼ 3j

The structure is initially stable.

Example 2.23 An Unstable Structure

Given: The truss defined in Figs. E2.23a and E2.23b

Determine: The stability

Solution: The number of force unknowns is equal to the number of available force equilibrium

equations but the structure has a fundamental flaw. The translation restraints in the X � Y plane are

concurrent, i.e., they intersect at a common point, c0, shown in Fig. E2.23a. As a result, the structure

cannot resist rotation about a Z axis through c0.
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Fig. E2.23a x � y plan view

Fig. E2.23b x � z plan view

2.5.4 Method of Joints for 3-D Trusses

Each member of a space truss is assumed to be pinned at its ends to nodes in such a way that there is

no bending in the member, only an axial force whose direction coincides with the centroidal axis. The

direction of the force is determined by the geometry of the member, so one needs only to determine

the magnitude. We find these quantities using force equilibrium equations. Our overall strategy is to

first determine the reactions with the global equilibrium conditions. Once the reactions are known, we
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range over the nodes and establish the nodal force equilibrium equations for each node. This process

is similar to the method of joints for Planar Trusses except that now there are three equilibrium

equations per node. The member forces are computed by solving the set of nodal force equilibrium

equations.

Consider the force vector shown in Fig. 2.33. Since the force vector orientation coincides with the

direction of the centroidal axis for member ab, the force components are related to the geometric

projections of the member length. We resolve the force vector into X, Y, and Z components, and label

the components as Fx, Fy, and Fz. Noting the commonality of directions, the force components are

related to the force magnitude and geometric projections by

Fx

F
¼ ℓx

ℓ
¼ cos αx ¼ βx

Fy

F
¼ ℓy

ℓ
¼ cos αy ¼ βy

Fz

F
¼ ℓz

ℓ
¼ cos αz ¼ βz

ð2:16Þ

The coefficients, βx, βy, and βz, are called direction cosines. .Given the coordinates of the nodes at

each end (a, b), one determines the projection and length using

lx ¼ xb � xa

ly ¼ yb � ya

lz ¼ zb � za

l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y þ l2z

q
ð2:17Þ

We are assuming the positive sense of the member is from node a toward node b. These

relationships allow one to carry out the equilibrium analysis working initially with the components

and then evaluate the force magnitude.

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y þ F2
z

q
ð2:18Þ

Fig. 2.33 Resolution of a

force into its components
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We illustrate the analysis process with the following examples. There are many ways to carry out

the analysis. Our approach here is based primarily on trying to avoid solving sets of simultaneous

equations relating the force magnitudes. However, there are cases where this strategy is not possible.

Example 2.24 Analysis of a Tripod Structure

Given: The tripod structure shown in Fig. E2.24a, b. The supports at a, b, and c are fully restrained

against translation with 3-D hinges.

Determine: The force in each member.

Fig. E2.24 Tripod geometry and supports. (a) x � y plan view. (b) x � z plan view
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Solution: There are three reactions per support, making a total of nine reaction unknowns. Adding the

three unknown member forces raises the total number of force unknowns to 12. Each joint has three

force equilibrium equations and there are four joints, so the structure is statically determinate.

The first step is to determine the direction cosines for the members. This data is listed in

Table E2.24.1 below.

Table E2.24.1

Member lx ly lz l βx βy βz
ad 18 16 26 35.4 0.508 0.452 0.734

bd 12 16 26 32.8 0.366 0.488 0.793

cd 0 8 26 27.2 0.000 0.294 0.956

We first determine the Z reaction at c by enforcing moment equilibrium about an X axis

through a-b.

10 16ð Þ � Cz 24ð Þ ¼ 0

Cz ¼ 6:67kip "
The reaction force at c is equal to the z component of the force in member cd. Therefore,

Fcd, z ¼ �Cz ¼ �6:67 ) Fcd ¼ 6:67

0:956
¼ 6:98 compressionð Þ

Then,

Cx ¼ Fcd,x ¼ 0

and

Cy ¼ �Fcd,y ¼ �6:67 0:294ð Þ ¼ 2:05kip #
We determine the Y reaction at b by summing moments about the Z axis through a.

20 16ð Þ þ 2:052 18ð Þ ¼ 30By

By ¼ 11:90kip "
Then,

Fbd,y ¼ �By ¼ �11:90 ) Fbd ¼ 11:9

0:488
¼ 24:39 compressionð Þ

Therefore,

Bx ¼ �Fbd,x ¼ 8:92 
and

Fbd, z ¼ 0:793 24:39ð Þ ¼ 19:33

Bz ¼ �Fbd, z ¼ 19:33 "

2.5 Analysis of Three-Dimensional Trusses 123



Lastly, we sum forces in the Z direction and determine the reaction at A.

Bz þ Cz þ Az ¼ 10

Az ¼ 10� 6:67� 19:33 ¼ �16
Az ¼ 16kip #

Then,

Fad, z ¼ �Az ¼ 16 ) Fad ¼ 16

0:734
¼ 21:8 tensionð Þ

and

Ax ¼ �Fad,x ¼ 0:508 21:8ð Þ ¼ 11:07kip 
Ay ¼ �Fad,y ¼ 0:452 21:8ð Þ ¼ 9:85kip #

Wewere able to find the member forces working at any time with no more than a single unknown. A

more direct but alsomore computationally intensive approachwould be toworkwith joint d and generate

the three force equilibrium equations expressed in terms of themagnitudes of the three-member forces. In

this approach, we use the direction cosine information listed in Table E2.24.1 and assume all themember

forces are tension. Noting (2.16), the corresponding force equilibrium equations are

Joint d

X
Fx ¼ 0 20þ 0:366Fbd � 0:508Fad ¼ 0X
Fy ¼ 0 0:294Fcd � 0:452Fad � 0:488Fbd ¼ 0X
Fz ¼ 0 10þ 0:734Fad þ 0:793Fbd þ 0:956Fcd ¼ 0

8>>><
>>>:

)
Fad ¼ 21:81kip
Fbd ¼ �24:39kip
Fcd ¼ �6:97kip

8<
:

Fig. E2.24c Joint d

Table E2.24.2

Member Force Forcex Forcey Forcez
ad 21.81(tension) 11.07 9.85 16.00

bd 24.39 (compression) 8.93 11.90 19.33

cd 6.97(compression) 0.00 2.05 6.67
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Example 2.25 Analysis of a Tetrahedron

Given: The tetrahedron structure defined in Fig. E2.25a, b.

Determine: The member forces.

Fig. E2.25 Tetrahedron geometry and support. (a) x � y plan view. (b) x � z plan view

Solution: There are six reactions (three Z forces, two X forces, and one Y force), six members, and

four joints. The determinacy criteria,
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3j ¼ mþ r ! 3 4ð Þ ¼ 6þ 6

is satisfied, so the structure is statically determinate.

We first determine the direction cosines for the members listed in Table E2.25.1

Table E2.25.1

Member lx ly lz l βx βy βz
ac 18 24 0 30.0 0.600 0.800 0.000

ab 30 0 0 30.0 1.000 0.000 0.000

bc 12 24 0 26.8 0.447 0.895 0.000

ad 18 16 26 25.4 0.508 0.452 0.734

cd 0 8 26 27.2 0.000 0.290 0.960

bd 12 16 26 32.8 0.366 0.488 0.793

Next, we determine the Z reactions at a, b, and c.X
Mx at a ¼ 0

10 16ð Þ ¼ 24Cz

Cz ¼ 6:67 "X
My at a ¼ 0

20 26ð Þ þ 10 18ð Þ ¼ 6:67 18ð Þ þ 30Bz

Bz ¼ 19:33 "X
Fz ¼ 0"þ

19:33þ 6:67þ Az ¼ 10

Az ¼ 16 #
The Y component at a is determined with: ΣFy ¼ 0 ∴ Ay ¼ 0.

Then, we enforce ΣMz ¼ 0 with respect to a Z axis through a.

24Cx ¼ 20 16ð Þ
Cx ¼ 13:34 

Lastly, we evaluate Bx X
Fx ¼ 0 Cx þ Bx ¼ 20

Bx ¼ 6:66 
With the reactions known, each of the joints involves only three unknowns, and we can start with

any joint. It is most convenient to start with joint b and enforce Z equilibrium.X
Fz ¼ 0 Fbd, z ¼ Bz ¼ 19:33

Then,

Fbd ¼ �24:4 compressionð Þ
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We find Fcb by summing Y forces at b.X
Fy ¼ 0þ Fcb,y þ Fbd,y ¼ 0

Fcb,y ¼ 11:91

Fcb ¼ þ13:3 tensionð Þ
Then, we find Fab by summing X forces at b.

Fab þ Fcb,x þ Bx � Fbd,x ¼ 0

Fab ¼ �3:69 compressionð Þ
We move on to joint c. Summing Z forces yields FcdX

Fz ¼ 0 Cz þ Fcd, z ¼ 0

Fcd, z ¼ �6:67
Fcd ¼ �6:95 compressionð Þ

Summing X (or Y ) forces leads to FabX
Fx ¼ 0 Bx þ Fab,x ��Fcb,x ¼ 0

Fab,x ¼ �13:34þ 5:94 ¼ �7:40
Fab ¼ �12:33 compressionð Þ

The last step is to determine Fad by enforcing Z force equilibrium at a.X
Fz ¼ 0 Fad, z þ Az ¼ 0

Fad, z ¼ 16

Fad ¼ þ21:8 tensionð Þ
We could have solved this problem by establishing the three force equilibrium equations for joint

d, and finding Fad, Fcd, Fbd. Once the reactions are known, we could set up the equations for joints c

and b, and solve for the member forces Fac, Fbc, and Fab. We followed a different approach to

illustrate how one applies the method of joints in a selective manner to a 3-D space truss.

Example 2.26 Displacement Computation—3-D Truss

Given: The tripod structure defined in Fig. E2.26a, b.

Determine: The displacements at joint d due to loading shown and a temperature increase of

ΔT ¼ 80 �F for all the members. Assume A ¼ 2.0 in.2, E ¼ 29 � 103 ksi, and α ¼ 6.6 � 10�6/�F.
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Fig. E2.26 Tripod geometry and supports. (a) x � y plan view. (b) x � z plan view

Solution: We apply the virtual loads δPx, δPy, and δPz, (see Fig. E2.26c, d) at joint d and determine

the corresponding virtual member forces, δFu, δFv, and δFw. The individual displacement

components due to loading are determined with:
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Fig. E2.26c Virtual forces

uδPx ¼
X FL

AE

� �
δFu

vδPy ¼
X FL

AE

� �
δFv

wδPz ¼
X FL

AE

� �
δFw
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For temperature change, we use

uδPx ¼
X

αΔT Lð ÞδFu

vδPy ¼
X

αΔT Lð ÞδFv

wδPz ¼
X

αΔT Lð ÞδFw

The relevant data needed to evaluate displacements is listed in Table E2.26.1. Note that we need to

shift length units over to inches when computing FL
AE

� �
and (α ΔT L).

We use the member forces determined in Example 2.24.

Joint d

X
Fx ¼ 0 20þ 0:366Fbd � 0:508Fad ¼ 0X
Fy ¼ 0 0:294Fcd � 0:452Fad � 0:488Fbd ¼ 0X
Fz ¼ 0 10þ 0:734Fad þ 0:793Fbd þ 0:956Fcd ¼ 0

8>>><
>>>:

)
Fad ¼ 21:81kip

Fbd ¼ �24:39kip
Fcd ¼ �6:97kip

8>><
>>:

For δPu ¼ 1 :

Joint d

X
Fx ¼ 0 0:366δFu bd � 0:508δFu ad ¼ �1X
Fy ¼ 0 0:294δFu cd � 0:452δFu ad � 0:488δFu bd ¼ 0X
Fz ¼ 0 0:734δFu ad þ 0:793δFu bd þ 0:956δFu cd ¼ 0

8>>><
>>>:

)
δFu ad ¼ 1:18

δFu bd ¼ �1:09
δFu cd ¼ 0

8>><
>>:

For δPv ¼ 1

Joint d

X
Fx ¼ 0 0:366δFν bd � 0:508δFν ad ¼ 0X
Fy ¼ 0 0:294δFν cd � 0:452δFν ad � 0:488δFν bd ¼ �1X
Fz ¼ 0 0:734δFν ad þ 0:793δFν bd þ 0:956δFν cd ¼ 0

8>>><
>>>:

)
δFν ad ¼ 0:59

δFν bd ¼ 0:82

δFν cd ¼ �1:13

8>><
>>:

For δPw ¼ 1 :

Joint d

X
Fx ¼ 0 0:366δFw bd � 0:508δFw ad ¼ 0X
Fy ¼ 0 0:294δFw cd � 0:452δFw ad � 0:488δFw bd ¼ 0X
Fz ¼ 0 0:734δFw ad þ 0:793δFw bd þ 0:956δFw cd ¼ �1:0

8>>><
>>>:

)
δFw ad ¼ 0:18

δFw bd ¼ 0:25

δFw cd ¼ 0:70

8>><
>>:

The relevant data needed to evaluate displacements is listed in Table E2.26.1.

Table E2.26.1

For δP ¼ 1.0

Member l (ft) A (in.2) F δFu δFv δFw
FL
AE in:ð Þ αLΔT (in)

ad 35.4 2.0 21.81 1.18 0.59 0.18 0.160 0.224

bd 32.8 2.0 �24.39 �1.09 0.82 0.25 �0.165 0.208

cd 27.2 2.0 �6.97 0.00 �1.13 0.70 �0.039 0.172
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The displacements due to loads are

uload ¼
X FL

AE

� �
δFu ¼ 0:160ð Þ 1:18ð Þ þ �0:165ð Þ �1:09ð Þ ¼ 0:369 in:

vload ¼
X FL

AE

� �
δFv ¼ 0:160ð Þ 0:59ð Þ þ �0:165ð Þ 0:82ð Þ þ �0:039ð Þ �1:13ð Þ ¼ 0:003 in:

wload ¼
X FL

AE

� �
δFw ¼ 0:160ð Þ 0:18ð Þ þ �0:165ð Þ 0:25ð Þ þ �0:039ð Þ 0:70ð Þ ¼ �0:039 in:

A 80 �F temperature increase produces the following displacements:

utemp ¼
X

αΔT Lð ÞδFu ¼ 0:224ð Þ 1:18ð Þ þ 0:208ð Þ �1:09ð Þ ¼ 0:038 in:

vtemp ¼
X

αΔT Lð ÞδFv ¼ 0:224ð Þ 0:59ð Þ þ 0:208ð Þ 0:82ð Þ þ 0:172ð Þ �1:13ð Þ ¼ 0:108 in:

wtemp ¼
X

αΔT Lð ÞδFw ¼ 0:224ð Þ 0:18ð Þ þ 0:208ð Þ 0:25ð Þ þ 0:172ð Þ 0:70ð Þ ¼ 0:213 in:

The total displacements are

u loadþtempð Þ ¼ 0:369þ 0:038 ¼ 0:407 in:

v loadþtempð Þ ¼ 0:003þ 0:108 ¼ 0:111 in:

w loadþtempð Þ ¼ �0:039þ 0:213 ¼ 0:174 in:

2.6 Matrix Formulation: Equilibrium Analysis of Statically
Determinate 3-D Trusses

Manual techniques are easy to apply for simple geometries, but become more difficult with increasing

geometric complexity. The equilibrium analysis approaches described in the previous sections can be

formulated as a sequence of matrix operations which can be readily automated for computer-based

analysis. In what follows, we describe one approach for the equilibrium analysis of statically

determinate 3-D trusses. We present a more general matrix formulation later in Chap. 12.

2.6.1 Notation

A truss is an assembly of nodes that are interconnected with members. It is convenient to define the

geometry with respect to a global Cartesian coordinate system, XYZ, and number the nodes and

members sequentially. Figure 2.34 illustrates this scheme. The structure has four nodes and six

members.

We assume a positive sense for each member and define the direction cosines consistent with the

assumed sense. The positive and negative nodes for member n are denoted as n+ and n�. Noting (2.16)
and (2.17), the direction cosines for member n are determined using
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xnþ � xn�
ln

¼ βnx

ynþ � yn�
ln

¼ βny

znþ � zn�
ln

¼ βnz

ð2:19Þ

It is convenient to introduce matrix notation at this point (Fig. 2.35). We define the nodal

coordinate matrix for node j as

Fig. 2.35 Geometry-

member n

Fig. 2.34 Numbering

scheme
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xj ¼
xj
yj
zj

8<
:

9=
; ð2:20Þ

and the direction cosine matrix for member n as

βn ¼
βnx
βny
βnz

8<
:

9=
; ð2:21Þ

With this notation, the matrix form of (2.19) is

βn ¼
1

ln
xnþ � xn�
� � ð2:22Þ

where

l2n ¼ xnþ � xn�
� �T

xnþ � xn�
� �

2.6.2 Member–Node Incidence

The computation of the direction cosines can be automated using the topological data for the

members and nodes. This data is represented in tabular form. One lists, for each member, the node

numbers for the positive and negative ends of the member. It is commonly referred to as the

member–node incidence table. The table corresponding to the structure defined in Fig. 2.34 is listed

below. One loops over the members, extracts the nodal coordinates from the global coordinate vector,

executes the operation defined by (2.22), and obtains the member direction cosine matrix, β.

Member Negative node Positive node

(1) 1 4

(2) 3 4

(3) 1 3

(4) 1 2

(5) 2 3

(6) 2 4

2.6.3 Force Equilibrium Equations

The force vector for a member points in the positive direction of the member, i.e., from the negative

end toward the positive end. Noting (2.16), the set of Cartesian components for member n are listed in

the matrix, Pn, which is related to βnby

Pn ¼
Fx

Fy

Fz

8<
:

9=
; ¼ Fnβn ð2:23Þ

The force components acting on the nodes at the ends of the member are equal to�Pn. Figure 2.36

illustrates this distribution.
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We generate the set of force equilibrium equations for a node by summing the force matrices

acting on the node. Consider node l. Let Pl be the external force matrix for node l. The matrix

equation for node l involves the member force matrices for those members which are positive incident

and negative incident on node l.

Pl ¼
X
nþ

Fnβnð Þ þ
X
n�

�Fnβnð Þ ð2:24Þ

This step is carried out for each node. Equation (2.24) represents i scalar equations, where i ¼ 2

for a plane truss and i ¼ 3 for a space truss. We assemble the complete set of equations in partitioned

form, taking blocks of i rows. Assuming j nodes and m members, the equations are written as.

P
0 ¼ B

0
F ð2:25Þ

where the dimensions of the global matrices are

B
0 ¼ i times jð Þ � m, F ¼ m� 1, P

0 ¼ i times jð Þ � 1

The algorithms for generating P0 and B0 are

Formembern n ¼ 1, 2, . . . ,mð Þ
þβn inpartitioned rownþ, columnn

�βn inpartitioned rown�, columnn

)
of B

0

Fornode l l ¼ 1, 2, . . . , jð Þ
External loadPl inpartitioned row lof P

0

ð2:26Þ

These operations can be easily implemented using spreadsheet software. The required size of the

spreadsheet is i times j rows and m + 1 columns, (m columns for the member forces and one column

for the external nodal loads). Applying (2.26) to the structure shown in Fig. 2.34 and noting the

incidence table leads to the following form of B0.

Fig. 2.36 Member end

forces
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Certain joint loads correspond to the r reactions which are not initially known. We separate out the

rows in B0 and P0 corresponding to the r reactions, resulting in (i times ( j � r)) rows relating the

m force unknowns. The reduced set of equations is expressed as (we drop the prime superscript on

B and P to simplify the equation)

P ¼ BF ð2:27Þ

When the structure is statically determinate,m ¼ i times ( j � r), and since the coefficient matrix B is

now square, one can solve for F. We used a similar approach when discussing complex planar trusses

in Sect. 2.2.6.

2.6.4 Stability

A structure is said to be stable when a unique solution for the member forces exists for a given set of

external loads. The relationship between the loading and the resulting member forces is defined by the

linear matrix equation, (2.27). Noting Cramer’s rule [4], the stability requirement can be expressed as

determinant Bð Þ 6¼ 0 ð2:28Þ
which is equivalent to requiring B to be nonsingular. Singularity can be due to an insufficient number

or improper orientation of the restraints. It may also arise due to the geometrical pattern of the

members. Complex trusses, such as the example discussed in Sect. 2.2, may exhibit this deficiency

even though they appear to be stable.

2.6.5 Matrix Formulation: Computation of Displacements

The manual process described in the previous section for computing displacements is not suited for

large-scale structures. We faced a similar problem with the analysis of space trusses, and in that case,

we resorted to a computer-based scheme. We follow a similar strategy here. We utilize the matrix

notation introduced earlier, and just have to define some additional terms related to deformation and

nodal displacement.
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Noting (2.11), we see that e involves the direction cosines for the member, and the nodal

displacements. Using the notation for the direction cosine matrix defined by (2.15) and also defining

u as the nodal displacement matrix,

β¼ βx; βy; βz
� �

u¼ u; v;wf g
ð2:29Þ

we express the extension e as a matrix product.

e ¼ βTu ð2:30Þ
We generalize (2.30) for a member n connected to nodes n+ and n�

en ¼ β
T

n unþ � un�
� � ð2:31Þ

Note that this matrix expression applies to both 2-D and 3-D structures.

Following the strategy used to assemble the matrix force equilibrium equations, we assemble the

complete set of deformation–displacement relations for the structure. They have the following form

e ¼ B
0

� �T
U
0 ð2:32Þ

where

U
0 ¼ u1; u2; . . . ; uj

� �
, e ¼ e1; e2; . . . ; emf g

and B0 is defined by (2.20). Note that B0 is the matrix associated with the matrix force equilibrium

equations (2.19). Some of the nodal displacements correspond to locations, where constraints are

applied and their magnitudes are known. When the structure is statically determinate, support

movement introduces no deformation, and we can delete these terms from U0. We also delete the

corresponding rows of B0. These operations lead to the modified equation

e ¼ BTU ð2:33Þ
Note that the corresponding modified equilibrium equations have the form P ¼ BF.

The duality between these equations is called the “Static-Geometric” analogy.

Once F is known, one determines the extension of a member using

e ¼ L

AE

� �
Fþ eI

where eI contains terms due to temperature and fabrication error. We express the set of deformations

in matrix form

e ¼ fFþ eI ð2:34Þ
where f is a diagonal matrix containing the flexibility coefficients for the members,

f ¼
L
AEð Þ1

L
AEð Þ2

⋱
L
AEð Þm

2
664

3
775 ð2:35Þ
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Given P, one generates B and, solves for F,

F ¼ B�1P ð2:36Þ
Then, we compute e with (2.34) and lastly solve for U using.

U ¼ B�1
� �T

e ð2:37Þ

This approach can be represented as a series of computer operations. The major computational

effort is in assembling and inverting B. The deflection computation requires minimal additional effort

since one needs to compute B–1 in order to determine the member forces.

Using matrix notation, it is relatively straightforward to prove the validity of the Method of Virtual

Forces. We apply a virtual force δP0 and find the corresponding virtual forces using the matrix

equilibrium equations.

δP
0 ¼ B

0
δF ð2:38Þ

Member forces which satisfy the force equilibrium equations are said to be statically permissible.

Note that δP0 includes both the external nodal loads and the reactions. The extensions are related to

the nodal displacements by (2.32)

e ¼ B
0

� �T
U
0 ð2:38aÞ

whereU0 contains both the nodal displacements and support movements. We multiply (2.38a) by δFT,

δFTe ¼ δFT B
0

� �T
U
0


 �
ð2:38bÞ

and note the identity,

δFT B
0

� �T
� B

0
δF

h iT
� δP

0
� �T

ð2:39Þ

Then, (2.38b) takes the form

δFTe ¼ δP
0

� �T
U
0 ð2:40Þ

Separating out the prescribed support displacements and reactions, and expanding the matrix

products leads to the scalar equationX
δF 	 e ¼

X
δP 	 uþ

X
δR 	 u ð2:41Þ

The final form follows when δP is specialized as a single force.

Example 2.27 Planar Complex Truss

Given: The planar structure shown in Fig. E2.27. Assume equal cross-sectional areas.

Determine:

(a) The displacements at the nodes. Take A ¼ 10 in.2 and E ¼ 29,000 ksi.

(b) The value of A required to limiting the horizontal displacement to 1.5 in.
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Fig. E2.27

Solution: This truss is a complex truss similar to example discussed in Sect. 2.2.5. One needs to solve

the complete set of force equilibrium equations to find the member forces. Therefore, applying the

Method of Virtual Forces is not computationally advantageous in this case, so we use a computer-

based scheme. The computer method presented above is applicable for both planar and 3-D trusses.

We just need to take i ¼ 2 for the planar case. The results for the nodal displacements are listed

below.

u1 ¼ 0

v1 ¼ 0

(

u2 ¼ 4:88 in:

v2 ¼ 0:13 in:

(

u3 ¼ 2:34 in:

v3 ¼ 4:15 in:

(

u4 ¼ �0:27 in:
v4 ¼ 0:09 in:

(

u5 ¼ 4:42 in:

v5 ¼ 0

(

u6 ¼ 2:2 in:

v6 ¼ 4:43 in:

(

The area required to limit the horizontal displacement to 1.5 in. is

Arequired ¼ 10ð Þ4:88
1:5
¼ 32:53 in:2
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The revised nodal displacements for A ¼ 32.53 in.2 will be

u1 ¼ 0

v1 ¼ 0

(

u2 ¼ 1:5 in:

v2 ¼ 0:04 in:

(

u3 ¼ 0:72 in:

v3 ¼ 1:27 in:

(

u4 ¼ �0:08 in:
v4 ¼ 0:03 in:

(

u5 ¼ 1:36 in:

v5 ¼ 0

(

u6 ¼ 0:68 in:

v6 ¼ 1:36 in:

(

Example 2.28 Space Truss

Given: The space structure shown in Fig. E2.28. Assume equal cross-sectional areas. Take A

¼ 1300 mm2 and E ¼ 200 GPa.

Determine: The member forces, the reactions, and the nodal displacements. Use computer-based

scheme.
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Fig. E2.28 3-D Truss. (a) x � y plan view. (b) x � z plan view. (c) Isometric view

Solution: The joint displacements, the member forces, and the reactions are listed below.
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Joint displacements:

Joint 1

u1 ¼ 0

v1 ¼ 4:9mm

w1 ¼ 0

8>><
>>:

Joint 2

u2 ¼ 0

v2 ¼ 3:5mm

w2 ¼ 0

8>><
>>:

Joint 3

u3 ¼ �1:3mm

v3 ¼ 0

w3 ¼ 0

8>><
>>:

Joint 4

u4 ¼ 4:5mm

v4 ¼ 8:9mm

w4 ¼ �2:2mm

8>><
>>:

Member forces and reactions:

F 1ð Þ ¼ �37:47kN
F 2ð Þ ¼ 76:94kN

F 3ð Þ ¼ �38:66kN
F 4ð Þ ¼ 68:26kN

F 5ð Þ ¼ �128:27kN
F 6ð Þ ¼ �9:05kN

8>>>>>>>>>>><
>>>>>>>>>>>:

R1x ¼ 26:67kN

R1z ¼ �50:37kN
R2x ¼ �66:67kN
R2z ¼ 123:33kN

R3y ¼ �60:00kN
R3z ¼ 7:04kN

8>>>>>>>>>>><
>>>>>>>>>>>:

2.7 Summary

2.7.1 Objectives of the Chapter

• To develop a criteria for assessing the initial stability of truss type structures

• To present methods for determining the axial forces in the members of statically determinate

trusses

• To present a matrix-based formulation for the analyses of arbitrary statically determinate trusses

• To present methods for computing the displaced configuration of a truss

• To introduce the concept of an influence line and illustrate its application to trusses

2.7 Summary 141



2.7.2 Key Facts and Concepts

• The statical determinacy .of a plane truss is determined by comparing the number of unknown

forces vs. the number of available force equilibrium equations.

• The forces in the members of a statically determinate truss are independent of the member

properties such as area and material modulus and support movements.

• The two force analysis procedures are the method of joints and the method of sections. The method

of joints strategy proceeds from joint to joint, always working with a joint having a statically

determinate force system. This approach generates all the member forces. The method of sections

is designed to allow one to determine the force in a particular member. One passes a cutting plane

through the structure, selects either segment, and applies the equilibrium conditions. This method

requires less computation and generally is easier to apply.

• Given the external loads, one can determine the internal member forces using force equilibrium

equations when the truss is statically determinate. The displacements due to the loading can be

computed manually using the method of virtual forces. To determine the displacement at a point A

in a particular direction, da, one applies a virtual force δPa at point A in the same direction as the

desired displacement and computes, using static equilibrium equations, the internal forces δF, and
reactions, δR, due to δPa. The displacement is given by

daδPa ¼
X

members

eδF�
X

reactions

d δR

where d is the prescribed support movement and e is the elongation of the member due to force,

temperature change, and initial fabrication error.

e ¼ FL

AE

� �
þ αΔT Lð Þ þ e0

This method is restricted to static loading and small displacements. It is also applicable for

statically indeterminate trusses when the member forces are known.

• The concept of influence lines is very useful for dealing with the live loading which can act

anywhere on the structure. Given a particular member force and a particular type of live loading,

usually a unit vertical loading, the influence line displays graphically the magnitude of the force

for various locations of the load. By viewing the plot, one can immediately determine the position

of the load that produces the peak magnitude of the member force.

2.8 Problems

Classify each of the following plane trusses defined in Problems 2.1–2.4 as initially stable or unstable.

If stable, then classify them as statically determinate or indeterminate. For indeterminate trusses,

determine the degree of static indeterminacy.
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Problem 2.1

Problem 2.2

2.8 Problems 143



Problem 2.3

Problem 2.4

Determine all the member forces for the plane trusses defined in Problems 2.5–2.12 using the

method of joints.

Problem 2.5
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Problem 2.6

Problem 2.7
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Problem 2.8

Problem 2.9

Problem 2.10
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Problem 2.11

Problem 2.12

Determine all the member forces for the plane trusses defined in Problems 2.13–2.18 using a

combination of the method of joints and the method of sections.
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Problem 2.13

Problem 2.14

Problem 2.15
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Problem 2.16

Problem 2.17

Problem 2.18
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Problem 2.19 Use the principle of virtual forces to determine the horizontal and vertical displace-

ment at joint b due to loading shown and temperature increase of ΔT ¼ 40 �F for members ab and

bc. Assume A ¼ 1.4 in.2, E ¼ 29,000 ksi, and α ¼ 6.5 (10�6)/�F

Problem 2.20 For the plane truss shown, use the principle of virtual forces to determine the vertical

displacement at joint b and the horizontal displacement at joint c. E ¼ 200 GPa. The areas of the

members are as follow:

Aab ¼ Abc ¼ Abe ¼ 1290mm2

Abf ¼ Abd ¼ 645mm2

Acd ¼ Ade ¼ 1935mm2

Aaf ¼ Afe ¼ 2580mm2
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Problem 2.21 For the plane truss shown, use the principle of virtual forces to determine the vertical

displacement at joint C due to the loading shown and a settlement of 0.5 inch at support a. Assume

A ¼ 2 in.2 and E ¼ 29,000 ksi.

Problem 2.22 For the plane truss shown, use the principle of virtual forces to determine the vertical

and horizontal displacement at joint d.

A ¼ 1300 mm2

E ¼ 200 GPa

Problem 2.23 Use the principle of virtual forces to determine the horizontal and vertical displace-

ment at joint b due to:

(a) Loading shown.

(b) Temperature increase of ΔT ¼ 16 �C for members ab and bc.

A ¼ 900mm2

E ¼ 200GPa

α ¼ 12� 10�6=�C
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Problem 2.24 Use the principle of virtual force method to determine the horizontal component of

the displacement at joint d. Assume A ¼ 0.5 in.2 and E ¼ 29,000 ksi.

(i) For the loading shown

(ii) For a fabrication error of �0.25 in. for members ac and df

(iii) For the summation of Case (i) and Case (ii) loadings.

Problem 2.25 Use the principle of virtual forces method to determine the horizontal component of

the displacement at joint b. Assume A ¼ 0.5 in.2, E ¼ 30,000 ksi, α ¼ 6.5 � 10�6/�F

(i) For the loading shown

(ii) For a temperature increase of ΔT ¼ 60 �F for all members

(iii) For the summation of Case (i) and Case (ii) loadings.
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Problem 2.26 For the plane truss shown below, use the principle of virtual forces to determine the

vertical displacement at joint f.

A ¼ 2 in.2

E ¼ 29,000 ksi

Problem 2.27 For the plane truss shown below, determine the required cross-sectional area for the

truss members to limit the vertical deflection at d to 0.56 in. Assume equal cross-sectional areas.

E ¼ 29,000 ksi.
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Problem 2.28 For the plane truss shown in Problem 2.12, use the principle of virtual forces to

determine the vertical displacement at joint g. The areas are 4 in.2 for top chord members, 3 in.2 for

bottom chord members, and 2 in.2 for other members. E ¼ 29,000 ksi.

Problem 2.29

Suppose the top chord members in the truss defined above experience a temperature decrease of

60 �F. Determine the resulting displacements, u and v. A ¼ 2 in.2, E ¼ 29,000 ksi and α ¼ 6.5

� 10–6/�F.

Problem 2.30 Solve Problem 2.15 using computer software. Assume the cross-sectional areas are

equal to A.

(a) Demonstrate that the member forces are independent of A by generating solutions for different

values of A.

(b) Determine the value of A required to limit the vertical displacement to 50 mm.

Problem 2.31 Consider the complex truss defined below in Figure (a). Use computer software to

determine the member forces for the loading shown in Figure (a).

(a) Assume equal areas

(b) Take an arbitrary set of areas

(c) Determine the member forces corresponding to the loading shown in Figure (b). Are the forces

similar to the results of part (a). Discuss.
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Problem 2.32 Solve Problem 2.11(a) using computer software. Assuming the cross-sectional areas

are equal to A. Demonstrate that the member forces are independent of A by generating solution of

different values of A.

Problem 2.33 Consider the complex truss defined below. Assume equal areas. Use computer

software to determine the member forces and joint displacements. Determine the area for which

the maximum displacement equals 30 mm. E ¼ 200 GPa.
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Problem 2.34 For the truss and the loading shown:

(a) Tabulate all the member forces due to the individual unit vertical nodal forces applied to the top

chord (force influence table). Use computer software.

(b) Use the force influence table in part (a) to

(i) Draw influence lines for members 15, 4, and 20.

(ii) Calculate the member forces in members 3, 19, 10, and 14 for the following loading:

P2 ¼ 10 kN, P4 ¼ 6 kN, and P6 ¼ 8 kN.

Problem 2.35 For the truss and the loading shown:
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(a) Tabulate all the member forces due to the individual unit vertical nodal forces applied to the

bottom chord (force influence table). Use computer software.

(b) Use the force influence table in part (a) to

(i) Draw influence lines for members bc, cm, and ji.

(ii) Calculate the member forces in members ke, de, kl, and ei for the loading P1 ¼ 8 kip,

P3 ¼ 10 kip, and P4 ¼ 4 kip.

Problem 2.36 The roof structure shown below consists of trusses spaced uniformly, 20 ft (6 m) on

center, along the length of the building and tied together by purlins and x-bracing. The roofing

materials are supported by the purlins which span between trusses at the truss joints.
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Consider the following loadings:

Dead load: roof material, purlins, truss members, estimated at 15 psf (720 Pa) of roof surface

Snow load: 20 psf (960 Pa) of horizontal projection of the roof surface

Wind load: windward face 12 psf (575 Pa), leeward face 8 psf (385 Pa) normal to roof surface

Determine the following quantities for the typical interior truss:

(a) Compute the truss nodal loads associated with gravity, snow, and wind.

(b) Use computer software to determine the member forces due to dead load, snow load, and wind.

Tabulate the member force results.
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Problem 2.37 Determine the member forces for the space truss shown.

Problem 2.38 Determine the member forces for the space truss shown.
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Problem 2.39 Determine the member forces for the space truss shown.
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Problem 2.40 Determine the member forces for the space truss shown.

Problem 2.41 For the space truss shown in Problem 2.37, use the principle of virtual forces to

determine the displacements u, v, and w at joint d. E ¼ 29,000 ksi and A ¼ 3.0 in.2
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Statically Determinate Beams 3

Abstract

Our focus in this chapter is on describing how beams behave under

transverse loading, i.e., when the loading acts normal to the longitudinal

axes. This problem is called the “beam bending” problem. The first step in

the analysis of a statically determinate beam is the determination of the

reactions. Given the reactions, one can establish the internal forces using

equilibrium-based procedures. These forces generate deformations that

cause the beam to displace. We discuss in detail the relationship between

the internal forces and the corresponding displacements and describe two

quantitative analysis procedures for establishing the displacements due to

a particular loading. The last section of the chapter presents some basic

analysis strategies employed in the design of beams such as influence lines

and global envelopes.

3.1 Definition of a Prismatic Beam

Beams are used extensively in structures, primarily in flooring systems for buildings and bridges.

They belong to the line element category, i.e., their longitudinal dimension is large in comparison to

their cross-sectional dimensions. Whereas truss members are loaded axially, beams are loaded normal

to the longitudinal direction, and carry the loading by bending and twisting action. This mode is

illustrated in Fig. 3.1. The transverse loading produces transverse deflection, which results in a

nonuniform distribution of stress throughout the body.

Most of the applications of beams in building structures involve straight beams with constant

cross-section. We refer to this subgroup as prismatic beams. Figure 3.2 defines the geometrical

parameters and notation used for prismatic beams. The longitudinal axis-X passes through the

centroid of the cross-section, and the Y, Z axes are taken as the principal inertia directions.

The relevant definition equations are
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ð
A

ydA¼
ð
A

zdA ¼
ð
A

yzdA ¼ 0

Iz ¼
ð
A

y2dA

Iy ¼
ð
A

z2dA

ð3:1Þ

These conditions ensure that when the applied loads are in the X � Y plane, points on the

longitudinal axis will not displace in the Z direction. Figure 3.3 illustrates this mode of behavior,

the longitudinal axis-X becomes a curve ν(x) contained in the X � Y plane. This type of behavior is

Stabilitycalled planar bending.
There are cases where the line of action of the loading does not pass through the X-axis, such as

illustrated in Fig. 3.4. The eccentricity produces a torsional moment about the X-axis, and the cross-

section will rotate as well as deflect. This behavior is called “combined bending and torsion.” A

prismatic member acted upon by just a torsional moment will experience only torsional behavior, i.e.,

the cross-section will just twist.

Mechanics of Solids texts deal with stresses and strains in beams. Our objective here is not to

redevelop this material but rather to utilize it and formulate a structural theory for beams that will

provide the basis for analyzing the behavior of structures composed of beam elements. Since
structural theory is founded on Engineering Mechanics Theory, at least one subject dealing with

Fig. 3.1 Beam cross-

sections and bending

mode. (a) Simply

supported beam.

(b) Section A-A—cross-

section examples.

Rectangular, T shape,

I shape. (c) Bending mode
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Engineering Mechanics is usually required before studying Structural Theory. We assume that the

reader has this level of exposure to Engineering Mechanics.

3.2 Stability and Determinacy of Beams: Planar Bending

We presented the general concept of stability of a rigid body in Chap. 1 and used the general concept

to develop stability criteria for truss-type structures in Chap. 2. In what follows, we examine the

stability question for beam-type structures and develop similar criteria. For completeness, we first

briefly review the basis for stability discussed in Chap. 1.

Consider the rigid body shown in Fig. 3.5. Assume the body can move only in the X � Y plane.

There are three types of planar motion for a rigid body: translation in the x direction, uA, translation in
the y direction, vA, and rotation about an axis normal to the X � Y plane, ωA. A body is said to be

stable when rigid body motion is prevented. Therefore, it follows that one must provide three motion

constraints to restrain motion in the X � Y plane.

Fig. 3.2 Notations for

prismatic beam—

symmetrical cross-section
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One needs to be careful in selecting the orientation of the three translation constraints. Consider

Fig. 3.6. We first choose two directions, “a” and “b” in the X � Y plane. They intersect at point o.

With these two constraints, the only possible rigid body motion is rotation about point o. If we take

the third direction as “c,” this rotation is not prevented. Therefore, it follows that the three directions
must be nonconcurrent as well as coplanar, i.e., they cannot intersect at a common point. This implies

that they must not be parallel. Any other direction, such as “d0” is permissible.

Fig. 3.3 Planar

bending mode

Fig. 3.4 Combined bending and torsion
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When the loading is arbitrary, the body needs to be constrained against motion in any plane. This

requires six constraints, three with respect to translation and three with respect to rotation about the

X, Y, and Z direction. The strategy for selecting restraints is similar to the treatment of 3-D truss

structures. We point out that for pure rotational loading only one rotational restraint is required.

Fig. 3.5 Planar rigid body

motions

Fig. 3.6 Concurrent

displacement constraints
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Motion constraints produce reaction forces when the body is loaded. The nature of the reaction

forces depends on the constraints. Various types of supports for beams subjected to planar bending are

illustrated below.

3.2.1 Fixed Support: Planar Loading

The beam is embedded at point A in such a way that the end is prevented from translating or rotating.

We say the member is “fixed” at A. The reactions consist of two forces and one moment.

3.2.2 Hinged Support: Planar Loading

Suppose A is to be fully restrained against translation. This can be achieved by pinning the member.

Horizontal and vertical reactions are produced.
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3.2.3 Roller Support: Planar Loading

Suppose A is to be restrained against motion perpendicular to the surface of contact. We add a

restraint to A by inserting a device that allows motion parallel to the surface of contact but fully

restrains motion in the direction perpendicular to the surface. We refer to this device as a roller. This

restraint produces a reaction force perpendicular to the surface of contact.

When the loading is three dimensional, additional restraints are required. The supports described

above needs to be modified to deal with these additional restraints. Typical schemes are shown below.
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3.2.4 3-D Fixed Support

3.2.5 3-D Hinged Support

3.2.6 3-D Roller Support: Z Direction
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3.2.7 Static Determinacy: Planar Beam Systems

In general, a body restrained with three nonconcurrent coplanar displacement constraints is stable for

planar loading. When loading is applied, the only motion that occurs is due to deformation of the body

resulting from the stresses introduced in the body by the loading. The motion restraints introduce

reaction forces. Since there are three equations of force equilibrium for a body, and only three

unknown forces, one can determine these force unknowns using only the force equilibrium equations.

In this case, we say that the structure is stable and statically determinate. If a body is over restrained,

i.e., if there are more than three nonconcurrent displacement restraints, we say that the structure is
statically indeterminate. This terminology follows from the fact that now there are more than three

force unknowns and consequently one cannot uniquely determine these unknowns with only the three

available force equilibrium equations. Statically indeterminate structures require a more rigorous

structural theory and therefore we postpone their treatment to part II of the text. In what follows, we

present some examples of statically determinate and statically indeterminate planar beams.

3.2.8 Unstable Support Arrangements

The beam shown above has the proper number of constraints, but they are all vertical. There is no

constraint against horizontal motion, and therefore the beam is unstable.

The beam shown above is unstable. The roller support at B constrains motion in the horizontal

direction but does not prevent rigid body motion about point A.

3.2.9 Beam with Multiple Supports

There are three vertical restraints and one horizontal restraint. These restraints produce the four

reaction forces shown below.
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One of the vertical restraints is redundant, i.e., is not needed for stability and therefore can be

deleted. Deleting the support at B results in the structure shown below.

A beam supported only at its ends in a minimal way is referred to as a simple supported beam.

The beam depicted in Fig. 3.7 is called a two-span continuous beam. This beam is statically

indeterminate to the first degree. We will show later that multi-span continuous beams are more

structurally efficient than simply supported beams in the sense that they deflect less for a given design

loading.

3.2.10 Beam with a Moment Release

Suppose we cut the beam shown in Fig. 3.8 at point D and insert a frictionless hinge. We refer to the

hinge as a moment release since the moment is zero. The hinge does not restrain rotation at D, and

member DC is free to rotate about D. The beam is now statically determinate. The corresponding

reaction forces are listed below on the free body diagrams (Fig. 3.9).

Fig. 3.7 Two-span beam

Fig. 3.8 Beam with

moment release

Fig. 3.9 Free body

diagram for beam with

moment release
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Member DC is statically determinate since there are only three reaction forces. Once the forces at

D are known, the remaining reactions for member ABD can be determined. Therefore, it follows that

inserting a hinge at D reduces the static indeterminacy by 1�.
We consider next the three-span continuous beam shown in Fig. 3.10. This structure is indetermi-

nate to the second degree since there are two extra vertical supports. One can reduce the structure to a

statically determinate structure by inserting two moment releases. Various possibilities are listed in

Fig. 3.11. The optimal location of moment releases is illustrated in Examples 3.33 and 3.34.

3.3 Reactions: Planar Loading

When a structure is subjected to external loads, the displacement restraints develop reaction forces to

resist the tendency for motion. If the structure is statically determinate, we can determine these forces

using the three global force equilibrium equations for planar loading applied to a body. One selects a

set of directions n–n and s–s, where s–s is not parallel to n–n. The steps are

ið Þ Summationof forces indirection n� n ¼ 0

iið Þ Summationof forces indirection s� s ¼ 0

wheredirection s� s is notparallel todirectionn� n
iiið Þ Summationofmomentsaboutanarbitrarypoint,A ¼ 0

ð3:2Þ

Fig. 3.10 Three-

span beam

Fig. 3.11 Statically

determinate versions of

three-span beam with

moment releases
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One constructs a free body diagram of the structure and applies these equations in such a way as to

obtain a set of uncoupled equations, which can be easily solved.

When a statically indeterminate structure has a sufficient number of releases such that it is reduced

to being statically determinate, we proceed in a similar way except that now we need to consider more

than one free body. The following series of examples illustrate the strategy for computing the

reactions.

Example 3.1 Beam with Two Over Hangs

Given: The beam shown in Fig. E3.1a.

Determine: The reactions.

Fig. E3.1a

Solution: Summing moments about B leads to the vertical reaction at A.X
MB ¼ 0

RA 20ð Þ þ 10þ 1

2
1:2ð Þ 8ð Þ2

3
8ð Þ � 1:2

8

2

� �
20þ 2

3
8

� �
¼ 0

∴RA ¼ 4:3 "
Summing the vertical forces,
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X
FY ¼ 0 RB þ 4:3� 1:2

8

2

� �
2ð Þ ¼ 0

∴RB ¼ 5:3 "
The reactions are listed below.

Example 3.2 Simply Supported Beam

Given: The beam shown in Fig. E3.2a.

Determine: The reactions.

Fig. E3.2a

Solution:As a first step, we construct the free body diagram for the beam. The reaction at B is normal

to the inclined surface. We resolve it into horizontal and vertical components using (Fig. E3.2b)

Fig. E3.2b

RBy ¼ RB cos α RBx ¼ RB sin α

Summing moments about A leads to the vertical reaction at B.
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X
MA ¼ 0

wL
L

2

� �
� LRBy ¼ 0

∴ RBy ¼ wL

2
"

Given RBy, we find the reaction RB

RB ¼ RBy

cos α
¼ wL

2 cos α

The corresponding horizontal component is

RBx ¼ RB sin α ¼ wL

2
tan α←

We determine the reactions at A using force summations.

X
Fx ¼ 0 RAx ¼ �RBx ¼ wL

2
tan α!X

Fy ¼ 0"þ RAy þ RBy � wL ¼ 0 RAy ¼ wL

2
"

Suppose w ¼ 30 kN/m, α ¼ 30� and L ¼ 10 m. The reactions are listed below.

Example 3.3 Two-Span Beam with a Moment Release

Given: The beam shown in Fig. E3.3a. There is a moment release at D.
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Determine: The reactions.

Fig. E3.3a

Solution: The most direct way of analyzing this structure is to first work with a free body diagram of

beam segment DC.

Applying the equilibrium conditions to this segment results in

X
MD ¼ 0 RC ¼ wL

4
"

X
FY ¼ 0 VD ¼ wL

4
"X

Fx ¼ 0 HD ¼ 0

With the internal forces at D known, we can now proceed with the analysis of segment ABD.
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Summing moments about A leads to RBX
MA ¼ 0 0:75Lð Þ 1:5wLð Þ þ 1:5Lð Þ 0:25wLð Þ � LRB ¼ 0

RB ¼ 1:5wL "
Summing the vertical and horizontal forces,X

FY ¼ 0 RAy ¼ 1:75wL� RB ¼ 0:25wL "X
Fx ¼ 0 RAx ¼ 0

The reactions are listed below.

If the hinge was placed at point B, the structure would act as two simply supported beams, and the

reactions would be as shown below.

Example 3.4

Given: The beam shown in Fig. E3.4a.

Determine: The reactions.

Fig. E3.4a

Solution: Summing moments about B leads to the vertical reaction at D.
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X
MB ¼ 0

RD 6ð Þ þ 20
3

2

� �
2ð Þ þ 18� 15 3ð Þ 7:5ð Þ ¼ 0 ∴RD ¼ 43:25 "

Summing the vertical forces,

X
FY ¼ 0 RB þ 43:25� 15 3ð Þ � 20

3

2

� �
¼ 0

∴RB ¼ 31:75 "
The reactions are listed below.

Example 3.5 Three-Span Beam with Two Moment Releases

Given: The beam shown in Fig. E3.5a.

Determine: The reactions.

Fig. E3.5a
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Solution:We first work with a free body diagram of beam segment EF. Then, with the internal forces

at E and F known, we precede with the analysis of segment ABE and FCD.

The reactions are listed below.

Example 3.6 Horizontal Beam Supporting a Vertical Sign

Given: The structure defined in Fig. E3.6a. Member BED is rigidly attached to the beam, ABC.

Member FG is simply supported on member BED. Assume member FG has some self-weight,W and

is acted upon by a uniform horizontal wind load p. This structure is an idealization of a highway sign
supported on a beam.
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Determine: The reactions.

Fig. E3.6a

Solution:We work with two free body diagrams, one for member FG and the other for the remaining

part of the structure.

Consider first member FG. Enforcing equilibrium leads to:

VF ¼ W

HF ¼ HG ¼ ph

4

Next, we apply these forces to the structure composed of member ABC and member BED. The

free body diagram is shown below.
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Summing moments about A leads to RCX
MA ¼ 0

W
L

2
¼ ph

4
2hð Þ þ ph

4
2:5hð Þ þ RCL

∴RC ¼ W

2
� ph 1:125

h

L

� �

The horizontal and vertical reactions at A are

RAx ¼ ph

2

RAy ¼ W

2
þ ph 1:125

h

L

� �

Note that the vertical reaction at C may become negative if ph is large with respect toW and h is of
the order of L.

3.4 Internal Forces: Planar Loading

We have shown that external loads produce reaction forces. The next question we need to address is:

What is the effect of this combination of external loads and reaction forces on the body? We answer

this question by examining the equilibrium of an arbitrary segment of the body.

Consider the uniformly loaded, simply supported beam shown in Fig. 3.12a. We pass a cutting

plane a distance x from the left end and consider either the left or right segment.

The external loads create a force unbalance. To maintain equilibrium, a vertical force, V(x), and a

moment,M(x), are required at the section. We refer to these quantities as the internal shear force and

bending moment. The magnitudes of V(x) and M(x) for this section are
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V xð Þ ¼ �wL

2
þ wx

M xð Þ ¼ wL

2
x� wx2

2

ð3:3Þ

We need to first define a sign convention for the positive directions of the internal force quantities.

This notation is shown in Fig. 3.13 for a positive face, i.e., a face whose outward normal points in the

+ X direction. The shear force is positive when it points in the + Y direction, and the positive sense for

moment is from X to Y. Depending on the external loading, there may also be an axial force.

The positive sense for the axial force is taken as the + X direction. These directions are reversed

for a negative face.

This sign convention is also used in the matrix formulation of the beam bending problem which is

the basis for computer-based analysis software. Historically, some authors use a sign convention for

shear which is opposite to this choice. We prefer to employ the above convention since it is consistent

with the output of structural software systems and therefore allows the reader to transition easily from

analytical to digital computation schemes.

Fig. 3.12 Internal shear

and moment. (a) beam.

(b) Segmented beam

Fig. 3.13 Sign convention

for internal forces
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Figure 3.14 shows the variation of these quantities for the beam defined in Fig. 3.12. The shear

varies linearly, with maximum values at the supports. The moment varies parabolically, and the

maximum value occurs at mid-span. These plots are called “shear” and “moment” diagrams. Positive

moment is plotted on the top face in the USA. In the UK, positive moment is plotted on the bottom

face. Again, it is a question of what convention one is most comfortable with.

The maximum bending moment and shear force are used to determine the dimensions of the cross-

section. The specific design procedure depends on the material selected, such as wood, steel, or

concrete, and the design code adopted.

One constructs the internal force distributions by selecting various cutting planes, evaluating the

corresponding values, and then extrapolating between the sections. With some experience, one can

become very proficient at this operation. We illustrate the process with the following examples.

Example 3.7 Cantilever Beam with Multiple Concentrated Loads

Given: The cantilever beam with two concentrated loads shown in Fig. E3.7a.

Fig. 3.14 Shear and

moment diagrams
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Determine: The shear and moment diagrams.

Fig. E3.7a

Solution: We first determine the reactions at A by enforcing the equilibrium equations.X
Fy ¼ 0 RA � 20� 40 ¼ 0) RA ¼ 60kNX
MA ¼ 0 MA � 20 3ð Þ � 40 6ð Þ ¼ 0) MA ¼ 300kNm

Then, we pass a cutting plane between points A and B

0 � x < 3 V xð Þ ¼ �60
M xð Þ ¼ �300þ 60x
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Lastly, we cut between B and C.

3 < x � 6 V xð Þ ¼ �40
M xð Þ ¼ �300þ 60x� 20 x� 3ð Þ ¼ 40x� 240

The distributions are plotted below.
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There are some features that we want to point out. Firstly, a concentrated load produces a

discontinuity in the form of a “jump” in the shear force, such as at points B and C. Secondly, when

the loading consists only of concentrated loads, the shear diagram consists of segments having

constant values, and the moment diagram is composed of a set of straight-line segments. We have

demonstrated these features here. Later in the next section, we will establish a proof based on

equilibrium considerations. A thought question: When would the moment diagram have a jump in

the moment value? Hint: Consider Example 3.15.

Example 3.8 Cantilever Beam with Uniform Loading

Given: The uniformly loaded cantilever beam shown in Fig. E3.8a.

Determine: The shear and moment distributions.

Fig. E3.8a

Solution: We pass a cutting plane between points A and B. Then, we can consider either segment

shown below.

The shear and moment required for equilibrium are

0 � x � L V xð Þ ¼ �w L� xð Þ
M xð Þ ¼ �w

2
L� xð Þ2

These functions are plotted below. Note that the maximum moment varies as L2.
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Example 3.9 Beam with an Eccentric Lateral Load

Given: The structure defined in Fig. E3.9a. Member BC is rigidly attached to member AB at B.

Determine: The axial, shear, and moment diagrams.

Fig. E3.9a

Solution: Member BC is rigidly attached to the beam, AB, and has a horizontal load applied at its

end. The effect of this force is to apply a bending moment at B, which causes beam AB to bend.

Figure E3.9b illustrates the deflected shape.

Fig. E3.9b
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We determine the reactions first. The free body diagram is shown below.

Moment summation about A leads toX
MA ¼ 0

RBLþ Ph ¼ 0 ) RB ¼ �h
L
P ) RB ¼ h

L
P #

The reactions at A required for equilibrium are

X
Fy ¼ 0 RAy ¼ �VB ¼ h

L
P ) RAy ¼ h

L
P "X

Fx ¼ 0 ) RAx ¼ P!

Next, we pass a cutting plane at D, isolate the left segment, and enforce equilibrium.
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The results are

V xð Þ ¼ �Ph=L
M xð Þ ¼ Ph=Lð Þx
F xð Þ ¼ �P

The beam is subjected to combined compression and bending: The maximum moment is equal to

Ph and occurs at B. This is the critical section for design. Plots of F, V, and M for member AB are

shown below.

3.5 Differential Equations of Equilibrium: Planar Loading

The strategy described in the previous section was based on working with a free body diagram of a

large segment of the beam and determining the shear and moment by applying the equilibrium

equations. We generate the distributions of these quantities by selecting various free body diagrams.

This approach is convenient when the loading is fairly simple, i.e., it consists of a combination of

concentrated forces and uniformly distributed loadings. For complex distributed loadings expressed

as analytic functions, one needs a more systematic approach for enforcing the equilibrium conditions.

In what follows, we describe an approach based on applying the equilibrium conditions to a

differential element of the beam, resulting in a set of differential equations relating the shear force

and moment to the applied distributed loading.
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Consider the beam and the differential element shown in Fig. 3.15. We use the same sign

convention for V and M as defined in Sect. 3.4. We take the positive sense of the distributed loading

to be “downward” since these loadings are generally associated with gravity. Considering V andM to

be functions of x, expanding these variables in terms of their differentials, and retaining up to first-

order terms results in the forces shown in Fig. 3.15b.

Summing forces in the Y direction,

V þ dV

dx

dx

2
� V � dV

dx

dx

2

� �
� wdx ¼ 0

and combining terms leads to

dV

dx
� w

� �
dx ¼ 0

Lastly, since this equation must be satisfied for arbitrary dx, it follows that

dV

dx
¼ w ð3:4Þ

In words, “the rate of change of the shear force is equal to the applied distributed loading.”

Repeating this analysis for moment summation about point o, the steps are

Fig. 3.15 Beam with

arbitrary distributed

loading. (a) Beam. (b)
Differential beam element
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M þ dM

dx

dx

2
� M � dM

dx

dx

2

� �
þ V þ dV

dx

dx

2

� �
dx

2
þ V � dV

dx

dx

2

� �
dx

2
¼ 0

+
dM

dx
þ V

� �
dx ¼ 0

+
dM

dx
þ V ¼ 0

+
dM

dx
¼ �V

ð3:5Þ

Equation (3.5) states that “the rate of change of the bending moment is equal to minus the shear
force.”

These two relations are very useful for checking the consistency of the shear and moment diagrams.

One can reason qualitatively about the shape of these diagrams using only information about the loading

on a segment of the beam. For example, if w ¼ 0, the shear is constant and the moment varies linearly.

If w ¼ constant, the shear varies linearly and the moment varies quadratically.

One can establish a set of integral equations by integrating the derivative terms. Consider two

points, x1 and x2, on the longitudinal X-axis. Integrating (3.4) and (3.5) between these points leads to

V2 � V1 ¼
ðx2
x1

wdx ð3:6Þ

M2 �M1 ¼ �
ðx2
x1

V dx ð3:7Þ

Equation (3.6) can be interpreted as: “The difference in shear between two points is equal to the

area under the distributed loading diagram included between these points.” Equation (3.7) relates the
change in moment to the area under the shear diagram between these points. Figure 3.16 illustrates

these interpretations.

The integral forms are useful if one wants to either compute values at discrete points or determine

analytical solutions. The differential forms are more convenient for qualitatively reasoning about the

shape of the diagrams. We generally use both approaches to construct shear and moment diagrams.

Another useful property that can be established from (3.5) relates to the maximum values of the

moment. We know from calculus that extreme values of a continuous function are located at points

where the first derivative is zero. Applying this theorem to the moment function, M(x), the location

x*, of an extreme value (either maximum or minimum) of moment is found by solving:

dM

dx

����
x¼x*
¼ 0 ð3:8Þ

Noting (3.5), it follows that extreme values of moment occur at points where the shear force is

zero. One first generates the shear diagrams from the applied loading. This process identifies the

points of zero shear. If only peak values of moment are of interest, one selects free body diagrams by

passing cutting planes through these locations and applies the equilibrium conditions. This approach

is the most direct procedure.
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When the loading consists of concentrated forces, the shear diagram has a discontinuity at the

point of application of each concentrated force. By considering the equilibrium of a differential

element at the point (see Fig. 3.17), one can establish that the “jump” in shear is equal to the applied

load. Similarly, the jump in moment is equal to the applied external moment, M.

Vþface � V�face ¼ P ð3:9Þ
Mþface �M�face ¼ �M ð3:10Þ

One applies (3.6) and (3.7) to generate solutions for the segments adjacent to the discontinuities and

uses (3.9) and (3.10) to connect the solutions.

In what follows, we illustrate the application of the differential/integral equation representation to

generate shear and moment diagrams. This material overlaps slightly with the material presented in

the previous section. Some repetition is useful for reinforcing basic concepts.

Example 3.10 Cantilever Beam—Triangular Loading

Given: A cantilever beam with a triangular distributed loading (Fig. E3.10a).

Determine: V(x) and M(x).

Fig. E3.10a

Fig. 3.16 Interpretation of

shear and moment in terms

of segmental loadings
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Solution: First, we determine the reactions at A (Fig. E3.10b)

X
FY ¼ 0 RA ¼ wBL

2
"

X
MA ¼ 0 MA ¼ wBL

2

3

Fig. E3.10b Reactions

Fig. E3.10c Internal shear and moment

Next, we determine the shear, V(x), with (3.6) (Fig. E3.10c). Integrating between points A and x

V xð Þ � VA ¼
ð x
0

w xð Þdx ¼
ð x
0

wBx

L
dx ¼ wBx

2

2L

����
x

0

¼ wBx
2

2L

Noting that VA ¼ �RA ¼ �wBL

2
, the solution for V(x) reduces to

Fig. 3.17 Jump

conditions. (a) Shear. (b)
Moment
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V xð Þ ¼ wB

2
�Lþ x2

L

� �

We determine the moment, M(x), with (3.7)

M xð Þ �MA ¼ �
ð x
0

V xð Þdx ¼
ð x
0

wB

2
L� x2

L

� �
dx ¼ wB

2
Lx� x3

3L

� �

Noting that MA ¼ �wBL
2

3
, one obtains

M xð Þ ¼ wB � x3

6L
þ Lx

2
� L2

3

� �

The shear and moment distribution are plotted below. Note that the peak values of shear and

moment occur at x ¼ 0. Also note that the boundary conditions at B are VB ¼ MB ¼ 0 since this

cross-section is free, i.e., unrestrained and unloaded.

Example 3.11 Distributed and Concentrated Loads

Given: The beam and loading defined in Fig. E3.11a.

3.5 Differential Equations of Equilibrium: Planar Loading 195



Determine: V(x) and M(x).

Fig. E3.11a

Solution: This example illustrates how to deal with a combination of distributed and concentrated

loads. We separate the distributed and the concentrated loads and then superimpose the results

(Fig. E3.11b).

Fig. E3.11b Reactions

We consider first the segment AB. Applying (3.6) and (3.7), and noting the boundary conditions at

x ¼ 0, the distributions for 0 � x < a are

V xð Þ ¼ �wL

2
� L� að ÞP

L
þ wx

M xð Þ ¼ wL

2
xþ P L� að Þ

L
x� 1

2
wx2

The values of V and M just to the left of point B are

VB� ¼ �wL

2
þ wa� P L� að Þ

L

MB� ¼ wL

2
a� 1

2
wa2 þ P L� að Þ

L
a

Applying (3.9) and (3.10) for the jump conditions at B, and noting signs, the quantities just to the

right of B are
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VBþ ¼ Pþ VB� ¼ �wL

2
þ wa� Pa

L

MBþ ¼ MB� ¼ wL

2
a� 1

2
wa2 þ P L� að Þ

L
a

Note that there is no jump in moment for this example.

Applying (3.6) and (3.7), these expressions for a < x � L expand to

V xð Þ ¼ Pa

L
� wL

2
þ wx

M xð Þ ¼ Pa� Pax

L
þ wLx

2
� wx2

2

The approach we followed here is general and applies for all loadings. It is fairly straightforward to

establish the expressions for the regions 0 � x < a and a < x � L. An easier way to obtain the shear

and moment diagrams for this example would be to generate separate diagrams for the two types of

loadings and then superimpose the results. The individual shear and moment diagrams are plotted

below (Figs. E3.11c and E3.11d).

Fig. E3.11c Shear diagrams
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Fig. E3.11d Moment diagrams Suppose P ¼ 15 kip, a ¼ 12 ft, L ¼ 36 ft, and w ¼ 1.2 kip/ft. The

combined shear and moment diagrams are plotted below.
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Example 3.12 Uniform Loading Combined with End Moments

Given: A simply supported beam subjected to a uniform loading and bending moments at the ends.

This is a typical case for a floor beam in a rigid building frame, i.e., where the beam-column

connections apply moment to the ends of the beam (Fig. E3.12a).
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Fig. E3.12a

Determine: The location and magnitude of the maximum moment.

Solution: We consider separate loadings and then superimpose the results. The solution due to the

end moment is (Fig. E3.12b)

Fig. E3.12b
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The uniform loading provides the following distribution (Fig. E3.12c):

Fig. E3.12c

Combining these solutions leads to the analytical solution

V xð Þ ¼ �wL

2
þ wxþM*

A þM*
B

L

M xð Þ ¼ M*
A �

M*
A þM*

B

L
xþ wL

2
x� wx2

2

3.5 Differential Equations of Equilibrium: Planar Loading 201



These functions are plotted below (Figs. E3.12d and E3.12e).

Fig. E3.12d

Fig. E3.12e

The peak moment occurs where the shear is zero. Noting the plot of V(x), the shear is zero at xmax.

V ¼ 0

+
xmax ¼ L

2
�M*

A þM*
B

wL

The form of the solution suggests that we express the sum of the end moments as

M*
A þM*

B ¼
α

2
wL2
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where α is a dimensionless parameter. Substituting for this term, the equation simplifies to

xmax ¼ L

2
1� αð Þ

Lastly, we determine Mmax using this value for x.

Mmax ¼ M*
A þ

wL2

8
1� αð Þ2

Given w and the end moments, one evaluates α,

α ¼ M*
A þM*

B

wL2

2

and then Mmax. When α ¼ �1, the peak moment occurs at an end point and equals the applied end

moment.

The case where the end moments are equal in magnitude but opposite in sense is of considerable

interest. One setsM*
A ¼ �M*

B ¼ �M*, and it follows that α ¼ 0. The moment diagram is symmetri-

cal with respect to the centerline. The peak negative values of moment occur at the end points; the

peak positive moment occurs at the center point of the span (Fig. E3.12f).
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Fig. E3.12f

When there is no end restraint, M* ¼ 0. Then, Mþmax ¼ wL2=8. The effect of end restraint is to

reduce the positive moment and introduce a negative moment at the ends. This behavior is typical for

rigid frames such as building frames subjected to gravity loading. We examine this behavior in more

detail in Chap. 15.

Example 3.13
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Given: The beam shown in Fig. E3.13a

Fig. E3.13a

Determine: The reactions, shear, and bending moment distributions.

Solution:We draw the free body diagram of beam segment AB. Applying the equilibrium conditions

to this segment results in (Fig. E3.13b)

P
MA ¼ 0 VB 24ð Þ � 2ð Þ 24ð Þ

2

24ð Þ
3
¼ 0 VB ¼ 8kipP

Fy ¼ 0 RA � 2ð Þ 24ð Þ
2
þ 8 ¼ 0 RA ¼ 16kip

Fig. E3.13b Segment AB

With the internal force at B known, one can now proceed with the analysis of segment BC

(Fig. E3.13c).

X
FY ¼ 0 � 2ð Þ 24ð Þ

2
� 8þ RC ¼ 0 ) RC ¼ 32kip "X

MC ¼ 0 �MC þ 8 24ð Þ þ 2ð Þ 24ð Þ
2

24ð Þ
3
¼ 0 ) MC ¼ 384kip ft clockwise

Fig. E3.13c Segment BC

The peak moment occurs where the shear is zero.

Segment AB:

3.5 Differential Equations of Equilibrium: Planar Loading 205



X
Fy ¼ 0 8� 1

2

x1
12

� �
x1 ¼ 0 ! x1 ¼ 13:85ft

∴Mmax ¼ 8 13:85ð Þ � 13:85ð Þ 13:85

12

� �
1

2

13:85

3

� �
¼ þ73:9kip ft

Segment BC:

X
Fy ¼ 0 Vx2 ¼ 8þ 1

2

x2
12

� �
x2 6¼ 0

Therefore, there is no peak moment between B and C.
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The shear and bending moment diagrams are listed below (Fig. E3.13d).

Fig. E3.13d

Example 3.14

Given: The beam shown in Fig. E3.14a
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Determine: The reactions, and the shear and bending moment distributions.

Fig. E3.14a

Solution:We first determine the reaction at B using ∑MA ¼ 0. We then compute the reaction at A by

summing forces in the Y direction (Fig. E3.14b).

X
MA ¼ 0 � RB 44ð Þ þ 2ð Þ 12

2

� �
2

3
12ð Þ þ 8þ 10 32ð Þ ¼ 0 RB ¼ 9:64 "

X
FY ¼ 0 RA � 2

12

2

� �
� 10þ 9:64 ¼ 0 RA ¼ 12:36 "

Fig. E3.14b

We determine the shear, V(x), with (3.6) (Fig. E3.14c). Integrating between points A and x

V xð Þ � VA ¼
ð x
0

w xð Þdx ¼
ð x
0

x

6
dx ¼ x2

12

����
x

0

¼ x2

12
0 � x � 12

Noting that VA ¼ �12:36, the solution for V(x) reduces to

V xð Þ ¼ x2

12
� 12:36

We determine the moment M(x), with (3.7) (Fig. E3.14c). Integrating between points A and x

M xð Þ �MA ¼ �
ð x
0

V xð Þdx ¼ �
ð x
0

x2

12
� 12:36

� �
dx ¼ � x3

36
þ 12:36x 0 � x � 12

Noting that MA ¼ 0, one obtains
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M xð Þ ¼ � x3

36
þ 12:36x

Fig. E3.14c

Note that there is a jump in the shear at E.

X
Fy ¼ 0 VE�face � 9:64þ 10 ¼ 0 VE�face ¼ �0:36 VE�face ¼ 0:36 " kip

Applying (3.7) to the different segments results in:

Segment EB

MB �ME ¼ �
ð
E!B

V dx ¼ �9:64 12ð Þ ¼ �115:68

MB ¼ 0 ∴ME ¼ 115:68kip ft

Segment DE

ME �MD ¼ �
ð
E!B

V dx ¼ � �0:36ð Þ 10ð Þ ¼ 3:6

ME ¼ 115:68 ∴MD ¼ 112kip ft

Note that there is a jump in the bending moment at D.
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X
M ¼ 0 MD�face þ 8� 112 ¼ 0 MD�face ¼ 104kip ft

Segment CD

MD �MC ¼ �
ð
E!B

V dx ¼ � �0:36ð Þ 10ð Þ ¼ 3:6

MD ¼ 104: ∴MC ¼ 100:4kip ft

The reactions, shear, and bending moment distributions are listed below (Fig. E3.14d).

Fig. E3.14d

3.6 Displacement and Deformation of Slender Beams: Planar Loading

Fig. 3.18 Slender beam.

(a) Initial. (b) Deformed
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Figure 3.18 shows how a slender beam responds to a transverse planar loading. The geometric

quantities that define the movement of the beam from its unloaded position due to an applied loading

are defined as the displacements. Displacements are also referred to as deflections. Consider the

segment of a homogeneous beam shown in Fig. 3.19. We take the X-axis to coincide with the initial

position of the centroidal axis and the Y-axis to be 90� counterclockwise from the X-axis. When the

loading is applied in the X � Y plane, points on the centroidal axis move horizontally and vertically.

We assume the cross-section, which is initially normal to the centroidal axis, remains normal to the

curve connecting the displaced points. This is a standard assumption for beams known as

“Kirchoff’s” hypothesis and implies that the cross-section rotates through the same angle as the

tangent to the centroidal axis. Kirchoff’s hypothesis is valid for slender beams, i.e., beams having a

depth to span ratio less than about 0.1. With this assumption, the independent geometric measures are

the two displacement components, u(x) and ν(x), which are functions of x for static loading. Given

ν(x), we find the cross-sectional rotation, θ(x), with the geometric relation.

The next assumption that we introduce concerns themagnitude of θ.We assume here that θ2 is small

in comparison to unity, which implies that the tangent is essentially equal to the angle in radians:

tan θ � θ ð3:11Þ
Then, the expression for θ reduces to

θ � þ dv

dx
ð3:12Þ

Fig. 3.19 Definition of

displacement components

Fig. 3.20 Differential

beam elements. (a) Initial.
(b) Deformed
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Deformations are dimensionless strain measures resulting from displacements. Consider the

differential elements shown in Fig. 3.20. The initial rectangular shape is transformed to a quadrilat-

eral shape with curved upper and lower edges. Adjacent cross-sections experience a relative rotation

equal to (dθ/dx)dx, which causes line elements parallel to the centroidal axis to either elongate or

contract. These changes in length produce extensional strains. A line element located y units above

the centroidal axis experiences a strain ε(y) equal to

ε yð Þ ¼ �y dθ
dx

ð3:13Þ

According to this model, the strain varies linearly over the cross-section and the peak strain values

occur at the upper and lower surfaces; the centroidal axis is not strained.

At this point, we introduce some standard notation for the derivative of the cross-section rotation

angle, θ.

χ ¼ curvature� dθ

dx
� d2v

dx2
unitsof radians=lengthð Þ

ρ¼ radiusof curvature ¼ 1

χ
unitsof lengthð Þ

ð3:14Þ

We prefer to work with the curvature and express the extensional strain as

ε ¼ �yχ ð3:15Þ
Given χ, one can establish qualitatively the shape of the curve defining the displaced centroidal axis.

An analytical solution for the displacement, v, can also be determined by integrating (3.14). We will

illustrate both procedures in later sections.

3.6.1 Moment: Curvature Relationship

We have demonstrated how to establish the bending moment distribution corresponding to a given

loading. We have also showed how the displacement field can be generated once the curvature is

known. To find the displacements due to a given loading, we need to relate the moment and the

corresponding curvature along the centroidal axis. Given this relationship, it is a fairly straightfor-

ward process to move from prescribed loading to the resulting displacement.

The positive sense of the bending moment on a positive cross-section is defined as counterclock-

wise. Then noting Fig. 3.21, the moment and normal stress are related by

Fig. 3.21 Definition of

normal stress and moment
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M ¼
ð
A

� yσ dA ð3:16Þ

We determine the stress using the stress–strain relation. In what follows, we assume the material

behavior is linear elastic. The stress is a linear function of the strain in this case.

σ ¼ Eε ¼ �yEχ ð3:17Þ
where E is Young’s modulus for the material. Substituting for σ in (3.16) leads to

M ¼ EIχ ð3:18Þ

where I ¼
ð
y2dA. Given M and EI, one finds the curvature (χ) with

χ ¼ M

EI
ð3:19Þ

and then the displacement v by integrating

d2v

dx2
¼ χ ¼ M

EI
ð3:20Þ

The complete solution of (3.20) consists of a homogeneous term and a particular term,

v ¼ c0 þ c1xþ vp ð3:21Þ
where vp is the particular solution corresponding to the function, M/EI, and c0, c1 are constants. Two

boundary conditions on v are required to determine c0 and c1.

3.6.2 Qualitative Reasoning About Deflected Shapes

Noting (3.18) and the fact that EI is always positive, it follows that the sense of curvature χ is the same

as the sense ofM. The deflected shapes corresponding to positive and negative curvature are shown in

Fig. 3.22. It is more convenient to interpret these deflected shapes as the result of applying positive

and negative moments. Figure 3.23 illustrates this interpretation.

We divide the moment diagrams into positive and negative moment zones and identify, using

Fig. 3.23, the appropriate shape for each zone. Points where the moment changes sign are called

inflection points. The curvature is zero at an inflection point, which implies that the curve is locally

straight. We deal with inflection points by adjusting the orientation of adjoint shapes such that their

tangents coincide at the inflection point. Figure 3.24 illustrates this process.

Fig. 3.22 Deflected

shapes for positive and

negative curvature
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The last step involves enforcing the displacement boundary conditions associated with end

conditions. Figure 3.25 shows four types of end conditions (full fixity, hinge, roller, and free) with

their corresponding displacement measures that are constrained by these conditions.

Fig. 3.23 Deflected shape

for positive and negative

moments

Fig. 3.24 Shape transition

at an inflection point

Fig. 3.25 Types of end conditions—displacement measures
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The deflected shape must pass through a support. If an end is fixed, the cross-section cannot rotate

at that point. We need to orient the deflected shape such that the tangent coincides with the initial

centroidal axis. In what follows, we present a series of examples which illustrate the process of

developing qualitative estimates of deflected shapes given the bending moment distribution.

Example 3.15 Deflected Shape—Uniformly Loaded, Simply Supported Beam

Given: The uniformly loaded, simply supported beam shown in Fig. E3.15a.

Determine: The deflected shape.

Fig. E3.15a

Solution: The moment is positive throughout the span so Fig. 3.23a applies. The displacement

boundary conditions require

v 0ð Þ ¼ v Lð Þ ¼ 0

One starts at the left end, sketches a curve with increasing positive curvature up to mid-span and

then reverses the process. The deflected shape is symmetrical with respect to mid-span since the

moment diagrams and support locations are symmetrical (Figs. E3.15b and E3.15c).

Fig. E3.15b Moment diagram

Fig. E3.15c Deflected shape
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Example 3.16 Deflected Shape—Cantilever Beam

Given: The cantilever beam defined in Fig. E3.16a.

Determine: The deflected shape.

Fig. E3.16a

Solution:We note that the moment is negative throughout the span. Point A is fixed and therefore the

tangent must be horizontal at this point. The displacement boundary conditions require

v 0ð Þ ¼ θ 0ð Þ ¼ 0

We start at point A and sketch a curve with decreasing negative curvature up to x ¼ L

(Figs. E3.16b and E3.16c).

Fig. E3.16b Moment diagram

Fig. E3.16c Deflected shape

Example 3.17 Deflected Shape of a Beam with an Overhang

Given: The beam with overhang shown in Fig. E3.17a.

Determine: The deflected shape.
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Fig. E3.17a

Solution: We note that Fig. E3.17b shows that the moment diagram has both positive and negative

regions with an inflection point at x ¼ 0.75L. Therefore, it follows that the left segment has positive

curvature and the right segment has negative curvature. We need to join these shapes such that the

tangent is continuous at point D and the deflections are zero at points A and B (Fig. E3.17c).

Fig. E3.17b Moment diagram

Fig. E3.17c Deflected shape

Example 3.18 Deflected Shape—Beam with a Moment Release

Given: The beam shown in Fig. E3.18a.

Determine: The deflected shape.

Fig. E3.18a
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Solution: Member CD is connected to member ABC with a hinge at point C. A hinge is a physical

artifact that allows the members connected to it to rotate freely, i.e., no moment is introduced. A hinge

point is different from an inflection point. Although the moment is zero for both hinge and inflection

points, the cross-sectional rotation is discontinuous at a hinge, whereas it is continuous at an inflection

point. This feature is illustrated in the displacement sketch shown below. The left segment (ABC) has

negative curvature. The right segment (CD) has positive curvature (Figs. E3.18b and E3.18c).

Fig. E3.18b Moment diagram

Fig. E3.18c Deflected shape

3.6.3 Moment Area Theorems

The starting point for quantitative analysis is the set of differential equations relating the moment, the

cross-sectional rotation, and the deflection.

dθ

dx
¼ M xð Þ

EI

dv

dx
¼ θ xð Þ

ð3:22Þ

Given M(x)/EI, we integrate dθ/dx between two points x1 and x2 on the x-axis and write the

result as

θ x2ð Þ � θ x1ð Þ ¼
ðx2
x1

M xð Þ
EI

dx ð3:23Þ

We interpret (3.23) as “The difference in rotation between 2 points is equal to the area of the M/EI

diagram included between these points.” This statement is referred to as the “First Moment Area”

theorem. Taking x2 as x in (3.23), we can express θ(x) as

θ xð Þ ¼ θ x1ð Þ þ
ð x
x1

M xð Þ
EI

dx ð3:24Þ

Given θ(x), we solve for v(x2).

v x2ð Þ ¼ v x1ð Þ þ
ðx2
x1

θ xð Þdx ð3:25Þ

Evaluating (3.24) first, and then substituting for θ(x) in (3.25) leads to
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v x2ð Þ � v x1ð Þ ¼ x2 � x1ð Þθ x1ð Þ þ
ðx2
x1

ð x
x1

M xð Þ
EI

dx


 �
dx ð3:26Þ

The double integral in (3.26) can be evaluated using integration by parts. First, we note the

following identity,

d uvð Þ ¼ udvþ vdu ð3:27Þ
Integrating between x1 and x2, ðx2

x1

d uvð Þ ¼
ðx2
x1

udvþ vduð Þ ð3:28Þ

and rearranging terms leads to ðx2
x1

udv ¼ uvjx2x1 �
ðx2
x1

vdu ð3:29Þ

We take

u¼
ð x
x1

M

EI
dx

dv¼ dx
ð3:30Þ

in (3.26). Using (3.29), the double integral can be expressed asðx2
x1

ð x
x1

M xð Þ
EI

dx


 �
dx¼ x

ð x
x1

M xð Þ
EI dx


 �x2
x1

�
ðx2
x1

x
M xð Þ
EI

dx

¼
ðx2
x1

x2 � xð ÞM xð Þ
EI

dx

ð3:31Þ

Finally, an alternate form of (3.26) is

v x2ð Þ � v x1ð Þ ¼ x2 � x1ð Þθ x1ð Þ þ
ðx2
x1

x2 � xð ÞM xð Þ
EI

dx ð3:32Þ

This form is referred to as the “Second Moment Area Theorem.” Figure 3.26 shows that the last term

can be interpreted as the moment of the M/EI diagram with respect to x2. It represents the deflection

from the tangent at point 1, as indicated in Fig. 3.27.
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Using the Moment Area theorems, one has to evaluate only two integrals,

J xð Þ ¼
ð x
x1

M xð Þ
EI

dx

H xð Þ ¼
ð x
x1

x
M xð Þ
EI

dx

ð3:33Þ

Fig. 3.26 Area and

moment of area

Fig. 3.27 Graphic

interpolation of (3.26)
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When I is a complicated function of x, these integrals can be evaluated using a symbolic integration

scheme or the numerical integration scheme described in Sect. 3.6.5. The final expressions for ν(x)
and θ(x) in terms of v(x1), θ(x1) and these integrals are (we take x2 ¼ x in (3.23) and (3.32))

θ xð Þ ¼ θ x1ð Þ þ J xð Þ
v xð Þ ¼ v x1ð Þ þ x� x1ð Þθ x1ð Þ þ xJ xð Þ � H xð Þ ð3:34Þ

Example 3.19 Deflected Shape—Cantilever Beam

Given: The cantilever beam shown in Fig. E3.19a. Consider EI is constant.

Fig. E3.19a

Determine: The deflected shapes for various loadings: concentrated moment, concentrated force, and

uniform load.

Solution: We measure x from the left support. The displacement boundary conditions are

vA ¼ v 0ð Þ ¼ 0

θA ¼ θ 0ð Þ ¼ 0

Taking x1 ¼ 0 and noting the boundary conditions at x ¼ 0, (3.34) reduces to

0 � x � L

θ xð Þ ¼
ð x
0

M xð Þ
EI

dx

v xð Þ ¼ x

ð x
0

M xð Þ
EI

dx�
ð x
0

x
M xð Þ
EI

dx

Solutions for various loadings are listed below.

1. Concentrated moment (Fig. E3.19b)

Fig. E3.19b
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The expressions for M(x), θ(x), and v(x) for a concentrated moment are as follows:

M xð Þ ¼ M* 0 � x � L

θ xð Þ ¼ 1

EI

ð x
0

M xð Þdx ¼ M*

EI
x

v xð Þ ¼ x

EI

ð x
0

M xð Þdx� 1

EI

ð x
0

xM xð Þdx ¼ M*x2

EI
�M*x2

2EI
¼ þM*x2

2EI

Specific values are

θB ¼ M*L

EI

vB ¼ M*L2

2EI

2. Concentrated Force (Fig. E3.19c)

Fig. E3.19c

The expressions for M(x), θ(x), and v(x) for a concentrated load are as follows:
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M xð Þ ¼ þP x� Lð Þ 0 � x � L

θ xð Þ ¼ 1

EI

ð x
0

M xð Þdx ¼ P

EI

x2

2
� Lx

� �

v xð Þ ¼ x

EI

ð x
0

M xð Þdx� 1

EI

ð x
0

xM xð Þdx ¼ P

EI

x3

6
� Lx2

2

� �

Specific values are

θB ¼ �PL2

2EI

vB ¼ �PL3

3EI

3. Uniform Loading (Fig. E3.19d)

Fig. E3.19d

The expressions for M(x), θ(x), and v(x) for a uniform load are as follows:

M xð Þ ¼ �wx2

2
þ wLx� wL2

2
0 � x � L

θ xð Þ ¼ 1

EI

ð x
0

M xð Þdx ¼ w

6EI
�x3 þ 3Lx2 � 3L2x
� �

v xð Þ ¼ x

EI

ð x
0

M xð Þdx� 1

EI

ð x
0

xM xð Þdx ¼ w

24EI
�x4 þ 4Lx3 � 6L2x2
� �

Specific values are

θB ¼ �wL3

6EI

vB ¼ �wL4

8EI
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Example 3.20 Deflected Shape—Simply Supported Beam

Given: The simply supported beam shown in Fig. E3.20a. Consider EI is constant.

Fig. E3.20a

Determine: The deflected shape under different load conditions.

Solution: We measure x from the left support. The displacement boundary conditions are

vA ¼ v 0ð Þ ¼ 0

vB ¼ v Lð Þ ¼ 0

θA ¼ θ 0ð Þ 6¼ 0

θB ¼ θ Lð Þ 6¼ 0

Noting the boundary conditions at x ¼ 0, the general solution (3.34) for constant EI is given by

0 � x � L

θ xð Þ ¼ θ 0ð Þ þ
ð x
0

M xð Þ
EI

dx

v xð Þ ¼ xθ 0ð Þ þ x

ð x
0

M xð Þ
EI

dx�
ð x
0

x
M xð Þ
EI

dx

We determine θ(0) using the remaining boundary condition, ν(L ) ¼ 0. Evaluating v(x) at x ¼ L
and equating the result to 0 leads to

θ 0ð Þ ¼ �
ð L
0

M xð Þ
EI

dxþ 1

L

ð L
0

x
M xð Þ
EI

dx

Various loading cases are considered below. We omit the integral details and just present the final

solutions.
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1. Concentrated Moment (Fig. E3.20b)

Fig. E3.20b

The expressions for M(x), θ(x), and v(x) for a concentrated moment are as follows:

M xð Þ ¼ M*

L
x 0 � x � L

θ xð Þ ¼ �
ð L
0

M xð Þ
EI

dxþ 1

L

ð L
0

x
M xð Þ
EI

dxþ
ð x
0

M xð Þ
EI

dx

¼ M*L

EI

x2

2L2
� 1

6

� �

v xð Þ ¼ �x
ð L
0

M xð Þ
EI

dxþ x

L

ð L
0

x
M xð Þ
EI

dxþ x

ð x
0

M xð Þ
EI

dx�
ð x
0

x
M xð Þ
EI

dx

¼ M*L2

6EI

x3

L3
� x

L

� �

Specific values are

θA ¼ �M*L

6EI

θB ¼ M*L

3EI

vmax ¼ �
ffiffiffi
3
p

27

M*L2

EI
at x ¼ Lffiffiffi

3
p � 0:58L

3.6 Displacement and Deformation of Slender Beams: Planar Loading 225



2. Concentrated Force (Fig. E3.20c)

Fig. E3.20c

The expressions for M(x), θ(x), and v(x) for a concentrated load are as follows:

M xð Þ ¼ P
L� a

L

� �
x 0 � x � a

M xð Þ ¼ Pa

L
L� xð Þ a � x � L

Segment AC 0 � x � a

θ xð Þ ¼ �
ð L
0

M xð Þ
EI

dxþ 1

L

ð L
0

x
M xð Þ
EI

dxþ
ð x
0

M xð Þ
EI

dx

¼ �PL2

EI
1� a

L

� �
�1
2

x

L

� �2
þ 1

6

a

L
2� a

L

� �
 �
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v xð Þ ¼ �x
ð L
0

M xð Þ
EI

dxþ x

L

ð L
0

x
M xð Þ
EI

dxþ x

ð x
0

M xð Þ
EI

dx�
ð x
0

x
M xð Þ
EI

dx

¼ �PL3

EI
1� a

L

� �
�1
6

x

L

� �3
þ 1

6

a

L

x

L
2� a

L

� �
 �

Segment CB a � x � L

θ xð Þ ¼ �PL2

EI

1

3
þ 1

6

a

L

� �2
� x

L
þ 1

2

x

L

� �2� �
a

L

� �

v xð Þ ¼ �PL3

EI

1

6

a

L

� �
� a

L

� �2
þ x

L
2þ a

L

� �2� �
� 3

x

L

� �2
þ x

L

� �3
 �

Specific values are

θA ¼ �
Pa 2L2 � 3aLþ a2
� �

6EIL

θB ¼ Pa

6EIL
L2 � a2
� �

vC ¼ �Pa2 L� að Þ2
3EIL

The maximum deflection occurs at the point, where θ(x) ¼ 0. This location depends on a. When

a < L/2 the peak displacement occurs in segment CB. The location reverses when a > L/2.

Special case: a ¼ L/2

θmax ¼ θB ¼ �θA ¼ PL2

16EI
θC ¼ 0

vmax ¼ � PL3

48EI
at x ¼ L

2
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3. Uniform Loading (Fig. E3.20d)

Fig. E3.20d

The expressions for M(x), θ(x), and v(x) for a uniform load are as follows:

M xð Þ ¼ �wx2

2
þ wL

2
x 0 � x � L

θ xð Þ ¼ �
ð L
0

M xð Þ
EI

dxþ 1

L

ð L
0

x
M xð Þ
EI

dxþ
ð x
0

M xð Þ
EI

dx

¼ wL3

24EI
�4 x

3

L3
þ 6

x2

L2
� 1

� �

v xð Þ ¼ �x
ð L
0

M xð Þ
EI

dxþ x

L

ð L
0

x
M xð Þ
EI

dxþ x

ð x
0

M xð Þ
EI

dx�
ð x
0

x
M xð Þ
EI

dx

¼ wL4

24EI
� x4

L4
þ 2

x3

L3
� x

L

� �

Specific values are

θA ¼ �θB ¼ � wL3

24EI

vmax ¼ � 5wL4

384EI
at x ¼ L

2

Note that the rotation is zero at mid-span since the loading and the structure are symmetrical.

For future reference, the end displacements corresponding to typical loading condition are

summarized in Table 3.1. We utilize these results in formulating the Force method to be presented

in Chap. 9.
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¼
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þ
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3.6.4 Computing Displacements with the Method of Virtual Forces

The procedures described in the previous section are intended to generate analytical solutions for the

displacement and rotation. In many cases, one is interested only in the motion measures for a

particular point. Rather than generate the complete analytical solution and then evaluate it at the

point of interest, one can apply the Method of Virtual Forces. The Method of Virtual Forces

specialized for bending of slender beams is defined in [1]. We express the principle as

d 	 δP ¼
ð
L

bendingdeformationð Þ δM xð Þð Þdx ð3:35Þ

where d is the desired displacement measure, δP is the virtual force in the direction of d, and δM(x) is

the virtual moment due to δP. The deformation due to transverse shear is not included since it is

negligible for slender beams. When the behavior is linear elastic, the bending deformation is related

to the moment by

bendingdeformation� dθ

dx
¼ M xð Þ

EI

and (3.35) takes the form

d 	 δP ¼
ð
L

M xð Þ
EI

δM xð Þdx ð3:36Þ

The steps involved in applying the principle are as follows. We use as an example, the beam shown

in Fig. 3.28. To determine a desired vertical displacement or rotation such as vA or θB, one applies the
corresponding virtual force or virtual moment in the direction of the desired displacement or rotation,

determines the virtual moment δMv(x) or δMθ(x), and then evaluates the following integrals.

vA ¼
ð
L

M xð Þ
EI

δMv xð Þdx

θB ¼
ð
L

M xð Þ
EI

δMθ xð Þdx

Fig. 3.28 Actual and

virtual loads moments. (a)
Actual load M(x). (b)
Deflected shape. (c) Virtual
load δMv for vA. (d) Virtual
load δMθ(x) for θB

3.6 Displacement and Deformation of Slender Beams: Planar Loading 231



Just as we did for truss structures in Chap. 2, one takes δP to be a unit value. We illustrate the

application of this procedure with the following examples.

Example 3.21 Deflection Computation—Method of Virtual Forces

Given: A uniformly loaded cantilever beam shown in Fig. E3.21a.

Fig. E3.21a

Determine: The vertical displacement and rotation at B. Take EI as constant.
Solution: We start by evaluating the moment distribution corresponding to the applied loading. This

is defined in Fig. E3.21b. The virtual moment distributions corresponding to vB, θB are defined in

Figs. E3.21c and E3.21d. Note that we take δP to be either a unit force (for displacement) or a unit

moment (for rotation).

Fig. E3.21b M(x)

The actual moment M(x) is

0 � x � L M xð Þ ¼ wLx� w
x2

2
� wL2

2
¼ �w

2
x� Lð Þ2

Vertical deflection at B: We apply the virtual vertical force, δP ¼ 1 at point B and compute the

corresponding virtual moment.

0 � x � L δMvB xð Þ ¼ x� L
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Fig. E3.21c δMvB xð Þ

Then, noting (3.36)

vB ¼
ð
L

M xð Þ
EI

δMvB xð Þdx ¼ 1

EI

ð L
0

�w
2
x� Lð Þ2 x� Lð Þdx

¼ 1

EI

ð L
0

�w
2
x� Lð Þ3dx

Integrating leads to

vB ¼ wL4

8EI
#

Rotation at B: We apply the virtual moment, δP ¼ 1 at point B and determine δM(x).

This loading produces a constant bending moment,

0 � x � L δMθB xð Þ ¼ �1

Fig. E3.21d δMθB xð Þ

Then, noting (3.36)

θB ¼
ð
L

M xð Þ
EI

δMθB xð Þdx ¼ 1

EI

ð L
0

�w
2

x� Lð Þ2 �1ð Þdx

Finally, one obtains

θB ¼ wL3

6EI
clockwise
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Fig. E3.21e Deflected shape

Example 3.22 Deflection Computation—Method of Virtual Forces

Given: The simply supported beam shown in Fig. E3.22a.

Fig. E3.22a

Determine: The vertical deflection and rotation at point C located at mid-span. Take EI is constant.
Solution: We start by evaluating the moment distribution corresponding to the applied loading. This

is defined in Fig. E3.22b. The virtual moment distributions corresponding to vC, θC are defined in

Figs. E3.22c and E3.22d. Note that we take δP to be either a unit force (for displacement) or a unit

moment (for rotation).

Fig. E3.22b M(x)

The actual moment is

0 < x1 < L M x1ð Þ ¼ wL

2
x1 � wx21

2

0 < x2 < L M x2ð Þ ¼ wL

2
x2 � wx22

2
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Vertical displacement at C: We apply a unit virtual load at point C and determine δM(x).

Fig. E3.22c δMνC(x)

0 < x1 <
L

2
δMvC x1ð Þ ¼ 1

2
x1

0 < x2 <
L

2
δMvC x2ð Þ ¼ 1

2
x2

Then, evaluating the integral in (3.36), we obtain

vC ¼
ð
AC

M x1ð Þ
EI

δMvC x1ð Þ
� �

dx1 þ
ð
BC

M x2ð Þ
EI

δMvC x2ð Þ
� �

dx2

¼ 1

EI

ðL=2
0

1

2
x1

� �
wLx1
2
� wx21

2

� �
dx1 þ

ðL=2
0

1

2
x2

� �
wLx2
2
� wx22

2

� �
dx2

" #

¼ 5wL4

384EI
#

Rotation at C: We apply a unit virtual moment at point C and determine δM(x).

Fig. E3.22d δMθC(x)

0 < x1 <
L

2
δMθC x1ð Þ ¼ x1

L

0 < x2 <
L

2
δMθC x2ð Þ ¼ �x2

L
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Then, evaluating the integral in (3.36), we obtain

θC ¼
ð
AC

M x1ð Þ
EI

δMθC x1ð Þ
� �

dx1 þ
ð
BC

M x2ð Þ
EI

δMθC x2ð Þ
� �

dx2

¼ 1

EI

ðL=2
0

x1
L

� � wLx1
2
� wx21

2

� �
dx1 þ

ðL=2
0

�x2
L

� � wLx2
2
� wx22

2

� �
dx2

( )
¼ 0

Fig. E3.22e Deflected shape

Example 3.23 Deflection Computation—Method of Virtual Forces

Given: The beam shown in Fig. E3.23a.

Fig. E3.23a

Determine: Use the virtual force method to determine the vertical deflection and rotation at C. E

¼ 29,000 ksi and I ¼ 300 in.4

Solution: We start by evaluating the moment distribution corresponding to the applied loading. We

divide up the structure into two segments AB and CB.

Fig. E3.23b M(x)

0 < x1 < 30 M x1ð Þ ¼ 11:67x1 � x21
2

0 < x2 < 10 M x2ð Þ ¼ �10x2
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Vertical deflection at C: We apply a unit virtual load at point C and determine δM(x).

Fig. E3.23c δMνC(x)

0 < x1 < 30 δMvC x1ð Þ ¼ �x1
3

0 < x2 < 10 δMvC x2ð Þ ¼ �x2
Then, noting (3.36), we divide up the structure into two segments AB and CB and integrate over

each segment. The total integral is given by

vC ¼
ð
AB

M x1ð Þ
EI

δMvC x1ð Þ
� �

dx1 þ
ð
CB

M x2ð Þ
EI

δMvC x2ð Þ
� �

dx2

¼ 1

EI

ð30
0

11:67x1 � x1
2

2

� �
�x1
3

� �
dx1 þ 1

EI

ð10
0

�10x2ð Þ �x2ð Þdx2

¼ þ 2073:33kip ft3

EI
¼ 2073:33 12ð Þ3

29, 000 300ð Þ ¼ þ0:41 in:

The positive sign indicates that the vertical displacement is in the direction of the unit load.

∴vC ¼ 0:41 in: #

Rotation at C: We apply a unit virtual moment at point C and determine δM(x).

Fig. E3.23d δMθC(x)

0 < x1 < 30 δMθC xð Þ ¼ �x1
30

0 < x2 < 10 δMθC xð Þ ¼ �1
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Then, noting (3.36)

θC ¼
ð
AB

M xð Þ
EI

δMθC xð Þ
� �

dx1 þ
ð
CB

M xð Þ
EI

δMθC xð Þ
� �

dx2

¼ 1

EI

ð30
0

11:67x1 � x21
2

� �
�x1
30

� �
dx1 þ 1

EI

ð10
0

�10x2ð Þ �1ð Þdx2

¼ 374kip ft2

EI
¼ 374 12ð Þ2

29, 000 300ð Þ ¼ þ0:0063rad

The positive sign indicates that the rotation is in the direction of the unit moment.

∴θC ¼ 0:0063radclockwise

Fig. E3.23e Deflected shape

Example 3.24 Deflection Computation—Method of Virtual Forces

Given: The beam shown in Fig. E3.24a.

Fig. E3.24a

Determine: Use the virtual force method to determine the vertical deflection at F, rotation at B, and

rotation at D. Assume E ¼ 200 GPa and I ¼ 120(10)6 mm4.
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Solution: We start by evaluating the moment distribution corresponding to the applied loading.

Fig. E3.24b M(x)

0 < x1 < 8 M x1ð Þ ¼ �15x21 þ 139x1 � 20 x1 þ 2ð Þ ¼ �15x21 þ 119x1 � 40

0 < x2 < 8 M x2ð Þ ¼ �15x22 þ 137x2 � 16 x2 þ 3ð Þ ¼ �15x22 þ 121x2 � 48

0 < x3 < 3 M x3ð Þ ¼ �16x3

Vertical deflection at F: We apply a unit virtual load at point F and determine δM.

Fig. E3.24c δMνF xð Þ

0 < x1 < 4 δMvF x1ð Þ ¼ 1

2
x1

0 < x2 < 4 δMvF x2ð Þ ¼ 1

2
x2

Then, noting (3.36)

vF ¼
ð
BF

M x1ð Þ
EI

δMvF x1ð Þ
� �

dx1 þ
ð
CF

M x2ð Þ
EI

δMvF x2ð Þ
� �

dx2

¼ 1

EI

ð4
0

�15x21 þ 119x1 � 40
� � x1

2

� �
dx1 þ

ð4
0

�15x22 þ 121x2 � 48
� � x2

2

� �
dx2


 �

¼ 1248kNm3

EI
¼ 1248 10ð Þ9

200 120ð Þ 10ð Þ6 ¼ 52mm
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The positive sign indicates that the vertical displacement is in the direction of the unit load.

∴ vF ¼ 52mm #
Rotation at B: We apply a unit moment at point B and determine δM(x).

Fig. E3.24d δMθB xð Þ

0 < x2 < 8 δMθB x2ð Þ ¼ 1

8
x2

Then, noting (3.36)

θB ¼
ð
CB

M x2ð Þ
EI

δMθB x2ð Þdx2 ¼ 1

EI

ð8
0

�15x22 þ 121x2 � 48
� � x2

8

� �
dx2

¼ 469:3kNm2

EI
¼ 469:3 10ð Þ6

200 120ð Þ 10ð Þ6 ¼ þ0:0195rad

The positive sign indicates that the rotation is in the direction of the unit moment.

∴θB ¼ 0:0195radclockwise

Rotation at D: We apply a unit moment at point D and determine δM(x).

Fig. E3.24e δMθD xð Þ

0 < x1 < 8 δMθD x1ð Þ ¼ 1

8
x1

0 < x3 < 3 δMθD x3ð Þ ¼ 1
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Then, noting (3.36)

θD ¼
ð
BC

M x1ð Þ
EI

δMθD x1ð Þdx1 þ
ð
DC

M x3ð Þ
EI

δMθD x3ð Þdx3

¼ 1

EI

ð8
0

�15x21 þ 119x1 � 40
� � x1

8

� �
dx1 þ 1

EI

ð3
0

�16x3ð Þ 1ð Þdx3

¼ þ 386:7kNm2

EI
¼ 386:7 10ð Þ6

200 120ð Þ 10ð Þ6 ¼ 0:016rad

The positive sign indicates that the rotation is in the direction of the unit moment.

∴θD ¼ 0:016radcounterclockwise

Fig. E3.24f Deflected shape

3.6.5 Computing Displacements for Non-prismatic Members

When the member is non-prismatic, I is a function of x and it may be difficult to obtain a closed form

solution for the integral involving 1/I. In this case, one can employ a numerical integration scheme. In

what follows, we describe a numerical integration procedure which can be easily programmed.

Consider the problem of evaluating the following integral

J ¼
ðxB
xA

f xð Þdx ð3:37Þ

We divide the total interval into n equal segments of length h

h ¼ xB � xA
n

ð3:38Þ

and denote the values of x and f at the equally spaced points as

x1, x2, x3, . . . , xnþ1
f 1, f 2, f 3, . . . , f nþ1

This notation is illustrated in Fig. 3.29.
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The simplest approach is based on approximating the actual curve of f(x) with a set of straight lines

connecting ( fn, fn+1), ( fn+1, fn+2), etc. as shown in Fig. 3.30.

The incremental area between xn and xn+1 is approximated as

ΔJn,nþ1 ¼
ðxnþ1
xn

f xð Þdx � h

2
f n þ f nþ1
� � ð3:39Þ

Also, the area between x1 and xn is expressed as

Jn ¼
ðxn
x1

f xð Þdx ð3:40Þ

Starting with J1 ¼ 0, one generates successive areas with

J2 ¼ J1 þ ΔJ1,2 ¼ ΔJ1,2
J3 ¼ J2 þ ΔJ2,3

⋮
Jn ¼ Jn�1 þ ΔJn�1,n
Jnþ1 ¼ Jn þ ΔJn,nþ1

ð3:41Þ

Fig. 3.29 Piecewise

function approximation

Fig. 3.30 Notation
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The total integral, Jn+1 expands to

Jnþ1 ¼
ðxnþ1
x1

f xð Þdx � h
1

2
f 1 þ f nþ1
� �þX n

j¼2f j


 �
ð3:42Þ

Equation (3.42) is known as the “Trapezoidal” Rule. One uses (3.41) to evaluate the intermediate

integrals when applying the Moment Area Theorems such as (3.33) and (3.34). Equation (3.42) is also

used with the Virtual Force Method.

We illustrate the application of this approach defined by (3.36) to the beam defined in Fig. 3.31.

Suppose the vertical displacement at point Q is desired. GivenM(x) and I(x), we subdivide the X-axis
into n equal intervals and evaluate M/I and δM(x) at each point.

h ¼ L

n

xk ¼ k � 1ð Þh k ¼ 1, 2, . . . , nþ 1

δM xkð Þ ¼ 1� xQ
L

� �
xk x < xQ

δM xkð Þ ¼ L� xkð ÞxQ
L

x > xQ

Lastly, we take f ¼ M
I

� �
δM in (3.42) and evaluate the summation. The choice of h depends on the

“smoothness” of the functionM/I; a typical value is L/20. One can assess the accuracy by refining the

initial choice for h and comparing the corresponding values of the integral.

Suppose the deflection at x ¼ L/2 is desired. The virtual moment for this case is

δM xð Þ ¼ 1� 1

2

� �
xk ¼ 1

2
xk for xk <

L

2

δM xð Þ ¼ L� xkð Þ1
2

for xk >
L

2
:

8>><
>>:

We also suppose the loading is uniform and the variation of I is given by

I ¼ I0 1þ 4
x

L
� x

L

� �2
 �
 �

where I0 is constant.

Fig. 3.31 Moment distribution
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The corresponding moment is

M ¼ wL

2
x� wx2

2
¼ wL2

8
4

x

L
� x

L

� �2
 �
 �

Substituting for M, δM, and I, the virtual force expression for the displacement takes the form

v x ¼ L

2

� �
¼ wL4

8EI0

ð1
0

4 x
L� x

L

� �2h i
δM
L

1þ 4 x
L� x

L

� �2h i
8<
:

9=
;d

x

L

� �
¼ wL4

8EI0
α

where α is a dimensionless coefficient that depends on the interval size.

We subdivide the interval 0–1 into n such intervals. Applying Equation (3.42) and taking a range

of values for n leads to

n ¼ 10 α ¼ 0:065
n ¼ 20 α ¼ 0:0559
n ¼ 30 α ¼ 0:0559

We note that taking n ¼ 20 is sufficiently accurate. We used MATLAB [2] to program the computa-

tion associated with Equation (3.42).

3.7 Deformation–Displacement Relations for Deep Beams: Planar Loading

When the depth to span ratio is greater than 0.1, the theory presented in Sect. 3.6, which is based on

Kirchhoff’s hypothesis, needs to be modified to include the transverse shear deformation. Figure 3.32

illustrates this case: the cross-section remains a plane but is no longer normal to the centroidal axis.

Defining β as the rotation of the cross-section, and γ as the transverse shear strain, it follows that

γ ¼ θ � β � dv

dx
� β ð3:43Þ

The extensional strain now involves β rather than θ.

ε yð Þ ¼ �y dβ
dx

ð3:44Þ

Expressions for the internal force variables, V and M, in terms of the deformation measures are

derived in a similar way as followed in Sect. 3.6.1. We express them as:

244 3 Statically Determinate Beams



M ¼ EI
dβ

dx
V ¼ GAsγ

ð3:45Þ

where G is the material shear modulus and As is the effective shear area, i.e., the cross-sectional area

over which the shear stress is essentially uniformly distributed. For an I shape steel section, As is taken

as the web area.

Given M and V, one first determines β by integrating between two points, xA and x

β xð Þ � β xAð Þ ¼
ð x
xA

M

EI
dx ð3:46Þ

If A is a fixed support, β(xA) ¼ 0. Once β is known, we find v by integrating

dv

dx
¼ β þ V

GAs

This leads to

v xð Þ � v xAð Þ ¼
ð x
xA

β þ V

GAs

� �
dx ð3:47Þ

In general, two boundary conditions are required to specify the two integration constants.

For example, consider the structure and loading defined in Fig. 3.33.

Fig. 3.32 Deformation

with transverse shear

deformation

Fig. 3.33 Cantilever beam

3.7 Deformation–Displacement Relations for Deep Beams: Planar Loading 245



The transverse shear force and moment expressions are

V xð Þ ¼ �w L� xð Þ
M xð Þ ¼ �w

2
L� xð Þ2

Point A is a fixed support. Then, β xAð Þ ¼ v xAð Þ ¼ 0. Noting (3.46),

β ¼
ð x
0

� w

2EI
L� xð Þ2dx

+
β ¼ w

6EI
L� xð Þ3 � w

6EI
L3

Substituting for β in (3.47) leads to

v xð Þ ¼ w
2GAs

L� xð Þ2
h i x

0
þ � w

24EI L� xð Þ4 � w
6EIL

3x
h i x

0

¼ w

2GAs

L� xð Þ2 � L2
� �

þ w

6EI
�1
4
L� xð Þ4 � L3xþ L4

4

� � ð3:48Þ

Specializing for x ¼ L, the end displacement is equal to

þ " v Lð Þ ¼ �wL4

8EI
1þ 4EI

GAsL
2

� �

The effect of shear deformation is to “increase” the displacement by a dimensionless factor which

is proportioned to the ratio EI/GAsL
2. This factor is usually small with respect to 1 for a homogeneous

cross-section. It may be large for composite beams that have a “soft” core, i.e., where G 
 E.

Rather than work with the deformation–displacement results, one can apply an extended form of

the Principle of Virtual Forces. We add the shear deformation term to the integral and also introduce

the virtual shear force δV. Then, (3.36) expands to

d 	 δP ¼
ð
L

M xð Þ
EI

δM xð Þ þ V xð Þ
GAs

δV xð Þ
� �

dx ð3:49Þ

The steps involved are the same as for slender beams. One now has to determine δV as well as δM
for a given δP. Revisiting the previous example defined in Fig. 3.33, we compute v(L). The details are
as follows.

δV xð Þ ¼ �1
δM xð Þ ¼ � L� xð Þ
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þ # v Lð Þ ¼
ð L
0

w

2EI
L� xð Þ2 L� xð Þdxþ

ð L
0

�w
GAs

L� xð Þ �1ð Þdx

¼ �w
8EI L� xð Þ4
h iL

0
þ � w

2GAs
L� xð Þ2

h iL
0

¼ w

8EI
L4 þ w

2GAs

L2

Applying the Principle of Virtual Forces for this example involves less algebra than required for

integration.

3.8 Torsion of Prismatic Members

Consider the prismatic member shown in Fig. 3.34. Up to this point, we have assumed the line of

action of the external loading passes through the centroidal axis, and consequently the member just

bends in the X � Y plane. This assumption is not always true, and there are cases where the loading

may have some eccentricity with respect to the X-axis. When this occurs, the member twists about the

X-axis as well as bends in the X � Y plane.

We deal with an eccentric load by translating its line of action to pass through the X-axis. This

process produces a torsional moment about X as illustrated in Fig. 3.34.

The torsional moment is resisted by shearing stresses acting in the plane of the cross-section,

resulting in shear strain and ultimately rotation of the cross-section about the X-axis. Mechanics of

Solids texts such as [1] present a detailed theory of torsion of prismatic members so we just list the

resultant equations here. First, we introduce the following notation listed in Fig. 3.35

Fig. 3.34 Prismatic

member—eccentric load
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Mt ¼ moment vector about the X-axis (positive sense from Y toward Z )
βt ¼ rotational vector about the X-axis

mt ¼ distributed external torsional moment loading

J ¼ torsional cross-sectional property (similar to I for plane bending)

The differential equation of equilibrium for torsion has the form

dMt

dx
þ mt ¼ 0 ð3:50Þ

One needs to restrain the member at one point for stability. A free end has Mt ¼ 0. Given Mt, one

determines the rotation with

Mt ¼ GJ
dβt
dx

ð3:51Þ

Note the similarity between the expression for bending and twisting. We find βt by integrating (3.51).

βt xð Þ � βt xAð Þ ¼
ð x
xA

Mt

GJ
dx ð3:52Þ

Aboundary condition on βt is required to determine βt(x). Typical boundary conditions are illustrated below.

The principle of Virtual Forces can be extended to deal with combined bending and twisting by

adding the twist deformation term to the integration. The general expression which includes all

deformation terms is

d δPA ¼
ð
L

M

EI
δM þ V

GAs

δV þ Mt

GJ
δMt

� �
dx ð3:53Þ

where δMt is the virtual torsional moment.

Fig. 3.35 Notation
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When bending and twisting are coupled because of eccentric loading, it is convenient to solve the

bending and twisting problems separately, and then combine the solutions.

In what follows, we illustrate this approach.

The eccentric load shown in Fig. 3.36 produces the distributed torsional loading equal to we, and

the planar loading w. Noting (3.50), the torsional moment is

Mt ¼ we L� xð Þ
We determine the twist with (3.52). The left end is fixed, so βt(0) ¼ 0. Then,

βt xð Þ ¼
ð x
0

1

GJ
we L� xð Þ½ � ¼ � we

2GJ
L� xð Þ2

����
x

0

βt xð Þ ¼
we

2GJ
2Lx� x2
� �

The solution for plane bending is generated with (3.22)

dθ

dx
¼ � w

2EI
L� xð Þ2

θ xð Þ ¼ w
6EI L� xð Þ3
h i x

0
¼ w

6EI
L� xð Þ3 � wL3

6EI

v xð Þ ¼ � w
24EI L� xð Þ4 � wL3x

6EI

h i x
0
¼ w

6EI
�1
4
L� xð Þ4 � L3xþ L4

4


 �

The solution for a cantilever beam subjected to a concentrated torsional moment at the free end is

needed later when we deal with plane grids.

Noting Fig. 3.37, the torsional moment is constant,

Mt ¼ M*

and the twist angle varies linearly with x

βt ¼
M*

GJ
x ð3:54Þ

Fig. 3.36 Eccentrically loaded member
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3.9 Symmetry and Anti-symmetry

3.9.1 Symmetry and Anti-symmetry: Shear and Moment Diagrams

This section discusses the relationship between certain properties of the shear and moment diagrams

and the nature of the loading distribution and support locations. We first introduce some background

material on symmetrical and anti-symmetrical functions.

Consider the function f(x) shown in Fig. 3.38. We say the function is symmetrical with respect to

x ¼ 0 when f(�x) ¼ f(x) and anti-symmetrical when f(�x) ¼ �f(x). Symmetrical functions have

df/dx ¼ 0 at x ¼ 0. Anti-symmetrical functions have f ¼ 0 at x ¼ 0. One can establish that the

derivative of a symmetrical function is an anti-symmetrical function. Similarly, the derivative of an

anti-symmetrical function is a symmetrical function. If we know that a function is either symmetrical

or anti-symmetrical, then we have to generate only one-half the distribution. The shape of the other

half follows by definition of the symmetry properties.

Fig. 3.38 Symmetry and anti-symmetry properties

Fig. 3.37 Pure torsion
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Starting with the basic differential equations relating the shear, moment, and applied distributed

loadings:

dV

dx
¼ w

dM

dx
¼ �V

dMt

dx
þ mt ¼ 0

we can deduce the following properties for V, M, and Mt, given the nature of the loading

1: w is a symmetrical function

� V is anti‐symmetrical

� M is symmetrical

2: w is ananti‐symmetrical function

� V is symmetrical

� M is anti‐symmetrical

3: mt is a symmetrical function

� Mt is anti‐symmetrical

4: mt is ananti‐symmetrical function

� Mt is symmetrical

ð3:55Þ

The following cases illustrate these rules.

Symmetrical—planar loading:

Case (a) (Fig. 3.39):
Case (b) (Fig. 3.40):

Note that the center section is in pure bending, i.e., the shear force is zero. This loading scheme is

used to test beams in bending

Anti-symmetry—planar loading:

Case (a) (Fig. 3.41):

Case (b) (Fig. 3.42):
We use the concept of symmetry to represent an arbitrary loading as a superposition of symmetri-

cal and anti-symmetrical loadings. Then, we generate the individual shear and moment diagrams and

combine them. As an illustration, consider a simply supported beam with a single concentrated force

shown in Fig. 3.43a. We replace it with two sets of forces, one symmetrical and the other anti-

symmetrical, as shown in Fig. 3.43b. Then, we use the results shown in Figs. 3.40 and 3.42 to

construct the shear and moment diagrams.
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Fig. 3.40 Symmetrical

2-point loading

Fig. 3.39 Symmetrical

uniform loading

252 3 Statically Determinate Beams



Fig. 3.41 Anti-

symmetrical uniform

loading

Fig. 3.42 Anti-

symmetrical 2-point

loading



3.9.2 Symmetry and Anti-symmetry: Deflected Shapes

A structure is said to be geometrically symmetrical with respect to a particular axis when, if one

rotates the portion either to the right or to the left of the axis through 180�, it coincides identically with
the other portion. Figure 3.44 illustrates this definition. If we rotate A-B about axis 1-1, it ends up

exactly on A-C. A mathematical definition of geometric symmetry can be stated as follows: for every

point having coordinates X, Y, there exists a corresponding point with coordinates �X, Y.
In addition to geometric symmetry, we also introduce the concept of support symmetry. The

supports must be located symmetrically with respect to the axis of geometric symmetry and be of the

same nature, e.g., vertical, horizontal, and rotational constraints. Consider Fig. 3.45. There are four

vertical restraints at points A, B, C, and D. The geometric symmetry axis, 1-1, passes through

mid-span. For complete symmetry, the pin support at point D needs to be shifted to the end of the

span. Another example is shown in Fig. 3.46.

Fig. 3.43 Representation

of an arbitrary loading by

superposition. (a) Single
concentrated load. (b) Set
of symmetrical loads. (c)
Set of anti-symmetrical

loads
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Fig. 3.44 Geometric

symmetry

Fig. 3.45 Unsymmetrical

support

Fig. 3.46 Support

symmetry examples



We say a structure is symmetrical when it has both geometric and support symmetry. The

symmetry property is very useful since it leads to the following conclusions:

When a symmetrical structure is loaded symmetrically, the resulting deflected shape is also
symmetrical. Similarly, a symmetrical structure loaded anti-symmetrically has an anti-symmetric

deflected shape.

These conclusions follow from the differential equations listed below and the properties of

symmetrical and anti-symmetrical functions:

dV

dx
¼ w

dM

dx
¼ �V

dMt

dx
þ mt ¼ 0

dβ

dx
¼ M

EI
dV

dx
¼ β þ V

GJ
dβt
dx
¼ Mt

GJ

ð3:56Þ

If f(x) is symmetrical, df/dx is anti-symmetrical; if f(x) is anti-symmetrical, df/dx is symmetrical.

Using these properties, we construct the following table relating the response variables to the

loading for a symmetrical structure (Table 3.2).

We have placed a lot of emphasis here on symmetry because it is useful for qualitative reasoning.

It also allows us to work with only one-half the structure provided that we introduce appropriate

boundary conditions on the axis of symmetry. The boundary conditions for the symmetrical case

follow from the fact that V, β, and Mt are anti-symmetric functions and therefore vanish at the

Table 3.2 Loading response relationships—

symmetrical structure
Loading Response variables

w symmetrical V anti-symmetrical

M symmetrical

β anti-symmetrical

v symmetrical

w anti-symmetrical V symmetric

M anti-symmetrical

β symmetrical

v anti-symmetrical

mt symmetrical Mt anti-symmetrical

βt symmetrical

mt anti-symmetrical Mt symmetrical

βt anti-symmetrical

Fig. 3.47 Symmetrical

boundary conditions on a

symmetry axis
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symmetry axis. We introduce a new support symbol shown in Fig. 3.47, which represents these

conditions. The roller support releases V and Mt; the rigid end plate eliminates β.
For example, consider the symmetrically loaded simply supported beam shown in Fig. 3.48a. We

can work with either the left or right segment. We choose to work with the left segment, with an

appropriate support at c on the axis of symmetry. The displacement boundary conditions for this

segment are

va ¼ 0, θa 6¼ 0

vc 6¼ 0, θc ¼ 0

The solution generated with this segment also applies for the other segment (the right portion).

When the loading is anti-symmetrical, the bending moment and displacement are also anti-

symmetric functions which vanish at the symmetry axis. For this case, the appropriate support on

the axis of symmetry is a roller support. We replace the full beam with the segments shown in

Fig. 3.49b, c. We analyze the left segment, and then reverse the sense of the response variables for the

other segment.

Fig. 3.48 Boundary conditions on symmetry axis—symmetrical planar loading. (a) Symmetrical load. (b) Left

segment. (c) Right segment
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3.10 Influence Lines and Force Envelopes for Statically Determinate Beams

3.10.1 The Engineering Process

The Force envelopesInfluence linesobjective of the engineering process is to define the physical

makeup of the beam, i.e., the material, the shape of the cross-section, and special cross-section

features such as steel reinforcement in the case of a reinforced concrete beam. Cross-sectional

properties are governed by the strength of the material and constraints associated with the specific

design codes recommended for the different structural materials such as concrete, steel, and wood.

Given the maximum values of shear and moment at a particular location, the choice of material, and

the general shape of the cross-section, the determination of the specific cross-sectional dimensions at

that location involves applying numerical procedures specific to the associated design code. This

computational aspect of the engineering process is called design detailing. There are an extensive set

of computer-aided design tools available for design detailing. Therefore, we focus here mainly on that

aspect of the engineering process associated with the determination of the “maximum” values of

shear and moment for statically determinate beams. Parts II and III extend the discussion to statically
indeterminate structures.

Shear and bending moment result when an external loading is applied to a beam. We described in

Sect. 3.4 how one can establish the shear and moment distributions corresponding to a given loading.

For statically determinate beams, the internal forces depend only on the external loading and

geometry; they are independent of the cross-sectional properties. Now, the loading consists of two

contributions: dead and live. The dead loading is fixed, i.e., its magnitude and spatial distribution are

Fig. 3.49 Bending conditions on symmetry axis—anti-symmetrical planar loading. (a) Anti-symmetrical planar load.

(b) Left segment. (c) Right segment
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constant over time. Live loading is, by definition, time varying over the life of the structure. This

variability creates a problem when one is trying to establish the maximum values of shear and

moment needed to dimension the cross-section. If the cross-section is allowed to vary, one needs the

absolute maximum positive and negative values at discrete points along the axis. This information is

essential for reinforced concrete beams in order to specify the steel reinforcement.

3.10.2 Influence Lines and Force Envelopes

In what follows, we describe two approaches for treating live loadings. In the first approach, we select

a particular location on the longitudinal axis, and determine analytically how the internal forces

(shear and moment) vary as the live load is positioned at different points along the span. The analysis

is usually carried out for a single concentrated load, and the force magnitude is plotted vs. the load

location along the span. This plot is referred to as an influence line, and allows one to easily identify

the position of the live load which produces the maximum value of the force quantity at the particular

section on the span. By scanning the influence line plot, one can establish the absolute maximum and

minimum value for this particular section. This information is sufficient for detailed design of the

cross-section at that location.

However, in order to dimension the complete beam, one also needs similar information at other

locations along the beam. This data is generated by repeating the influence line process at discrete

points along the span, and determining the absolute max/min values from the corresponding influence

lines. The results (positive and negative values) are plotted at each discrete point. Plots of this type are

called force envelopes. Given the force envelope, one can readily establish the design force require-

ment at an arbitrary discrete point.

It is important to distinguish between influence lines and force envelopes. An influence line

provides information about forces at a particular section due to live loading passing along the span.

A force envelope presents information about the extreme force values at discrete points along the

span due to live loading passing along the span. Constructing a force envelope based on n discrete

points along the span requires n separate analyses. Most commercial civil structural software has the

ability to generate force envelope for various live load configurations.

Consider the simply supported beam shown in Fig. 3.50a. Suppose the influence line for the

positive moment at A is desired. We apply force P at location x, and evaluate the moment at A. This

quantity is a function of x.

MA ¼ PL 1� xA
L

� �x
L

for x < xA

MA ¼ PL 1� x

L

� �xA
L

for x > xA

ð3:57Þ

Letting x range from 0 to L leads to the plot shown in Fig. 3.50c. The maximum value ofMA occurs

when the load is acting at point A.

MA

PL

����
����
max

¼ 1� xA
L

� �xA
L

This value provides input for the moment envelope. We repeat the computation taking different

points such as xA, xB, and xc. The conventional way of representing this data is to show the discrete

points along the span and list the corresponding absolute values at each point. Figure 3.50d illustrates

this approach.
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Fig. 3.50 (a) Beam. (b) Loading patterns – Concentrated load P at x < xA and x > xA. (c) Moment diagram.

(d) Different load patterns. (e) Moment diagram. (f) Shear diagrams for concentrated load P at x < xA and x > xA.
(g) Influence line for shear at location xA. (h) Maximum and minimum shear. (i) Shear force envelope
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Location Maximum positive moment

xA PL 1� xA
L

� �
xA
L ¼ M*

A

: :

xB PL 1� xB
L

� �
xB
L ¼ M*

B

: :

xc PL 1� xC
L

� �
xC
L ¼ M*

C

One selects a sufficient number of points so that the local extremities are identified. The limiting

form of the force envelope based on many points is a parabola.

We proceed in a similar manner to establish the influence line and force envelope for the shear

force. The shear diagram for a single concentrated force applied at x is shown in Fig. 3.50f.

Fig. 3.50 (continued)
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Suppose we want the influence line for the shear at location xA. Noting Fig. 3.50f, the shear force at
xA for the different positions of the load is

x < xA V
��
A ¼ þPx

L

x > xA V
��
A ¼ �P 1� x

L

� � ð3:58Þ

These functions are plotted in Fig. 3.50g. At point xA, there is a discontinuity in the magnitude of

V equal to P and a reversal in the sense. This behavior is characteristic of concentrated forces.

To construct the force envelope, we note that maximum and minimum values of shear at

point A are

VA

P

� �
max
¼ þxA

L

VA

P

� �
min
¼ � 1� xA

L

� �
These values are plotted on the span at point A (Fig. 3.50h).

Repeating the process for different points, one obtains the force envelope shown in Fig. 3.50i.

Example 3.25 Construction of Influence Lines

Given: The beam shown in Fig. E3.25a.

Fig. E3.25a

Determine: The influence lines for the vertical reactions at B and C, moment at section 2-2, and the

moment and shear forces at section 1-1. Suppose a uniformly distributed live load of wL ¼ 1.2 kip/ft

and uniformly distributed dead load of wD ¼ 0.75 kip/ft are placed on the beam. Using these results,

determine the maximum value of the vertical reaction at B and the maximum and minimum values of

moment at section 2-2.

Solution: Note that the influence lines are linear because the equilibrium equations are linear in the

position variable (see Fig. E3.25b).
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Fig. E3.25b

3.10 Influence Lines and Force Envelopes for Statically Determinate Beams 263



The influence lines corresponding to the force quantities of interest are plotted in Fig. E3.25c.

Fig. E3.25c Influence lines for RB, RC, V1-1, M2-2, and M1-1
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Then, the peak value of RB is determined using data shown in Fig. E3.25d.

Fig. E3.25d Maximum and minimum values of RB

RBmax
¼ 1:2 15:125ð Þ þ 0:75 15:125� 2ð Þ ¼ 28kip

Similarly, the peak values of moment at section 2-2 are generated using the data shown in

Fig. E3.25e.
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Fig. E3.25e

Mmax at 2‐2 ¼ 1:2 32ð Þ þ 0:75 32� 9� 16ð Þ ¼ 43:65kip ft

Mmin at 2‐2 ¼ 1:2 �9� 16ð Þ þ 0:75 32� 9� 16ð Þ ¼ �24:75kip ft



Example 3.26

Given: The two-span beam shown in Fig. E3.26a. There is a hinge (moment release) at the midpoint

of the second span.

Fig. E3.26a

Determine: The influence line for the bending moment at E and the moment force envelope.

Solution: We consider a unit vertical load moving across the span and use the free body diagrams to

determine the moment diagrams. Figure E3.26b shows that the reaction at D equals zero when the

load is acting on member ABC.

RB ¼ x

L
RA ¼ 1� x

L

for 0 < x < 1:5L
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Fig. E3.26b

The behavior changes when the loading passes to member CD. Now there is a reaction at D which

releases some of the load on member ABC.

RD ¼ 2 �1:5þ x

L

� �
RB ¼ 3 2� x

L

� �
RA ¼ x

L
� 2

� � for 1:5L < x < 2L
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The moment distribution corresponding to these loading cases are plotted in Fig. E3.26c.

Fig. E3.26c

We note that the moment at E is positive when the load is on span AB, and switches to a negative

value when the load moves on to span BCD. The influence line for the bending moment at E is plotted

in Fig. E3.26d.

Fig. E3.26d

The moment force envelope is constructed using Fig. E3.26c. Span AB has both positive and

negative components; span BC has a negative component; and span CD has a positive component.

These segments are plotted in Fig. E3.26e.
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Fig. E3.26e

Example 3.27 Cantilever Construction-Concentrated Loading

Given: The three-span symmetrical scheme shown in Fig. E3.27a. There are two moment releases

located symmetrically with respect to the centerline of the center span. This structure is statically

determinate: Member cd functions as a simply supported member; segments bc and de act as

cantilevers in providing support for member cd. The structural arrangement is called cantilever

construction and is used for spanning distances which are too large for a single span or a combination

of two spans.

Determine: A method for selecting L1 and the location of the moment releases corresponding to a

concentrated live loading P for a given length, given LT.
Solution: The optimal geometric arrangement is determined by equating the maximum moments in

the different spans. Given the total crossing length, LT, one generates a conceptual design by selecting

L1, and α which defines the location of the hinges. The remaining steps are straightforward. One

applies the design loading, determines the maximum moments for each beam segment, and designs

the corresponding cross-sections. The local topography may control where the interior supports may

be located. We assume here that we are not constrained in choosing L1 and describe below how one

can utilize moment diagrams to arrive at an optimal choice for L1 and α.
We consider the design load to be a single concentrated force that can act on any span. The

approach that we follow is to move the load across the total span and generate a sequence of moment

diagrams. This calculation provides information on the location of the load that generates the

maximum moment for each span.
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Fig. E3.27a

When the load is on ab, member ab functions as a simply supported beam, and we know from the

previous example that the critical location is at mid-span. As the load moves from b to c, bc acts like a

cantilever, and the critical location is point c. Lastly, applying the load at the midpoint of c, d

produces the maximum moment for cd. Since the structure is symmetrical, we need to move the load

over only one-half the span. Moment diagrams for these cases are shown in Figs. E3.327b, E3.327c,

and E3.327d.

Fig. E3.27b Moment diagram—load on member AB
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Fig. E3.27c Moment diagram—load on member BC

Fig. E3.27d Moment diagram—load on member CD Based on these analyses, the design moments for the

individual spans are

Mjab ¼
PL1
4

Mjfe ¼ Mjab
Mjbc ¼ PαL2 Mjed ¼ Mjbc

Mjcd ¼
PL2 1� 2αð Þ

4

Mb ¼ P

2
αL2 Me ¼ Mb

From a constructability perspective, a constant cross-section throughout the total span is desirable.

This goal is achieved by equating the design moments and leads to values for L1 and α. Starting with
M|bc ¼ M|cd, one obtains
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PαL2 ¼ PL2 1� 2αð Þ
4+

α ¼ 1� 2αð Þ
4

+ α ¼ 1

6

Next, we equate M|ab and M|bc, resulting in

PL1
4
¼ PαL2
+

L1 ¼ 2

3
L2

The “optimal” center span is

2L1 þ L2 ¼ LT
+

L2 ¼ 3

7
LT ¼ 0:429LT

If the interior supports can be located such that these span lengths can be realized, the design is

optimal for this particular design loading. We want to emphasize here that analysis is useful for

gaining insight about behavior, which provides the basis for rational design. One could have solved

this problem by iterating through various geometries, i.e., assuming values for α and L1, but the

strategy described above is a better structural engineering approach.

Example 3.28 Cantilever Construction—Uniform Design Loading

Given: The three-span symmetrical structure shown in Fig. E3.28a.

Fig. E3.28a

Determine: The optimal values of L1 and α corresponding to a uniform live loading w.
Solution: Using the results of the previous example, first, we establish the influence lines for the

moment at mid-span of ab (M1-1), at point b (Mb), and at mid-span of member cd (M2-2). They are

plotted in Fig. E3.28b.
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Fig. E3.28b Influence lines

We suppose that the uniformly distributed loading can be applied on an arbitrary segment of a

span. We start with the side span, ab. Based on the influence line, we load span ab (Fig. E3.28c).

Next, we load the center span. Loading the segment bcd produces the maximum values forMb and

Mcd (Fig. E3.28d). The third option is to load the center span (Fig. E3.28e).

The peak values for these loading schemes are

Mab ¼ wL21
8

Mcd ¼ wL22
8

1� 2αð Þ2

Mbc ¼ wL22
2

α2 þ α 1� 2αð Þ� �
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Fig. E3.28c Moment diagram

Fig. E3.28d Moment diagram

Fig. E3.28e Moment diagram

The remaining steps are the same as for the previous example. We want to use a constant cross-

section for the total span and therefore equate the design moments. This step results in values for α
and L1.
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Setting Mbc ¼ Mcd results in

1

8
1� 2αð Þ2 ¼ α2 þ α 1� 2αð Þ� �

8α2 � 8αþ 1 ¼ 0 + α ¼ 1

2
1�

ffiffiffi
2
p

2

� �
¼ 0:147

Setting Mab ¼ Mcd leads to

wL21
8
¼ wL22

8
1� 2að Þ2 ¼ wL22

8

ffiffiffi
2
p

2

� �2

∴L1 ¼
ffiffiffi
2
p

2

L2 ¼ 0:707L2

Lastly, L2 is related to the total span by

2L1 þ L2 ¼ LT
+

1þ ffiffiffi
2
p� �

L2 ¼ LT
+

L2 ¼ 0:414LT

These results are close to the values based on using a single concentrated load.

Examples 3.27 and 3.28 illustrate an extremely important feature of statically determinate

structures. The reactions and internal forces produced by a specific loading depend only on the

geometry of the structure. They are independent of the properties of the components that comprise

the structure. This fact allows one to obtain a more favorable internal force distribution by adjusting

the geometry as we did here.

These examples also illustrate the use of cantilever construction combined with internal

moment releases. In Part II of the text, we rework those problems using beams which are continuous

over all three spans, i.e., we remove the moment releases. The resulting structures are statically

indeterminate.

3.10.2.1 Multiple Concentrated Loads
We consider next the case where there are two concentrated forces. This loading can simulate the load

corresponding to a two axle vehicle. The notation is defined in Fig. 3.51.

Fig. 3.51 Two

concentrated forces
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The resultant force R ¼ P1 + P2 is located e units from the line of action of P2.

where
e ¼ P1

P1 þ P2

d1

The moment diagram for a set of concentrated forces is piecewise linear with peak values at the

points of application of the forces. Figure 3.52 shows the result for this loading case. Analytical

expressions for the reactions and the moments at points ② and ② are

RA ¼ P1 þ P2ð Þ1
L
L� xð Þ � P1

d1
L

RB ¼ P1 þ P2ð Þx
L
þ P1

d1
L

M1 ¼ P1 þ P2ð Þx
L
L� x� d1ð Þ þ P1

d1
L

L� x� d1ð Þ

M2 ¼ P1 þ P2ð Þx
L
L� xð Þ � P1

d1
L
x

ð3:59Þ

Fig. 3.52 Moment

diagram—arbitrary

position of loading
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These moments are quadratic functions of x. One can compute M1 and M2 for a range of x values
and determine the values of x corresponding to the peak values. Alternatively, one can determine the

value of x corresponding to a maximum value of a particular moment by differentiating the

corresponding moment expression with respect to x and setting the result equal to zero.

Maximum value of M2

∂M2

∂x
¼ 0

P1 þ P2ð Þ 1� 2
x

L

� �
� P1

d1
L
¼ 0

x
��
M2max

¼ L

2
� d1

2

P1

P1 þ P2

� �
¼ L

2
� e

2

ð3:60Þ

Maximum value of M1

∂M1

∂x
¼ 0

P1 þ P2ð Þ L� 2x� d1ð Þ � P1d1 ¼ 0

x
��
M1max

¼ L

2
� d1

2
� e

2

ð3:61Þ

We can interpret the critical location for the maximum value of M2 from the sketch shown in

Fig. 3.53a. The force P2 is located e/2 units to the left of mid-span and the line of action of the

resultant is e/2 units to the right of mid-span. A similar result applies forM1. P1 is positioned such that

P1 and R are equidistant from mid-span as shown in Fig. 3.53b.

The absolute maximum live load moment is found by evaluating M1 and M2 using the

corresponding values of x
��
M1max

and x
��
M2max

. In most cases, the absolute maximum moment occurs

at the point of application of the largest force positioned according to (3.60) and (3.61).

Example 3.29 Illustration of Computation of Maximum Moments for Two-Force Loading

Given: The beam shown in Fig. E3.29a and the following data

R ¼ W P1 ¼ 0:2W P2 ¼ 0:8W d1 ¼ 14 ft L ¼ 40ft

Fig. E3.29a

Determine: The maximum possible moment in the beam as the two-force loading system moves

across the span.
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Solution: The resultant is located e ¼ 0:2W
W 14ð Þ ¼ 2:8ft from P2.

Fig. 3.53 Critical location

of loading for maximum

bending moments. (a)

x
��
M2max

. (b) x
��
M1max
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Using (3.60)

x
��
M2max

¼ L

2
� e

2
¼ 20� 1:4 ¼ 18:6ft

Using (3.59) and the above value for x, the reactions and bending moments are

RA ¼ 0:465W

RB ¼ 0:535W

M1 ¼ 3:96W

M2 ¼ 8:69W

The critical loading position for M2 is shown in Fig. E3.29b.

Fig. E3.29b

We compute M1 in a similar way. The critical location is found using (3.61).

x
��
M1max

¼ L

2
� d1

2
� e

2
¼ 20� 7� 1:4 ¼ 11:6ft

Next, we apply (3.59).

RA ¼ 0:64W

RB ¼ 0:36W

M1 ¼ 5:184W

M2 ¼ 7:424W
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The critical loading position for M1 is shown in Fig. E3.29c.

Fig. E3.29c

It follows that the absolute maximum live load moment occurs when P2 is positioned 18.6 ft from

the left support. This point is close to mid-span (Fig. E3.29d).

Fig. E3.29d

The analysis for the case of three concentrated loads proceeds in a similar way. Figure 3.54 shows

the notation used to define the loading and the location of the resultant force. The moment diagram is

piecewise linear with peaks at the point of application of the concentrated loads.

We generate expressions for the bending moments at points①,①, and① for an arbitrary position

of the loading defined by x and then determine the locations of maximum moment by differentiating

these expressions. First, we locate the resultant force

R ¼ P1 þ P2 þ P3

e ¼ d2P2 þ d1 þ d2ð ÞP1

R

ð3:62Þ
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The moments at locations 1, 2, and 3 are functions of x.

M3 ¼ R

L
L� x� eð Þx

M2 ¼ R

L
L� x� eð Þ xþ d2ð Þ � P3d2

M1 ¼ R

L
L� x� d2 � d1ð Þ xþ eð Þ

ð3:63Þ

Differentiating each expression with respect to x and equating the result to zero leads to the

equations for the critical values of x that correspond to relative maximum values of the moments.

For M3

��
max x ¼ 1

2
L� eð Þ

For M2

��
max x ¼ 1

2
L� e� d2ð Þ

For M1

��
max x ¼ 1

2
L� d2 � d1 � eð Þ

ð3:64Þ

The positions of the loading corresponding to these three values of x are plotted in Fig. 3.55. Note

that the results are similar to the two concentrated load case. We need to evaluate (3.63) for each

value of x in order to establish the absolute maximum value of the bending moment.

Fig. 3.54 Notation and

moment diagram—three

concentrated loads
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Fig. 3.55 Possible

locations of loading for

maximum moment
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Example 3.30

Given: The beam shown in Fig. E3.30a.

Fig. E3.30a

Determine: The maximum possible moment in the beam caused by

1. A truck moving across the span (Fig. E3.30b).

Fig. E3.30b

2. A uniformly distributed dead load of w ¼ 2.4 kip/ft in addition to the truck loading.

Solution:

Part (1): The critical truck loading position is defined by Fig. E3.30c. The corresponding bending

moment diagram is plotted below; the maximum moment occurs 2.3 ft from the center of the span.

Mmax ¼ 806.7 kip ft.

Part (2): The bending moment diagram for uniform loading is parabolic, with a maximum value at

mid-span.

Mdead xð Þ ¼ 72x� 1:2x2 0 � x � 60

We estimate the peak moment due to the combined loading by adding corresponding moment

values from Figs. E3.30c and E3.30d.
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Mcombined ¼ Mdead þMtruckð Þat x¼32:33 ft ¼ 1073:5þ 806:7 � 1880kip ft

Mcombined ¼ Mdead þMtruckð Þat x¼30 ft ¼ 1080þ 791 � 1871kip ft

)
Mmax ¼ 1880kip ft

Fig. E3.30c Moment distribution for moving truck load

Fig. E3.30d Moment distribution for dead load When there are multiple loadings, it is more convenient

to generate discrete moment envelope using a computer-based analysis system. The discrete moment

envelope for the combined (dead + truck) loading is plotted below (Fig. E3.30e). Scanning the

envelope shows that the maximum moment occurs at x ¼ 30.9 ft and Mmax ¼ 1882.6 kip ft. This

result shows that it was reasonable to superimpose the moment diagrams in this example.
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Fig. E3.30e Discrete moment envelope for the combined (dead + truck) loading

3.11 Summary

3.11.1 Objectives of the Chapter

• To develop analytical and computational methods for quantifying the behavior of beams subjected

to transverse loading. Of particular interest are the reactions, the internal forces (shear, bending,

and twisting moments), and the displacements.

• To introduce the concepts of influence lines and force envelopes which are needed to establish

design values for beam cross-sections.

3.11.2 Key Facts and Concepts

• A stable statically determinate beam requires three nonconcurrent displacement restraints. There

are three reaction forces which are determined using the static equilibrium equations.

• External loads are resisted by internal forces acting on a cross-section. For planar loading, these

quantities consist of an axial force, F, a transverse shear force, V, and a bending moment, M. One

can establish the magnitude of these variables using the static equilibrium equations. Alterna-

tively, one can start with the following differential equilibrium equations,

dV

dx
¼ w

dM

dx
¼ �V
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Integrating between points 1 and 2 leads to

V2 � V1 ¼
ðx2
x1

wdx

M2 �M1 ¼ �
ðx2
x1

V dx

The first equation states that the difference in shear is equal to the area under the loading diagram.

The second equation states that the change in moment is equal to minus the area under the shear

diagram.

• Planar bending results in a transverse displacement, v(x). When the beam is slender, these

variables are related by

d2v

dx2
¼ M

EI

where I is the second moment of area for the section. Given M(x), one determines v(x) by integrating

this expression and noting the two boundary conditions on v.

• The transverse displacement at a particular point can also be determined using the Principle of

Virtual Forces specialized for planar bending of slender beams.

d δP ¼
ð
L

M

EI
δMdx

Here, d is the desired displacement, δP is a virtual force in the direction of d, and δM is the virtual

moment corresponding to δP. One usually employs numerical integration when the integral is

complex.

• An influence line is a plot of the magnitude of a particular internal force quantity, say the bending

moment at a specific location, vs. the position of a unit concentrated load as it moves across the

span. It is useful for establishing the peak magnitude of the force quantity at that location.

• A force envelope is a plot of the maximum positive and negative values of a force quantity, say the

bending moment, at different sections along the beam. This data is used to determine cross-

sectional properties.

3.12 Problems

For the beams defined in Problems 3.1–3.20, compute the reactions and draw the shear and moment

diagrams.

Problem 3.1
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Problem 3.2

Problem 3.3

Problem 3.4

Problem 3.5
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Problem 3.6

Problem 3.7

Problem 3.8
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Problem 3.9

Problem 3.10

Problem 3.11

Problem 3.12
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Problem 3.13

Problem 3.14

Problem 3.15

Problem 3.16
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Problem 3.17

Problem 3.18

Problem 3.19

Problem 3.20 Member BD is rigidly attached to the beam at B.
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Problem 3.21 Determine the maximum bending moment. Assume EI is constant.

Problem 3.22 Determine the maximum bending moment. Does the bending moment distribution

depend on either E or I? Justify your response.

For the beams defined in Problems 3.23–3.26, use the Table 3.1 to determine the vertical deflection

and rotation measures indicated. Assume EI is constant.

Problem 3.23
θB, vBI ¼ 200 in:4, E ¼ 29, 000kip=in2
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Problem 3.24
θB, vBI ¼ 200 in:4, E ¼ 29, 000ksi

Problem 3.25
θA, vCI ¼ 80 106

� �
mm4, E ¼ 200GPa

Problem 3.26
θD, vCI ¼ 200 in:4, E ¼ 29, 000ksi

For the beams defined in Problems 3.27–3.35, use the virtual force method to determine the

vertical deflection and rotation measures indicated.
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Problem 3.27
θD, vCI ¼ 80 106

� �
mm4, E ¼ 200GPa

Problem 3.28
θB, vDI ¼ 120 106

� �
mm4, E ¼ 200GPa

Problem 3.29
θA, vCI ¼ 300 in:4, E ¼ 29, 000ksi
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Problem 3.30
θC, vDI ¼ 120 106

� �
mm4, E ¼ 200GPa

Problem 3.31
θC, vCI ¼ 200 in:4, E ¼ 29, 000ksi

Problem 3.32
θC, vCI ¼ 100 106

� �
mm4, E ¼ 200GPa
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Problem 3.33
θB, vEI ¼ 300 in:4, E ¼ 29, 000ksi

Problem 3.34
θC, θE, and vEI ¼ 160 106

� �
mm4, E ¼ 200GPa

Problem 3.35
θB, vBI ¼ 120 in:4, E ¼ 29, 000ksi

Determine the analytical solutions for the deflected shape for the beams defined in Problems

3.36–3.39. Assume EI is constant.
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Problem 3.36

Problem 3.37

Problem 3.38

Problem 3.39
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Problem 3.40 Determine the value of I require to limit the vertical deflection at B to 1/2 in.

E ¼ 29,000 ksi.

Problem 3.41

(a) Solve Problem 3.39 using computer software. Consider different sets of values for EI. Show that

the magnitude of the deflection varies as 1/EI. Assume P ¼ 100 kN, and L ¼ 8 m.

(b) Suppose the peak deflection is specified. How would you determine the appropriate value of I?

Problem 3.42 Utilize symmetry to sketch the deflected shape. EI is constant. Assume E ¼ 200 GPa

and I ¼ 160(10)6 mm4.

Problem 3.43 Determine the vertical deflection of point A. Sketch the deflected shape of the beam.

EI is constant.
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Problem 3.44 Determine the vertical deflection of point A. Sketch the deflected shape of the beam.

EI is constant.

Problem 3.45 Determine the vertical deflection of point A. Sketch the deflected shape. EI is

constant.

Problem 3.46 Consider the cantilever beam shown below. Determine the displacement at B due to

the loading. Use the principle of Virtual Forces and evaluate the corresponding integral with the

trapezoidal rule.

Take w0 ¼ 10kip=ft, L ¼ 20ft, I0 ¼ 1000 in:4,E ¼ 29, 000ksi, I ¼ I0 1þ cos
πx

2L

� �
:
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Problem 3.47 Assume AB is a “deep” beam. I and A are constant. Determine the analytical solution

for β (the rotation of the cross-section) and v.

Problem 3.48

1. Determine βt (the rotation of the cross-section about the longitudinal axis) at B due to the

concentrated torque at C.

2. Suppose a distribution torque, mt, is applied along A–B. Determine. Mt(x). Take mt ¼ sin πx
2L

3. Determine βt at B due to the distributed torsional loading.

Problem 3.49 Draw the influence lines for:

(a) Reaction at A

(b) Moment at E

(c) Shear at D
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Problem 3.50

Draw the influence lines for the moment and shear at E.

Problem 3.51

For the beams shown, determine the moment envelope corresponding to a single concentrated load

moving across the span.

Problem 3.52

(a) Draw the influence lines for moment at F and moment at B.

(b) Draw the moment envelope.

Suppose a uniformly distributed dead load of 18 kN/m and uniformly distributed live load of

30 kN/m are placed on the beam. Use the above results for influence lines to determine the maximum

values for the moment at point F and point B. Also show the position of the live load on the beam for

these limiting cases.

Problem 3.53 Suppose a uniformly distributed live load of 1.2 kip/ft and uniformly distributed dead

load of 0.8 kip/ft are placed on the beam. Determine the critical loading pattern that results in the

maximum and minimum values of moment at E.
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Problem 3.54 For the beams shown, determine the moment envelope corresponding to a single

concentrated load moving across the span.

Problem 3.55 Determine the maximum possible moment in the 40 ft span beam as the loading

system shown moves across the span. Use either the analytical approach or the moment envelope

corresponding to the loading.

Problem 3.56 Determine the location of the maximum possible moment in the 20 m span beam as

the loading system shown moves across the span.

302 3 Statically Determinate Beams



Problem 3.57 Determine the maximum possible moment in a 80 ft span beam as the loading system

shown moves across the span. Assume a uniform load of 2 kip/ft also acts on the span. Use computer

software.

Problem 3.58 For the beam shown:

(a) Draw the influence lines for the vertical reaction at support D, and the moment at point F.

(b) For a uniformly distributed live load of 20 kN/m, use the above results to determine the

maximum values of the reaction at D, and the moment at F. Also show the position of the live

load on the beam.

(c) Establish the moment envelope corresponding to a single concentrated vertical load.

Problem 3.59 For the beam shown below

Determine the influence line for:

(a) The vertical reaction at C

(b) The moment at D
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If a uniformly distributed live load of 1.8 kip/ft and uniformly distributed dead load of 1.4 kip/ft

are placed on the beam, use the above results to determine the maximum and minimum values of

(a) The vertical reaction at C

(b) The moment at D

Problem 3.60 Using computer software, determine the influence line for the vertical displacement at

x ¼ 5 m. Assume EI is constant.

Hint: Apply a unit load at x ¼ 5 m and determine the deflected shape. This is a scaled version of

the influence line. Verify by moving the load and recomputing the displacement at x ¼ 5 m.
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Statically Determinate Plane Frames 4

Abstract

Plane frame structures are composed of structural members which lie in a

single plane. When loaded in this plane, they are subjected to both

bending and axial action. Of particular interest are the shear and moment

distributions for the members due to gravity and lateral loadings. We

describe in this chapter analysis strategies for typical statically determi-

nate single-story frames. Numerous examples illustrating the response are

presented to provide the reader with insight as to the behavior of these

structural types. We also describe how the Method of Virtual Forces can

be applied to compute displacements of frames. The theory for frame

structures is based on the theory of beams presented in Chap. 3. Later in

Chaps. 9, 10, and 15, we extend the discussion to deal with statically

indeterminate frames and space frames.

4.1 Definition of Plane Frames

The two dominant planar structural systems are plane trusses and plane frames. Plane trusses were

discussed in detail in Chap. 2. Both structural systems are formed by connecting structural members

at their ends such that they are in a single plane. The systems differ in the way the individual members

are connected and loaded. Loads are applied at nodes (joints) for truss structures. Consequently, the

member forces are purely axial. Frame structures behave in a completely different way. The loading

is applied directly to the members, resulting in internal shear and moment as well as axial force in the

members. Depending on the geometric configuration, a set of members may experience predomi-

nately bending action; these members are called “beams.” Another set may experience predominately

axial action. They are called “columns.” The typical building frame is composed of a combination of

beams and columns.

Frames are categorized partly by their geometry and partly by the nature of the member/member

connection, i.e., pinned vs. rigid connection. Figure 4.1 illustrates some typical rigid plane frames

used mainly for light manufacturing factories, warehouses, and office buildings. We generate three-

dimensional frames by suitably combining plane frames.
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Figure 4.2 shows an A-frame, named obviously for its geometry. This frame has three members ab,

bc, and de that are pinned together at points d, b, and e. Loads may be applied at the connection points,

such as b, or on a member, such as de. A-frames are typically supported at the base of their legs, such

as at a and c. Because of the nature of the loading and restraints, the members in an A-frame generally

experience bending as well as axial force.

To provide more vertical clearance in the interior of the portal frame, and also to improve the

aesthetics, a more open interior space is created by pitching the top member as illustrated in Fig. 4.3.

Pitched roof frames are also referred to as gable frames. Architects tend to prefer them for churches,

gymnasia, and exhibition halls.

4.2 Statical Determinacy: Planar Loading

All the plane frames that we have discussed so far can be regarded as rigid bodies in the sense that if

they are adequately supported, the only motion they will experience when a planar load is applied will

Fig. 4.1 Typical plane

building frames. (a) Rigid
portal frame. (b) Rigid
multi-bay portal frame. (c)
Multistory rigid frame. (d)
Multistory braced frame

Fig. 4.2 A-frame
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be due to deformation of the members. Therefore, we need to support them with only three

nonconcurrent displacement restraints. One can use a single, fully fixed support scheme, or a

combination of hinge and roller supports. Examples of “adequate” support schemes are shown in

Fig. 4.4. All these schemes are statically determinate. In this case, one first determines the reactions

and then analyzes the individual members.

If more than three displacement restraints are used, the plane frames are statically indeterminate.

In many cases, two hinge supports are used for portal and gable frames (see Fig. 4.5). We cannot

determine the reaction forces in these frame structures using only the three available equilibrium

equations since there are now four unknown reaction forces. They are reduced to statically determi-

nate structures by inserting a hinge which acts as a moment release. We refer to these modified

structures as 3-hinge frames (see Fig. 4.6).

Statical determinacy is evaluated by comparing the number of unknown forces with the number of

equilibrium equations available. For a planarmember subjected to planar loading, there are three internal

forces: axial, shear, andmoment. Once these force quantities are known at a point, the force quantities at

any other point in the member can be determined using the equilibrium equations. Figure 4.7 illustrates

the use of equilibrium equations for the member segment AB. Therefore, it follows that there are only

three force unknowns for each member of a rigid planar frame subjected to planar loading.

We define a node (joint) as the intersection of two or more members, or the end of a member

connected to a support. A node is acted upon by member forces associated with the members’

incident on the node. Figure 4.8 illustrates the forces acting on node B.

Fig. 4.3 Gable (pitched

roof) frames

Fig. 4.4 Statically

determinate support

schemes for planar frames

Fig. 4.5 Statically

indeterminate support

schemes—planar frames
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These nodal forces comprise a general planar force system for which there are three equilibrium

equations available; summation of forces in two nonparallel directions and summation of moments.

Summing up force unknowns, we have three for each member plus the number of displacement

restraints. Summing up equations, there are three for each node plus the number of force releases

(e.g., moment releases) introduced. Letting m denote the number of members, r the number of

Fig. 4.6 3-Hinge plane

frames

Fig. 4.7 Free body

diagram—member forces

Fig. 4.8 Free body

diagram—node B
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displacement restraints, j the number of nodes, and n the number of releases, the criterion for statical

determinacy of rigid plane frames can be expressed as

3mþ r � n ¼ 3j ð4:1Þ
We apply this criterion to the portal frames shown in Figs. 4.4a, 4.5a, and 4.6b. For the portal

frame in Fig. 4.4a

m ¼ 3, r ¼ 3, j ¼ 4

For the corresponding frame in Fig. 4.5a

m ¼ 3, r ¼ 4, j ¼ 4

This structure is indeterminate to the first degree. The 3-hinge frame in Fig. 4.6a has

m ¼ 4, r ¼ 4, n ¼ 1, j ¼ 5

Inserting the moment release reduces the number of unknowns and now the resulting structure is

statically determinate.

Consider the plane frames shown in Fig. 4.9. The frame in Fig. 4.9a is indeterminate to the third

degree.

m ¼ 3, r ¼ 6, j ¼ 4

The frame in Fig. 4.9b is indeterminate to the second degree.

m ¼ 4, r ¼ 6, j ¼ 5 n ¼ 1

Equation (4.1) applies to rigid plane frames, i.e., where the members are rigidly connected to each

other at nodes. The members of an A-frame are connected with pins that allow relative rotation and

therefore A-frames are not rigid frames. We establish a criterion for A-frame type structures

following the same approach described above. Each member has three equilibrium equations.

Therefore, the total number of equilibrium equations is equal to 3m. Each pin introduces two force

unknowns. Letting np denote the number of pins, the total number of force unknowns is equal to 2np
plus the number of displacement restraints. It follows that

2np þ r ¼ 3m ð4:2Þ

Fig. 4.9 Indeterminate

portal and A-frames
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for static determinacy of A-frame type structures. Applying this criterion to the structure shown in

Fig. 4.2, one has np ¼ 3, r ¼ 3, m ¼ 3, and the structure is statically determinate. If we add another

member at the base, as shown in Fig. 4.9c, np ¼ 5, r ¼ 3, m ¼ 4, and the structure becomes statically

indeterminate to the first degree.

4.3 Analysis of Statically Determinate Frames

In this section, we illustrate with numerous examples the analysis process for statically determinate

frames such as shown in Fig. 4.10a. In these examples, our primary focus is on the generation of the

internal force distributions. Of particular interest are the location and magnitude of the peak values of

moment, shear, and axial force since these quantities are needed for the design of the member cross

sections.

The analysis strategy for these structures is as follows. We first find the reactions by enforcing the

global equilibrium equations. Once the reactions are known, we draw free body diagrams for the

members and determine the force distributions in the members. We define the positive sense of

bending moment according to whether it produces compression on the exterior face. The sign

conventions for bending moment, transverse shear, and axial force are defined in Fig. 4.10b.

The following examples illustrate this analysis strategy. Later, we present analytical solutions

which are useful for developing an understanding of the behavior.

Fig. 4.10 (a) Typical
frame. (b) Sign convention

for the bending moment,

transverse shear, and axial

force
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Example 4.1 UnsymmetricalCantilever Frame

Given: The structure defined in Fig. E4.1a.

Fig. E4.1a

Determine: The reactions and draw the shear and moment diagrams.

Solution:We first determine the reactions at A, and then the shear and moment at B. These results are

listed in Figs. E4.1b and E4.1c. Once these values are known, the shear and moment diagrams for

members CB and BA can be constructed. The final results are plotted in Fig. E4.1d.X
Fx ¼ 0 RAx ¼ 0X
Fy ¼ 0 RAy � 15ð Þ 2ð Þ ¼ 0 RAy ¼ 30kN "X
MA ¼ 0 MA � 15ð Þ 2ð Þ 1ð Þ ¼ 0 MA ¼ 30kNmcounter clockwise

Fig. E4.1b Reactions
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Fig. E4.1c End actions

Fig. E4.1d Shear and moment diagrams

Example 4.2 Symmetrical Cantilever Frame

Given: The structure defined in Fig. E4.2a.

Fig. E4.2a

312 4 Statically Determinate Plane Frames



Determine: The reactions and draw the shear and moment diagrams.

Solution: We determine the reactions at A and shear and moment at B. The results are shown in

Figs. E4.2b and E4.2c.X
Fx ¼ 0 RAx ¼ 0X
Fy ¼ 0 RAy � 15ð Þ 4ð Þ ¼ 0 RAy ¼ 60kN "X
MA ¼ 0 MA � 15ð Þ 2ð Þ 1ð Þ þ 15ð Þ 2ð Þ 1ð Þ ¼ 0 MA ¼ 0

Fig. E4.2b Reactions

Fig. E4.2c End actions
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Finally, the shear and moment diagrams for the structures are plotted in Fig. E4.2d. Note that member

AB now has no bending moment, just axial compression of 60 kN.

Fig. E4.2d Shear and moment diagrams

Example 4.3 Angle-Type Frame Segment

Given: The frame defined in Fig. E4.3a.

Fig. E4.3a

Determine: The reactions and draw the shear and moment diagrams.

Solution:We determine the vertical reaction at C by summing moments about A. The reactions at A

follow from force equilibrium considerations (Fig. E4.3b).
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X
MA ¼ 0 2 20ð Þ 10ð Þ þ 6 10ð Þ � RC 20ð Þ ¼ 0 RC ¼ 23kip "X
Fx ¼ 0 RAx ¼ 6kip←X
Fy ¼ 0 RAy � 2 20ð Þ þ 23 ¼ 0 RAy ¼ 17kip "

Fig. E4.3b Reactions

Next, we determine the end moments and end shears for segments CB and BA using the

equilibrium equations for the members. Figure E4.3c contains these results.

Fig. E4.3c End actions

Lastly, we generate the shear and bending moment diagrams (Fig. E4.3d). The maximum moment

occurs in member BC. We determine its location by noting that the moment is maximum when the

shear is zero.
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23� 2ð Þx1 ¼ 0! x1 ¼ 11:5ft

Then, Mmax ¼ 23 11:5ð Þ � 2 11:5ð Þ2
2

¼ 132:25kip ft

Fig. E4.3d Shear and moment diagrams

Example 4.4 Simply Supported Portal Frame

Given: The portal frame defined in Fig. E4.4a.

Determine: The shear and moment distributions.

Fig. E4.4a

Solution: The reaction at D is found by summing moments about A. We then determine the reactions

at A using force equilibrium considerations. Figure E4.4b shows the result.
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X
MA ¼ 0 1 32ð Þ 16ð Þ þ 2 20ð Þ � RD 32ð Þ ¼ 0 RD ¼ 17:25 "X
Fx ¼ 0 RAx ¼ 2 ←X
Fy ¼ 0 RAy � 1 32ð Þ þ 17:25 ¼ 0 RAy ¼ 14:75 "

Fig. E4.4b Reactions

Isolating the individual members and enforcing equilibrium leads to the end forces and moments

shown in Fig. E4.4c.

Fig. E4.4c End actions

We locate the maximum moment in member BC. Suppose the moment is a maximum at x ¼ x1.

Setting the shear at this point equal to zero leads to
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17:25� x1 1ð Þ ¼ 0! x1 ¼ 17:25 ft

Then, Mmax ¼ 17:25 17:25ð Þ � 1ð Þ 17:25ð Þ2
2

¼ 148:78kip ft

The shear and moment diagrams are plotted in Fig. E4.4d.

Fig. E4.4d Shear and moment diagrams

Example 4.5 3-Hinge Portal Frame

Given: The 3-hinge frame defined in Fig. E4.5a.

Determine: The shear and moment distributions.

Fig. E4.5a

Solution: Results for the various analysis steps are listed in Figs. E4.5b, E4.5c, E4.5d, E4.5e, E4.5f,

and E4.5g.

Step 1: Reactions at D and A

The vertical reaction at D is found by summing moments about A.

318 4 Statically Determinate Plane Frames



X
MA ¼ 0 RDy 32ð Þ � 1ð Þ 32ð Þ 16ð Þ � 2 20ð Þ ¼ 0 RDy ¼ 17:25kip "

Fig. E4.5b

Next, we work with the free body diagram of segment ECD. Applying the equilibrium conditions

to this segment results inX
ME ¼ 0 17:25 16ð Þ � 1ð Þ 16ð Þ 8ð Þ � RDX 20ð Þ ¼ 0 RDX ¼ 7:4kip←X
Fx ¼ 0 FE ¼ �RDX ¼ 7:4kip!X
Fy ¼ 0 � VE þ 17:25� 1ð Þ 16ð Þ ¼ 0 VE ¼ 1:25kip #

Fig. E4.5c

With the internal forces at E known, we can now proceed with the analysis of segment ABE.
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X
Fx ¼ 0 RAx þ 2� 7:4 ¼ 0 RAx ¼ 5:4kip!X
Fy ¼ 0 RAy þ 17:25� 1ð Þ 32ð Þ ¼ 0 RAy ¼ 14:75kip "

Fig. E4.5d

Reactions are listed below

Fig. E4.5e Reactions

Step 2: End actions at B and C

Fig. E4.5f End actions

Step 3: Shear and moment diagrams
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First, we locate the maximum moment in member BC.

14:75� 1ð Þx1 ¼ 0! x1 ¼ 14:75 ft

Then, Mmax ¼ 14:75 14:75ð Þ � 1 14:75ð Þ2
2

� 108 ¼ 0:78kip ft

The corresponding shear and moment diagrams are listed in Fig. E4.5g.

Fig. E4.5g Shear and moment diagrams

Example 4.6 Portal Frame with Overhang

Given: The portal frame defined in Fig. E4.6a.

Determine: The shear and moment diagrams.

Fig. E4.6a

Solution: Results for the various analysis steps are listed in Figs. E4.6b, E4.6c, and E4.6d.
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X
MA ¼ 0 RD 10ð Þ � 8 6ð Þ � 15ð Þ 13ð Þ 6:5ð Þ ¼ 0 RD ¼ 131:55kN "X
Fx ¼ 0 RAx ¼ 8kN ←X
Fy ¼ 0 RAy þ 131:55� 15ð Þ 13ð Þ ¼ 0 RAy ¼ 63:45kN "

Fig. E4.6b Reactions

Fig. E4.6c End actions

First, we locate the maximum moment in member BC.

63:45� 15ð Þx1 ¼ 0! x1 ¼ 4:23m

Then, Mmax ¼ 63:45 4:23ð Þ � 15ð Þ 4:23ð Þ2
2

þ 48 ¼ 182kNm
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The corresponding shear and moment diagrams are listed in Fig. E4.6d.

Fig. E4.6d Shear and moment diagrams

4.3.1 Behavior of Portal Frames: Analytical Solution

The previous examples illustrated numerical aspects of the analysis process for single-story statically

determinate portal frames. For future reference, we list below the corresponding analytical solutions

(Figs. 4.11, 4.12, 4.13, and 4.14). We consider both gravity and lateral loading. These solutions are

useful for reasoning about the behavior of this type of framewhen the geometric parameters are varied.

Portal frame—Gravity loading: Shown in Fig. 4.11

Portal frame—Lateral loading: Shown in Fig. 4.12

3-hinge portal frame—gravity loading: Shown in Fig. 4.13

3-hinge portal frame—lateral loading: Shown in Fig. 4.14

Fig. 4.11 Statically

determinate portal frame

under gravity loading. (a)
Geometry and loading. (b)
Reactions. (c) Shear
diagram. (d) Moment

diagram
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Fig. 4.13 Statically

determinate 3-hinge portal

frame under gravity

loading. (a) Geometry and

loading. (b) Reactions. (c)
Shear diagram. (d) Moment

diagram

Fig. 4.12 Statically

determinate portal frame

under lateral loading. (a)
Geometry and loading. (b)
Reactions. (c) Shear
diagram. (d) Moment

diagram
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These results show that the magnitude of the peak moment due to the uniform gravity load is the

same for both structures but of opposite sense (Figs. 4.11 and 4.13). The peak moment occurs at the

corner points for the 3-hinge frame and at mid-span for the simply supported frame which behaves as

a simply supported beam. The response under lateral loading is quite different (Figs. 4.12 and 4.14).

There is a 50 % reduction in peak moment for the 3-hinge case due to the inclusion of an additional

horizontal restraint at support D.

For the 3-hinge frame, we note that the bending moment diagram due to gravity loading is

symmetrical. In general, a symmetrical structure responds symmetrically when the loading is

symmetrical. We also note that the bending moment diagram for lateral loading applied to the

3-hinge frame is anti-symmetrical.

Both loadings produce moment distributions having peaks at the corner points. In strength-based

design, the cross-sectional dimensions depend on the design moment; the deepest section is required

by the peak moment. Applying this design approach to the 3-hinge frame, we can use variable depth

members with the depth increased at the corner points and decreased at the supports and mid-span.

Figure 4.15 illustrates a typical geometry. Variable depth 3-hinge frames are quite popular. We point

out again here that the internal force distribution in statically determinate structures depends only on

the loading and geometry and is independent of the cross-sectional properties of the members.

Therefore, provided we keep the same geometry (centerline dimensions), we can vary the cross-

section properties for a 3-hinge frame without changing the moment distributions.

Fig. 4.14 Statically

determinate 3-hinge portal

frame under lateral loading.

(a) Geometry and loading.

(b) Reactions. (c) Shear
diagram. (d) Moment

diagram

Fig. 4.15 Variable cross-

section 3-hinge frame
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4.4 Pitched Roof Frames

In this section, we deal with a different type of portal frame structure: the roof members are sloped

upward to create a pitched roof. This design creates a more open interior space and avoids the

problem of rain water pounding or snow accumulating on flat roofs. Figure 4.16 shows the structures

under consideration. The first structure is a rigid frame with a combination of pin and roller supports;

the second structure is a 3-hinge frame. Both structures are analyzed by first finding the reactions and

then isolating individual members to determine the member end forces, and the internal force

distributions.

4.4.1 Member Loads

Typical loads that may be applied to an inclined member are illustrated in Fig. 4.17. They may act

either in the vertical direction or normal to the member. In the vertical direction, they may be defined

either in terms of the horizontal projection of the length of the member or in terms of the length of the

member.

Fig. 4.16 Pitched roof frames
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Fig. 4.17 Loading on an

inclined member. (a)
Vertical load per horizontal

projection. (b) Vertical
load per length. (c) Normal

load per length
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When computing the reactions, it is convenient to work with loads referred to horizontal and

vertical directions and expressed in terms of the horizontal projection. The w1 loading is already in

this form. For the w2 load, we note that

dx ¼ ds cos θ

Then,

w2ds¼ w2dx

cos θ

w2,v ¼ w2

cos θ

ð4:3Þ

The w3 load is normal to the member. We project it onto the vertical and horizontal directions and

then substitute for ds.

w3 dsð Þ cos θ¼ w3,v dx

w3 ds sin θ¼ w3,h dx

w3

dx

cos θ
sin θ¼ w3,h dx

The final result is

w3,v ¼ w3

w3,h ¼ w3 tan θ
ð4:4Þ

It follows that the equivalent vertical loading per horizontal projection is equal to the normal load per

unit length. These results are summarized in Fig. 4.18.
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When computing the axial force, shear, and moment distribution along a member, it is more

convenient to work with loads referred to the normal and tangential directions of the member and

expressed in terms of the member arc length. The approach is similar to the strategy followed above.

The results, as summarized, below are (Fig. 4.19):

Vertical–horizontal projection loading:

w1,n ¼ w1 cos θ
2

w1, t ¼ w1 cos θ sin θ
ð4:5Þ

Member loading:

w2,n ¼ w2 cos θ

w2, t ¼ w2 sin θ

w3,n ¼ w3

w3, t ¼ 0

ð4:6Þ

Fig. 4.18 Equivalent

vertical member loadings.

(a) Per horizontal
projection. (b) Per length.
(c) Normal load
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4.4.2 Analytical Solutions for Pitched Roof Frames

Analytical solutions for the bending moment distribution are tabulated in this section. They are used

for assessing the sensitivity of the response to changes in the geometric parameters.

Gravity loading per unit horizontal projection: Results are listed in Figs. 4.20 and 4.21.

Lateral Loading: Results are listed in Figs. 4.22 and 4.23.

Fig. 4.19 Equivalent

normal and tangential

member loadings. (a)
Vertical per projected

length. (b) Vertical per
length. (c) Normal
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Fig. 4.20 Simply

supported gable rigid

frame. (a) Structure and
loading. (b) Moment

diagram

Fig. 4.21 3-Hinge frame

under gravity loading. (a)
Structure and loading. (b)
Moment diagram



Fig. 4.22 Simply

supported rigid frame—

lateral loading. (a)
Structure and loading.

(b) Moment diagram

Fig. 4.23 3-Hinge

frame—lateral loading.

(a) Structure and loading.

(b) Moment diagram
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Example 4.7 Simply Supported Gable Frame—Lateral Load

Given: The gable frame with the lateral load defined in Fig. E4.7a.

Determine: The shear, moment, and axial force diagrams.

Fig. E4.7a

Solution: Moment summation about A leads to the vertical reaction at E. The reactions at A follow

from force equilibrium considerations. Next, we determine the end forces and moments for the

individual members. Lastly, we generate the shear and moment diagrams. Results for the various

analysis steps are listed in Figs. E4.7b, E4.7c, E4.7d, and E4.7e.

Step 1: Reactions

Fig. E4.7b Reactions
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Step 2: End forces

Fig. E4.7c End forces—global frame

Step 3: Member forces—member frames

Fig. E4.7d End forces in local member frame
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Step 4: Internal force diagrams

Fig. E4.7e Force distributions

Example 4.8 3-Hinge Gable Frame—Lateral Loading

Given: The 3-hinge gable frame shown in Fig. E4.8a.

Determine: The shear, moment, and axial force diagrams.

Fig. E4.8a
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Solution:

Step 1: Reactions
The reactions (Fig. E4.8b) are determined by summing moments about A and C and applying the

force equilibrium conditions.

Fig. E4.8b Reactions

Step 2: End forces—global frame (Fig. E4.8c)

Fig. E4.8c End forces

Step 3: End forces—local member frame
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Figure E4.8d shows the end forces and moments resolved into components referred to the local

member frame.

Fig. E4.8d End actions in local member frame

Step 4: Internal force distribution (Fig. E4.8e)

Fig. E4.8e Force distributions

Note that the 3-hinge gable structure has a lower value of peak moment.

Example 4.9 Simply Supported Gable Frame—Unsymmetrical Loading

Given: The frame defined in Fig. E4.9a. The loading consists of a vertical load per horizontal

projection applied to member BC.
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Determine: The member force diagrams.

Fig. E4.9a

Solution: The reactions at E and A are determined by summing moments about A and by enforcing

vertical equilibrium. Figure E4.9b shows the results.

Fig. E4.9b Reactions

Next, we determine the end forces and moments for the individual members. Then, we need to

resolve the loading and the end forces for members BC and CD into normal and tangential

components. The transformed quantities are listed in Figs. E4.9c and E4.9d.

Fig. E4.9c End actions—global frame
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Fig. E4.9d End actions—local frame

The maximum moment in member BC occurs at x1. We determine the location by setting the shear

equal to zero.

13:42� 0:8x1 ¼ 0) x1 ¼ 16:775

Then, Mmax ¼ 13:42 16:775ð Þ � 0:8 16:775ð Þ2 1
2
ð Þ ¼ 112:56kip ft

Figure E4.9e contains the shear, moment, and axial force diagrams.

Fig. E4.9e Internal force diagrams

Example 4.10 3-Hinge Gable Frame

Given: The 3-hinge gable frame shown in Fig. E4.10a.

Determine: The shear and moment diagrams.

Fig. E4.10a
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Solution: We analyzed a similar loading condition in Example 4.9. The results for the different

analysis phases are listed in Figs. E4.10b, E4.10c, and E4.10d. Comparing Fig. E4.10e with Fig. E4.9e

shows that there is a substantial reduction in the magnitude of the maximum moment when the

3-hinged gable frame is used.

Fig. E4.10b Reactions

Fig. E4.10c End forces
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Fig. E4.10d End forces in local frame

Fig. E4.10e Shear and moment diagrams

4.5 A-Frames

A-frames are obviously named for their geometry. Loads may be applied at the connection points or

on the members. A-frames are typically supported at the base of their legs. Because of the nature of

the loading and restraints, the members in an A-frame generally experience bending as well as axial

force.

We consider first the triangular frame shown in Fig. 4.24. The inclined members are subjected to a

uniform distributed loading per unit length wg which represents the self-weight of the members and

the weight of the roof that is supported by the member.

We convert wg to an equivalent vertical loading per horizontal projection w using (4.3). We start

the analysis process by first finding the reactions at A and C.
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Fig. 4.24 (a) Geometry

and loading. (b) A-frame

loading and reactions. (c)
Free body diagrams. (d)
Moment diagram
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Next, we isolate member BC (see Fig. 4.24c).

X
Mat B ¼ �w

2

L

2

� �2

þ wL

2

L

2

� �
� hFAC ¼ 0

+

FAC ¼ wL2

8h

The horizontal internal force at B must equilibrate FAC. Lastly, we determine the moment

distribution in members AB and BC. Noting Fig. 4.24c, the bending moment at location x is given by

M xð Þ ¼ wL

2
x� FAC

2h

L

� �
x� wx2

2
¼ wL

4
x� wx2

2

The maximum moment occurs at x ¼ L/4 and is equal to

Mmax ¼ wL2

32

Replacing w with wg, we express Mmax as

Mmax ¼ wg

cos θ

� � L2
32

As θ increases, the moment increases even though the projected length of the member remains

constant.

We discuss next the frame shown in Fig. 4.25a. There are two loadings: a concentrated force at B

and a uniform distributed loading applied to DE.

We first determine the reactions and then isolate member BC.

Summing moments about A leads to

P
L

2

� �
þ wL

2

L

2

� �
¼ RCL RC ¼ P

2
þ wL

4

The results are listed below. Noting Fig. 4.25d, we sum moments about B to determine the horizontal

component of the force in member DE.

L

2

P

2
þ wL

4

� �
¼ wL

4

L

4
þ h

2
Fde

Fde ¼ PL

2h
þ wL2

8h

The bending moment distribution is plotted in Fig. 4.25e. Note that there is bending in the legs even

though P is applied at node A. This is due to the location of member DE. If we move member DE

down to the supports A and C, the moment in the legs would vanish.
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4.6 Deflection of Frames Using the Principle of Virtual Forces

The Principle of Virtual Forces specialized for a planar frame structure subjected to planar loading is

derived in [1]. The general form is

d δP ¼
X

members

ð
s

M

EI
δM þ F

AE
δFþ V

GAs

δV


 �
ds ð4:7Þ

Fig. 4.25 (a) A-frame geometry and loading. (b–d) Free body diagrams. (e) Bending moment distribution
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Frames carry loading primarily by bending action. Axial and shear forces are developed as a result of

the bending action, but the contribution to the displacement produced by shear deformation is generally

small in comparison to the displacement associated with bending deformation and axial deformation.

Therefore, we neglect this term and work with a reduced form of the principle of Virtual Forces.

d δP ¼
X

members

ð
s

M

EI
δM þ F

AE
δF


 �
ds ð4:8Þ

where δP is either a unit force (for displacement) or a unit moment (for rotation) in the direction of the

desired displacement d; δM, and δF are the virtual moment and axial force due to δP. The integration
is carried out over the length of each member and then summed up.

For low-rise frames, i.e., where the ratio of height to width is on the order of unity, the axial

deformation term is also small. In this case, one neglects the axial deformation term in (4.8) and

works with the following form

d δP ¼
X

members

ð
s

M

EI

� �
δMð Þds ð4:9Þ

Axial deformation is significant for tall buildings, and (4.8) is used for this case. In what follows,

we illustrate the application of the Principle of Virtual Forces to some typical low-rise structures. We

revisit this topic later in Chap. 9, which deals with statically indeterminate frames.

Example 4.11 Computation of Deflections—Cantilever-Type Structure

Given: The structure shown in Fig. E4.11a. Assume EI is constant.

E ¼ 29, 000ksi, I ¼ 300 in:4

Fig. E4.11a
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Determine: The horizontal and vertical deflections and the rotation at point C, the tip of the cantilever

segment.

Solution: We start by evaluating the moment distribution corresponding to the applied loading. This

is defined in Fig. E4.11b. The virtual moment distributions corresponding to uc, vc, and θc are defined
in Figs. E4.11c, E4.11d, and E4.11e, respectively. Note that we take δP to be either a unit force (for

displacement) or a unit moment (for rotation).

Fig. E4.11b M(x)

Fig. E4.11c δM(x) for uc

Fig. E4.11d δM(x) for vc
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Fig. E4.11e δM(x) for θc

We divide up the structure into two segments AB and CB and integrate over each segment. The

total integral is given by

X
members

ð
s

M

EI
δM

� �
ds ¼

ð
AB

M

EI
δM

� �
dx1 þ

ð
CB

M

EI
δM

� �
dx2

The expressions for uc, vc, and θc are generated using the moment distributions listed above.

EIuC ¼
ð10
0

�21:6ð Þ �10þ x1ð Þdx1 ¼ 1080kip ft3

uC ¼ 1080 12ð Þ3
29, 000 300ð Þ ¼ 0:2145 in:!

EIvC ¼
ð10
0

�21:6ð Þ �6ð Þdx1 þ
ð6
0

� 1:2

2
x22

� �
�x2ð Þdx2 ¼ 1490kip ft3

vC ¼ 1490 12ð Þ3
29, 000 300ð Þ ¼ 0:296 in: #

EIθC ¼
ð10
0

�21:6ð Þ �1ð Þdx1 þ
ð6
0

� 1:2

2
x22

� �
�1ð Þdx2 ¼ 259kip ft2

θC ¼ 259 12ð Þ2
29, 000 300ð Þ ¼ 0:0043radclockwise

Example 4.12 Computation of Deflections

Given: The structure shown in Fig. E4.12a. E ¼ 29,000 ksi, I ¼ 900 in.4
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Determine: The horizontal displacements at points C and D and the rotation at B.

Fig. E4.12a

Solution: We start by evaluating the moment distribution corresponding to the applied loading.

This is defined in Fig. E4.12b.

Fig. E4.12b M(x)

The virtual moment distributions corresponding to uc and uD are listed in Figs. E4.12c and E4.12d.

Fig. E4.12c δM for uC
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Fig. E4.12d δM for uD

Fig. E4.12e δM for θB

We express the total integral as the sum of three integrals.

X
members

ð
s

M

EI
δM

� �
ds ¼

ð
AD

M

EI
δM

� �
dx1 þ

ð
DB

M

EI
δM

� �
dx2

þ
ð
CB

M

EI
δM

� �
dx3

The corresponding form for uc is

EIuC ¼
ð10
0

6x1 x1ð Þdx1 þ
ð10
0

x2 þ 10ð Þ 60ð Þdx2 þ
ð20
0

23x3 � x23
� �

x3ð Þ

dx3 ¼ 2x31
�� ��10

0
þ 30x22 þ 600x2
�� ��10

0
þ 23x3

3

3
� x4

3

4

��� ���20
0
¼ 32, 333kip ft3

uC ¼ 32, 333� 12ð Þ3
29; 000ð Þ 900ð Þ ¼ 2:14 in:!
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Following a similar procedure, we determine uD

EIuD ¼
ð10
0

6x1 x1ð Þdx1 þ
ð10
0

60 10ð Þdx2 þ
ð20
0

23x3 � x23
� � x2

3

� �
dx3

¼ 2x31
�� ��10

0
þ 600x2j j100 þ 23x3

3

6
� 1

8
x43

��� ���20
0
¼ 18, 667kip ft3

uD ¼ 18, 667 12ð Þ3
29; 000ð Þ 900ð Þ ¼ 1:23 in:!

Lastly, we determine θB (Fig. E4.12e)

EIθB ¼
ð20
0

�
23x3 � x23

� �x3
20

� �
dx3

¼ � 23x3
3

60
þ x4

3

80

��� ���20
0
¼ �106, 667kip ft2

θB ¼ � 106, 667 12ð Þ2
29; 000ð Þ 900ð Þ ¼ �0:0059

The minus sign indicates the sense of the rotation is opposite to the initial assumed sense.

θB ¼ 0:0059rad clockwise

Example 4.13 Computation of Deflection

Given: The steel structure shown in Figs. E4.13a, E4.13b, and E4.13c. Take Ib ¼ 4
3
Ic, hC ¼ 4m,

Lb ¼ 3 m, P ¼ 40 kN, and E ¼ 200 GPa.

Determine: The value of IC required to limit the horizontal displacement at C to be equal to 40 mm.

Fig. E4.13a
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Solution:We divide up the structure into two segments and express the moments in terms of the local

coordinates x1 and x2.

Fig. E4.13b M(x)

Fig. E4.13c δM for uC

We express the total integral as the sum of two integrals.

X
members

ð
s

M

EI
δM

� �
ds ¼

ð
AB

M

EI
δM

� �
dx1 þ

ð
CB

M

EI
δM

� �
dx2

The corresponding expression for uC is

uC ¼ 1

EIc

ðhc
0

Px1ð Þ x1ð Þdx1 þ 1

EIb

ðLb
0

P
hc
Lb
x2

� �
hc
Lb
x2

� �
dx2

+

uC ¼ P

EIc

ðhc
0

x1ð Þ2dx1 þ P

EIb

hc
Lb

� �2ðLb
0

x2ð Þ2dx2

+

uC ¼ Ph3c
3EIc

þ PL3b
3EIb

hc
Lb

� �2

¼ Ph2c
3E

hc
Ic
þ Lb

Ib

� �
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Then, for Ib ¼ 4
3
Ic, the IC required is determined with

uC ¼ Ph2c
3E

hc
Ic
þ Lb

Ib

� �
¼ 40 4000ð Þ2

3 200ð Þ
4000

Ic
þ 3000

4=3ð ÞIc

� �
¼ 40

∴Ic ¼ 167 10ð Þ6mm4

Example 4.14 Computation of Deflection—Non-prismatic Member

Given: The non-prismatic concrete frame shown in Figs. E4.14a and E4.14b.

Fig. E4.14a Non-prismatic frame

Assume hC ¼ 12 ft, Lb ¼ 10 ft, P ¼ 10 kip, and E ¼ 4000 ksi. Consider the member depths (d ) to

vary linearly and the member widths (b) to be constant. Assume the following geometric ratios:

dAB,1 ¼ 2dAB,0

dCB,1 ¼ 1:5dCB,0

b¼ dAB,0
2
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Fig. E4.14b Cross section depths

Determine:

(a) A general expression for the horizontal displacement at C (uC).

(b) Use numerical integration to evaluate uC as a function of dAB,0.

(c) The value of dAB,0 for which uC ¼ 1.86 in.

Solution:

Part (a): The member depth varies linearly. For member AB,

d x1ð Þ ¼ dAB,0 1� x1
hc

� �
þ dAB,1

x1
hc

� �
¼ dAB,0 1þ x1

hc

dAB,1
dAB,0

� 1

� �
 �

¼ dAB,0 gAB
x1
hc

� �

Then,

IAB ¼ IAB,0 gABð Þ3

Similarly, for member BC

d x2ð Þ ¼ dCB,0 1þ x2
Lb

dCB,1
dCB,0

� 1

� �
 �
¼ dCB,0 gCB

x2
Lb

� �

ICB ¼ ICB,0 gCBð Þ3
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We express the moments in terms of the local coordinates x1 and x2.

M x1ð Þ ¼ Px1 0 < x1 < hc

M x2ð Þ ¼ P
hc
Lb
x2 0 < x2 < Lb

δM x1ð Þ ¼ x1 0 < x1 < hc

δM x2ð Þ ¼ hc
Lb
x2 0 < x2 < Lb

The moment distributions are listed below.

Fig. E4.14c M(x)

Fig. E4.14d δM for uC

uC ¼ 1

E

ðhc
0

1

IAB
Px1ð Þ x1ð Þdx1 þ 1

E

ðLb
0

1

ICB
P
hc
Lb
x2

� �
hc
Lb
x2

� �
dx2

Substituting for IAB and ICB and expressing the integral in terms of the dimensionless values x1=h

¼ x1 and x2=Lb ¼ x2, the expression for uC reduces to
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uC ¼ P hcð Þ3
EIAB,0

ð1
0

x21
� �

dx1

gABð Þ3 þ
P hc=Lbð Þ2 Lbð Þ3

EICB,0

ð1
0

x22
� �

dx2

gCBð Þ3

Taking gAB ¼ gCB ¼ 1 leads to the values for the integrals obtained in Example 3.13, i.e., 1/3.

Part (b): Using the specified sections, the g functions take the form

gAB ¼ 1þ x1
h
¼ 1þ x1

gCB ¼ 1þ 1

2

x2
Lb
¼ 1þ 1

2
x2

Then, the problem reduces to evaluating the following integrals:

J1 ¼
ð1
0

x21
� �

dx1

1þ x1ð Þ3 and J2 ¼
ð1
0

x22
� �

dx2

1þ 1=2ð Þx2ð Þ3

We compute these values using the trapezoidal rule. Results for different interval sizes are listed

below.

N J1 J2

10 0.0682 0.1329

20 0.0682 0.1329

25 0.0682 0.1329

30 0.0682 0.1329

Next, we specify the inertia terms

IAB,0 ¼ b dAB,0ð Þ3
12

IBC,0 ¼ b dCB,0ð Þ3
12

For IAB,0 ¼ (3/4)ICB,0, the expression for uC reduces to

uC ¼ P

EIAB,0
h3cJ1 þ

hc
Lb

� �2

Lbð Þ3 3

4

� �
J2ð Þ

( )

Part(c): Setting uC ¼ 1.86 and solving for IAB,0 leads to

IAB,0 ¼ P

EuC
h3cJ1 þ

hc
Lb

� �2

Lbð Þ3 3

4

� �
J2ð Þ

( )
¼ 607 in:2

Finally,

dAB,0 ¼ 24IAB,0f g1=4 ¼ 10:98 in:

dCB,0 ¼ 4
3

� �1=3
dAB,0 ¼ 12:1 in:
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4.7 Deflection Profiles: Plane Frame Structures

Applying the principle of Virtual Forces leads to specific displacement measures. If one is more

interested in the overall displacement response, then it is necessary to generate the displacement

profile for the frame. We dealt with a similar problem in Chap. 3, where we showed how to sketch the

deflected shapes of beams given the bending moment distributions. We follow essentially the same

approach in this section. Once the bending moment is known, one can determine the curvature, as

shown in Fig. 4.26.

In order to establish the deflection profile for the entire frame, one needs to construct the profile for

each member, and then join up the individual shapes such as that the displacement restraints are

satisfied. We followed a similar strategy for planar beam-type structures; however, the process is

somewhat more involved for plane frames.

Consider the portal frame shown in Fig. 4.27. Bending does not occur in AB and CD since the

moment is zero. Therefore, these members must remain straight. However, BC bends into a concave

shape. The profile consistent with these constraints is plotted below. Note that B, C, and D move

laterally under the vertical loading.

Suppose we convert the structure into the 3-hinge frame defined in (Fig. 4.28). Now, the moment

diagram is negative for all members. In this case, the profile is symmetrical. There is a discontinuity

in the slope at E because of the moment release.

Fig. 4.26 Moment-

curvature relationship

Fig. 4.27 Portal frame. (a) Loading. (b) Bending moment. (c) Deflection profile

Fig. 4.28 3-Hinge frame. (a) Loading. (b) Bending moment. (c) Deflection profile
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Gable frames are treated in a similar manner. The deflection profiles for simply supported and

3-hinge gable frames acted upon by gravity loading are plotted below (Figs. 4.29 and 4.30).

The examples presented so far have involved gravity loading. Lateral loading is treated in a similar

way. One first determines the moment diagrams, and then establishes the curvature patterns for each

member. Lateral loading generally produces lateral displacements as well as vertical displacements.

Typical examples are listed below (Figs. 4.31, 4.32, and 4.33).

Fig. 4.29 Simply supported gable frame. (a) Loading. (b) Bending moment. (c) Deflection profile

Fig. 4.30 3-Hinge gable frame. (a) Loading. (b) Bending moment. (c) Deflection profile

Fig. 4.31 Portal frame. (a) Loading. (b) Bending moment. (c) Deflection profile

Fig. 4.32 3-Hinge frame. (a) Loading. (b) Bending moment. (c) Deflection profile

4.7 Deflection Profiles: Plane Frame Structures 357



4.8 Computer-Based Analysis: Plane Frames

When there are multiple loading conditions, constructing the internal force diagrams and displace-

ment profiles is difficult to execute manually. One generally resorts to computer-based analysis

methods specialized for frame structures. The topic is discussed in Chap. 12. The discussion here is

intended to be just an introduction.

Consider the gable plane frame shown in Fig. 4.34. One starts by numbering the nodes and

members, and defines the nodal coordinates and member incidences. Next, one specifies the nodal

constraints. For plane frames, there are two coordinates and three displacement variables for each node

(two translations and one rotation). Therefore, there are three possible displacement restraints at a

node. For this structure, there are two support nodes, nodes 1 and 5. At node 1, the X and Y translations

are fully restrained, i.e., they are set to zero. At node 5, the Y translation is fully restrained.

Next, information related to the members, such as the cross-sectional properties (A, I), loading

applied to the member, and releases such as internal moment releases are specified. Finally, one

specifies the desired output. Usually, one is interested in shear and moment diagrams, nodal reactions

and displacements, and the deflected shape. Graphical output is most convenient for visualizing the

structural response. Typical output plots for the following cross-sectional properties I1 ¼ 100 in.4,

I2 ¼ 1000 in.4, I3 ¼ 300 in.4, E ¼ 29,000 ksi, A1 ¼ 14 in.2, A2 ¼ 88 in.2, and A3 ¼ 22 in.2 are listed

in Fig. 4.35.

Fig. 4.33 3-Hinge frame. (a) Loading. (b) Bending moment. (c) Deflection profile

Fig. 4.34 Geometry and

loading
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Fig. 4.35 Graphical

output for structure defined

in Fig. 4.34. (a)
Displacement profile. (b)
Bending moment, M. (c)
Shear, V. (d) Axial force, F.
(e) Reactions
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4.9 Plane Frames: Out of Plane Loading

Plane frames are generally used to construct three-dimensional building systems. One arranges the

frames in orthogonal patterns to form a stable system. Figure 4.36 illustrates this scheme. Gravity

load is applied to the floor slabs. They transfer the load to the individual frames resulting in each

frame being subjected to a planar loading. This mechanism is discussed in detail in Chap. 15.

Our interest here is the case where the loading acts normal to the plane frame. One example is the

typical highway signpost shown in Fig. 4.37. The sign and the supporting member lie in a single

plane. Gravity load acts in this plane. However, the wind load is normal to the plane and produces a

combination of bending and twisting for the vertical support. One deals separately with the bending

and torsion responses and then superimposes the results.

The typical signpost shown in Fig. 4.37 is statically determinate. We consider the free body

diagram shown in Fig. 4.38. The wind load acting on the sign produces bending and twisting moment

in the column. We use a double-headed arrow to denote the torsional moment.

Suppose the Y displacement at C is desired. This motion results from the following actions:

Member BC bends in the X � Y plane

vC ¼
Pw

b

2

� �3
3EI2

Member AB bends in the Y � Z plane and twists about the Z axis

vB ¼ Pwh
3

3EI1
θBz ¼

Pw
b
2

� �
h

GJ

where GJ is the torsional rigidity for the cross section.

Fig. 4.36 A typical 3-D

system of plane frames
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Fig. 4.37 Signpost

structure

Fig. 4.38 Free body diagrams

4.9 Plane Frames: Out of Plane Loading 361



Node C displaces due to the rotation at B

vC ¼ b

2

� �
θBz ¼ b

2

� �2

Pw

h

GJ

� �

Summing the individual contributions leads to

vc total ¼ Pw

b3

24EI2
þ h3

3EI1
þ b2h

4GJ

� �

Another example of out-of-plane bending is the transversely loaded grid structure shown in

Fig. 4.39. The members are rigidly connected at their ends and experience, depending on their

orientation, bending in either the X � Z plane or the Y � Z plane, as well as twist deformation.

Plane grids are usually supported at their corners. Sometimes, they are cantilevered out from one

edge. Their role is to function as plate-type structures under transverse loading.

Plane grids are statically indeterminate systems. Manual calculations are not easily carried out for

typical grids so one uses a computer analysis program. This approach is illustrated in Chap. 10.

4.10 Summary

4.10.1 Objectives

• To develop criteria for static determinacy of planar rigid frame structures.

• To develop criteria for static determinacy of planar A-frame structures.

• To present an analysis procedure for statically determinate portal and pitched roof plane frame

structures subjected to vertical and lateral loads.

• To compare the bending moment distributions for simple vs. 3-hinged portal frames under vertical

and lateral loading.

• To describe how the Principle of Virtual Forces is applied to compute the displacements of frame

structures.

• To illustrate a computer-based analysis procedure for plane frames.

• To introduce the analysis procedure for out-of-plane loading applied to plane frames.

Fig. 4.39 Plane grid

structure
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4.10.2 Key Concepts

• A planar rigid frame is statically determinate when 3 m + r � n ¼ 3j, where m is the number

of members, r is the number of displacement restraints, j is the number of nodes, and n the

number of releases.

• A planar A-frame is statically determinate when 3 m ¼ r + 2np, where np is the number of pins,

m is the number of members, and r is the number of displacement restraints.

• The Principle of Virtual Forces specialized for frame structures has the general form

d δP ¼
X

members

ð
s

M

EI
δM þ F

AE
δF


 �
ds

For low-rise frames, the axial deformation term is negligible.

• The peak bending moments in 3-hinged frames generated by lateral loading are generally less than

for simple portal frames.

4.11 Problems

For the plane frames defined in Problems 4.1–4.18, determine the reactions, and shear and moment

distributions.

Problem 4.1
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Problem 4.2

Problem 4.3
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Problem 4.4

Problem 4.5

Problem 4.6
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Problem 4.7

Problem 4.8

Problem 4.9

366 4 Statically Determinate Plane Frames



Problem 4.10

Problem 4.11

Problem 4.12
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Problem 4.13

Problem 4.14

Problem 4.15
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Problem 4.16

Problem 4.17

Problem 4.18

For the gable frames defined in Problems 4.19–4.26, determine the bending moment distributions.
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Problem 4.19

Problem 4.20

Problem 4.21
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Problem 4.22

Problem 4.23

Problem 4.24
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Problem 4.25

Problem 4.26

For the A-frames defined in Problems 4.27–4.29, determine the reactions and bending moment

distribution.

Problem 4.27
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Problem 4.28

Problem 4.29
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Problem 4.30 Determine the horizontal deflection at D and the clockwise rotation at joint B. Take

E ¼ 29,000 ksi. Determine the I required to limit the horizontal displacement at D to 2 in. Use the

Virtual Force method.

Problem 4.31 Determine the value of I to limit the vertical deflection at C to 30 mm. Take

E ¼ 200 GPa. Use the Virtual Force method.
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Problem 4.32 Determine the value of I required limiting the horizontal deflection at D to ½ in. Take

E ¼ 29,000 ksi. Use the Virtual Force method.

Problem 4.33 Determine the vertical deflection at D and the rotation at joint B. Take E ¼ 200 GPa

and I ¼ 60(10)6 mm4. Use the Virtual Force method.
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Problem 4.34 Determine the horizontal displacement at joint B. Take E ¼ 29,000 ksi and I ¼ 200

in.4 Use the Virtual Force method.

Problem 4.35 Determine the displacement at the roller support C. Take E ¼ 29,000 ksi and

I ¼ 100 in.4 Use the Virtual Force method.

Problem 4.36 Determine the horizontal deflection at C and the rotation at joint B. Take E ¼ 200 GPa

and I ¼ 60(10)6 mm4. Use the Virtual Force method.
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Problem 4.37 Determine the horizontal deflection at C and the vertical deflection at E. Take

E ¼ 29,000 ksi and I ¼ 160 in.4 Use the Virtual Force method.

Problem 4.38 Determine the horizontal deflection at C. I ¼ 100(10)6 mm4 and E ¼ 200 GPa.

Sketch the deflected shape. Use the Virtual Force method.
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Problem 4.39 Sketch the deflected shapes. Determine the vertical deflection at A. Take I ¼ 240 in.4,

E ¼ 29,000 ksi, and h ¼ 2b ¼ 10 ft.

Problem 4.40 Determine the deflection profile for member DBC. Estimate the peak deflection. Use

computer software. Note that the deflection is proportional to 1/EI.
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Problem 4.41 Consider the pitched roof frame shown below and the loadings defined in cases

(a)–(f). Determine the displacement profiles and shear and moment diagrams. EI is constant. Use a

computer software system. Take I ¼ 10,000 in.4 (4160(10)6 mm4), E ¼ 30,000 ksi (200 GPa).
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Problem 4.42 Consider the frame shown below. Determine the required minimum I for the frame to

limit the horizontal deflection at C to 0.5 in. The material is steel. Use computer software.

Problem 4.43 Consider the frame shown below. Determine the required minimum I for the frame to

limit the vertical deflection at E to 15 mm. The material is steel. Use computer software.

Problem 4.44 Consider the triangular rigid frame shown below. Assume the member properties are

constant. I ¼ 240 in.4, A ¼ 24 in.2 and E ¼ 29,000 ksi. Use computer software to determine the axial

forces and end moments for the following range of values of tan θ ¼ 2 h/L ¼ 0.1, 0.2, 0.3, 0.4, 0.5

Compare this solution with the solution based on assuming the structure is an ideal truss.
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Problem 4.45 Consider the structure consisting of two members rigidly connected at B. The load

P is applied perpendicular to the plane ABC. Assume the members are prismatic. Determine θy at
point C (labeled as θc on the figure).

Problem 4.46 Members AB, BC, and CD lie in the X � Y plane. Force P acts in the Z direction.

Consider the cross-sectional properties to be constant. Determine the z displacement at B and D. Take

LAB ¼ L, LBC ¼ L
2
,LCD ¼ L

ffiffiffi
2
p

.

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.
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Cable Structures 5

Abstract

Historically, cables have been used as structural components in bridge

structures. In this chapter, we first examine how the geometry of a cable is

related to the loading that is applied to it. We treat concentrated loadings

first and then incorporate distributed loadings leading up to a theory for

continuously loaded inclined cables. We also analyze the effect of tem-

perature on the cable geometry. Lastly, we develop an approximate

formula for estimating the stiffness of a cable modeled as an equivalent

straight member. This modeling strategy is used when analyzing cable-

stayed structures.

5.1 Introduction

A cable is a flexible structural component that offers no resistance when compressed or bent into a

curved shape. Technically, we say a cable has zero bending rigidity. It can support only tensile

loading. The first cables were made by twisting vines to form a rope-like member. There are many

examples of early cable suspension bridges dating back several thousand years. With the introduction

of iron as a structural material, cables were fabricated by connecting wrought iron links. Figure 5.1

shows an example of an iron link suspension bridge, the Clifton Suspension Bridge near Bristol,

England built in 1836–1864 and designed by Isambard Brunel.

When high-strength steel wires became available, steel replaced wrought iron as the material of

choice for cables. Modern cables are composed of multiple wires (up to 150 wires) clustered in a

circular cross-section and arranged in a parallel pattern, as illustrated in Fig. 5.2. This arrangement is

used for cable-stayed bridges and suspension bridges. The cable is normally coated with a protective

substance such as grease and wrapped or inserted in a plastic sheathing.

One of the most notable early applications of steel cables was the Brooklyn Bridge built in

1870–1883 and designed by John Roebling and Wilhelm Hildebrandt. John Roebling also invented

and perfected the manufacture of steel wire cable which was used for the bridge. At the time of

completion, the total length of the Brooklyn Bridge was 50 % greater than any existing suspension

bridge, an extraordinary advancement in bridge engineering (Fig. 5.3).
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Cable nets are also used as the primary structural elements for long-span horizontal roof structures.

Figure 5.4 shows a single-layer cable net structure with a double-curved saddle-shaped surface

designed by Schlaich Bergermann and partners for a stadium in Kuwait.

Cable-stayed structures employ cables fabricated from ultra high-strength steel to allow for the

high level of tension required for stiffness. The cable-stayed bridge concept has emerged as the

predominant choice for main spans up to about 1000 m, replacing the conventional truss structural

system. Figure 5.5 shows the Normandy Bridge, with a main span of 856 m. Built in 1995, it held the

record for the largest main span until 1999, when it was exceeded by the Tatara Bridge in Japan.

Fig. 5.1 Clifton Suspension Bridge, England

Fig. 5.2 Cable–strand

arrangements
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Fig. 5.3 Brooklyn Bridge, USA

Fig. 5.4 Doubly curved single-layer cable net, Kuwait
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5.2 Cables Subjected to Concentrated Loads

5.2.1 Horizontal Cables

Suppose we conduct the following experiment shown in Fig. 5.6. We start with a horizontally aligned

cable that is pin connected at A, supported with a roller support at B, and tensioned with a forceH. We

then apply a concentrated load, P, at mid-span. The cable adopts the triangular shape shown under

the action of P. Two questions are of interest. Firstly, why a triangular shape? Secondly, how is the

Fig. 5.5 Normandy Bridge, France
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downward vertical displacement at mid-span related to P and H? Historically, the term “sag” is used

to describe the vertical motion of a cable.

We answer these questions by noting that the magnitude of the moment at any section along

the length of the cable must be zero since a cable has no resistance to bending. Summing moments

about B

X
at B

M ¼ RAL� P
L

2
¼ 0 ) RA ¼ P

2
"

Next, we consider the free body diagram for the arbitrary segment shown in Fig. 5.6d. Setting the

moment at x equal to zero leads to an expression for the sag, v(x).

X
Mat x ¼ P

2
x� Hv xð Þ ¼ 0 ð5:1Þ

v xð Þ ¼ P

2H
x ð5:2Þ

Finally, evaluating v(x) at x ¼ L/2 results in an equation relating vC and P.

vC ¼ PL

4H
ð5:3Þ

The relationship between vC and H is plotted below in Fig. 5.7. Usually, one specifies H and

determines vC. However, there are cases where one specifies vC and determines the required value of

H. In general for cable systems, one needs to specify either a force or a sag in order to define the

solution.

Fig. 5.6 Transverse

loading on pretensioned

cable. (a) Axial load. (b)
Transverse load added. (c)
Free body diagram. (d)
Free body diagram of cable

segment
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The tension in the cable is given by

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ P

2

� �2
s

¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P

2H

� �2
s

ð5:4Þ

Noting that the angle of inclination of the cable is related to the sag by

tan θ ¼ vC
L=2
¼ P=2

H
ð5:5Þ

leads to an alternative expression for the tension,

T ¼ H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ P

2H

� �2
s

¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2θ

p
¼ H

cos θ
ð5:6Þ

When θ is small, T is approximately equal to H.

Fig. 5.7 Relationship

between vc and H
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Equation (5.1) combines two moment distributions, one due to the transverse loading P and the

other due to H. The moment due to P can be interpreted as the moment in a simply supported beam

spanning between points A and B, the support points for the cable. Figure 5.8 shows this distribution.

We express (5.1) as

M0 xð Þ � v xð ÞH ¼ 0 ð5:7Þ

where M0(x) is the moment due to the transverse loading acting on the simply supported beam

spanning between A and B. Then, the expression for the sag can be written as

v xð Þ ¼ M0 xð Þ
H

ð5:8Þ

We interpret this result as follows. The shape of the vertical sag of the cable from the horizontal chord
is a scaled version of the moment diagram for the transverse loading acting on a simply supported

beam spanning between the cable supports.

We extend this reasoning to a cable subjected to multiple concentrated loads. Figure 5.9a

illustrates this case. The moment diagram for a set of concentrated loads is piecewise linear, with

peak values at the points of application of the concentrated loads. It follows from (5.8) that the shape

of the cable is also piecewise linear. One generates M0(x), the corresponding shear V0(x), the
displacement v, and the tension T. Details are listed in Fig. 5.9b–d. Note that one has to specify

either H or one of the vertical coordinates (vC or vD) in order to compute the shape.

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
0 þ H2

q
¼ H

cos θ

Example 5.1 Cable with Multiple Concentrated Loads

Given: The cable and loading shown in Fig. E5.1a.

Fig. 5.8 Moment

distribution for simply

supported beam M0(x)
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Fig. 5.9 Cable with two concentrated loads. (a) Loading. (b) V0(x), M0(x) diagrams. (c) Cable sag profile. (d) Cable
tension computation
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Determine: The shape corresponding to this loading. Assume (a) vD ¼ 6 ft (b) vD ¼ 12 ft.

Fig. E5.1a Cable geometry and loading

Solution: First, we find the vertical reactions and generate the shear diagram V0(x) and moment

diagram,M0(x), treating chord AB as a simply supported beam acted upon by the three vertical forces

(Fig. E5.1b).

Fig. E5.1b Simply supported beam results

The downward vertical sag from the chord AB is determined with (5.8).

þ # v xð Þ ¼ M0 xð Þ
H

In order to compute v(x), we need the horizontal force, H.

(a) Taking vD ¼ 6 ft results in

6 ¼ 610

H
) H ¼ 101:67kip
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The remaining sags are

vC ¼ 364

101:67
¼ 3:58ft

vE ¼ 391:6

101:67
¼ 3:85ft

The final results for the shape are plotted below (Fig. E5.1c).

Fig. E5.1c Sag profile for vD ¼ 6 ft

Once the shape is known, one can find the tension in the various segments using (Fig. E5.1d)

Fig. E5.1d Force decomposition

TAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18:22 þ 101:672

p
¼ 103:3kip

TCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:22 þ 101:672

p
¼ 102kip

TDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:82 þ 101:672

p
¼ 101:8kip

TEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:82 þ 101:672

p
¼ 103:2kip

(b) Taking vD ¼ 12 ft results in

H ¼ 610

12
¼ 50:83kip

vC ¼ 364

50:83
¼ 7:16ft

vE ¼ 391:6

50:83
¼ 7:7ft

and

TAC ¼ 54kip

TCD ¼ 51:5kip

TDE ¼ 51:16kip

TEB ¼ 53:85kip
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The sag profile is plotted below (Fig. E5.1e)

Fig. E5.1e Sag profile for vD ¼ 12 ft

Note that increasing the prescribed value of vD decreases the cable forces.

5.2.2 Inclined Cables

When the cable is inclined, we follow the same approach except that now we measure the cable sag

with respect to the inclined chord. Consider the cable defined in Fig. 5.10. This example differs from

the previous examples only with respect to the inclination of the chord AB.

The reactions and corresponding bending moment distribution generated by the vertical loads are

shown in Fig. 5.11. Note that thesemoment results are identical to the results for the case of a horizontal

chord orientation. The reactions generated by the horizontal cable force, H are defined in Fig. 5.12.

Setting the total moment equal to zero leads to

M0 xð Þ � H
yB
Lh
xþ Hy xð Þ ¼ 0

+
M0 xð Þ ¼ H

yB
Lh
x� y xð Þ

� �
� Hv xð Þ

+
v xð Þ ¼ M0 xð Þ

H

Note that the solution for v(x) is identical to the results for the horizontal cable except that now one
measures the sag from the inclined chord.

Fig. 5.10 Inclined cable

with concentrated loads
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Example 5.2 Analysis of an Inclined Cable

Given: The inclined cable and loading shown in Fig. E5.2a.

Fig. 5.11 Simply

supported beam results. (a)
Vertical loading. (b) V0(x)
diagram. (c) M0(x) diagram

Fig. 5.12 Reactions due

to horizontal force, H
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Determine: The sag of the cable. Assume vD ¼ 6 ft.

Fig. E5.2a Inclined geometry

Solution: According to the theory presented above, the sag with respect to the inclined chord is

given by

þ # v xð Þ ¼ M0 xð Þ
H

where M0(x) is the simply supported beam moment (Fig. E5.2b).

Fig. E5.2b Simply supported beam results

Then,

vC ¼ 364

H
vD ¼ 610

H
vE ¼ 391:6

H

For vD ¼ 6 ft, the value of H follows from

H ¼ M0D

vD
¼ 610

6
¼ 101:67kip
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Finally, the values of sag at C and E are

vC ¼ 364

101:67
¼ 3:58ft

vE ¼ 391:6

101:67
¼ 3:85ft

To determine the tension, we need to compute the vertical shear in each panel.

The vertical reactions due to H (Fig. E5.2c) are

HyB
L
¼ 101:67 4ð Þ

110
¼ 3:7kip

Fig. E5.2c Vertical reactions due to H

The net results for vertical shear are shown in Fig. E5.2d.

Fig. E5.2d Vertical shear

Lastly, the tension in each segment is computed using these values for V and H. The maximum

tension is in segment AC.
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TAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:92 þ 101:672

p
¼ 104kip

TCD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:92 þ 101:672

p
¼ 102:4kip

TDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:12 þ 101:672

p
¼ 101:7kip

TEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14:092 þ 101:672

p
¼ 102:6kip

5.3 Cables Subjected to Distributed Loading

5.3.1 Horizontal Cable: Uniform Loading per Horizontal Projection

We consider next the cable system shown in Fig. 5.13. The cable supports a horizontal platform,

which in turn, supports a uniform vertical loading. We represent the action of the closely spaced

vertical hangers on the cable as a uniform downward loading per unit horizontal projection. The self

weight of the cable, which is usually small in comparison to the applied loading, is neglected.

Following the procedure described in the previous section, we determine the moment diagram for a

simply supported beam spanning between the end supports. The sag of the cable with respect to the

horizontal chord AB is an inverted scaled version of the moment diagram. The details are shown in

Fig. 5.14.

The sag, tan θ, and T are given by

v xð Þ ¼ M0 xð Þ
H
¼ wL=2ð Þx� wx2=2ð Þ

H
¼ w

2H
Lx� x2
� �

tan θ¼ dv

dx
¼ 1

H

dM0 xð Þ
dx

¼ w

2H
L� 2xð Þ

T ¼ H

cos θ

ð5:9Þ

It follows that the shape due to a uniform load is parabolic and the maximum sag occurs at

mid-span, point c.

vC ¼ h ¼ w

2H
L2=2� L2=4
� � ¼ wL2

8H
ð5:10Þ

Fig. 5.13 Cable with

a uniformly distributed

loading
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Example 5.3

Given: The cable shown in Fig. E5.3a. The loading and desired cable geometry is specified.

Determine: The value of the horizontal tension force, H and the peak value of cable tension, which

produces this geometry under the given loading.

Fig. E5.3a

Fig. 5.14 Horizontal

cable. (a) Simply supported

beam results. (b)
Cable sag
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Solution: We note that the maximum value of ν occurs at x ¼ L/2. Then, specializing (5.9) for this

value of x leads to the value of H:

M0 xð Þ ¼ w0L

4
x� w0

3L
x3 0 � x � L

2

tan θ¼ 1

H

dM0 xð Þ
dx

¼ 1

H

w0L

4
� w0

L
x2

� �

H ¼ M0 x ¼ L=2ð Þ
vC

¼ w0L
2

12

1

vC
¼ 15ð Þ 30ð Þ2

12 3ð Þ ¼ 375kN

The tension is related to H by:

T ¼ H

cos θ

The peak values of θ occur at x ¼ 0 and x ¼ L.

tan θat x¼0 ¼ 1

H

w0L

4

� �
¼ 15ð Þ 30ð Þ

375ð Þ 4ð Þ ¼ 0:3

θat x¼0 ¼ 16:7�

It follows that

θmax ¼ �16:7�

Tmax ¼ H

cos θ
¼ 391:5kN

5.3.2 Inclined Cables

Suppose the cable is inclined and subjected to an arbitrary loading. We define the shape by the

function y(x). Figure 5.15 defines this notation.

Since the cable has no bending rigidity, the shape of the cable must adjust itself so that the resultant

moment due to the vertical load and H vanishes at all points along the cable. Then, setting the total

moment at x equal to zero leads to

X
Mat x ¼ M0 xð Þ þ Hy xð Þ � HyB

Lh
x ¼ 0

+

y xð Þ ¼ yB
Lh
x�M0 xð Þ

H

ð5:11Þ
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We note from Fig. 5.15 that

y xð Þ þ v xð Þ
x

¼ yB
Lh

+
y xð Þ ¼ yB

Lh
x� v xð Þ

ð5:12Þ

Finally, equating (5.11) and (5.12) leads to the expression for the sag,

v xð Þ ¼ M0 xð Þ
H

ð5:13Þ

We observe that the solution for the sag is identical to the result that we obtained for the horizontal

chord orientation except now one measures the sag from the inclined chord. The solution is also

similar to the case of a set of concentrated loads.

The lowest point on the cable (point C in Fig. 5.16) is determined by setting the slope equal to zero.

dy

dx

����
xC

¼ 0 ð5:14Þ

Fig. 5.15 Inclined cable

geometry—arbitrary

loading. (a) Geometry-

arbitrary loading. (b)
Simply supported beam

results. (c) Reactions due to
horizontal force, H
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Noting (5.11),

yB
Lh
� 1

H

dM0 xð Þ
dx

¼ 0 ð5:15Þ

For the case where the distributed load is uniform, M0(x) is parabolic, and (5.15) expands to

yB
Lh
� 1

H
�wxC þ wLh

2

� �
¼ 0 ð5:16Þ

Solving for x leads to

xC ¼ Lh
2
� yB

Lh

H

w
ð5:17Þ

For an arbitrary loading, we need to use (5.15).

Example 5.4

Given: The inclined cable is defined in Fig. E5.4a. Point C is the lowest point of the cable.

Fig. 5.16 Cable

geometry—lowest point
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Determine: The coordinates of point C and the peak values of cable tension.

Fig. E5.4a

Solution: Noting (5.17),

xC ¼ Lh
2
� yB

Lh

H

w
¼ 30

2
� 3

30

360

15

� �
¼ 12:6m

Applying (5.11) for point C,

yC ¼ xC
yB
Lh
� w

2H
LhxC � xCð Þ2
n o

¼ 12:6
3

30

� �
� 15

2 360ð Þ 30 12:6ð Þ � 12:6ð Þ2
� �

¼ �3:3m
Given H, we can find the cable tension at any point with:

T ¼ H

cos θ

where

tan θ ¼ dy

dx
¼ yB

Lh
� wLh

2H
þ wx

H

The critical locationsare at the support points A and B.

tan θA ¼ 3

30
� 15 30ð Þ
2 360ð Þ ¼ �0:525 θA ¼ �27:7�

tan θB ¼ 3

30
� 15 30ð Þ
2 360ð Þ þ

15 30ð Þ
360

¼ þ0:725 θB ¼ þ35:9�

TA ¼ H

cos θA
¼ 406:6kN

Tmax ¼ TB ¼ H

cos θB
¼ 444:6kN
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5.4 Advanced Topics

This section deals with the calculation of arch length, the axial stiffness, and the effect of temperature.

We also discuss a modeling strategy for cable-stayed structures such as guyed towers and cable-

stayed bridges.

5.4.1 Arc Length

We consider first the uniformly loaded horizontal cable shown in Fig. 5.17. We have shown that the

sag profile due to a uniform load is parabolic,

v xð Þ ¼ wL

2H
x� wx2

2H

and the maximum sag occurs at mid-span,

vmax � h ¼ wL2

8H

Given H and L, of interest is the total arc length of the cable. We need this quantity in order to

determine the effect on the cable geometry of a temperature increase in the cable. Figure 5.17 shows

the initial and loaded shapes of the cable. Note that the deformed length is greater than L. We denote

this quantity as L + Δ.
The differential arc length, ds, is related to its horizontal and vertical projections by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
¼ dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

ð5:18Þ

Fig. 5.17 Cable

geometry. (a) Initial
unloaded. (b) Loaded

shape
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Integrating between 0 and L leads to an expression for the total arc length

S ¼
ð L
0

1þ dy

dx

� �2
( )1

2

dx ð5:19Þ

Given y(x), one evaluates the integral using either symbolic or numerical integration. When the

cable is horizontal, y(x) ¼ �v(x).

y xð Þ ¼ wL

2H
�xþ x2

L

� �
¼ 4h

L
�xþ x2

L

� �

When the maximum sag h is small with respect to L, we can assume that dy/dx is small with respect

to 1 and simplify the integral in (5.19) using the following binominal series expression,

1þ fð Þ12 ¼ 1þ 1

2
f � 1

8
f 2 þ 	 	 	

fj j < 1

ð5:20Þ

Taking f ¼ (dy/dx)2 and retaining only the first three terms, we obtain the following approximation for S:

S �
ð L
0

1þ 1

2

dy

dx

� �2

� 1

8

dy

dx

� �4
( )

dx ð5:21Þ

Noting Fig. 5.17a, we see that Δ � 1
2

ð L
0

dy

dx

� �2

dx for a small sag ratio.

Lastly, we evaluate S for the case when the loading is uniform. Retaining the first three terms in

(5.21) leads to

S � L 1þ 8

3

h

L

� �2

� 32

5

h

L

� �4
( )

ð5:22Þ

We refer to h/L as the sag ratio. Equation (5.22) shows that the effect of decreasing the sag ratio is

to transform the “curved” cable to essentially a straight segment connecting the two end points. The

cables used for guyed towers and cable-stayed bridges have small sag ratios and are approximated as
equivalent straight axial elements. We will discuss this topic in a later section.

Example 5.5

Given: The cable defined in Fig. E5.5a.

Determine: The length of the cable corresponding to this geometry. Also determine the change in

geometry due to a temperature increase of 150 �F. Take α ¼ 6.6 � 10�6/�F.
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Fig. E5.5a

Solution: The horizontal reaction due to the loading shown is

H ¼ wL2

8h
¼ 250kip

We evaluate S using (5.22),

S¼ 200 1þ 8

3

40

200

� �2

� 32

5

40

200

� �4
( )

¼ 200 1þ 0:107� 0:01f g

S¼ 219:4ft

The change in cable length due to a temperature increase is

ΔS ¼ S αΔTð Þ � 219:4 6:6� 10�6
� �

150ð Þ � 0:217ft

This length change produces a change in the sag. We differentiate (5.22) with respect to h,

dS

dh
� 16

3

h

L
� 128

5

h

L

� �3

and solve for dh.

dh � dS

16=3ð Þ h=Lð Þ 1� 4:8 h=Lð Þ2
n o

Substituting for dS leads to

dh � 0:217

16=3ð Þ 40=200ð Þ 1� 4:8 40=200ð Þ2
n o ¼ 0:25ft

Finally, we update H using the new values for h ¼ 40 + 0.25 ¼ 40.25 ft

H ¼ wL2

8h
¼ 2 200ð Þ2

8 40:25ð Þ ¼ 248:5kip

The effect of temperature increase on H is small for this geometry.
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Example 5.6

Given: The uniformly loaded inclined cable is shown in Fig. E5.6a.

Determine: The sag profile and total arc length.

Fig. E5.6a

Solution: The profile defined in terms of y(x) is given by (5.11). For the given dimensions, it

expands to

y xð Þ ¼ yB
Lh
x�M0 xð Þ

H

¼ 15

100
x� 50x� x2

2

� �
1

80

Then, the sag profile is given by

v xð Þ ¼ þ 50x� x2

2

� �
1

80
¼ 5

8
x� x2

160

We determine the total arc length using (5.19).

S ¼
ðLh
0

1þ dy

dx

� �2
( )1=2

dx

Substituting for y(x), S expands to

S ¼
ð100
0

1þ 15

100
� 1

80
50� xð Þ


 �2( )1=2

dx

We evaluate the integral using numerical integration. The result is

S ¼ 107:16ft
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5.4.2 Equivalent Axial Stiffness

In what follows, we establish a procedure for modeling a shallow horizontal cable as an equivalent

straight axial member. Consider the cable shown in Fig. 5.18. Suppose the horizontal force, H, is
increased by a small amount, say ΔH. This action causes the support at B to displace horizontally, an

amount Δu. The ratio ΔH/Δu is a measure of the axial stiffness for the cable. We interpret it as the

tangent stiffness since we perturbed the system from a “loaded” state.

We generate an expression for the tangent stiffness in the following way. We start with the straight

unloaded cable shown in Fig. 5.19 and apply a horizontal force. The cable stretches an amount u1.

Next, we apply the uniform downward load, holding H constant. Point B moves to the left, an amount

u2. We estimate u2 using (5.21) specified for a parabolic shape and small sag ratio,

u2 �
ð L
0

1

2

dy

dx

� �2

dx ¼ w2L3

24H2

The net motion of B is uB.

uB ¼ u1 � u2 ¼ HL

AE
� w2L3

24H2
ð5:23Þ

Equation (5.23) is plotted in Fig. 5.20. For large H, the first term dominates and the behavior

approaches the behavior of an axial member. We want to determine dH/du. Since uB is a nonlinear

function of H, we first find the derivative du/dH, and then invert.

duB
dH
¼ L

AE
þ w2L3

12H3
¼ L

AE
1þ 1

12

AE

H

wL

H

� �2
( )

#
dH

duB
¼ kt ¼ 1

1þ 1=12ð Þ AE=Hð Þ wL=Hð Þ2
 !

AE

L

ð5:24Þ

Fig. 5.18 Actual and

perturbed configurations
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Note that AE/L is the axial stiffness of a straight member. Equation (5.24) shows that the tangent

stiffness for the horizontal cable approaches AE/L as the tension H is increased.

The tangent stiffness kt can also be expressed in terms of a modified elastic modulus Eeq.

We write (5.24) as kt ¼ (A/L )Eeq. Then, the definition equation for Eeq follows:

Eeq ¼ E

1þ 1=12ð Þ AE=Hð Þ wL=Hð Þ2 ð5:25Þ

In general, Eeq < E. Substituting the terms,

A

H
¼ 1

σ
wL

H
¼ 8

h

L

� �
transforms (5.25) to

Eeq ¼ E

1þ 16=3ð Þ E=σð Þ h=Lð Þ2 ð5:26Þ

Fig. 5.20 uB vs.

H relationship

Fig. 5.19 Deflection

patterns

408 5 Cable Structures



where σ is the stress in the cable. It follows that the equivalent modulus depends on the initial stress in

the cable and the sag ratio. A typical value of initial stress is on the order of 50–100 ksi

(344,700–1,034,100 kN/m2). Values of sag ratio range from 0.005 to 0.02. The corresponding

variation in Eeq for a steel cable with σ ¼ 50 ksi (344,700 kN/m2) is tabulated below.

E/σ h/L Eeq/E

580 0.005 0.928

0.01 0.764

0.02 0.447

Note that a typical sag ratio of 0.01 results in a 25 % reduction in E. One uses high-strength steel

strands, on the order of 150 ksi (1,034,100 kN/m2) yield stress, for cable-stayed structures in order to

minimize their loss of stiffness due to cable sag.

5.4.3 Equivalent Axial Stiffness for an Inclined Cable

In this section, we extend the modeling strategy to deal with shallow inclined cables. Inclined cables

with small sag ratios are used in cable-stayed bridges and also as supports for guyed towers.

Figure 5.21 shows the Millau Viaduct Bridge in France. Figure 5.22 illustrates a two-cable scheme

for a guyed tower subjected to wind loading.

We model each cable as a straight axial member with a modulus of elasticity, Eeq which

depends on the initial tension and geometry of the cable. This approach is reasonable when the

changes in geometry and tension due to the applied load are small in comparison to the initial

properties.

Equilibrium of the tower requires

2ΔT cos θ ¼ P ð5:27Þ

The corresponding extension of the “equivalent” straight member due to ΔT is:

Δe ¼ ΔTL
AEeq

ð5:28Þ

Lastly, we relate Δe to the horizontal displacement u.

Δe ¼ u cos θ

Combining these equations leads to an expression relating P and u.

P ¼ 2AEeq

L
cos θð Þ2


 �
u ð5:29Þ

The bracketed term represents the lateral stiffness of the tower for a lateral load applied at the top

of the tower. Given Eeq, one can evaluate the lateral response of the tower with (5.29).
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We develop an expression for Eeq by modifying (5.25). Figure 5.23 shows a typical inclined cable

and the notation introduced here. The loading acting on the cable is assumed to be the self weight, wg.

Also when the cable is rotated from the horizontal position up to the inclined position, H is now the

cable tension, T; the normal distributed load w becomes wg cos θ; and the loading term becomes

wL ¼ wg cos θ
� �

L ¼ wgLh ð5:30Þ

Substituting for these terms in (5.25) leads to

Eeq � E

1þ 1=12ð Þ AE=Tð Þ wgLh=T
� �2 ð5:31Þ

Lastly, we introduce the following definitions involving the initial stress and weight density,

A

T
¼ 1

σ
wg ¼ γgA

ð5:32Þ

Fig. 5.21 Millau Viaduct Bridge in France

Fig. 5.22 Guyed tower

modeling scheme.

(a) Initial position.
(b) Loaded position
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The final form of (5.31) for an individual cable is

Eeq ¼ E

1þ 1=12ð Þ E=σð Þ γgLh=σ
� �2 ð5:33Þ

Equation (5.33) is known as Ernst’s Formula. This expression is used when modeling the cables in a

cable-stayed scheme with equivalent axial member properties.

Example 5.7

Given: The steel cable shown in Fig. E5.7a. Take the initial stress as 700 MPa.

Determine: The equivalent modulus, Eeq.

Fig. E5.7a

Solution: The properties of steel are E ¼ 200 GPa and γg ¼ 77 kN/m3. Substituting these values in

(5.33) leads to

Eeq

E
¼ 1

1þ 1=12ð Þ 200 103
� �

=700
� �

77 120ð Þ=700,000ð Þ2 ¼ 0:996

Fig. 5.23 Inclined cable

geometry. (a) Vertical
versus normal loading.

(b) Loading components
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One uses Eeq when specifying the properties of the “equivalent” straight axial member.

5.4.4 Cable Shape Under Self Weight: Catenary

There are cases where the loading on a cable is due only to self weight. Electrical transmission lines

are one example. The previous analyses have assumed the loading is defined in terms of the horizontal

projection (dx). This assumption is reasonable when the slope of the cable is small. In order to

investigate the case when the slope is not small, we need to work with the exact equilibrium equation.

Consider the segment shown in Fig. 5.24b. Enforcing equilibrium and noting that the loading is

vertical leads to following equations:

X
Fy ¼ 0

d

dx
T sin θð Þdx ¼ wgds

X
Fx ¼ 0

d

dx
T cos θð Þ ¼ 0) T cos θ ¼ Constant ¼ H

ð5:34Þ

Substituting for T

T ¼ H

cos θ
) T sin θ ¼ H tan θ ¼ H

dy

dx

in the first equation in (5.34) leads to

H
d2y

dx2
¼ wg

ds

dx
¼ wg 1þ dy

dx

� �2
( )1

2

ð5:35Þ

The general solution of (5.35) is

y ¼ H

wg

cosh
wg

H
xþ c1

� �
þ c2 ð5:36Þ

where c1 and c2 are integration constants which are determined using the coordinates of the support

points. For the unsymmetrical case, we locate the origin at the left support (Fig. 5.24a). When the

cable is symmetrical, it is more convenient to locate the origin at the lowest point.

We consider the symmetrical case shown in Fig. 5.25. We locate the origin at the lowest point.

Then for this choice,

c1 ¼ 0

c2 ¼ �H

wg
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and

y ¼ H

wg

cosh
wg

H
x

� �
� 1

n o

The force H is determined from the condition y(L/2) ¼ h

h ¼ H

wg

cosh
wgL

2H

� �
� 1


 �
ð5:37Þ

Fig. 5.24 (a) Cable shape
under self weight—

catenary. (b) Differential

segment

Fig. 5.25 Catenary–

symmetrical
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We need to solve (5.37) using iteration since it is a transcendental equation.

Expanding the cosh term,

coshx ¼ 1þ x2

2
þ x4

24
þ 	 	 	 þ xn

n!

¼ 1þ x2

2
1þ x2

12
þ 	 	 	 þ 2

x n�2ð Þ

n!


 � ð5:38Þ

and noticing that when x2 is small with respect to 1, the expression can be approximated as

coshx � 1þ x2

2
1þ x2

12


 �

and taking x ¼ wgL
2H leads to

h � wgL
2

8H
1þ 1

12

wgL

2H

� �2
( )

ð5:39Þ

When the loading is assumed to be per unit projected length, the corresponding expression for h is

h ¼ wL2/8H. For a given H, h is larger for the self weight case. Also for a given h, H is larger for the

self weight case. The difference increases with the sag ratio, h/L.
We find the arc length using (5.35).

H
d2y

dx2
dx ¼ wgds

Integrating,

S ¼ 2

ðL
2

0

1

wg

� �
H
d2y

dx2
dx ¼ 2

wg

H
dy

dx

����
L
2

0

S ¼ 2H

wg

sinh
wgL

2H

� � ð5:40Þ

The maximum tension, which occurs at x ¼ � (L/2), is determined using

Tmax ¼ H cosh
wgL

2H

� �
ð5:41Þ

Example 5.8

Given: The cable shown in Fig. E5.8a has a self weight of 1.2 kip/ft.

Determine: The arc length, h the maximum tension in the cable using the catenary equations, and the

percent of error in the maximum tension value when using parabolic equations. Consider the

following values for H: H ¼ 75, 100, and 250 kip.
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Fig. E5.8a

Solution: The relevant equations are listed below.

h¼ H

wg

cosh
wgL

2H

� �
� 1


 �

hap � wgL
2

8H
1þ 1

12

wgL

2H

� �2
( )

S¼ 2H

wg

sinh
wgL

2H

� �

Tmax ¼ H cosh
wgL

2H

� �

These equations are evaluated using a digital computer. The results are summarized in the table

below. Note that when h/L is large, the error introduced by the parabolic approximation is significant.

H

Catenary Parabola

S h hap. Tmax h Tmax % difference Tmax

75 296.9 98.6 97 193 80 141.5 27 %

100 251.6 67.5 67.2 181 60 156.2 14 %

250 207.7 24.5 24.5 279 24 277.3 1 %

5.5 Summary

5.5.1 Objectives

• To describe how a cable adjusts its geometry when subjected to a single vertical concentrated load.

• To extend the analysis to a cable subjected to multi-concentrated vertical loads.

• To derive an expression for the deflected shape of the cable when subjected to an arbitrary vertical

loading.

• To present a series of examples which illustrate the computational procedure for finding the

deflected shape of a cable.

• To derive an approximate expression for the equivalent axial stiffness of a cable modeled as a

straight member.
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5.5.2 Key Concepts

• Given a cable supported at two points, A and B, and subjected to a vertical loading. The vertical

deflection from the chord connecting points A and B is proportional to the bending momentM in a

simply supported beam spanning between A and B. One finds the bending moment diagram using

a simple equilibrium analysis. The deflection of the cable with respect to the chord AB is an

inverted scaled version of the moment diagram.

• Under vertical loading, the horizontal component of the cable force is constant.

• The length of the cable is determined by integrating

S ¼
ð L
0

ds ¼
ð L
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx

where

y ¼ �M0 xð Þ
H
þ yB

Lh
x

One usually approximates the integrand with ds � 1 + (1/2) (dy/dx)2 when (dy/dx)2 is small in

comparison to 1.

5.6 Problems

For Problems 5.1–5.8, determine the reactions at the supports, and the tension in each segment of the cable.

Problem 5.1

Problem 5.2
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Problem 5.3

Problem 5.4

Problem 5.5
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Problem 5.6

Problem 5.7

Problem 5.8

For Problems 5.9–5.14, determine the maximum tension.
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Problem 5.9

Problem 5.10

Problem 5.11

Assume w ¼ 1.7 kip/ft and H ¼ 40 kip.

Problem 5.12
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Problem 5.13

Problem 5.14

Assume w ¼ 1.4 kip/ft, yB ¼ 10 ft, H ¼ 100 kip, and Lh ¼ 40 ft.

Problem 5.15

Assume w0 ¼ 1.8 kip/ft, vat x ¼ 20 ft ¼ 2 ft and L ¼ 80 ft. Determine the deflected shape.
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Problem 5.16

Determine the coordinates of the lowest point on the cable for H ¼ 650 kN

Problem 5.17

Determine the peak values of cable tension.

Problem 5.18

Consider the case where the loading is defined in terms of per unit arc length. Derive the expression

for the deflected shape, ν(x).
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Problem 5.19

(a) Determine the total arc length for this geometry.

(b) Determine the effect of a temperature increase of 100 �F. Assume the cable material is steel.

Problem 5.20

Consider the guyed tower scheme shown in the sketch below. Assume the guys are steel cables that

are stressed initially to 520 MPa. Determine the cable cross-sectional area required to limit the lateral

motion at the top of the tower to 10 mm.

Problem 5.21

The cable shown below carries its own weight. Determine the arc length and yB. Point C is the lowest

point. Assume w ¼ 0.8 kip per foot of cable, L1 ¼ 60 ft, L2 ¼ 80 ft, and H ¼ 150 kip.
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Statically Determinate Curved Members 6

Abstract

Chapter 3 dealt with beams, which are straight members subjected to

transverse loading. We showed there that transversely loaded beams

respond by bending, i.e., they equilibrate the loading by developing

internal shear and moment quantities. When the centroidal axis is curved,

the behavior of a curved member subjected to transverse loading can

undergo a dramatic change from predominately bending action to pre-

dominately axial action depending on how the ends are restrained. This

characteristic of curved members makes them more efficient than straight

members for spanning moderate to large scale openings. A typical appli-

cation is an arch structure, which is composed of curved members

restrained at their ends.

In this chapter, we first develop the general solution for the internal

forces existing in a planar curved member and apply it to members having

parabolic and circular shapes. Next, we introduce the method of virtual

forces specialized for planar curved members and illustrate its application

to compute displacements for various geometries. The last section of the

chapter deals with the optimal shape for an arch and the analysis of three-

hinged arches, a popular form of arch structure. The material presented

here also provides the basis for the analysis of statically indeterminate

arches treated in Chap. 9.

6.1 A Brief History of Arch-Type Structures

We define an arch as a curved member that spans an opening and is restrained against movement at its

ends by abutments. Figure 6.1 illustrates this definition. Arches are designed to carry a vertical

loading which, because of the curved nature of the member, is partially resisted by horizontal forces
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provided by the abutments. Arches generally are more efficient than straight beam-type structures for

spanning an opening since their geometry can be modified so that they carry the transverse loading

almost completely by axial action, i.e., by compression. However, abutments are required to develop

the compression-type behavior, and this requirement sometimes limits the applicability of the arch for

a particular site.

In what follows, we briefly discuss the historical development of arch structures and then present

the underlying theory for statically determinate curved members. This theory is similar to the theory

for gable roof structures presented in Chap. 4. Later, in Chap. 9, we discuss the theory of statically

indeterminate curved members.

Arches have many applications. They are used for openings in walls, for crossing gorges and

rivers, and as monumental structures such as the Arc de Triomphe. The first application of arch-type

construction in buildings occurred around 4000 BC in Egypt and Greece. Openings in walls were

spanned using the scheme shown in Fig. 6.2. Large flat stones were stacked in layers of increasing

width until they met at the top layer. Each layer was stabilized by the weight applied above the layer.

The concept is called a Corbel arch. No formwork is required to construct the structure. Also, no

horizontal thrust and therefore no abutments are needed. The term “false arch” is sometimes used to

describe this type of structure. False arches were used almost exclusively in ancient Greece where the

techniques of masonry construction were perfected.

The type of arch construction shown in Fig. 6.3 for carrying vertical loading across an opening was

introduced by the Egyptians around 3000 BC. It employs tapered stones, called voussoirs, which are

arranged around a curved opening in such a manner that each brick is restrained by compressive and

frictional forces. The system is unstable until the last stone, called the “keystone,” is placed.

Consequently, temporary framework is required during construction.

Starting around 300 BC, the Romans perfected masonry arch construction and built some unique

structures, many of which are still functioning after 2000 years. They preferred circular arches and

Fig. 6.1 Definition of

an arch

Fig. 6.2 Corbel arch
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included them in buildings, bridges, and aqueducts. One of the most famous examples is the Pont du

Gard, shown in Fig. 6.4; a bridge/aqueduct over the river Gard built in 19 BC. Some of the stones

weigh up to 6 ton.

Another example of a second-century multiple span Roman arch masonry bridge is shown in

Fig. 6.5. The typical span length is 98 ft. This bridge crosses the Tagus River in Spain and was a key

element in the transportation network connecting the outer Roman Provinces with Rome.

Masonry materials are ideal for arch construction since they are strong under compression and also

very durable. However, it is difficult to construct long span masonry arch bridges. With the develop-

ment of alternate structural materials such as cast iron and steel at the end of the eighteenth century,

there was a shift toward arches formed with metal members. Figure 6.6 shows the Iron Bridge built in

1781. The main span is 100 ft and crosses the Severn Gorge in the UK. Each of the members was

formed using cast iron technology which was evolving at the time. Since cast iron is weak in tension

and tends to fail in a brittle manner, it was shortly replaced as the material of choice by steel.

The development of railroads created a demand for bridges with more load capacity and longer

spans. During this time period, there were many arch bridges constructed. Figure 6.7 shows the Eads

Bridge built in 1874 across the Mississippi River in St. Louis, Missouri. This bridge has ribbed steel

arch spans of 520 ft, fabricated with tubular structural alloy steel members; the first use of steel in a

Fig. 6.3 Keystone arch

construction

Fig. 6.4 Pont du Gard

crossing
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major bridge project. Today, the bridge is still carrying pedestrian, vehicular, and light rail traffic

across the Mississippi.

At the end of the nineteenth century, reinforced concrete emerged as a major competitor to steel as

a structural material. Reinforced concrete allowed one to form arch geometries that were aesthetically

more pleasing than conventional steel arch geometries, and therefore became the preferred material.

Most of this surge in popularity was due to the work of Robert Maillart, a Swiss Engineer

Fig. 6.5 Alcantara Toledo bridge

Fig. 6.6 Iron Bridge,

England
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Fig. 6.7 Eads Bridge, USA

Fig. 6.8 Salginatobel Bridge, Switzerland
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(1872–1940), who developed arch concepts that revolutionized the design practice for reinforced

concrete arches. An example is the Salginatobel Bridge, shown in Fig. 6.8. This bridge, built in 1930,

crosses the Salgina Valley Ravine in Switzerland with a span of 270 ft. It is the ideal solution for this

picturesque site and has been recognized by ASCE as a landmark project.

A unique arch bridge in the USA is the New Gorge Steel Arch Bridge located in West Virginia.

Opened in 1977, it has the longest main span (1700 ft) and highest height (876 ft) of all arch bridges in

North and South America. It held the world record for span and height until 2003 when the Lupu Arch

Bridge in Shanghai (1800 ft span) was opened. A type of weathering steel called Corten was used in

the New Gorge Arch structure in order to avoid the need for periodic painting.

Another unique arch bridge in the USA is the Hoover Dam Bypass Bridge. Segmented concrete

construction was used to fabricate the concrete box elements in situ. The construction process

employed a complex tieback scheme, as illustrated in Fig. 6.9b–d. The bridge was completed in 2010.

Fig. 6.9 Modern Arch Bridges in the USA. (a) New Gorge Arch, West Virginia. (b) Hoover Dam Bypass—under

construction. (c) Hoover Dam Bypass—under construction. (d) Hoover Dam Bypass—under construction. (e) Hoover
Dam Bypass—completed
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6.2 Modeling of Arch Structures

We idealize an arch structure as a curved member restrained at its ends with a combination of fixed,

hinged, and roller supports. Figure 6.10 illustrates various types of end conditions. Case

(a) corresponds to full end fixity, a condition that is difficult to achieve. The more common case is

(b) where the abutments can prevent translation but not rotation. We refer to this structure as a two-

hinged arch. The third case, (c), corresponds to a “tied arch structure” where the ends are

interconnected with a tension member. This scheme is used when the abutments are not capable of

resisting the horizontal thrust action of the arch.

If the arch is a bridge, the roadway may be connected above the structure as in Fig. 6.11a, or below

the structure as in Fig. 6.11b. When placed above, the deck weight is transmitted by compression

members to the arch. Decks placed below the arch are supported by cables. Both loading cases are

idealized as a uniform loading per horizontal projection as shown in Fig. 6.11c. In some cases, soil

backfill is placed between the roadway and the arch. The soil loading is represented as a nonuniform

loading whose shape is defined by the arch geometry. Figures 6.11d, e illustrate this case.

The structures in Fig. 6.10 are statically indeterminate. We can reduce the two-hinge arch to a

statically determinate structure by converting it to a three-hinge arch. The additional hinge is usually

placed at mid-span as shown in Fig. 6.12.

In this chapter, we first present a general theory of statically determinate curved members and then

specialize the general theory for three-hinge arches. We treat statically indeterminate arches later in

Chap. 9.

Fig. 6.10 Indeterminate

Arch structures with

various end fixity

conditions. (a) Fully fixed

Arch—3� indeterminate.

(b) Two-hinged arch—1�

indeterminate. (c) Tied
arch—1� indeterminate
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Fig. 6.11 Different roadway arrangements—idealized loading. (a) Roadway above the arch. (b) Roadway below the

arch. (c) Idealized uniform dead loading. (d) Soil backfill above the arch. (e) Idealized soil loading

430 6 Statically Determinate Curved Members



6.3 Internal Forces in Curved Members

We consider the statically determinate curved member shown in Fig. 6.13a. We work with a Cartesian

reference frame having axes X and Y and define the centroidal axis of the member by the function,

y ¼ y(x). The vertical loading is assumed to be expressed in terms of the horizontal projected length.

These choices are appropriate for the arch structures described in the previous section. We determine

the reactions using the global equilibrium equations.

The applied load is equilibrated by internal forces, similar to the behavior of a straight beam under

transverse load. To determine these internal forces, we isolate an arbitrary segment such as AC

defined in Fig. 6.13b. We work initially with the internal forces referred to the X � Y frame and then

transform them over to the local tangential/normal frame. Note that now there may be a longitudinal

force component as well as a transverse force component, whereas straight beams subjected to

transverse loading have no longitudinal component.

Enforcing equilibrium leads to the general solution for the internal forces.

Fx ¼ �RAx

Fy ¼ �RAy þ
ð x
0

w xð Þdξ

M¼ xRAy � yRAx �
ð x
0

w xð Þξdξ
ð6:1Þ

Lastly, we transform the Cartesian force components (Fx, Fy) over to the tangential/normal frame

(F, V ). Noting Fig. 6.14, the transformation law is

F ¼ Fy sin θ þ Fx cos θ

V ¼ Fy cos θ � Fx sin θ

tan θ ¼ dy

dx

ð6:2Þ

In order to evaluate the axial (F) and shear forces (V ), we need to specify the angle θ between the

tangent and the horizontal axis. This quantity depends on y(x), the function that defines the shape of

the centroidal axis.

Fig. 6.12 Three-

hinge arch
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Fig. 6.13 (a) Notation for

statically determinate

curved member. (b) Free
body diagram—curved

beam. X � Y frame. Local

tangential/normal frame

Fig. 6.14 Cartesian—

local force components



We specialize the above set of equations for a symmetrical curved member where the loading

consists of

(a) A uniform vertical loading per projected length defined in Fig. 6.15.

(b) A concentrated load at the crown defined in Fig. 6.16.

(a) Uniformly distributed load (Fig. 6.15):

Enforcing equilibrium and symmetry leads to

RAx ¼ 0 RAy ¼ RBy ¼ wL

2

Fx ¼ 0 Fy ¼ �wL

2
þ wx

M ¼ wL

2
x� wx2

2

Note that these results are the same as for a simply supported straight beam subjected to

transverse loading. Substituting for Fx and Fy in (6.2) results in the internal forces (F, V, M )

due to a uniform vertical loading,

F¼ �wL

2
þ wx

� �
sin θ

V ¼ �wL

2
þ wx

� �
cos θ

M¼ wL

2
x� wx2

2

ð6:3Þ

Fig. 6.15 Curved

member—uniform vertical

loading. (a) Reactions.
(b) Internal forces—
Cartesian frame.

(c) Internal forces—local

frame
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(b) Concentrated load (Fig. 6.16):

The internal forces referred to the Cartesian frame are

SegmentAC 0 � x < L=2 SegmentCB L=2 < x � L

Fx ¼ 0 Fx ¼ 0

Fy ¼ �P
2

Fy ¼ P

2

M ¼ P

2
x M ¼ P

2
L� xð Þ

Fig. 6.16 Curved

member—concentrated

load. (a) Reactions. (b)
Internal forces—Cartesian

frame. (c) Internal forces—
local frame. (d) Segment

AC 0 � x < L/2. (e)
Segment CB L/2 < x � L
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Substituting for Fx and Fy in (6.2) results in the internal forces (F, V, M ) in the local frame,

For 0 � x < L=2 For L=2 < x � L

F ¼ �P
2
sin θ F ¼ þP

2
sin θ

V ¼ �P
2
cos θ V ¼ þP

2
cos θ

M ¼ P

2
x M ¼ P

2
L� xð Þ

ð6:4Þ

6.4 Parabolic Geometry

We will show later that a parabolic arch is the optimal shape for a uniform vertical loading, in the

sense that there is essentially no bending, only axial force, introduced by this loading. Using the

notation defined in Fig. 6.17, the parabolic curve is expressed in terms of h, the height at mid-span,

and the dimensionless coordinate, x/L.

y xð Þ ¼ 4h
x

L
� x

L

� �2
 �
ð6:5Þ

Differentiating y(x) leads to

tan θ ¼ dy

dx
¼ 4

h

L
1� 2

x

L

� �
ð6:6Þ

The maximum value of θ is at x ¼ 0, L

θmax ¼ � tan �1 4
h

L

� �

Values of θmax vs. h/L are tabulated in the table below.

Fig. 6.17 Notation for

parabolic shape function
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h
L θmax(

�) tan θmax cos θmax sin θmax

0 0 0 1 0

0.01 2.3 0.04 0.999 0.04

0.025 5.7 0.1 0.995 0.099

0.05 11.3 0.2 0.98 0.196

0.1 21.8 0.4 0.93 0.37

0.15 30.9 0.6 0.86 0.51

0.2 38.6 0.8 0.78 0.62

0.25 45 1 0.7 0.7

0.3 50.2 1.2 0.64 0.77

0.35 54.4 1.4 0.58 81

0.4 58 1.6 0.53 0.85

0.45 60.9 1.8 0.48 0.87

0.5 63.4 2 0.45 0.89

The parameter h/L is a measure of the steepness of the curved member. Deep curved members

have h/L 
 �0.25. A curved member is said to be shallow when h/L is small with respect to unity, on

the order of 0.1. The trigonometric measures for a shallow curved member are approximated by

shallowparaboliccurve

tan θ ¼ dy

dx
� θ radð Þ

cos θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θ2

p � 1

sin θ ¼ tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θ2

p � tan θ � θ radð Þ

8>>>>>><
>>>>>>:

ð6:7Þ

Example 6.1 Shallow vs. Deep Parabolic Curved Members

Given: The parabolic curved beam defined in Fig. E6.1a.

Determine: The axial, shear, and moment distributions for (a) h/L ¼ 0.1, (b) h/L ¼ 0.5.

Fig. E6.1a Parabolic geometry
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Solution: Enforcing equilibrium and symmetry leads to the reactions listed in Fig. E6.1b.

Fig. E6.1b Reactions

Applying (6.3) and (6.5), the internal forces in the local frame are

F¼ �wL

2
þ wx

� �
sin θ

V ¼ �wL

2
þ wx

� �
cos θ

M¼ wL

2
x� wx2

2

where

cos θ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

h

L
1� 2

x

L

� �� �2
s

sin θ¼
4
h

L
1� 2

x

L

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

h

L
1� 2

x

L

� �� �2
s

The internal forces are listed in the table below and plotted in Figs. E6.1c, E6.1d, and E6.1e for

h/L ¼ 0.1 and h/L ¼ 0.5. Note that the moment is independent of h/L.

x

L

M

wL2

h

L
¼ 0:1

h

L
¼ 0:5

V

wL

F

wL

V

wL

F

wL
0 0 �0.464 �0.186 �0.224 �0.447
0.1 0.045 �0.381 �0.122 �0.212 �0.339
0.2 0.08 �0.292 �0.07 �0.192 �0.125
0.3 0.105 �0.197 �0.032 �0.156 �0.125
0.4 0.12 �0.1 �0.008 �0.093 �0.037
0.5 0.125 0 0 0 0

0.6 0.12 0.1 �0.008 0.093 �0.037
0.7 0.105 0.197 �0.032 0.156 �0.125
0.8 0.08 0.292 �0.07 0.192 �0.23
0.9 0.045 0.381 �0.122 0.212 �0.339
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x

L

M

wL2

h

L
¼ 0:1

h

L
¼ 0:5

V

wL

F

wL

V

wL

F

wL
1 0 0.464 �0.186 0.224 �0.447

Fig. E6.1c Axial force, F

Fig. E6.1d Moment, M
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Fig. E6.1e Shear, V

The axial force is compressive and the maximum value occurs at the supports. The maximum

shear force also occurs at the supports. The maximum moment occurs at the mid-span. These

maximum values are listed below.

Fmax ¼
0:186wL for

h

L
¼ 0:1

0:447wL for
h

L
¼ 0:5

8><
>:

Vmax ¼
0:464wL for

h

L
¼ 0:1

0:224wL for
h

L
¼ 0:5

8><
>:

Mmax ¼ 0:125wL2

Example 6.2 Shallow vs. Deep Parabolic Curved Members

Given: The parabolic curved beam defined in Fig. E6.2a

Determine: The axial, shear, and moment distributions for (a) h/L ¼ 0.1, (b) h/L ¼ 0.5.
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Fig. E6.2a

Solution: Enforcing equilibrium and symmetry leads to the reactions listed in Fig. E6.2b.

Fig. E6.2b Reactions

Applying (6.4) and (6.5), the internal forces in the local frame are

For 0 � x < L=2 For L=2 < x � L

F ¼ �P
2
sin θ F ¼ þP

2
sin θ

V ¼ �P
2
cos θ V ¼ þP

2
cos θ

M ¼ P

2
x M ¼ þP

2
L� xð Þ

where
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cos θ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

h

L
1� 2

x

L

� �� �2
s

sin θ¼
4
h

L
1� 2

x

L

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

h

L
1� 2

x

L

� �� �2
s

The internal forces are plotted in Figs. E6.1c, E6.1d, and E6.1e and listed in the table which

follows for h/L ¼ 0.1 and h/L ¼ 0.5.

Fig. E6.2c Axial force, F

Fig. E6.2d Moment, M
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Fig. E6.2e Shear, V

The axial force is compressive and the maximum value occurs at the supports. The maximum

shear force and maximum moment occur at the mid-span.

x
L

M
PL

h
L ¼ 0:1 h

L ¼ 0:5
V
P

F
P

V
P

F
P

0 0 �0.464 �0.186 �0.224 �0.447
0.1 0.05 �0.476 �0.152 �0.265 �0.424
0.2 0.1 �0.486 �0.117 �0.32 �0.384
0.3 0.15 �0.494 �0.079 �0.39 �0.312
0.4 0.2 �0.498 �0.04 0.464 �0.186
0.5 0.25 0.5 0 0.5 0

0.6 0.2 0.498 0.04 0.464 0.186

0.7 0.15 0.494 0.079 0.39 0.312

0.8 0.1 0.486 0.177 0.32 0.384

0.9 0.05 0.476 0.152 0.265 0.424

1 0 0.464 0.186 0.244 0.447

6.5 Method of Virtual Forces for Curved Members

Displacements are determined using the form of the method of virtual forces specialized for curved

members [1]:

d δP ¼
ð
s

F

AE
δFþ V

GAs

δV þ M

EI
δM


 �
ds ð6:9Þ

where d is the desired displacement, δP, δF, δV, δM denote the virtual force system, and the various

terms represent the contribution of axial, shear, and bending deformation. As discussed in Chaps. 3

and 4, the contributions of axial and shear deformation are usually small and only the bending

deformation term is retained for slender straight beams and frames composed of slender straight

members. For curved members, we distinguish between “non-shallow” and “shallow” members.
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6.5.1 Non-shallow Slender Curved Members

For non-shallow slender curved members subjected to transverse loading, the contributions of axial

and shear deformation are usually small and only the bending deformation term is retained. In this

case, we approximate (6.9) with

d δP �
ð
s

M

EI
δMds ¼

ð
x

M δM

EI cos θ
dx ð6:10Þ

6.5.2 Shallow Slender Curved Members

For shallow slender curved members subjected to transverse loading, the axial deformation may be as

significant as the bending deformation and therefore must be retained. In this case, we use

d δP �
ð
s

F

AE
δFþ M

EI
δM


 �
ds ¼

ð
x

F

AE
δFþ M

EI
δM


 �
dx

cos θ
ð6:11Þ

Example 6.3 Deflection of Parabolic Curved Beam—Shallow vs. Deep

Given: The parabolic curved beam defined in Fig. E6.3a. Consider EI is constant.

Determine: The horizontal displacement at B for (a) non-shallow beam and (b) shallow beam.

Fig. E6.3a
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The internal forces for this loading are

Fx ¼ 0

Fy ¼ �wL

2
þ wx

)
F ¼ �wL

2
þ wx

� �
sin θ

V ¼ �wL

2
þ wx

� �
cos θ

M ¼ wL

2
x� wx2

2

Fig. E6.3b

In order to determine the horizontal displacement at support B, we apply the virtual force system

shown in Fig. E6.3c.

Fig. E6.3c Virtual force system for uB

The internal virtual forces are

δFx ¼ 1

δFy ¼ 0
) δF ¼ δFy sin θ þ δFx cos θ ¼ cos θ

δV ¼ δFy cos θ � δFx sin θ ¼ � sin θ

δM ¼ y xð Þ
tan θ ¼ dy

dx
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Fig. E6.3d

(a) Non-shallow curved member:

We use the approximate form defined by (6.10) for a non-shallow curved member.

uB ¼
ð L
0

M δM

EI cos θ
dx

Substituting for M, δM, and cos θ, this expression expands to

uB ¼
ð L
0

wL

2
x� wx2

2

� �
4h

x

L
� x

L

� �2� �
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θð Þ2

q
dx

EI

where

tan θ ¼ 4
h

L
1� 2

x

L

� �
For EI constant, the solution is expressed as

uB ¼ wL4

EI
αð Þ

where α is a function of h/L. We evaluate α using numerical integration. The result is plotted

below.
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(b) Shallow curved member:

When the parabola is shallow (cos θ � 1), we need to include the axial deformation term as well

as the bending deformation term. Starting with the form specified for a shallow member, (6.11),

uB ¼
ð
x

F

AE
δFþ M

EI
δM

� �
dx

and noting that

F� �wL

2
þ wx

� �
dy

dx
¼ � 2wh

L2
L� 2xð Þ2

M¼ wL

2
x� wx2

2

δFx ¼ 1 ) δF ¼ δFx cos � 1

δM ¼ y ¼ 4h
x

L
� x

L

� �2
 �

leads to

uB ¼ �2
3

wLh

AE
þ 1

15

whL3

EI

Note that the axial deformation causes the ends to move together, whereas the bending

deformation causes the ends to move apart.
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6.5.3 Circular Curved Member

When the arch geometry is a circular segment, it is more convenient to work with polar coordinates.

We consider the segment shown in Fig. 6.18. In this case, R is constant and θ is the independent

variable. The differential arc length ds is equal to R dθ.
We assume the member is slender and retain only the bending deformation term. Equation (6.10)

takes the following form:

d δP ¼
ðθB
0

M δM

EI
Rdθ ð6:12Þ

When EI is constant, the equation simplifies to

d δP ¼ R

EI

ðθB
0

M δMdθ ð6:13Þ

Example 6.4 Deflection of a Light Pole

Given: ThelightpolestructuredefinedinFigs.E6.4a,E6.4b,E6.4c,andE6.4d.ConsiderEI tobeconstant.

Determine: The horizontal and vertical displacements at C.

Fig. E6.4a

Fig. 6.18 Geometry—

circular arch
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Solution: Member AB is straight and BC is a circular arc. We take the polar angle from C toward

B. The bending moment distribution due to P is

Segment B� C M ¼ �PR sin θ 0 < θ < π=2
Segment A� B M ¼ �PR 0 < x < h

Fig. E6.4b M(x)

The vertical displacement at C is determined with the following virtual force system

Fig. E6.4c δM(x) for vc
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Segment B� C δM ¼ �R sin θ 0 < θ < π=2

Segment A� B δM ¼ �R 0 < x < h

Considering only bending deformation terms, the displacement is given by

vc ¼ vcjAB þ vcjCB

¼ 1

EI

ð h
0

�PRð Þ �Rð Þdxþ 1

EI

ðπ=2
0

�PR sin θð Þ �R sin θð ÞRdθ

¼ PR2h

EI
þ 1

EI

ðπ=2
0

PR3 sin θð Þ2dθ

¼ PR2

EI
hþ π

4
R

� �
Following a similar approach, the virtual force system corresponding to the horizontal displace-

ment at C is evaluated

Fig. E6.4d δM(x) for uc

Segment B� C δM ¼ �R 1� cos θð Þ 0 < θ < π=2

Segment A� B δM ¼ � Rþ hð Þ þ x 0 < x < h
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Then

uc ¼ ucjAB þ ucjBC

¼ 1

EI

ð h
0

�PRð Þ �R� hþ xð Þdxþ 1

EI

ðπ=2
0

�PR sin θð ÞR �1þ cos θð ÞRdθ

¼ PRh2

2EI
þ PR2h

EI
þ 1

EI

ðπ=2
0

PR3 1� cos θð Þ sin θdθ

¼ P

EI

R3

2
þ h2R

2
R2h

� �

6.6 Analysis of Three-Hinged Arches

An arch is a particular type of curved member that is restrained against movement at its ends. Since

these restraints produce longitudinal forces which counteract the action of vertical loads, arch

structures are generally more efficient than straight members. In this section, we examine three-

hinged arches, which are a popular form of arch structure. These structures are statically determinate.

A more detailed study of statically indeterminate arches is presented in Chap. 9.

Consider the arch shown in Fig. 6.19. This structure is statically determinate since there is a

moment release at C. The overall analysis strategy is as follows:

Step 1: Moment summation about A

Step 2: Moment summation about C for segment CB of the arch

Fig. 6.19 Geometry and

reactions—three-hinged

arch. (a) Geometry. (b)
Reactions. (c) Right
segment
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These steps result in two equations relating RBx and RBy, which can be solved.

Step 3: X force summation ! RAx

Step 4: Y force summation ! RAy

Once the reactions are known, one can work in from either end and determine the internal forces

and moment using the equations derived in the previous section. The following examples illustrate

the approach.

Example 6.5 Three-Hinged Parabolic Arch

Given: The three-hinged arch shown in Fig. E6.5a.

Determine: The reactions. Assume L1 ¼ 30 m, w ¼ 15 kN/m.

Fig. E6.5a

Solution: Summing moments about A and C leads to (Figs. E6.5b and E6.5c)

X
Mat A ¼ 0 � w

L1ð Þ2
2
þ Bx 0:25L1ð Þ þ By L1ð Þ ¼ 0

X
Mat C ¼ 0 � w

0:25L1ð Þ2
2

� Bx 0:05L1ð Þ þ By 0:25L1ð Þ ¼ 0

The solution of the above equations leads to

Bx ¼ 5

6
wL1 ¼ 375kN←

By ¼ 7

24
wL1 ¼ 131:25kN "

Lastly, the reactions at A are determined using force equilibrium:

X
Fy ¼ 0 Ay ¼ �By þ wL1 ¼ 17

24
wL1 ¼ 318:75kN "X

Fx ¼ 0 Ax ¼ �Bx ¼ 375kN!
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Fig. E6.5b

Fig. E6.5c

Example 6.6 Three-Hinged Parabolic Arch—Uniform Vertical Loading

Given: The parabolic arch shown in Fig. E6.6a.

Fig. E6.6a

Determine: The internal forces and the vertical displacement at C (vc).
Solution: The loading and arch geometry are symmetrical with respect to mid-span. It follows that

the vertical reactions are equal to wL/2. Setting the moment at C equal to zero, we obtain an

expression for RBx (Fig. E6.6b).
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Fig. E6.6b

Then, summing X forces, X
Fx ¼ 0

RAx ¼ wL2

8h
!

The results are listed below (Figs. E6.6b and E6.6c).

Fig. E6.6c
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Cutting themember atD, isolating the segmentAD, and applying the equilibrium conditions lead to:

Fig. E6.6d

Fx ¼ �wL2

8h

Fy ¼ wx� wL

2

M¼ wL

2
x� wL2

8h
y� wx2

2

Substituting for y, the expression for M reduces to

M ¼ wL

2
x� wL2

8h
4h

x

L
� x

L

� �2
 �
 �
� wx2

2
¼ 0

It follows that there is no bending moment in a three-hinged parabolic arch subjected to uniform
loading per horizontal projection.

We could have deduced this result from the theory of cables presented in Chap. 5. We showed

there that a cable subjected to a uniform vertical loading per horizontal projection adopts a parabolic

shape. A cable, by definition, has no moment. Therefore, if one views a parabolic arch as an inverted

cable, it follows that the moment in the arch will be zero. This result applies only for uniform vertical

loading; there will be bending for other types of loading applied to a parabolic arch.
The axial force and transverse shear are determined with (6.2).

F¼ Fx cos θ þ Fy sin θ ¼ �wL2

8h
cos θ þ wx� wL

2

� �
sin θ

V ¼ �Fx sin θ þ Fy cos θ ¼ �wL2

8h
sin θ þ wx� wL

2

� �
cos θ

where

tan θ¼ 4h

L
1� 2

x

L

� �
cos θ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan θ2
p

sin θ¼ tan θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan θ2

p

454 6 Statically Determinate Curved Members

http://dx.doi.org/10.1007/978-3-319-24331-3_5


Expanding theexpression for V and substituting for tan θ, one finds

V ¼ tan θ
wL2

8h
þ wx� wL

2


 �
cos θ�0

The shear must be zero since the moment is zero. Only axial force exists for this loading.

The axial force distribution is plotted below.Themaximumvalue is also tabulated as a function of h/L.

h/L Fmax

0.1 �1.35wL
0.2 �0.8wL
0.3 �0.65wL
0.4 �0.59wL
0.5 �0.56wL

The solution, M ¼ V ¼ 0, is valid for a uniformly loaded three-hinged parabolic arch, i.e., it

applies for both deep and shallow arches.

If we use the approximate form of the method of virtual forces specialized for a “deep” arch,

vc ¼
ð
S

M δM

EI
ds

it follows that the arch does not displace due to bending deformation. However, there will be

displacement due to the axial deformation. We need to start with the exact expression,

vc ¼
ð
S

M δM

EI
þ FδF

EA

� �
ds

and then set M ¼ 0

vc ffi
ð
S

FδF

EA
ds

Suppose the vertical displacement at mid-span is desired. The virtual force system for δP ¼ 1 is

δFx ¼ � L

4h

δFy ¼ �1
2

) δF ¼ � L

4h

� �
cos θ þ �1

2

� �
sin θ
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Substituting for the forces and assuming AE is constant result in the following integral

vc ¼ 1

AE

ð L
0

�wL2

8h

� �
þ �wL

2
þ wx

� �
tan θ


 �
� L

4h
� 1

2
tan θ

� �
cos θdx

We express the solution as

vc ¼ wL2

AE
αf g

where α is a function of h/L. The following plot shows the variation of α. Note that vc approaches 0 for
a deep arch.

Example 6.7 Three-Hinged Parabolic Arch—Concentrated Load Applied at Mid-Span

Given: The parabolic arch defined in Fig. E6.7a

Determine: The internal forces and vertical displacement at C (vc).

Fig. E6.7a
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Solution: Enforcing equilibrium leads to the following expressions for the internal forces

(Fig. E6.7b):

Segment AC 0 � x < L/2

Fx ¼ �PL
4h

Fy ¼ �P
2

M¼ P

2
x� PL

4h
y

Segment CB L/2 < x � L

Fx ¼ �PL
4h

Fy ¼ P

2

M¼ �P
2
x� PL

4h
yþ PL

2

Fig. E6.7b

The corresponding transformed internal forces are

Segment AC 0 � x < L/2

F¼ �P
2
sin θ � PL

4h
cos θ

V ¼ �P
2
cos θ þ PL

4h
sin θ

M¼ P

2
x� PL

x

L
� x

L

� �2
 �
¼ PL � x

2L
þ x2

L2

� �

Segment CB L/2 < x � L
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F¼ P

2
sin θ � PL

4h
cos θ

V ¼ P

2
cos θ þ PL

4h
sin θ

M¼ PL � 3x

2L
þ x2

L2
þ 1

2

� �

The values of F, V, and M are listed below.

h/L ¼ 0.5 h/L ¼ 0.1

X/L M/PL F/P V/P F/P V/P

0 0 �0.67 0.22 �2.51 0.46

0.1 �0.04 �0.69 0.16 �2.53 0.3

0.2 �0.06 �0.7 0.06 �2.55 0.1

0.3 �0.06 �0.7 �0.08 �2.55 �0.1
0.4 �0.04 �0.65 0.28 �2.53 �0.3
0.5 0 �0.5 ∓0.5 �2.5 ∓0.5
0.6 �0.04 �0.65 0.28 �2.53 0.3

0.7 �0.06 �0.7 0.08 �2.55 0.1

0.8 �0.06 �0.7 0.06 �2.55 �0.1
0.9 �0.04 �0.69 �0.16 �2.53 �0.3
1 0 �0.67 �0.22 �2.51 �0.46

The maximum moment occurs at the location where dM/dx ¼ 0. Note that Mmax ¼ +PL/4 for a

straight member.

dM

dx
¼ 0 ) x

��
Mmax
¼ L

4
) Mmax ¼ �PL

16

The distribution of F, V, andM is plotted below. The reversal in sense ofM is due to the influence

of the horizontal thrust force on the bending moment (Figs. E6.7c, E6.7d, and E6.7e).

Fig. E6.7c
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Fig. E6.7d

Fig. E6.7e

The virtual forces for the computation of vc are (Fig. E6.7f)

Fig. E6.7f

We consider only bending deformation. The displacement at C is given by

vc ¼ 2

ðL=2
0

P

2
x� L

2h
y

� �
1

2
x� L

2h
y

� �
dx

EI cos θ

When I is a function of x, we use either symbolic or numerical integration. However, when I is
taken as I0/cos θ, the integral simplifies and one can obtain an analytical solution. The analytical

solution corresponding to this assumption is

vc ¼ PL3

EI0

1

30

� �
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Example 6.8 Three-Hinged Parabolic Arch with Horizontal and Vertical Loads

Given: The parabolic arch and loading defined in Fig. E6.8a.

Determine: (a) Determine the analytical expressions for the axial force, shear force, and bending

moment. (b) Using computer software, determine the vertical and horizontal displacements at C due

to the loading. Take E ¼ 29,000 ksi, I ¼ 5000 in.4, and A ¼ 500 in.2 Discretize the arch using

segments of length Δx ¼ 1 ft. Also determine profiles for displacement, moment, and axial force.

Fig. E6.8a

Solution: (a) The reactions are listed on Fig. E6.8b.

Fig. E6.8b

Noting that y ¼ 2(x � x2/100) and isolating different segments along the centroidal axis lead to

the following expressions for moment (M ), axial force (F), and shear (V ).
Segment AB 0 � x < 25
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Fx ¼ �18:75
Fy ¼ �31:25
M ¼ 31:25x� 18:75y

)
F ¼ �18:75 cos θ � 31:25 sin θ
V ¼ �18:75 sin θ � 31:25 cos θ
M ¼ 31:25x� 18:75y

Segment BC 25 < x < 50

Fx ¼ �68:75
Fy ¼ �31:25
M ¼ 31:25x� 18:75y� 50 y� 37:5ð Þ

)
F ¼ �68:75 cos θ � 31:25 sin θ
V ¼ �68:75 sin θ � 31:25 cos θ
M ¼ 31:25x� 18:75y� 50 y� 37:5ð Þ

Segment CD 50 < x � 100

Fx ¼ �68:75
Fy ¼ 68:75
M ¼ 68:75 100� xð Þ � 68:75y

)
F ¼ �68:75 cos θ þ 68:75 sin θ
V ¼ 68:75 sin θ þ 68:75 cos θ
M ¼ 68:75 100� xð Þ � 68:75

(b) The computer generated moment, axial force, and deflection profiles are listed below

(Figs. E6.8c, E6.8d, and E6.8e). Hand computation is not feasible for this task.

Fig. E6.8c Moment, M

Fig. E6.8d Axial, F

Fig. E6.8e Deflection profile
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Example 6.9 Optimal Shape for a Statically Determinate Arch

Given: The loading defined in Fig. E6.9a and support locations A and B. Assume H is a variable.

Fig. E6.9a

Determine: The optimal shape of the arch passing through A and B. Consider H to vary from 80 to

200 kN. Note that the optimum shape corresponds to zero bending moment.

Solution: We first generate the bending moment distribution in a simply supported beam spanning

between A and B (Fig. E6.9b).

Fig. E6.9b

Requiring the bending moment to vanish at points 1, 2, 3 leads to the following y coordinates of

points 1, 2, and 3:

y1 ¼
480

H
y2 ¼

600

H
y3 ¼

480

H
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This piecewise solution is the general solution for the optimal shape (Fig. E6.9c). One specifies

H and then determines the coordinates. The value of H selected depends on the capacity of the

supports to resist lateral loading.

Fig. E6.9c Optimal shape

Configurations corresponding to various values of H are listed below. Note that as H increases, the

shape becomes shallower.

H (kN) y1 (m) y2 (m) y3 (m)

80 6 7.5 6

120 4 5 4

160 2 3.75 3

200 1.4 3 2.4

6.7 Summary

6.7.1 Objectives

• To develop the equilibrium equations for planar curved members and illustrate their application to

parabolic and circular arches.

• To introduce and apply the Principle of Virtual Forces for planar curved members.

• To describe the analysis process for three-hinged arches.

• To illustrate the behavior of statically determinate parabolic arches subjected to vertical and lateral

loading.

6.7.2 Key Factors and Concepts

• Depending upon the loading distribution, the geometry of the member, and the support conditions,

a curved member may support transverse loading mainly by axial action. This feature makes

curved members very attractive for long span structures.

• Curved members are classified as either shallow or non-shallow, depending upon the ratio of

height to span length. For shallow members, bending and axial actions are coupled. In the limit, a

shallow curved member reduces to a beam.

• When applying the principle of virtual forces to compute displacements of a slender non-shallow

(deep) curved member, the contributions due to axial and shear deformation are usually negligible

compared to the contribution from bending deformation.
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• In general, three-hinged arches carry load through both bending and axial action. However, when

the arch shape is parabolic and the vertical loading is uniform, there is no bending moment in the

three-hinged arch.

• Two-hinged curved members are statically indeterminate. A general theory for these structures is

presented in Chap. 9. One can show that, based on this theory, a moment free state can be obtained

for an arbitrary loading by adjusting the shape of the curved member. In this case, two-hinged

curved members behave similar to cables.

6.8 Problems

Problem 6.1 Consider the parabolic member shown below. Find the reactions and member forces

(F, V, and M ).

(a) Assume w ¼ 1.2 kip/ft, h ¼ 24 ft, L ¼ 120 ft

(b) Assume w ¼ 18 kN/m, h ¼ 7 m, L ¼ 36 m

Problem 6.2 Consider the parabolic member shown below. Find the reactions and member forces at

x ¼ 20 and 80 ft.
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Problem 6.3 Consider the parabolic member shown below. Find the reactions and member forces

(F, V, and M ).

Problem 6.4 Determine the reactions, the axial and shear forces, and the moments at x ¼ 30 ft for

the three-hinged parabolic arch shown below.
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Problem 6.5 Consider the three-hinged circular arch shown below

(a) Find the reactions.

(b) Determine the axial and shear forces and the moments at x ¼ 20 ft and x ¼ 40 ft.

Problem 6.6 Consider the three-hinged parabolic arches shown below. Determine analytical expres-

sion for the axial force, shear force, and bending moment. Using computer software, determine

displacement profiles. Take h ¼ 9 m, L ¼ 30 m, P ¼ 450 kN, w ¼ 30 kN/m, E ¼ 200 GPa, I ¼ 160

(106)mm4, and A ¼ 25,800 mm2
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Problem 6.7 Consider the simply supported curved member shown below. Assume the shape is

defined by an arbitrary function, y ¼ y(x). Suppose the member experiences a uniform temperature

increase, ΔT, over its entire length. Determine the horizontal displacement of B.

Problem 6.8 Consider the parabolic member shown below. Determine the horizontal displacement

at B.

(a) Assume w ¼ 1.2 kip/ft, h ¼ 24 ft, L ¼ 120 ft, E ¼ 29,000 ksi

(b) Assume w ¼ 18 kN/m, h ¼ 7 m, L ¼ 36 m, E ¼ 200 GPa
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Problem 6.9 Consider the parabolic member shown below. Determine the vertical displacement at

C. Take I ¼ 400 in.4, A ¼ 40 in.2, E ¼ 29,000 kip/in.2

(a) h ¼ 10 ft

(b) h ¼ 30 ft

Problem 6.10

(a) Determine analytical expressions for the member forces for the circular curved member shown

below. Take R ¼ 40 ft, P ¼ 10 kip, and θ ¼ 30�.
(b) Repeat part (a) using a computer software package. Discretize the arc length into 3� segments.

Assume the following values for the member properties: E ¼ 29,000 ksi, I ¼ 400 in.4, and

A ¼ 40 in.2 Compare the analytical and computer generated values for moment and axial force.
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Problem 6.11 Consider the three-hinged arch shown below. Discuss how the arch behaves when:

(a) There is a uniform temperature increase.

(b) The support at B settles.

Problem 6.12 Consider the semicircular three-hinged arch shown below. Determine the vertical and

horizontal displacements at C due to the loading.

(a) Assume E ¼ 29,000 ksi, I ¼ 400 in.4, A ¼ 40 in.2, R ¼ 50 ft, and w ¼ 2 kip/ft

(b) Assume E ¼ 200 GPa, I ¼ 160(106) mm4, A ¼ 25,800 mm2, R ¼ 15 m, and w ¼ 30 kN/m
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Problem 6.13 Consider the parabolic three-hinged arch shown below. Using computer software,

determine the vertical and horizontal displacements at C due to the loading. Discretize the arch using

segments of length Δx ¼ L/10, L/20, and L/40. Compare the convergence rate for these segment

sizes.

(a) Take E ¼ 29,000 ksi, I ¼ 400 in.4, A ¼ 40 in.2, L ¼ 120 ft, h ¼ 60 ft, and w ¼ 2 kip/ft

(b) Take E ¼ 200 GPa, I ¼ 160(106) mm4, A ¼ 2500 mm2, L ¼ 36 m, h ¼ 18 m, and w ¼ 30 kN/m

Problem 6.14 Consider the semicircular curved member shown below. Member CD is rigidly

attached to the curved member at C. Determine an expression for the horizontal displacement at D

due to P.
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Problem 6.15

(a) Determine analytical solutions for the axial, shear, and moment distribution for the three-hinged

semicircular arch shown. Consider the loading to be due to self-weight w. Take w ¼ 0.6 kip/ft

and R ¼ 40 ft.

(b) Apply computer software using the following discretization: Δθ ¼ 9�, 4.5�, 2.25�. Compare the

convergence rate of the solution. Take E ¼ 29,000 ksi, I ¼ 400 in.4, and A ¼ 40 in.2

Problem 6.16 Determine the member forces for the three-hinged circular arch shown. Use computer

software.

(a) Take E ¼ 29,000 ksi, R ¼ 40 ft, P ¼ 4 kip, I ¼ 400 in.4, and A ¼ 40 in.2

(b) Take E ¼ 200 GPa, R ¼ 12 m, P ¼ 18 kN, I ¼ 160(106) mm4, and A ¼ 25,800 mm2
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Problem 6.17 Determine the optimal shape of the arch passing through A and B for given value of

H. Note that optimum shape corresponds to zero moment. Assume L ¼ 120 ft and P ¼ 25 kip.

Problem 6.18 Determine the optimal shape of the arch for a given value ofH. Assume L ¼ 30 m and

w0 ¼ 15 kN/m.
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Problem 6.19 Consider the three-hinged arch shown below. Determine the reactions and the

internal forces.

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.
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Shallow Foundations 7

Abstract

Civil structures such as bridges and buildings are placed on the ground.

The particular segment of the structure which interfaces with the ground is

called the foundation. In this chapter, we focus on a particular type of

foundation called a shallow foundation. Shallow foundations are com-

posed of footings which are plate-type elements placed on the ground.

Their function is to transmit the loads in the columns and walls to the

ground. In this chapter, we describe the various types of shallow footings

and identify the conditions under which each type is deployed. Then, we

develop an analytical procedure for establishing the soil pressure distribu-

tion under a footing due to an arbitrary column loading. Given the soil

pressure distribution, one can generate the shear and moment distribution

in the footing and establish the peak values required for design. Lastly, we

describe how to determine these design values and also present various

strategies for dimensioning shallow footings.

7.1 Introduction

7.1.1 Types of Foundations

Civil structures are viewed as having two parts. That part of the structure which is above ground is

called the superstructure; the remaining part in contact with the ground is referred to as either the

substructure or the foundation. Up to this point, we have focused on the superstructure. Structural

Engineers are responsible for the foundation design as well as the superstructure design. They are

aided by Geotechnical Engineers who provide information on the soil properties such as the allowable

soil bearing pressure at the site.

Figure 7.1 illustrates the different types of foundations. Shallow foundations are located near

ground level. The structural loads are transferred directly to the soil through plate-type elements

placed under the columns. These plate elements are called footings. This scheme is feasible only

when the soil strength is adequate to resist the applied loading. If the soil near the surface is weak, it is
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necessary to transfer the loads to a deeper soil layer having adequate strength. Piles or caissons are

typically used to transmit loads through weak soil media. Basements which serve as underground

parking facilities may also be incorporated in foundations.

7.1.2 Types of Shallow Foundations

A spread footing is a reinforced concrete plate-type structural component that rests directly on the

ground and supports one or more columns or walls. Different geometrical arrangements of footings

are used, depending on the column spacing and soil strength. The simplest scheme is a single footing

per column, shown in Fig. 7.2. One usually works with a square area. However, there sometimes are

constraints such as proximity to a boundary line which necessitate shifting to a rectangular geometry.

We describe later a procedure for determining the “dimensions” of the footing given certain

geometric constraints. In what follows, we consider the column load to be an axial force. Later, we

extend the analysis to deal with both axial force and bending moment.

When adjacent columns are located too close to each other such that their footings would overlap,

or when one of the adjacent columns is located close to a property line, the adjacent footings are

combined into a single “mega” footing which is designed to support the multiple column loads.

Figure 7.3 illustrates this footing layout which is called a “combined footing.”

A different strategy is employed when the spacing between columns is large and one of the

columns is located too close to a property line to support the entire column load with a single footing.

It is necessary to shift some of the column loads over to an adjacent footing by connecting the footings

with a strap beam. This scheme is called a “strap footing” (see Fig. 7.4).

Fig. 7.1 Types

of foundations. (a) Shallow
foundation. (b) Deep
foundation

Fig. 7.2 Single footing—

axial loading. (a) Plan.
(b) Elevation
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7.1.3 Soil Pressure Distribution

A vertical loading applied to the footing is resisted by soil pressure acting on the lower surface of the

footing. The distribution of pressure depends on the type of soil at the site. Typical distributions for

sand and clay type soils are shown in Fig. 7.5. In practice, we approximate the actual pressure

distribution due to a concentric load with an “average uniform” distribution.

Fig. 7.3 Combined

footing layout.

(a) Elevation. (b) Plan view

a

b

P1 P2

property line

Strap beam

Strap beam

Fig. 7.4 Strap footing

layout. (a) Elevation.
(b) Plan view

Fig. 7.5 Soil pressure distributions—concentric load. (a) Sandy soil. (b) Clayey soil. (c) Average soil pressure
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Depending on the column loading and the location of the column with respect to the centroid of the

footing area, one of the distributions shown in Fig. 7.6 is normally assumed in order to establish the

dimensions of the footing. A uniform distribution is the most desirable distribution. Since soil cannot

resist tensile stress, one wants to avoid the case illustrated in Fig. 7.6c. We will describe a strategy for

selecting the footing dimensions so as to avoid this situation in the following section.

The allowable pressure varies with the type of soil. Soil is a natural material in contrast to steel,

which is manufactured with close quality control. Consequently, there is considerable variability

in soil properties. Typical allowable soil pressures for various types of soils are listed in Table 7.1.

These values are useful for estimating initial footing dimensions.

Fig. 7.6 Idealized

pressure distributions. (a)
Uniform. (b) Trapezoidal.
(c) Triangular

Table 7.1 Allowable soil

pressures—Reference

Terzaghi and Peck [1]

Soil type Allowable bearing pressure [kip/ft2 (kN/m2)]

Compact coarse sand 8 (383)

Hard clay 8 (383)

Medium stiff clay 6 (287)

Compact inorganic sand 4 (191)

Loose sand 3 (144)

Soft sand/clay 2 (96)

Loose inorganic sand–silt mixture 1 (48)
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7.2 An Analytical Method for Evaluating the Soil Pressure
Distribution Under a Footing

We consider the single footing shown in Fig. 7.7. The force P represents the resultant of the column

loading. We suppose it has an eccentricity e with respect to the centroid of the footing area. We also

suppose the footing area is symmetrical with respect to the x-axis and locate the area such that the

column load is on the axis of symmetry. It follows that the pressure loading is symmetrical with

respect to this axis. Taking the origin for x at the centroid of the footing area, we express the pressure

distribution as a linear function,

q xð Þ ¼ bþ ax ð7:1Þ
where a and b are unknown parameters. We determine these parameters by enforcing the equilibrium

conditions for the footing.

Fig. 7.7 Notation–pressure distribution—single footing. (a) Plan. (b) Elevation
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Since x is measured from the centroid, the first moment of area vanishes. Then,

ð
xdA ¼ 0.

Requiring force and moment equilibrium to be satisfied, and noting that the column axial loading

has an eccentricity, e, with respect to the centroid of the footing area, leads to the following

expressions for b and a.

Vertical force equilibrium:

P ¼
ð
q xð ÞdA ¼

ð
bþ axð ÞdA ¼ b

ð
dAþ a

ð
xdA ¼ bAþ 0

+
b ¼ P

A

Moment equilibrium:

Pe ¼
ð
q xð ÞxdA

+
Pe ¼

ð
bþ axð ÞxdA ¼ b

ð
xdAþ a

ð
x2 dA ¼ 0þ aIy

+
a ¼ Pe

Iy

where Iy is the second moment of the footing area with respect to the Y-axis, Iy ¼
ð
x2 dA. Substituting

for a and b, (7.1) takes the form

q xð Þ ¼ P

A
þ Pe

Iy
x ð7:2Þ

The peak pressures are shown in Fig. 7.7b.

q1 ¼
P

A
þ Peð ÞL1

Iy


 �

q2 ¼
P

A
� Peð ÞL2

Iy


 � ð7:3Þ

One uses (7.3) to determine the pressure when the footing area is defined.

When the resultant acts at the centroid, e ¼ 0 and the pressure distribution reduces to a uniform

distribution.

q ¼ q1 ¼ q2 ¼
P

A
ð7:4Þ

When e 6¼ 0, the distribution is trapezoidal. As e increases, q2 decreases. The critical state occurs

when q2 ¼ 0. This case is shown in Fig. 7.8.
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P

A
� Peð ÞL2

Iy
¼ 0

+
ecritical ¼ Iy

A

1

L2

ð7:5Þ

Applying this reasoning to a rectangular shape of width B and length L, and noting that

A ¼ BL Iy ¼ BL3

12
L1 ¼ L2 ¼ L

2

the expressions for the peak pressures take the form

q1 ¼
P

BL
þ 6Pe

BL2

q2 ¼
P

BL
� 6Pe

BL2

ð7:6Þ

The critical value for e, which corresponds to either q1 or q2 equal to 0, is given by

e ¼ ecritical ¼ L

6
ð7:7Þ

In order for the soil pressure to be compressive throughout the footing area, the point of
application of the applied loading must be within a zone of width L/3 centered on the centroid.

When loaded outside this region, (7.2) does not apply. In this case, the triangular distribution acting

on a portion of the surface shown in Fig. 7.9d is used. The soil pressure adjusts its magnitude and

extent such that the line of action of the resultant coincides with the line of action of the column force.

The expressions for q1 takes the form

R ¼ P ¼ q1
a

2
B

� �
+

q1 ¼
2P

Ba

centroid

centroid
centroid

centroid

P

P

P

P

e

e

e

e

or

or

q1

q1

q1
q1

q2
q2

a

b

Fig. 7.8 Pressure

distributions

for e � ecritical.
(a) e < ecritical.
(b) e ¼ ecritical
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centroid of area
X

Y
e

e

e e

B

L

P

P

P P

Centroid

Centroid

q1

q1

q2

e=ecritical=
L
—
6

centroid centroid

q1

a

L L

L—2

a–
3

a–
2

a–
3

R = q1 (
 B)

a

b

c

d

Fig. 7.9 (a) Plan—
rectangular area. (b)
Elevation e < ecritical.
(c) Elevation e ¼ ecritical.
(d) Pressure distribution
for e > ecritical
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7.3 Dimensioning a Single Rectangular Footing

Normally, the column position is fixed by the geometry of the structure, and one can only adjust the

location of the footing with respect to the column. We consider the case where the design goal is a

uniform soil pressure. The optimal dimensions of the footing are achieved by locating the centroid of

the footing on the line of action of the column force, i.e., by taking e ¼ 0 in Fig. 7.7. The first choice

is a square footing. If there is insufficient space in one direction, one can shift to a rectangular footing.

If the design is still constrained by space restrictions, one can then follow a different strategy and

work with a strap-type footing which is discussed later.

We have shown that the soil pressure distribution is uniform for symmetrically positioned

footings. The footing area is determined using service loads, P, and the effective soil pressure, qe,

which accounts for the weight of the footing and the soil above the footing. This notation is defined in

Fig. 7.10. The relevant computations are

qe ¼ qallowable � γconc:t� γsoil h� tð Þ � qallowable �
γconc: þ γsoil

2

� �
h

Arequired 

X

P
service

qe
! L and B! A ¼ LB

Current practice estimates the peak values of shear force and moment in the footing using the

factored ultimate load Pu and determines the footing thickness and the required reinforcement steel

area based on these values. Figure 7.11 illustrates this procedure for a single axial loaded footing. The

expressions for the factored ultimate shear and moment are:

Vu xð Þ ¼ Bqux

Mu xð Þ ¼ Bqux
2

2

ð7:8Þ

where qu ¼ Pu

A . Positive bending moment requires reinforcing steel placed in two directions at the lower

surface. One needs to check for two types of shearing actions, one way shear and punching shear.

Fig. 7.10 Notation-

effective soil pressure (qe).
(a) Plan. (b) Elevation
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Figure 7.11 shows the location of the critical sections for shear. The distance parameter depends on the

column type (steel, concrete) and the specific design code.

Most footings are constructed using reinforced concrete. The location and magnitude of the steel

reinforcement is dictated by the sense of the bending moment distribution (i.e., positive or negative).

The function of the reinforcement is to provide the tensile force required by the moment. It follows

that the moment diagrams shown in Fig. 7.11b require the reinforcement patterns defined in Fig. 7.12.

The actual size/number of the rebar depends on the magnitude of the moment and particular design

code used to dimension the member.

Fig. 7.11 Footing

dimensioning process.

(a) Factored soil pressure.

(b) Shear and moment

diagrams. (c) One way
shear. (d) Punching shear
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Figure 7.12 illustrates steel reinforcement for steel and concrete columns. A steel plate is welded to

the base of a steel column and anchored to the footing with bolts embedded in the concrete. Dowels

are used to connect the longitudinal steel in the concrete column to the footing. Usually the column

loading is purely axial and the support is considered to be simply supported. However, there are

situations where moment as well as axial force is present in the column. The design strategy is the

same for both cases.

Example 7.1 Single Footing

Given: A 400 mm � 400 mm concentrically load column with axial dead load (PD ¼ 890 kN), and

axial live load (PL ¼ 1070 kN) to be supported on a shallow foundation. The effective soil pressure is

qe ¼ 165 kN/m2 (Fig. E7.1a, b).

Column

reinforcing

reintorcing

reintorcing

Grout

Column

steel base plate

DowelDowel

a

b

Fig. 7.12 Single footing

steel details. (a) Steel
column. (b) Reinforced
concrete column
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Fig. E7.1 Geometry and loading

Determine: The footing dimensions using service loads. Draw shear and moment diagrams using a

factored load of Pu ¼ 1.2PD + 1.6PL. Consider (a) A square footing, (b) A rectangular footing with

B ¼ 3 m.

Solution:

Footing dimensions

The required footing area is based on the service load and effective soil pressure.

Pservice ¼
X

PD þ PLð Þ ¼ 890þ 1070 ¼ 1960kN

Arequired ¼ Pservice

qe
¼ 1960

165
¼ 11:88m2

Assuming a square shape, the required dimension is
ffiffiffiffiffiffiffiffiffiffiffi
11:88
p ¼ 3:44m

We use L ¼ B ¼ 3.5 m.

Assuming a rectangular footing B ¼ 3 m, the required dimension is L ¼ 11:88
3
¼ 3:96m. We use

L ¼ 4 m

Shear and moment distributions

The factored load is

Pu ¼ 1:2PD þ 1:6PL ¼ 1:2 890ð Þ þ 1:6 1070ð Þ ¼ 2780kN

The corresponding factored soil pressure, qu and Vu, Mu are:

Square shape:

qu ¼
Pu

LB
¼ 2780

3:5ð Þ 3:5ð Þ ¼ 226:94kN=m2

Vumax ¼ 226:94 3:5ð Þ 1:55ð Þ ¼ 1231kN

Mumax ¼ 226:94 3:5ð Þ 1:55ð Þ2
2

¼ 954kNm
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The shear and moment diagrams are plotted below.

Rectangular shape:

qu ¼
Pu

LB
¼ 2780

3ð Þ 4ð Þ ¼ 231:67kN=m2

Vumax long ¼ 231:67 3ð Þ 1:8ð Þ ¼ 1251kN

Mumax long ¼ 231:67 3ð Þ 1:8ð Þ2
2
¼ 1126kNm

Vumax short ¼ 231:67 4ð Þ 1:3ð Þ ¼ 1205kN

Mumax short ¼ 231:67 4ð Þ 1:3ð Þ2
2
¼ 783kNm
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The shear and moment diagrams are plotted below.

Pu Pu

4 m

1251

1251 1205

1205

3 m

11261126 783 783

++

++++

––

+
—

+
—

Vu

Mu

Example 7.2 Dimensioning a Footing Under a Column with Eccentric Loading

Given: A 12 in. � 12 in. column supporting the following loads: PD ¼ 120 kip, PL ¼ 80 kip,

MD ¼ 60 kip ft, and ML ¼ 40 kip ft. The effective soil pressure is qe ¼ 4.5 kip/ft2.

P¼ PD þ PL ¼ 120þ 80 ¼ 200kip

M¼ MD þML ¼ 60þ 40 ¼ 100kip ft

Determine: Dimension square/rectangular footings for the following cases.
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Case (a): the center line of the column coincides with the centroid of the footing.M is counterclock-

wise (Fig. E7.2a).

Plan
Elevation

L/2

M

B

L/2

t

L

Fig. E7.2a Geometry and loading

Solution: Case (a)

Square footing (L ¼ B): We use (7.6) and set q1 ¼ qe

200

L2
þ 6 100ð Þ

L3
¼ 4:5) L ¼ 7:9ft

For L ¼ B ¼ 8ft) q1, q2 ¼ 3:125� 1:17 ¼ 4:3kip=ft2

1:95kip=ft2

����
Rectangular footing: We take B ¼ 6 ft. The pressure equation has the form

P

6L
þ 6M

6L2
¼ qe

+
200

6L
þ 6 100ð Þ

6L2
¼ 4:5) L ¼ 9:7ft
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For L ¼ 10ft and B ¼ 6ft) q1, q2 ¼ 3:33� 1:0 ¼ 4:33kip=ft2

2:33kip=ft2

����

Case (b): the center line of the column is 3 ft from the property line. M is clockwise (Fig. E7.2b).

P

M

property line

3 ft

Elevation

L

t

e 3 ft e

L

B

Plan

L/2

Fig. E7.2b Geometry and loading

Solution: Case (b) We position the centroid of the footing so that it is on the line of action of the

resultant force. The location of the resultant is
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Mtotal ¼ M � Pe ¼ 100� 200 eð Þ ¼ 0) e ¼ 0:5ft
Then

3þ e ¼ L

2
) L ¼ 2 3þ eð Þ ¼ 7ft

q1 ¼ q2 ¼
P

LB
� qe ! B 
 200

7 4:5ð Þ ¼ 6:35

For L ¼ 7ft and B ¼ 6:5ft) q1 ¼ q2 ¼ q ¼ p

LB
¼ 200

7 6:5ð Þ ¼ 4:39kip=ft2

Case (c): the center line of the column is 3 ft from the property line. M is zero (Fig. E7.2c).

P

property line

centroid

3 ft

Elevation

L

L/2

t

e 3 ft e

L

B

Plan

L/2

Fig. E7.2c Geometry and loading

Solution: Case (c) For this case, we locate the centroid on the center of the column. Then e ¼ 0 and

L ¼ 6.0 ft. The area is determined with
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q ¼ q1 ¼ q2 ¼
P

LB
� qe ! B 
 200

6 4:5ð Þ ¼ 7:4

Use L ¼ 6 ft and B ¼ 7.5 ft

q ¼ P

LB
¼ 200

7:5 6ð Þ ¼ 4:44kip=ft2

Case (d): the center line of the column is 3 ft from the property line. M is counterclockwise

(Fig. E7.2d).

property line

3 

Elevation

L

B

P

M

3 ft

t

L

Plan

ft

Fig. E7.2d Geometry and loading

Solution: Case (d)We decide to locate the centroid on the column line. Then e ¼ 0.5 ft. This leads to

the trapezoidal pressure distribution shown below. Taking L ¼ 6 ft, and noting (7.3),

q1 ¼
200

6B
þ 6 100ð Þ

B 6ð Þ2 � 4:5) B 
 11:1

492 7 Shallow Foundations



For L ¼ 6ft and B ¼ 11:25ft! q1, q2 ¼ 2:96� 1:48 ¼ 4:44kip=ft2

1:48kip=ft2

����

Another option is to take the centroid on the line of action of the resultant force. Then, e ¼ 0 ft,

L ¼ 5 ft, and (7.6) yields

200

5B
¼ 4:5! B ¼ 8:9

For L ¼ 5 ft and B ¼ 9 ft q ¼ q1 ¼ q2 ¼ 200
5 9ð Þ ¼ 4:44kip=ft2

7.4 Dimensioning Combined Footings

A combined footing has multiple column loads acting on a single area. This design is adopted when the

column spacing is too small to allow for separate footings. Figure 7.13 illustrates the case of two columns.

The analytical method described in Sect. 7.2 is also applicable here. One just has to first replace the

column loads with their resultant force, and then apply (7.2) to determine the pressure distribution.
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Specializing (7.2) for this case, and noting the notations defined in Fig. 7.13, the pressure

distribution is given by

q xð Þ ¼ R

A
þ Re

Iy

� �
x

R¼ P1 þ P2

ð7:9Þ

where e is positive when R is located to the left of the centroid of the footing area.

The location of the resultant force can be determined by summing moments about the line of action

of P1

x1 ¼ P2d

P1 þ P2ð Þ
e¼ d1 � x1

ð7:10Þ

It follows that the soil pressure distribution is uniform when the centroid of the footing area is

located on the line of action of the resultant force (Fig. 7.14). For this case, e ¼ 0 and q ¼ R/A.
We compute the peak shear and moment, using factored loads. The position of the resultant with

respect to the centroid may change when factored loads are used.

Fig. 7.13 Notation-

combined footing. (a) Plan.
(b) Elevation

494 7 Shallow Foundations



Ru ¼ P1u þ P2u

Then,

x1u ¼ d1 � eu ¼ P2u

Ru

d ð7:11Þ

If eu 6¼ 0, the distribution of pressure is trapezoidal, and we use (7.9) to find the corresponding

peak pressures due to the factored loads.

Fig. 7.14 Conditions for

soil pressure distribution.

(a) e > 0. (b) e ¼ 0
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The shear and moment diagrams corresponding to uniform soil pressure are plotted in Fig. 7.15b.

Note that for this type of footing, the bending moment distribution in the footing in the longitudinal

direction has both positive and negative regions. The peak moment values are

Vu ¼ 0! Bquxmax � Pu1 ¼ 0! xmax ¼ Pu1

Bqu

∴M�umax ¼ Bqu
x2max

2
� Pu1 xmax � l1ð Þ

At edges of columns Vu

�Bqu l1 � a

2

� �
�Bqu l1 þ a

2

� �
þ Pu1

Bqu l2 � b

2

� �

Bqu l2 þ b

2

� �
� Pu2

8>>>>>>>>>>><
>>>>>>>>>>>:

Fig. 7.15 (a) Rectangular footing with uniform ultimate soil pressure eu ¼ 0. (b) Shear and Moment diagrams eu ¼ 0.

(c) Steel reinforcing pattern for longitudinal bending. (d) Steel reinforcing pattern for transverse bending
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At edges of columns Mu

Bqu
2

l1 � a

2

� �2
Bqu
2

l1 þ a

2

� �2
� Pu1

a

2

� �
Bqu
2

l2 � b

2

� �2

Bqu
2

l2 þ b

2

� �2

� Pu2

b

2

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Since the moment diagram for a combined footing generally has both positive and negative values,

the steel placement pattern for a combined footing involves placing steel in the top zone as well as the

bottom zone of the cross section. The required steel reinforcing patterns are shown in Fig. 7.15c, d. In

general, the reinforcement pattern is two way. For the transverse direction, we treat the footing similar

to the single footing and the steel for tension is placed at the lower surface.

Example 7.3 Dimensioning a Combined Footing

Given: A combined footing supporting two square columns. Column A is 400 mm � 400 mm and

carries a dead load of 700 kN and a live load of 900 kN. Column B is 500 mm � 500 mm and carries

a dead load of 900 kN and a live load of 1000 kN. The effective soil pressure is qe ¼ 160 kN/m2

(Figs. E7.3a and E7.3b).

Fig. E7.3a Elevation

Fig. E7.3b Plan
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Determine: The dimensions B and L for service load of P ¼ PD + PL, assuming the soil pressure

distribution is uniform. Draw shear and moment diagrams for factored load of Pu ¼ 1.2PD + 1.6PL.

Solution:

Step I: Locate the resultant force

PA ¼ PD þ PL ¼ 700þ 900 ¼ 1600kN

PB ¼ PD þ PL ¼ 900þ 1000 ¼ 1900kN

R¼ PA þ PB ¼ 3500kN

xA ¼ 1900 5ð Þ
3500

¼ 2:71m

The resultant equals 3500 kN located 2.71 m from column A.

Step II: Select a rectangular geometry. We position the rectangle so that its centroid is on the line of

action of the resultant. The design requirement is

L

2
¼ xA þ 0:5 ¼ 2:71ð Þ þ 0:5 ¼ 3:21

Arequired ¼ R

qe
¼ 3500

165
¼ 21:2m2
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Take L ¼ 6.4 m and B ¼ 3.4 m ! A ¼ B � L ¼ 21.76 m2

The final geometry is shown below

Step III: Draw the shear and moment diagrams corresponding to the factored loads Pu ¼ 1.2PD + 1.6

PL. We work with the soil pressure integrated over the width of the footing. This leads to the “total”

shear and “total” moment. These distributions are plotted below. Note that we treat the column

loads as concentrated forces. One can also model them as distributed loads over the width of the

column.

PAu ¼ 1:2PD þ 1:6PL ¼ 1:2 700ð Þ þ 1:6 900ð Þ ¼ 2280kN

PBu ¼ 1:2PD þ 1:6PL ¼ 1:2 900ð Þ þ 1:6 1000ð Þ ¼ 2680kN

Ru ¼ PAu þ PBu ¼ 4960kN

xAu ¼ 2680 5ð Þ
4960

¼ 2:701m

The factored resultant acts 2.701 m from column A. It follows that e ¼ 12 mm. We neglect this

eccentricity and assume the pressure is uniform.

qu ¼
Ru

A
¼ 4960

6:4 3:4ð Þ ¼ 228kN=m2

Then for B ¼ 3.4 m, wu ¼ 228(3.4) ¼ 775.2 kN/m.
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The shear and moment diagrams are plotted below.

Example 7.4

Given: A combined footing supporting two square columns. Column C1 is 16 in. � 16 in. and carries

a service load of 220 kip. Column C2 is 18 in. � 18 in. and carries a service load of 440 kip

(Figs. E7.4a and E7.4b).

Fig. E7.4a Elevation
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Fig. E7.4b Plan

Determine: The soil pressure distribution caused by the service loads P1 and P2.

Solution:

Locate the centroid of the area

A¼ 9ð Þ 9ð Þ þ 13ð Þ 7ð Þ ¼ 172ft2

L1 ¼ 81 17:5ð Þ þ 91 6:5ð Þ
172

¼ 11:68ft

d1 ¼ 11:68� 1:5 ¼ 10:18 ft

Fig. E7.4c

Locate the resultant force

R¼ P1 þ P2 ¼ 220þ 440 ¼ 660kip

x1 ¼ P2d

R
¼ 440 16ð Þ

660
¼ 10:67ft

e¼ �0:49ft
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The peak pressures are

q1 ¼
R

A
þ Reð ÞL1

Iy


 �
¼ 660

172
þ 660 �0:49ð Þ11:68

7014
¼ 3:3kip=ft2

q2 ¼
R

A
� Reð ÞL2

Iy


 �
¼ 660

172
� 660 �0:49ð Þ10:32

7014
¼ 4:3kip=ft2

Fig. E7.4d

7.5 Dimensioning Strap Footings

Strap footings consist of individual footings placed under each column and connected together with a

rigid beam to form a single unit. Figure 7.16 illustrates the geometric arrangement for two columns

supported by two rectangular footings. The centroid for the interior footing (footing #2) is usually

taken to be on the line of action of the interior column. The zone under the rigid beam is generally

filled with a geofoam material that has essentially no stiffness and provides negligible pressure on the

beam. Therefore, all of the resistance to the column loads is generated by the soil pressure acting on

the individual footing segments.

We suppose the axis connecting the columns is an axis of symmetry for the area segments. The

approach follows essentially the same procedure as employed for combined footings. Figure 7.17

defines the notation for this method.
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First, we locate the resultant of the column loads.

x1 ¼ P2

R
d

R¼ P1 þ P2

e¼ d1 � x1

Note that when e is negative, R is located to the right of the centroid (see Fig. 7.17b).

Next, we take footing #2 to be located such that its centroid coincides with the line of action of load

P2.

We locate the origin of the x-axis at an arbitrary point on the axis of symmetry and use (7.1) to

determine the soil pressure acting on the individual footings. We assume there is no soil pressure

acting on the link member. Noting (7.1), the soil pressure is taken as

q xð Þ ¼ bþ ax for footings#1and#2

q xð Þ ¼ 0 for the strapbeam:

The coefficients are evaluated by integrating over the footing areas. Enforcing equilibrium leads to

R¼
ð
q xð ÞdA ¼ b A1 þ A2ð Þ þ a

ð
A1

xdAþ
ð
A2

xdA


 �

Re¼
ð
xq xð ÞdA ¼ b

ð
A1

xdAþ
ð
A2

xdA


 �
þ a

ð
A1

x2dAþ
ð
A2

x2dA


 � ð7:12Þ

Fig. 7.16 Strap footing. (a) Plan. (b) Elevation
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Now, we take the origin for x at the centroid of the combined section. Then

ð
A1

xdAþ
ð
A2

xdA ¼ 0 and

(7.12) reduces to

R¼ b A1 þ A2ð Þ
Re¼ a IY1 þ IY2ð Þ ð7:13Þ

where IY1 þ IY2ð Þ is sum of the second moments of area of the two footing cross sections about the

Y-axis through the centroid. The IYs are computed using the following equations:

IY1 ¼ IY1 þ A1d
2

1

IY2 ¼ IY2 þ A2d
2

2

Fig. 7.17 Notation and pressure distribution for strap footing. (a) Elevation. (b) Plan

504 7 Shallow Foundations



Lastly, the pressure equation takes the form:

q xð Þ ¼ R

A1 þ A2ð Þ þ
Re

IY1 þ IY2ð Þ x ð7:14Þ

We use (7.14) to determine the pressure for a given geometry and loading.

When dimensioning the footing, we locate the centroid of the combined footing area on the line of

action of the resultant. This step results in a uniform pressure,

e ¼ 0 ! q ¼ R

A1 þ A2ð Þ ¼
P1 þ P2

A1 þ A2ð Þ ð7:15Þ

Given the effective soil pressure, we determine the total area with

A1 þ A2 
 P1 þ P2

qe
ð7:16Þ

The solution procedure is as follows:

We assume the magnitude of either A1 or A2 and compute the other area with (7.16). Since we are

locating footing #2 such that its centroid coincides with the line of action of P2, it follows from

Fig. 7.17 that x2 � d2. Then noting Fig. 7.18, d2 � d2. Lastly, we determine d1 with (7.17)

A1d1 ¼ A2d2 ð7:17Þ
This equation corresponds to setting e ¼ 0.

An alternative design approach proceeds as follows. Consider Fig. 7.19. The resultants of the

pressure distributions acting on the footings are indicated by R1 and R2. Summing moments about the

line of action of R1 leads to

R2 ¼ P2 � P1e1
d � e1

ð7:18Þ

Summing forces leads to

R1 þ R2 ¼ P1 þ P2

Fig. 7.18 Geometry–strap

footing
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Fig. 7.19 Approximate

strap footing analysis. (a)
Plan (b) Elevation (c)
Components of footing
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Then

R1 ¼ P1 þ P1e1
d � e1

ð7:19Þ

Let

V ¼ P1e1
d � e1

ð7:20Þ

then

R1 ¼ P1 þ V

R2 ¼ P2 � V

R¼ R1 þ R2 ¼ P1 þ P2

ð7:21Þ

The quantity, V, is the shear force in the strap beam.

Once e1 is specified, one can determine R1 and R2. We also assume the soil pressure acting on the

footing is constant and equal to the effective soil pressure (qe). Then,

A1 required ¼ R1

qe

A2 required ¼ R2

qe

ð7:22Þ

Typical reinforcing patterns required for bending in strap footings are illustrated in Fig. 7.20.

Example 7.5

Given: The eccentrically loaded footing A connected to the concentrically loaded footing B by strap

beam as shown below. Assume the strap is placed such that it does not bear directly on the soil

(Figs. E7.5a and E7.5b).

Fig. 7.20 Typical

reinforcing patterns
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Determine: The soil pressure profile under the footings.

Fig. E7.5a Elevation

Fig. E7.5b Plan view

Solution: Noting Fig. 7.17, the various measures are

d¼ 6:3m

x1 ¼ 2400 6:3ð Þ
4400

¼ 3:436m

A1 ¼ 2 3ð Þ ¼ 6m2

A2 ¼ 3 3ð Þ ¼ 9m2

R¼ 2000þ 2400 ¼ 4400m2

6d1 ¼ 9 5:5� d1
� �) d1 ¼ 3:3m d2 ¼ 2:2m

d1 ¼ d1 þ 0:8 ¼ 4:1m

e ¼ d1 � x1 ¼ 0:66m

IY1 þ IY2 ¼ 3 2ð Þ3
12
þ 6 3:3ð Þ2 þ 3 3ð Þ3

12
þ 9 2:2ð Þ2 ¼ 117:65m4

Note that e is positive when R is located to the left of the centroid
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q xð Þ ¼ R

A1 þ A2ð Þ þ
Re

IY1 þ IY2ð Þ x

¼ 4400

15
� 4400 0:66ð Þ

117:65
x ¼ 293:3þ 24:7x

∴

q 4:3ð Þ ¼ 399kN=m2

q 2:3ð Þ ¼ 350kN=m2

q �0:7ð Þ ¼ 276kN=m2

q �3:7ð Þ ¼ 202kN=m2

The corresponding soil pressure is shown below.

2000 kN

2400 kN

Strap beam

399 350
276

202

2 m 3 m 3 m

Example 7.6 Dimensioning a Strap Footing

Given: The exterior column C1 is 12 in. � 12 in. and carries a dead load of 160 kip and a live load

of 130 kip. The interior column C2 is 16 in. � 16 in. and carries a dead load of 200 kip and a live

load of 185 kip. The property line is at the edge of column #1 and the distance between the center

lines of the columns #1 and #2 is 20 ft. The effective soil pressure is qe ¼ 4.625 kip/ft2 (Figs. E7.6a

and E7.6b).
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Determine: The dimensions of the footings for both columns using the two methods described

above.

d=20 ft

Footing #1
Footing #2

C1

A1 A2

C2

L2

B2

L1

B1

Rigid beam

Fig. E7.6a Plan

6 in
d = 20 ft

P1 P2

11.6 ft

R = 675

8.4 ft

q q

6”
e1 L1 L2 L2

—
— —

2
2 2

R1
R2

Fig. E7.6b Elevation

Solution:

Procedure #1: The individual column loads are:

P1 ¼ 160þ 130 ¼ 290kip

P2 ¼ 200þ 185 ¼ 385kip

Next, we locate the resultant of the column loads.

R¼ P1 þ P2 ¼ 675kip

d1 ¼ x1 ¼ 385

675
20ð Þ ¼ 11:407ft

d2 ¼ x2 ¼ 20� 11:407 ¼ 8:593ft
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Noting (7.16), we obtain:

A1 þ A2 ¼ 675

4:625

 146ft2

We estimate A2 knowing R2, the resultant of the pressure distribution acting on footing # 2, is less

than P2.

A2 ≲
385

4:625
¼ 83ft2

We take L2 ¼ B2 ¼ 8:5ft A2 ¼ 72:25ft2
� �

.

Then A1 
 73:75ft2

Noting (7.17),

73:75d1 ¼ 72:25 8:593ð Þ ) d1 ¼ 8:418 ft

Then

L1
2
� e1 þ d1 � d

� � ¼ 0:5þ 11:407� 8:418ð Þ ¼ 3:49ft

Take L1 ¼ 7ft and B1 ¼ 10:75ft A1 ¼ 75:25 ft2
� �

The final dimensions are shown below.

Procedure #2: We illustrate the second design approach here. We estimate A1 by requiring the

pressure under the footing #1 to be equal to qe.

A1 >
P1

qe
¼ 290

4:625
¼ 62:7ft2
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We take L1 ¼ 6 ft as a first estimate. Then, noting Fig. E7.6b

e1 ¼ L1
2
� 0:5 � 2:5ft

The remaining steps are listed below

V ¼ P1e1
d � e1

¼ 290 2:5ð Þ
20� 2:5

¼ 41:43kip

R1 ¼ P1 þ V ¼ 290þ 41:43 ¼ 331:43kip

R2 ¼ P2 � V ¼ 385� 41:43 ¼ 343:57kip

A1required ¼
331:43

4:625
¼ 71:66ft2 ) B1 ¼ 71:66

6
¼ 11:94) L1 ¼ 6ft B1 ¼ 12ft

A2required ¼
343:57

4:625
¼ 74:29ft2 ) L2 ¼ B2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
74:29
p

¼ 8:62) B2 ¼ L2 ¼ 8:75ft

The final dimensions are shown below.

Repeating this computation for the ultimate loading case,

P1u ¼ 1:2PD þ 1:6PL ¼ 1:2 160ð Þ þ 1:6 130ð Þ ¼ 400kip

P2u ¼ 1:2PD þ 1:6PL ¼ 1:2 200ð Þ þ 1:6 185ð Þ ¼ 536kip
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and assuming the same value for e1 leads to

Vu ¼ Pu1e1
d � e1

¼ 400 2:5ð Þ
17:5

¼ 57:14kip

R1u ¼ P1u þ Vu ¼ 400þ 57:14 ¼ 457:14kip

q1u ¼
R1u

B1L1
¼ 457:14

6 12ð Þ ¼ 6:35kip=ft2

R2u ¼ P2u � Vu ¼ 536� 57:14 ¼ 478:86kip

q2u ¼
R2u

B2L2
¼ 478:86

8:75 8:75ð Þ ¼ 6:25kip=ft2

The corresponding forces are shown in the sketches below.
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The shear and moment diagrams are plotted below.

7.6 Summary

7.6.1 Objectives of the Chapter

• To describe the various types of footings used in shallow foundations.

• To develop an analytical procedure for dimensioning footings.

• To develop a general analytical procedure for generating the shear and moment distribution in

footings based on the assumption of a linear soil pressure distribution.

• To identify critical loading conditions which produce pressure loading distributions with high peak

magnitudes.
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7.7 Problems

Problem 7.1

Consider the footing geometry shown below. Determine the soil pressure distribution

corresponding to

(a) B ¼ L ¼ 8 ft

(b) L ¼ 10 ft, B ¼ 5 ft

Problem 7.2

The plan view and elevation of a single footing supporting a 300 mm � 300 mm column are shown

below. Determine the soil pressure distribution under the footing. Use a factor of 1.2 for DL and 1.6

for LL.
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Problem 7.3

The plan view and elevation of a single footing supporting a column are shown below. The effective

soil pressure is 4 kip/ft2. Determine the required value of L.

Problem 7.4

A 450 mm � 450 mm concentrically load column is to be supported on a shallow foundation. The

base of the footing is 1 m below grade. Estimate the size of the footing using service loads. Draw

shear and moment diagrams using a factor load of Pu ¼ 1.2PD + 1.6P. The allowable soil pressure is

qallowable ¼ 250 kN/m2, γsoil ¼ 18 kN/m3, γconc ¼ 24 kN/m3, PD ¼ 1000 kN, and PL ¼ 1400 kN.

Consider: (a) A square footing (L1 ¼ L2 ¼ L ) and (b) A rectangular footing with L2 ¼ 2.5 m.

Problem 7.5

A 350 mm � 350 mm column is to be supported on a shallow foundation. Determine the dimensions

(either square or rectangular) for the following conditions. The effective soil pressure is qeffective
¼ 180 kN/m2.
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(a) The center line of the column coincides with the center line of the footing.

(b) The center line of the column is 0.75 m from the property line.

(c) The center line of the column is 0.5 m from the centroid of the footing.

Problem 7.6

A combined footing supports two square columns: Column A is 14 in. � 14 in. and carries a dead

load of 140 kip and a live load of 220 kip. Column B is 16 in. � 16 in. and carries a dead load of

260 kip and a live load of 300 kip. The effective soil pressure is qe ¼ 4.5 kip/ft2. Assume the soil

pressure distribution is uniform, except for case (b). Determine the footing dimensions for the

following geometric configurations. Establish the shear and moment diagrams corresponding to the

factored loading, Pu ¼ 1.2PD + 1.6PL.
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Case (a):

Column A

2 ft 14 ft

L

Elevation

Axis of symmrty A

2 ft 14 ft

L

Plan

B

B

Column B

Plan

L

16 n

Axis of symmetry BA

Elevation

L

16 ft

Column A

Case (b):

Column B

B
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Case (c):

Column A Column B

a 10 ft

L

Elevation

Axis of symmetry
B =10.25 ft

a 10 ft b

L

Plan

BA

b

Case (d):

Column A
Column B

Elevation

16 ft1.5 ft

B/2

B
Axis of symmetry

A

B

L

16 ft1.5 ft

L

Plan
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Case (e):

Column A
Column B

t

16 ft1.5 ft

B/2
BAxis of symmetry

A

B

L

16 ft1.5 ft

L

Problem 7.7

Column A is 350 mm � 350 mm and carries a dead load of 1300 kN and a live load of 450 kN.

Column B is 450 mm � 450 mm and carries a dead load of 1400 kN and a live load of 800 kN. The

combined footing shown below is used to support these columns. Determine the soil pressure

distribution and the shear and bending moment distributions along the longitudinal direction

corresponding to the factored loading, Pu ¼ 1.2PD + 1.6PL.
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PA PB

1.5 m 3.5 m 1 m

Elevation

3 m

6 m

Plan

A B Axis of symmetry

Problem 7.8

Dimension a strap footing for the situation shown. The exterior column A is 14 in. � 14 in. and

carries a dead load of 160 kip and a live load of 130 kip; the interior column B is 18 in. � 18 in. and

carries a dead load of 200 kip and a live load of 187.5 kip; the distance between the center lines of the

columns is 18 ft. Assume the strap is placed such that it does not bear directly on the soil. Take the

effective soil pressure as qe ¼ 4.5 kip/ft2. Draw shear and moment diagrams using a factored load of

Pu ¼ 1.2PD + 1.6PL.
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Problem 7.9

Column A is 350 mm � 350 mm and carries a dead load of 1300 kN and a live load of 450 kN.

Column B is 450 mm � 450 mm and carries a dead load of 1400 kN and a live load of 800 kN. A

strap footing is used to support the columns and the center line of Column A is 0.5 m from the

property line. Assume the strap is placed such that it does not bear directly on the soil. Determine the

soil pressure distribution and the shear and bending moment distributions along the longitudinal

direction corresponding to the factored loading, Pu ¼ 1.2PD + 1.6PL.

Problem 7.10

An exterior 18 in. � 18 in. column with a total vertical service load of P1 ¼ 180 kip and an interior

20 in. � 20 in. column with a total vertical service load of P2 ¼ 240 kip are to be supported at each

column by a pad footing connected by a strap beam. Assume the strap is placed such that it does not

bear directly on the soil.

(a) Determine the dimensions L1 and L2 for the pad footings that will result in a uniform effective

soil pressure not exceeding 3 kip/ft2 under each pad footing. Use ¼ ft increments.

(b) Determine the soil pressure profile under the footings determined in part (a) when an additional

loading, consisting of an uplift force of 80 kip at the exterior column and an uplift force of 25 kip

at the interior column, is applied.
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Vertical Retaining Wall Structures 8

Abstract

Vertical wall type structures function as barriers whose purpose is to

prevent a material from entering a certain space. Typical applications

are embankment walls, bridge abutments, and underground basement

walls. Structural Engineers are responsible for the design of these

structures. The loading acting on a retaining wall is generally due to the

soil that is confined behind the wall. Various theories have been proposed

in the literature, and it appears that all the theories predict similar loading

results. In this chapter, we describe the Rankine theory which is fairly

simple to apply. We present the governing equations for various design

scenarios and illustrate their application to typical retaining structures.

The most critical concerns for retaining walls are ensuring stability with

respect to sliding and overturning, and identifying the regions of positive
and negative moment in the wall segments. Some of the material

developed in Chap. 7 is also applicable for retaining wall structures.

8.1 Introduction

8.1.1 Types of Retaining Walls

Vertical retaining wall structures are used to form a vertical barrier that retains a fluid or other

material such as soil. Figure 8.1 illustrates different types of vertical retaining wall structures. They

are constructed using unreinforced concrete for gravity walls and reinforced concrete for cantilever

walls and bridge abutments. The base of the wall/footing is placed below the frost level. The material

behind the wall is called backfill and is composed of granular material such as sand.

8.1.2 Gravity Walls

A free body diagram of a gravity structure is shown in Fig. 8.2. The force acting on the structure due

to the backfill material is represented by P; the forces provided by the soil at the base are represented
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by the friction force F and the normal force N; lastly, the weight of the structure is represented byW.

The end points of the base are called the “toe” and the “heel.” We observe that P tends to overturn the

wall about its toe and also to slide the structure in the horizontal direction. The overturning tendency

is resisted by the gravity force W which has a counterbalancing moment about the toe. Sliding is

resisted by the friction which is proportional to the normal force. Therefore, since both resisting

mechanisms are due to gravity, this type of structure is called a “Gravity” structure.

Of critical concern are the sliding and overturning failure modes. The key design parameter is the

length of the base. We need to select this parameter such that the factors of safety for sliding and

overturning are sufficient to ensure global stability of the structure.

Fig. 8.1 Vertical retaining wall structures. (a) Gravity dam. (b) Cantilever retaining wall. (c) Bridge abutment.

(d) Underground basement

Fig. 8.2 Free body diagram—gravity structure
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8.1.3 Cantilever Walls

The amount of concrete required for a gravity type wall increases with height. Therefore, in order to

minimize the concrete volume, the cantilever type retaining wall geometry shown in Fig. 8.3 is used.

A portion of the concrete wall is removed and a “footing” extending out from both the heel and toe is

added. This change has a stabilizing effect in that the weight of the backfill above the footing,

represented byWs, now contributes to the counterbalancing moment and also to the normal force. The

wall stem segment of a cantilever wall carries load through bending action, whereas the gravity wall

carries load primarily through horizontal shear action. These behavior modes dictate the type of

construction.

Cantilever retaining walls, such as shown in Fig. 8.4, are reinforced concrete structures; gravity

type walls tend to be unreinforced concrete. The key design issue is the width of the footing. This

parameter is controlled by the requirements on the factors of safety with respect to overturning about

the toe and sliding of the wall.

Fig. 8.3 Free body diagram—cantilever structure

Fig. 8.4 Cantilever wall construction
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8.2 Force Due to the Backfill Material

8.2.1 Different Types of Materials

8.2.1.1 Fluid
We consider first the case where the backfill material is an ideal fluid. By definition, an ideal fluid has

no shear resistance; the state of stress is pure compression. The vertical and horizontal pressures at a

point z unit below the free surface are (see Fig. 8.5):

pv ¼ ph ¼ p ¼ γz ð8:1Þ
where γ is the weight density.

We apply this theory to the inclined surface shown in Fig. 8.6. Noting (8.1), the fluid pressure is

normal to the surface and varies linearly with depth. The resultant force acts H/3 units up from the

base and is equal to

P ¼ 1

2
p

H

sin θ
¼ 1

2
γ

H2

sin θ

� �
ð8:2Þ

Resolving P into horizontal and vertical components leads to

Ph ¼ P sin θ ¼ 1

2
γH2

Pv ¼ P cos θ ¼ 1

2
γH2 1

tan θ

ð8:3Þ

Fig. 8.5 Hydrostatic pressure

Fig. 8.6 Hydrostatic

forces on an inclined

surface
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8.2.1.2 Granular Material
We consider next the case where the backfill behind the wall is composed of a granular material such as

dry loose sand (Fig. 8.7). Loose sand behaves in a different manner than a fluid in that sand can resist

shearing action aswell as compressive action. Themaximum shear stress for a sandy soil is expressed as

τ ¼ σn tan φ

where σn is the normal stress and φ is defined as the internal friction angle for the soil. A typical value

of φ for loose sand is approximately 30�. One can interpret φ as being related to the angle of repose

that a volume of sand assumes when it is formed by dumping the sand loosely on the pile. Figure 8.8

illustrates this concept.

The presence of shear stress results in a shift in orientation of the resultant force exerted on the wall

by the backfill. A typical case is shown in Fig. 8.9; P is assumed to act at an angle of φ0 with respect to
the horizontal, where φ0 ranges from 0 to φ.

Fig. 8.7 Granular

material-stress state

Fig. 8.8 Angle of repose

Fig. 8.9 Active and

passive failure states
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The magnitude of the soil pressure force depends on how the wall moved when the backfill was

placed. If the wall moved away from the backfill (to the left in Fig. 8.9), the soil is said to be in an

active failure state. The other extreme case is when the wall is pushed into the soil; the failure state is

said to be in the passive mode. There is a significant difference in the force magnitudes corresponding

to these states.

In general, the active force is an order of magnitude less than the passive force. For the

applications that we are considering, the most likely case is when the wall moves away from the

soil, and therefore we assume “active” conditions. The downward component tends to increase

the stability with respect to overturning about the toe and also increases the friction force.

Different theories for the soil pressure distribution have been proposed which relate to the choice

of φ0. The Rankine theory assumes φ
0 ¼ 0 (i.e., no shear stress), and the Coulomb theory assumes

φ
0 ¼ φ. Considering that there is significant variability in soil properties, both theories predict

pressure distributions which are suitable for establishing the wall dimensions.

In what follows we present the key elements of the Rankine theory. There are many textbooks that

deal with mechanics of soil. In particular, we suggest Lamb and Whitman [1], Terzaghi and Peck [2],

and Huntington [3].

8.2.2 Rankine Theory: Active Soil Pressure

Figure 8.10 defines the geometry and the soil pressure distribution. The pressure is applied to vertical

surfaces through the heel and toe and is assumed to vary linearly with depth as shown. The

magnitudes of the forces acting on a strip of unit width in the longitudinal direction of the wall are:

Pa ¼ 1

2
γH2ka

Pp ¼ 1

2
γh2kp

ð8:4Þ

Fig. 8.10 (a) Soil pressure distribution for Rankine theory α 6¼ 0. (b) Soil pressure distribution for Rankine

theory α ¼ 0

530 8 Vertical Retaining Wall Structures



where γ is the unit weight of the soil backfill, ka and kp are defined as the active and passive soil

pressure coefficients,

ka ¼ cos α
cos α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos αð Þ2 � cos φð Þ2

q
cos αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos αð Þ2 � cos φð Þ2

q
8><
>:

9>=
>;

kp ¼ 1þ sin φ

1� sin φ

ð8:5Þ

where φ is the internal friction angle, and α is the angle of inclination for the backfill.

When the backfill is level, α ¼ 0 and ka reduces to

ka ¼ 1� sin φ

1þ sin φ
ð8:6Þ

In this case, both resultants are horizontal forces.

8.2.2.1 Soil Pressure Due to Surcharge
When a surcharge is applied to the top of a backfill, additional soil pressure is developed. This

pressure is assumed to be uniform over the depth. In the case of a uniform surcharge applied to a

horizontal backfill, the added pressure is estimated as

ps � kaws

Ps � kawsH
ð8:7Þ

where ka is defined by (8.6). The soil pressure distributions due to the surcharge and the active soil

pressure are illustrated in Fig. 8.11.

8.3 Stability Analysis of Retaining Walls

The key concerns for a retaining wall are overturning about the toe and sliding. In order to address

these issues, one needs to determine the forces acting on the wall. This step requires that we carry out

an equilibrium analysis.

Consider the typical gravity wall shown in Fig. 8.12. The weights of the wall and soil segments are

denoted by Wj; Pa and Pp represent the lateral soil pressure forces; N and F are the normal and

tangential (friction) forces due to the soil pressure acting on the base. x defines the line of action of

the normal force acting on the base.

Summing forces in the vertical direction leads to

N ¼
X

Wj ð8:8Þ

Fig. 8.11 Pressure distributions due to surcharge and active soil pressure
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Similarly, horizontal force summation yields

F ¼
X

Pi ð8:9Þ

The maximum horizontal force is taken as Fmax ¼ μN. where μ is a friction coefficient for the soil/
base interface. This quantity is used to define the factor of safety for sliding:

F:S:sliding ¼ Fmax

F
¼ μN

F
ð8:10Þ

The line of action of N is found by summing the moments about the toe.

Nx ¼ Ppyp � Paya þ
X

Wjxj ¼ Mnet

+

x ¼ Mnet

N

ð8:11Þ

For stability with respect to overturning, xmust be positive. A negative value of x implies that the

line of action of N lies outside the base. The safety measure for overturning is defined as the ratio of

the resisting moment about the toe to the overturning moment.

F:S:overturning ¼ Mresisting

Moverturning

ð8:12Þ

Noting Fig. 8.12, this definition expands to

F:S:overturning ¼
Ppyp þ

X
Wjxj

Paya
ð8:13Þ

Typical desired values are F.S.sliding > 1.5 and F.S.overturning > 2.

In order to increase the factors of safety against sliding and overturning, either one can increase the

width of the concrete wall or one can add a footing extending out from the original base. These

schemes are illustrated in Fig. 8.13.

Fig. 8.12 Typical gravity wall
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8.4 Pressure Distribution Under the Wall Footing

We consider the pressure acting on the footing is assumed to vary linearly. There are two design

constraints: firstly, the peak pressures must be less than the allowable bearing pressure for the soil and

secondly the pressure cannot be negative, i.e., tension. Noting the formulation presented in Sect. 7.2,

the peak pressures are given by (7.6) (we work with a unit width strip of the footing along the length

of the wall, i.e., we take B ¼ 1 and N as the resultant) which we list below for convenience.

Figure 8.14 shows the soil pressure distributions for various values of e.

q1 ¼
N

L
1þ 6e

L


 �

q2 ¼
N

L
1� 6e

L


 � ð8:14Þ

The second design constraint requires |e| � L/6 or equivalently, the line of action of N must be

located within the middle third of the footing width, L. The first constraint limits the maximum peak

pressure,

qj jmax � qallowable

where qallowable is the allowable soil pressure at the base of the wall. We note that the pressure

distribution is uniform when N acts at the centroid of the footing area which, for this case, is the

midpoint. Since e depends on the wall height and footing length, we define the optimal geometry as

that combination of dimensions for which the soil pressure is uniform. Note that the line of action of

the resultant N always coincides with the line of action of the applied vertical load.

Fig. 8.13 (a) Gravity wall and (b) cantilever retaining wall
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Example 8.1 Gravity Retaining Wall Analysis

Given: The concrete gravity wall and soil backfill shown in Fig. E8.1a.

Fig. 8.14 Pressure distributions on footing/wall base. (a) e ¼ 0. (b) e < L/6. (c) e ¼ L/6. (d) e > L/6
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Fig. E8.1a Wall geometry

Determine: The factor of safety against sliding; the factor of safety against overturning; the line of

action of the resultant. Use the Rankine theory for soil pressure computations. Neglect the passive

pressure acting on the toe.

Solution:

For φ ¼ 30ka ¼ 1� sin φ

1þ sin φ
¼ 1

3

Then Pa ¼ 1
2
0:12ð Þ 12ð Þ2 1

3

� �
1ftð Þ ¼ 2:88kip=ft of wall

Next, we compute the weight of the concrete wall segments per foot of wall. Noting Fig. E8.1b,

W1 ¼ 0:150ð Þ 10ð Þ 1ð Þ 1ftð Þ ¼ 1:5kip

W2 ¼ 0:150ð Þ 10

2

� �
3ð Þ 1ftð Þ ¼ 2:25kip

W3 ¼ 0:150ð Þ 4ð Þ 2ð Þ 1ftð Þ ¼ 1:2kip

Fig. E8.1b Free body diagram

8.4 Pressure Distribution Under the Wall Footing 535



Applying vertical force equilibrium yields

N ¼ W1 þW2 þW3 ¼ 1:5þ 2:25þ 1:2 ¼ 4:95kip

The factor of safety with respect to sliding is defined as the ratio of the maximum available friction

force Fmax to the actual horizontal force.

Fmax ¼ μN ¼ N tan ϕ ¼ 0:577 4:95ð Þ ¼ 2:86kip

F:S:sliding ¼ μN

Pa

¼ 2:86

2:88
¼ 0:99

The line of action of N is determined by summing moments about the toe. The factor of safety with

respect to overturning is defined as the ratio of the resisting moment to the overturning moment, both

quantities with respect to the toe.

MBoverturning
¼ Pa

H

3

� �
¼ 2:88 4ð Þ ¼ 11:52kip ft

MBresisting
¼ W1 3:5ð Þ þW2 2ð Þ þW3 2ð Þ
¼ 1:5 3:5ð Þ þ 2:25 2ð Þ þ 1:2 2ð Þ ¼ 12:15kip ft

F:S:overturning ¼
MBresisting

MBoverturning

¼ 12:15

11:52
¼ 1:05

Mnet ¼ MBoverturning
�MBresisting

¼ 0:63kip ft clockwise

x¼ Mnet

N
¼ 0:63

4:95
¼ 0:13ft

In order to increase the factors of safety, the geometry needs to be modified.

The following procedure is useful for estimating appropriate values for b1 and b2. Given the wall

height, one can derive expressions for the factors of safety. The details are listed below.
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W ¼ b1 þ b2ð Þ
2

Hγc ¼ N

Pa ¼ ka
1

2
γsH

2


 �

F:S:sliding ¼ μN

Pa

+

F:S:sliding ¼ μγc
kaγs

� �
b2
H

� �
1þ b1

b2

� �

Moverturning ¼ H

3
Pa ¼ 1

6
kaγsH

3

Mresisting ¼ 2

3
b2 � b1ð ÞW2 þ b2 � b1

2

� �
W1

¼ Hγcb
2
2

3
1� 1

2

b1
b2

� �2

þ b1
b2

( )

F:S:overturning ¼
MBresisting

MBoverturning

¼

Hγcb
2
2

3
1� 1

2

b1
b2

� �2

þ b1
b2

( )

1

6
kaγsH

3

+

F:S:overturning ¼ 2γc
kaγs

b2
H

� �2

1� 1

2

b1
b2

� �2

þ b1
b2

( )

One specifies the factor of safety with respect to overturning, and the ratio b1/b2, and then

computes the value for b2/H. With b2/H known, one checks for sliding and if necessary modifies

the value of b2/H.

Example 8.2

Given: The concrete gravity wall and soil backfill shown in Fig. E8.2a.
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Fig. E8.2a

Determine: The required value for b2. Take the factors of safety for overturning and sliding to be

equal to 2 and 1.5, respectively.

Solution: Given b1 ¼ 0.5 m, H ¼ 4 m, F.S.overturning ¼ 2, and F.S.sliding ¼ 1.5, we determine b2
corresponding to the two stability conditions.

F:S:overturning ¼ 2γc
kaγs

b2
H

� �2

1� 1

2

b1
b2

� �2

þ b1
b2

( )

2 24ð Þ
1

3

� �
18ð Þ

b2
4

� �2

1� 1

2

0:5

b2

� �2

þ 0:5

b2

( )
¼ 2

∴ b22 þ 0:5b2 � 4:125 ¼ 0 b2 required ¼ 1:8m

F:S:sliding ¼ μγc
kaγs

� �
b2
H

� �
1þ b1

b2

� �

1:5¼ 0:5 24ð Þ
1

3

� �
18ð Þ

b2
4

� �
1þ 0:5

b2

� �
b2 required ¼ 2:5m

Use b2 ¼ 2.5 m

Example 8.3 Retaining Wall with Footing

Given: The walls defined in Figs. E8.3a, E8.3b, and E8.3c. These schemes are modified versions of

the wall analyzed in Example 8.1. We have extended the footing to further stabilize the wall.
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Fig. E8.3a Case “A”

Fig. E8.3b Case “B”

Fig. E8.3c Case “C”
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Determine: The factor of safety against sliding; the factor of safety against overturning; the base

pressure distribution. Use the Rankine theory for soil pressure computations. Neglect the passive

pressure acting on the toe.

Solution:

Case “A”: We work with the free body diagram shown in Fig. E8.3d. The vertical surface is taken to

pass through the heel.

Fig. E8.3d

From Example 8.1:

W1 ¼ 1:5kip W2 ¼ 2:25kip Pa ¼ 2:88kip MBoverturning
¼ 11:52kip ft

The weight of the footing is

W3 ¼ 0:150ð Þ 7ð Þ 2ð Þ 1ftð Þ ¼ 2:1kip

The weight of soil is W4 ¼ (0.120)(10)(3)(1 ft) ¼ 3.6 kip

Then

N ¼
X

Wi ¼ 1:5þ 2:25þ 2:1þ 3:6 ¼ 9:45kip

W4 þW3 þW2 þW1

Fmax ¼ μN ¼ 0:577 9:45ð Þ ¼ 5:45kip

F:S:sliding ¼ Fmax

Pa

¼ 5:45

2:88
¼ 1:89

We sum moments about the toe:

MBresisting
¼ W1 3:5ð Þ þW2 2ð Þ þW3 3:5ð Þ þW4 5:5ð Þ
¼ 1:5 3:5ð Þ þ 2:25 2ð Þ þ 2:1 3:5ð Þ þ 3:6 5:5ð Þ ¼ 36:69kip ft

MBoverturning
¼ 11:52kip ft
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Using these moments, the factor of safety is

F:S:overturning ¼
MBresisting

MBoverturning

¼ 36:9

11:52
¼ 3:2

Next, we determine the line of action of the resultant

Mnet ¼ MBoverturning
�MBresisting

¼ 25:38kip ft

x¼ Mnet

N
¼ 25:38

9:45
¼ 2:68ft

e¼ L

2
� x ¼ 3:5� 2:68 ¼ 0:82ft <

L

6
¼ 1:167ft

Lastly, we compute the pressure loading acting on the base.

q ¼ N

L
1� 6e

L

� �
¼ 9:45

7
1� 6 0:82ð Þ

7

� �
) q1 ¼ 2:3kip=ft2, q2 ¼ 0:4kip=ft2

Case “B”: For this case, we work with the free body diagram shown in Fig. E8.3e. The dimensions are

defined in Fig. E8.3b. W3 ¼ (0.150)(6)(2)(1 ft) ¼ 1.8 kip. W5 ¼ (0.120)(2)(2)(1 ft) ¼ 0.48 kip

Fig. E8.3e
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The calculations proceed as follows:

N ¼ W1 þW2 þW3 þW5 ¼ 1:5þ 2:25þ 1:8þ 0:48 ¼ 6:03kip

Fmax ¼ μN ¼ 0:577 6:03ð Þ ¼ 3:48kip

F:S:sliding ¼ Fmax

Pa

¼ 3:48

2:88
¼ 1:2

We sum moments about the toe:

MBresisting
¼ W1 5:5ð Þ þW2 4ð Þ þW3 3ð Þ þW5 1ð Þ
¼ 1:5 5:5ð Þ þ 2:25 4ð Þ þ 1:8 3ð Þ þ 0:48 1ð Þ ¼ 23:13kip ft

MBoverturning
¼ 11:52kip ft

F:S:overturning ¼
MBresisting

MBoverturning

¼ 23:13

11:52
¼ 2:0

Mnet ¼ MBoverturning
�MBresisting

¼ 11:61kip ft

x¼ Mnet

N
¼ 11:61

6:03
¼ 1:925ft

e¼ L

2
� x ¼ 3� 1:925 ¼ 1:07ft >

L

6
¼ 1:0ft ∴x ¼ a

2
a ¼ 5:77ft

q1 ¼
2N

a
¼ 2 6:03ð Þ

5:77
¼ 2:1kip=ft2

Note that the line of action of the normal force iswithin the base but the pressure is negative at the heel.

Case “C”: We work with the free body diagram shown in Fig. E8.3f. The dimensions are defined in

Fig. E8.3c. The revised value of W3 is W3 ¼ (0.15)(9)(2)(1 ft) ¼ 2.7 kip
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Fig. E8.3f

Then

N ¼ W1 þW2 þW3 þW4 þW5 ¼ 1:5þ 2:25þ 2:7þ 3:6þ 0:48 ¼ 10:53kip

Fmax ¼ μN ¼ 0:577 10:53ð Þ ¼ 6:1kip

F:S:sliding ¼ Fmax

Pa

¼ 6:1

2:88
¼ 2:12

We sum moments about the toe:

MBbalancing
¼ W1 5:5ð Þ þW2 4ð Þ þW3 4:5ð Þ þW4 7:5ð Þ þW5 1ð Þ

¼ 1:5 5:5ð Þ þ 2:25 4ð Þ þ 2:7 4:5ð Þ þ 3:6 7:5ð Þ þ 0:48 1ð Þ ¼ 56:88kip ft

F:S:overturning ¼
MBresisting

MBoverturning

¼ 56:88

11:52
¼ 4:94

Mnet ¼ MBoverturning
�MBresisting

¼ 45:36kip ft

x¼ Mnet

N
¼ 45:36

10:53
¼ 4:3ft

e¼ L

2
� x ¼ 4:5� 4:3 ¼ 0:2ft

ej j < L=6¼ 1:5ft

∴q¼ N

L
1� 6e

L

� �
¼ 10:53

9
1� 6 0:2ð Þ

9

� �
) q1 ¼ 1:3kip=ft2, q2 ¼ 1:0kip=ft2
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We point out that case C has the lowest peak pressure. The analysis results are summarized in the

table below.

Case A Case B Case C

N 9.45 kip 6.03 kip 10.53 kip

Friction 5.45 kip 3.48 kip 6.1 kip

F.S.sliding 1.89 1.2 2.12

Mbalancing 36.9 kip ft 23.13 kip ft 56.88 kip ft

Moverturning 11.52 kip ft 11.52 kip ft 11.52 kip ft

F.S.overturning 3.2 2.0 4.94

x 2.68 ft 1.925 ft 4.3 ft

e 0.82 ft < L/6 1.07 ft > L/6 0.2 ft < L/6

q1 2.3 kip/ft 2.1 kip/ft 1.3 kip/ft2

q2 0.4 kip/ft – 1.0 kip/ft2

Example 8.4 Cantilever retaining wall

Given: The retaining wall and soil backfill shown in Fig. E8.4a

Fig E8.4a

544 8 Vertical Retaining Wall Structures



Determine: The factor of safety against sliding; the factor of safety against overturning; the base

pressure distribution. Assume the allowable soil pressure ¼ 4 ksf. Use the Rankine theory for soil

pressure computations.

Solution:

Noting Fig. E8.4b, the soil pressure and weight forces are

Pa ¼ 1

2
kaγsH

2 ¼ 1

2

1

3

� �
0:12ð Þ 22ð Þ2 ¼ 9:68kip

Pp ¼ 1

2
kpγsH

02 ¼ 1

2
3ð Þ 0:12ð Þ 4ð Þ2 ¼ 2:88kip

Ps ¼ kawsH ¼ 1

3
0:2ð Þ 22ð Þ ¼ 1:47kip

Fig. E8.4b

W1 ¼ 0:15 1ð Þ 19:66ð Þ ¼ 2:95kip

W2 ¼ 0:15 1ð Þ 19:66

2

� �
¼ 1:47kip

W3 ¼ 0:15 2:34ð Þ 14ð Þ ¼ 4:19kip

W4 ¼ 0:12 7ð Þ 19:66ð Þ ¼ 16:5kip

W5 ¼ 0:12 5ð Þ 1:67ð Þ ¼ 1:0kip

The normal and horizontal forces are
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N ¼ W1 þW2 þW3 þW4 þW5 ¼ 26:84kip

Fmax ¼ μN ¼ 0:577 26:84ð Þ ¼ 15:5kipX
Fhorizontal ¼ Pa þ Ps � Pp ¼ 9:68þ 1:47� 2:88 ¼ 8:27kip 

Next, we compute the factors of safety.

F:S:sliding ¼ FmaxX
Fhorizontal

¼ 15:5

8:27
¼ 1:87

MBoverturning
¼ Pa

H

3

� �
þ Ps

H

2

� �
¼ 9:68

22

3

� �
þ 1:47

22

2

� �
¼ 87:2kip ft

MBresisting
¼ W1 6:5ð Þ þW2 5:67ð Þ þW3 7ð Þ þW4 10:5ð Þ þW5 2:5ð Þ þ Pp 1:33ð Þ
¼ 2:95 6:5ð Þ þ 1:47 5:67ð Þ þ 4:91 7ð Þ þ 16:5 10:5ð Þ
þ 1:0 2:5ð Þ þ 2:88 1:33ð Þ

¼ 241:5kip ft

F:S:ovreturning ¼
MBresisting

MBoverturning

¼ 241:5

87:2
¼ 2:77

Lastly, we determine the location of the line of action of N.

Mnet ¼ MBoverturning
�MBresisting

¼ 154:8kip ft

x¼ Mnet

N
¼ 154:8

26:84
¼ 5:77 ft

e¼ L

2
� x ¼ 14

2
� 5:77 ¼ 1:23ft <

L

6
¼ 2:33ft

Using the above values, the peak pressures are

q ¼ N

L
1� 6e

L

� �
¼ 26:84

14
1� 6 1:23ð Þ

14

� �
) q1 ¼ 2:92kip=ft2 q2 ¼ 0:91kip=ft2

Example 8.5 Retaining Wall Supported by Concrete Piles
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Given: The structure shown in Fig. E8.5a. Assume all the loads acting on the wall are resisted by the

axial loads in the concrete piles. Consider the pile spaced at 6 ft on center. Use Rankine theory.

Fig. E8.5a

Determine: The axial loads in the piles.

Solution:We consider a 6 ft segment of the wall. The free body diagram for this segment is shown in

Fig. E8.5b. F1 and F2 denote the pile forces; Pa is the active lateral soil force; and theW term relates to

various weights. We neglect the passive soil force and assume the horizontal load is carried by the

inclined pile.

Pa ¼ 1

2

1

3

� �
0:12ð Þ 20ð Þ2 6ð Þ ¼ 48kip

W1 ¼ 5ð Þ 17:5ð Þ 6ð Þ 0:12ð Þ ¼ 63kip

W2 ¼ 1:5ð Þ 17:5ð Þ 6ð Þ 0:15ð Þ ¼ 23:6kip

W3 ¼ 2:5ð Þ 9:5ð Þ 6ð Þ 0:15ð Þ ¼ 21:4
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Fig. E8.5b

By summing the moments about A, we determine F1:X
MA ¼ 0 2:25ð ÞW2 þþ 5:5ð ÞW1 ¼ 6:67Pa þ 6:5F1 ) F1 ¼ 22:92kips

Summing the vertical forces leads toX
Fy ¼ 0) F2,v ¼ 85:1kip

Similarly, the horizontal loads yieldsX
Fx ¼ 0) F2,h ¼ Pa ¼ 48kip

Then, the axial force in the battered pile is

F2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
h þ F2

v

q
¼ 97:7

And the required batter is 48/85.1 ¼ 0.56

8.5 Critical Sections for Design of Cantilever Walls

The different segments of a typical cantilever retaining wall structure are shown in Fig. 8.15. The

stem functions as a cantilever beam supported by the footing. Gravity and lateral loading are

transmitted by the stem onto the footing which then distributes the loading onto the soil. The footing

has two counteracting loadings at the heel; the loading due to the weight of the soil, and the pressure

loading. The latter is usually neglected when estimating the peak negative moment in the footing. The
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bending moment distributions are also plotted in Fig. 8.15d. Note that for this type of structure, the

bending moment distribution in the footing has both positive and negative regions. The critical region

for design is the stem–footing junction.

Fig. 8.15 Loadings and

response pattern for

cantilever retaining wall

structure. (a) Cantilever
retaining wall components.

(b) Stem—loads and

bending moment. (c)
Footing—loads. (d)
Components of footing
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Retaining wall structures are constructed using reinforced concrete. The thickness of the footing

sections is governed by the shear capacity. The location and magnitude of the bending steel

reinforcement is dictated by the sense of the bending moment distribution (i.e., positive or negative).

Noting that the function of the reinforcement is to provide the tensile force required by the moment,

the moment diagrams shown in Fig. 8.15d require the reinforcement patterns defined in Fig. 8.16. The

actual size/number of the rebars depends on the magnitude of the moment and the particular design

code used to dimension the member.

Example 8.6

Given: The structure shown in Fig. E8.6a.

Fig. E8.6a

Determine:

(a) The required L1 such that the factor of safety with respect to overturning is equal to 2.

(b) The tension areas in the stem, toe, and heel and show the reinforcing pattern.

Fig. 8.16 Typical bending

steel reinforcement

patterns
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Solution:

Pa ¼ 1

2
kaγsH

2 ¼ 1

2
0:35ð Þ 18ð Þ 4:5ð Þ2 ¼ 63:8kN

W1 ¼ 0:5ð Þ 5ð Þ 24ð Þ ¼ 60kN

W2 ¼ 0:5ð Þ 1:5þ L1ð Þ 24ð Þ
W3 ¼ 4ð Þ L1ð Þ 18ð Þ

MBoverturning
¼ 63:8

4:5

3

� �
þ 10 5:5ð Þ ¼ 150:7

MBresisting
¼ W1 1:25ð Þ þW2

L1 þ 1:5

2

� �
þW3

L1
2
þ 1:5

� �

F:S:overturning ¼ 2 ¼ MBresisting

MBoverturning

¼
W1 1:25ð Þ þW2

L1 þ 1:5

2

� �
þW3

L1
2
þ 1:5

� �
150:7

+
L1 required ¼ 1:2m

The figure below shows the reinforcing pattern required for the tension areas.
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8.6 Summary

8.6.1 Objectives of the Chapter

• To introduce the topic of vertical retaining wall structures used for embankments, abutments, and

underground structures.

• To present a theory for establishing the lateral loading exerted by soil backfill on vertical walls.

• To develop a methodology for evaluating the stability of cantilever retaining walls when subjected

to lateral loading due to backfill and surcharges.

8.6.2 Key Concepts and Facts

• The Rankine theory predicts a linear distribution of soil pressure which acts normal to a vertical

face and increases with depth. The resultant force is given by

Pa ¼ 1

2
γH2ka

where H is the vertical wall height, γ is the soil density, and ka is a dimensionless coefficient that

depends on the soil type and nature of the relative motion between the wall and the backfill. For

active conditions,

ka ¼ 1� sin φ

1þ sin φ

where φ is the soil friction angle, typically � 30�.
• Stability is addressed from two perspectives: Sliding and overturning. The factor of safety with

respect to sliding is defined as the ratio of the peak available horizontal friction force to the actual

friction force. The factor of safety with respect to overturning about the toe is taken as the ratio of

the restoring moment to the unbalancing moment.

• One selects the dimensions of the footing, such that these factors of safety are greater than one and

the resultant force due to the structural weight and the soil loads acts within the middle third of the

footing width.

8.7 Problems

Problem 8.1 For the concrete retaining wall shown, determine the factors of safety against sliding

and overturning and the base pressure distribution. Use the Rankine theory for soil pressure

computations.
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Problem 8.2 For the concrete retaining wall shown, determine the factors of safety against sliding

and overturning and the base pressure distribution. Use the Rankine theory for soil pressure

computations.

Problem 8.3 For the concrete retaining wall shown, determine the factors of safety against sliding

and overturning and the base pressure distribution. Use the Rankine theory for soil pressure

computations
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Problem 8.4 For the concrete retaining wall shown, determine the required value for b2. Take the

factors of safety for overturning and sliding to be equal to 1.75 and 1.25, respectively. Use the

Rankine theory for soil pressure computations.

Problem 8.5 For the retaining wall shown, determine

(a) The soil pressure acting on the wall

(b) The factor of safety for overturning

(c) The factor of safety for sliding

(d) The soil pressure distribution under the footing

Assume: μ ¼ 0.5, γsoil ¼ 0.12 kip/ft3, ka ¼ 1/3, γconcrete ¼ 0.15 kip/ft3, μ ¼ 0.5, and Φ ¼ 30�.
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Problem 8.6

(a) Determine the factors of safety against overturning and sliding.

(b) Determine the soil pressure distribution under the footing (q1, q2).

(c) Determine the moment distribution in the stem.

(d) Determine the bending moment distribution in the heel.

Assume: Allowable soil pressure ¼ 5.0 ksf, γsoil ¼ 0.12 kip/ft3, ka ¼ 1/3, and γconcrete ¼ 0.15 kip/ft3

Problem 8.7

Suggest values for b1 and b2. Take the safety factors for sliding and overturning to be equal to 2.

Assume: γsoil ¼ 0.12 kip/ft3, γconcrete ¼ 0.15 kip/ft3, μ ¼ 0.57, and Φ ¼ 30�.
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Problem 8.8

Determine the minimum value of w at which soil failure occurs (i.e., the soil pressure exceeds the

allowable soil pressure).

Assume: qallowable ¼ 5 kip/ft2, γsoil ¼ 0.12 kip/ft3, γconcrete ¼ 0.15 kip/ft3, μ ¼ 0.57, and Φ ¼ 30�.

Problem 8.9 Which of the retaining walls shown below is adequately reinforced for bending?

Problem 8.10

(a) Determine the factor of safety with respect to overturning and sliding.

(b) Identify the tension areas in the stem, toe, and heel and show the reinforcing pattern.

(c) Determine the location of the line of action of the resultant at the base of the footing
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Part II

Statically Indeterminate Structures

Statically indeterminate structures are over-restrained in the sense that there are more force unknowns

than available equilibrium equations. This situation arises when there are more supports than needed

to prevent rigid body motion. Multi-span continuous beams and two-hinged frames are examples of

this case. Indeterminacy may also result when there is an excess of members, such as a truss with

multiple diagonals. Two dominant methods of analysis are used for indeterminate structures.

The traditional approach for analyzing statically indeterminate structures is based on the assump-

tion that the structure behaves in a linear elastic manner, and therefore displacement patterns

corresponding to different systems of forces can be superimposed to achieve a desired displacement

pattern. One replaces the displacement constraints with unknown forces, determines the deflected

shapes for each unit force, and then combines and scales these shapes to obtain a final deflected shape

that satisfies the constraints. Since one works with force unknowns, this approach is called the “Force

Method.” It is also called the “Flexibility Method.” Engineers find the method appealing since the

process of superimposing the different deflected shapes can be easily visualized and the computa-

tional details, which are suited for hand computation, provide insight into the deflection behavior.

A second method is based on solving a set of equilibrium equations expressed in terms of certain

displacement measures that define the loaded configuration. It views the structure as an assemblage of

members and uses a set of member end force–end displacement relations called the slope deflection

equations. In general, the number of displacement unknowns is larger than the number of force

unknowns, but the method is readily programmed and numerous software packages now exist. We

refer to this approach as the “Displacement Method.” It is also called the “Stiffness Method” since the

equations involve stiffness coefficients.

In what follows, we discuss both methods. We also describe some approximate hand calculation-

based methods that are suitable for rapidly estimating the response due to gravity and lateral loads.

Finally, we describe the underlying theory for the Displacement Method and illustrate how to apply

the method using computer software.



The Force Method 9

Abstract

Up to this point, we have focused on the analysis of statically determinate

structures because the analysis process is fairly straightforward; only the

force equilibrium equations are required to determine the member forces.

However, there is another category of structures, called statically indeter-

minate structures, which are also employed in practice. Indeterminate

structures require another set of equations, in addition to the force equi-

librium equations, in order to solve for the member forces. There are two

general methods for analyzing indeterminate structures, the force (flexi-

bility) method and the displacement (stiffness) method. The force method

is more suited to hand computation whereas the displacement method is

more procedural and easily automated using a digital computer.

In this chapter, we present the underlying theory of the force method

and illustrate its applications to a range of statically indeterminate

structures including trusses, multi-span beams, arches, and frames. We

revisit the analysis of these structures in the next chapter using the

displacement method, and also in Chap. 12, “Finite Element Displace-

ment Method for Framed Structures,” which deals with computer-based

analysis.

9.1 Introduction

The force method is a procedure for analyzing statically indeterminate structures that works with

force quantities as the primary variables. It is applicable for linear elastic structures. The method is

based on superimposing structural displacement profiles to satisfy a set of displacement constraints.

From a historical perspective, the force method was the “classical” analysis tool prior to the

introduction of digital-based methods. The method is qualitative in the sense that one reasons

about deflected shapes and visualizes how they can be combined to satisfy the displacement

constraints. We find the method very convenient for deriving analytical solutions that allow one to

identify key behavior properties and to assess their influence on the structural response. The key step
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is establishing the displacement constraints which are referred to as the geometric compatibility

equations.

Consider the structure shown in Fig. 9.1. Since there are four displacement restraints, the structure

is indeterminate to the first degree, i.e., one of the restraints is not needed for stability, and the

corresponding reaction force cannot be determined using only the force equilibrium equations.

The steps involved in applying the force method to this structure are as follows:

1. We select one of the force redundants and remove it. The resulting structure, shown in Fig. 9.2, is

called the primary structure. Note that one cannot arbitrarily remove a restraint. One needs to

ensure that the resulting structure is stable.

2. We apply the external loading to the primary structure and determinate the displacement at C in

the direction of the restraint at C. This quantity is designated as ΔC, 0. Figure 9.3 illustrates this

notation.

3. Next, we apply a unit value of the reaction force at C to the primary structure and determine the

corresponding displacement. We designate this quantity as δCC (see Fig. 9.4).

4. We obtain the total displacement at C of the primary structure by superimposing the displacement

profiles generated by the external loading and the reaction force at C.

ΔC

��
primary structure ¼ ΔC, 0 þ δCCRC ð9:1Þ

5. The key step is to require the displacement at C of the primary structure to be equal to the

displacement at C of the actual structure.

Fig. 9.1 Actual structure

Fig. 9.2 Primary structure
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ΔC

��
actual ¼ ΔC

��
primary ¼ ΔC,0 þ δCCRC ð9:2Þ

Equation (9.2) is referred to as the “geometric compatibility equation.” When this equation is

satisfied, the final displacement profiles for the actual and the primary structure will be identical. It

follows that the forces in the primary structure and the actual structure will also be identical.

6. We solve the compatibility equation for the reaction force, RC.

RC ¼ 1

δCC
ΔC

��
actual � ΔC,0

� � ð9:3Þ

Note that ΔC

��
actual ¼ 0 when the support is unyielding. When RC is negative, the sense assumed in

Fig. 9.4 needs to be reversed.

7. The last step involves computing the member forces in the actual structure. We superimpose the

member forces computed using the primary structure according to the following algorithm:

Force ¼ Force
��
external load þ RC Force

��
RC¼1

� � ð9:4Þ

Since the primary structure is statically determinate, all the material presented in Chaps. 2, 3, 4, 5,

and 6 is applicable. The force method involves scaling and superimposing displacement profiles. The

method is particularly appealing for those who have a solid understanding of structural behavior. For

simple structures, one can establish the sense of the redundant force through qualitative reasoning.

Fig. 9.3 Displacements

due to the external loading

Fig. 9.4 Displacement

due to unit value of RC
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Essentially, the same approach is followed for structures having more than one degree of

indeterminacy. For example, consider the structure shown in Fig. 9.5. There are two excess vertical

restraints.

We obtain a primary structure by removing two of the vertical restraints. Note that there are

multiple options for choosing the restraints to be removed. The only constraint is that the primary

structure must be “stable.” Figure 9.6 shows the different choices.

Suppose we select the restraints at C and D as the redundants. We apply the external loading to the

primary structure (Fig. 9.7) and determine the vertical displacements at C and D shown in Fig. 9.8.

The next step involves applying unit forces corresponding to RC ¼ 1 and RD ¼ 1 and computing

the corresponding displacements at C and D. Two separate displacement analysis are required since

there are two redundant reactions (Fig. 9.9).

Combining the three displacement profiles leads to the total displacement of the primary structure.

ΔC

��
primary structure ¼ ΔC,0 þ δCCRC þ δCDRD

ΔD

��
primary structure ¼ ΔD,0 þ δDCRC þ δDDRD

ð9:5Þ

The coefficients of RC and RD are called flexibility coefficients. It is convenient to shift over to

matrix notation at this point. We define

Δ0 ¼
ΔC, 0

ΔD, 0

( )
X ¼

RC

RD

( )

flexibility matrix ¼ δ ¼
δCC δCD

δDC δDD

" # ð9:6Þ

Using this notation; the geometric compatibility equation takes the form

Δ
��
actual structure ¼ Δ0 þ δX ð9:7Þ

Note that Δ
��
actual structure ¼ 0 when the supports are unyielding. Given the choice of primary

structure, the flexibility coefficients are properties of the primary structure whereas Δ0 depends on

the both the external loading and the primary structure. We solve (9.7) for X,

Fig. 9.5 Actual structure
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Fig. 9.6 Choices for

primary structure. (a)
Option 1. (b) Option 2.

(c) Option 3

Fig. 9.7 Primary structure
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X ¼ δ�1 Δ
��
actual structure � Δ0

� � ð9:8Þ

and then determine the member forces by superimposing the individual force states as follows:

F ¼ F
��
external load þ F

��
RC¼1

� �
RC þ F

��
RD¼1

� �
RD ð9:9Þ

The extension of this approach to an nth degree statically indeterminate structure just involves

more computation since the individual matrices are now of order n. Since there are more redundant

force quantities, we need to introduce a more systematic notation for the force and displacement

quantities.

Consider the frame structure shown in Fig. 9.10a. It is indeterminate to the third degree. One

choice of primary structure is shown in Fig. 9.10b. We remove the support at D, take the reactions as

the force redundants, and denote the jth redundant force as Xj and the corresponding measure as Δj.

Fig. 9.8 Displacements

due to external loading

Fig. 9.9 Displacement

due to unit values of the

redundant. (a) RC ¼ 1.

(b) RD ¼ 1
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The resulting displacements of the primary structure due to the external loading and the three force

redundants are expressed as

Δ1

��
primary structure ¼ Δ1, 0 þ δ11X1 þ δ12X2 þ δ13X3

Δ2

��
primary structure ¼ Δ2, 0 þ δ21X1 þ δ22X2 þ δ23X3

Δ3

��
primary structure ¼ Δ3, 0 þ δ31X1 þ δ32X2 þ δ33X3

ð9:10Þ

The matrix form of (9.10) is

Δ
��
primary structure ¼ Δ0 þ δX ð9:11Þ

where

δ ¼
δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

2
4

3
5 Δ0 ¼

Δ1, 0

Δ2, 0

Δ3, 0

8<
:

9=
; X ¼

X1

X2

X3

8<
:

9=
;

Note that the displacement measures may be either a translation or a rotation. A major portion of

the computational effort is involved with computing the flexibility coefficients using the Principle of

Virtual Forces. The matrix form of the geometric compatibility equation (9.7) is generic, i.e., it is

applicable for all structures. One just has to establish the appropriate form for Δ0 and δ.
Other possible choices of primary structures are shown in Fig. 9.11. We can retain the two fixed

supports, but cut the structure at an arbitrary interior point (Fig. 9.11a). The redundants are taken as

the internal forces (axial, shear, and moment) at the point. The flexibility coefficients are now

interpreted as the relative displacements of the adjacent cross sections (e.g., spreading, sliding,

relative rotation). Another choice involves removing excess reactions as in Fig. 9.11b.

For multi-bay multistory frames, one needs to work with internal force redundants since removing

fixed supports is not sufficient to reduce the structure to a statically determinate structure. Figure 9.12

illustrates this case.

Multi-span beam-type structures are handled in a similar way when choosing a primary structure.

Consider Fig. 9.13. One can either select certain excess reactions or work with bending moments at

interior points. We prefer the latter choice since the computation of the corresponding flexibility

coefficients is simpler due to the fact that the deflection profiles associated with the redundant

moments are confined to adjacent spans.

For truss-type structures, various cases arise. The truss may have more supports than needed, such

as shown in Fig. 9.14a. One choice would be to remove sufficient supports such that the resulting

structure is statically determinate (Fig. 9.14b).

We can also keep the original restraints, and remove some members, as indicated in Fig. 9.14c.

Another example is shown in Fig. 9.15a. The truss has too many members and therefore the only

option is to remove some of the diagonals. Figure 9.15b illustrates one choice of redundants.

Fig. 9.10 (a) Actual
structure. (b) Primary

structure—redundant

reactions
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Fig. 9.12 (a) Actual
structure. (b) Primary

structure

Fig. 9.11 (a) Primary

structure—redundant

internal forces. (b) Primary

structure—redundant

reactions

Fig. 9.13 Multi-span

beam. (a) Actual structure.
(b) Primary structure—

redundant reactions. (c)
Primary structure—

redundant moments
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9.2 Maxwell’s Law of Reciprocal Displacements

The geometric compatibility equations involve the flexibility matrix,δ. One computes the elements of

δusing one of the methods described in Part I, such as the Principal of Virtual Forces. Assuming there

are n force redundants, δ has n2 elements. For large n, this computation task becomes too difficult to

deal with manually. However, there is a very useful relationship between the elements of δ, called
“Maxwell’s Law,” which reduces the computational effort by approximately 50 %. In what follows,

we introduce Maxwell’s Law specialized for member systems.

We consider first a simply supported beam on unyielding supports subjected to a single

concentrated unit force. Figure 9.16a defines the geometry and notation. The deflected shape due to

Fig. 9.14 (a) Actual
structure. (b) Primary

structure—redundant

reactions. (c) Primary

structure—redundant

internal forces

Fig. 9.15 (a) Actual
structure. (b) Primary

structure—redundant

internal forces
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the unit force applied at A is plotted in Fig. 9.16b. Suppose we want to determine the deflection at B

due to this load applied at A. We define this quantity as δBA. Using the Principle of Virtual Forces

specialized for beam bending; we apply a unit virtual force at B (see Fig. 9.16c) and evaluate the

following integral:

δBA ¼
ð
MAδMB

dx

EI
ð9:12Þ

where MA is the moment due to the unit load applied at A, and δMB is the moment due to the virtual

unit load applied at B.

Fig. 9.16 Reciprocal

loading conditions. (a)
Actual structure. (b) Actual
loading (MA). (c) Virtual
loading (δMB). (d) Actual
loading (MB). (e) Virtual
loading (δMA)
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Now, suppose we want the deflection at A due to a unit load at B. The corresponding virtual force

expression is

δAB ¼
ð
MBδMA

dx

EI
ð9:13Þ

where δMA is the virtual moment due to a unit force applied at A and MB is the moment due to the

load at B. Since we are applying unit loads, it follows that

MA ¼ δMA

MB ¼ δMB

ð9:14Þ

and we find that the expressions for δAB and δBA are identical.

δAB�δBA ð9:15Þ
This identity is called Maxwell’s Law. It is applicable for linear elastic structures [1]. Returning

back to the compatibility equations, defined by (9.7), we note that the coupling terms, δij and δji, are
equal. We say the coefficients are symmetrical with respect to their subscripts and it follows that δ
is symmetrical. Maxwell’s Law leads to another result called Müller–Breslau Principle which is

used to establish influence lines for indeterminate beams and frames. This topic is discussed in

Chaps. 13 and 15.

9.3 Application of the Force Method to Beam-Type Structures

We apply the theory presented in the previous section to a set of beam-type structures. For

completeness, we also include a discussion of some approximate techniques for analyzing partially

restrained single-span beams that are also useful for analyzing frames.

Example 9.1

Given: The beam defined in Fig. E9.1a. Assume I ¼ 120(10)6 mm4, L ¼ 6 m, w ¼ 30 kN/m,

vB ¼ 40 mm, and E ¼ 200 GPa

Fig. E9.1a

Determine: The reactions for the following cases:

(i) w ¼ 30 kN/m, vB ¼ 0

(ii) w ¼ 0, vB ¼ 40 mm

(iii) w ¼ 30 kN/m, vB ¼ 40 mm
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Solution: The beam is indeterminate to the first degree. We work with the primary structure shown

below (Fig. E9.1b).

Fig. E9.1b Primary structure

Applying the external loading and the unit load results in the following deflected shapes

(Figs. E9.1c and E9.1d):

Fig. E9.1c Displacement due to external loading

Fig. E9.1d Displacement due to the unit values of RB The deflection terms are given in Table 3.1.

ΔB,0 ¼ wL4

8EI
#

δBB ¼ L3

3EI
"

Then

þ " ΔB

��
actual ¼ ΔB,0 þ δBBRB

+

ΔB

��
actual ¼ �wL4

8EI
þ L3

3EI
RB ∴ RB ¼

ΔB

��
actual þ wL4=8EI

� �
L3=3EI
� �
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Case (i): For ΔB

��
actual ¼ 0

RB ¼ wL4=8EI
� �

= L3=3EI
� �� � ¼ 3

8
wL ¼ 3

8
30ð Þ 6ð Þ ¼ 67:5kN "

Knowing the value of RB, we determine the remaining reactions by using the static equilibrium

equations.

X
Fy ¼ 0 RA ¼ 5

8
wL ¼ 5

8
30ð Þ 6ð Þ ¼ 112:5kN "

X
M@A ¼ 0 MA ¼ wL2

8
¼ 135kNm counterclockwise

Case (ii): For w ¼ 0, ΔB|actual ¼ –vB

RB ¼ �vBð Þ
L3=3EI
� � ¼ � 3EI

L3
vB¼ � 3 200ð Þ 10ð Þ6120 10ð Þ�6

6ð Þ3 0:040ð Þ ¼ �13:33kN ∴ RB ¼ 13:33kN #

The reactions are

X
Fy ¼ 0 RA ¼ 3EI

L3
vB ¼ 13:3kN "X

M@A ¼ 0 MA ¼ 3EI

L2
vB ¼ 80kNm counterclockwise

Case (iii): For w 6¼ 0 and ΔB

��
actual ¼ –vB

RB ¼
�vB þ wL4=8EI

� �
L3=3EI
� � ¼ þ3

8
wL� 3EI

L3
vB ¼ 67:5� 13:33 ¼ 54:2kN "
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The reactions are as follows:

Note that since the structure is linear, one can superimpose the solutions for cases (i) and (ii).

Example 9.2

Given: The beam and loading defined in Fig. E9.2a. Assume I ¼ 400 in.4, L ¼ 54 ft, w ¼ 2.1 kip/ft,

δA ¼ 2.4 in., and E ¼ 29,000 ksi.

Fig. E9.2a

Determine: The reactions due to

(i) The distributed load shown

(ii) The support settlement at A

Solution: The beam is indeterminate to the first degree. We take the vertical reaction at B as the force

unknown and compute the deflected shapes due to w and RB ¼ 1 applied to the primary structure

(Figs. E9.2b and E9.2c).

Fig. E9.2b Deflected shape due to w

Fig. E9.2c Deflected shape due to unit value of RB
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Case (i): The distributed load shown

þ " ΔB

��
actual ¼ ΔB,0 þ δBBRB

+
ΔB,0 þ δBBRB ¼ 0 ∴ RB ¼ �ΔB,0

δBB

The deflection terms can be determined using (3.34).

ΔB,0 ¼ � 4wL4

729EI

δBB ¼ 4L3

243EI

Then

RB ¼ �ΔB,0

δBB
¼ 4wL4=729EI
� �
4L3=243EI
� � ¼ wL

3
¼ 37:8kip "

Knowing the value of RB, we determine the remaining reactions by using the static equilibrium

equations.

Case (ii): The support settlement at A (Fig. E9.2d)

Fig. E9.2d Displacement due to support settlement at A

þ " ΔB

��
actual ¼ ΔB,0 þ δBBRB

where

δBB ¼ 4L3

243EI
¼ 4 54ð Þ3 12ð Þ3

243 29; 000ð Þ 400ð Þ ¼ 0:386 in:

ΔB,0 ¼ 2

3
δA ¼ �1:6 in:
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Therefore

RB ¼ �ΔB,0

δBB
¼ � �1:6ð Þ

0:386
¼ 4:14kip "

We determine the remaining reactions using the static equilibrium equations.

Example 9.3

Given:

The three-span beam defined in Fig. E9.3a. Assume EI is constant, L ¼ 9 m, and w ¼ 20 kN.

Fig. E9.3a

Determine: The reactions

Solution: The beam is indeterminate to the second degree. We remove the supports at B and C, take

the vertical reactions at B and C as the force redundants, and compute the deflected shapes due to w,

X1 ¼ 1, and X2 ¼ 1 applied to the primary structure (Figs. E9.3b, E9.3c, E9.3d).

Fig. E9.3b Deflected shape due to external loading

Fig. E9.3c Deflected shape due to X1 ¼ 1

576 9 The Force Method



Fig. E9.3d Deflected shape due to X2 ¼ 1

The displacements of the primary structure due to the external loading and the two force

redundants are expressed as:

Δ1,0 þ δ11X1 þ δ12X2 ¼ 0

Δ2,0 þ δ21X1 þ δ22X2 ¼ 0

Noting symmetry and the deflection results listed in Table 3.1, it follows that:

X1 ¼ X2

Δ1,0 ¼ Δ2,0 ¼ � 11wL4

12EI

δ11 ¼ δ22 ¼ 4L3

9EI

δ21 ¼ δ12 ¼ 7L3

18EI

Then

X1 ¼ X2 ¼ �Δ1,0

δ11 þ δ12
¼ 11wL4=12EI

� �
4L3=9EI
� �þ 7L3=18EI

� � ¼ 1:1wL ¼ 1:1 20ð Þ 9ð Þ ¼ 198kN

Lastly, we determine the remaining reactionsX
FY ¼ 0 RA ¼ RD ¼ 0:4wL ¼ 72kN "

9.3.1 Beam with Yielding Supports

We consider next the case where a beam is supported by another member, such as another beam

or a cable. Examples are shown in Fig. 9.17. When the beam is loaded, reactions are developed,

and the supporting members deform. Assuming linear elastic behavior, the supporting members
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behave as linear elastic restraints, and can be modeled as equivalent spring elements, as indicated in

Fig. 9.17.

We consider here the case where a vertical restraint is provided by another beam. Figure 9.18

illustrates this case. Point B is supported by beam CD which is parallel to beam AB. In this case, point

B deflects when the load is applied to beam AB. One strategy is to work with a primary structure that

includes both beams such as shown in Fig. 9.19. The force redundant is now a pair of self-

equilibrating forces acting at B, and the corresponding displacement measure is the relative displace-

ment apart between the upper and lower contact points, designated as B and B0.

Fig. 9.17 Beam on

flexible supports. (a) Beam.

(b) Cable. (c) Column

Fig. 9.18 Beam supported

by another beam
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The total displacement corresponding to X1 ¼ 1 is the sum of two terms,

δ11 ¼ δ11
��
AB þ δ11

��
CD

¼ L3

3EI
þ δ11

��
CD

Beam CD functions as a restraint on the movement of beam AB. The downward movement of B0 is
resisted by the bending action of beam CD. Assuming linear elastic behavior, this restraint can be

modeled as a linear spring of stiffness k. One chooses the magnitude of k such that the spring

deflection due to the load P is the same as the beam deflection.

Then, it follows from Fig. 9.20 that

δ
11

��CD ¼ 1

kCD
ð9:16Þ

Assuming the two beams are rigidly connected at B, the net relative displacement must be zero.

Δ1 ¼ Δ1,0 þ X1

1

kCD
þ L3

3EI

� �
¼ 0 ð9:17Þ

Fig. 9.19 Choice of force

redundant and

displacement profiles. (a)
Primary structure—force

redundant system. (b)
Deflection due to external

loading. (c) Deflection due

to redundant force at B
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Solving (9.17) for X1 leads to

X1 ¼ �1
L3=3EI
� �þ 1=kCDð Þ

( )
Δ1,0 ð9:18Þ

Note that the value of X1 depends on the stiffness of beam CD. Taking kCD ¼ 1 corresponds to

assuming a rigid support, i.e., a roller support. When kCD ¼ 0, X1 ¼ 0. It follows that the bounds

on X1 are

0 < X1 <
3EI

L3

� �
Δ1,0 ð9:19Þ

When the loading is uniform,

Δ1,0 ¼ wL4

8EI
#

Another type of elastic restraint is produced by a cable. Figure 9.21 illustrates this case. We replace

the cable with its equivalent stiffness, kC ¼ AcEc

h and work with the primary structure shown in

Fig. 9.21b.

Using the results derived above, and noting that Δ1 ¼ 0, the geometric compatibility equation is

Δ1 ¼ Δ1,0 þ δ11
��
AB þ δ11

��
BC

� �
X1 ¼ 0

For the external concentrated loading,

Δ1,0 ¼ P

EI

a2L

2
� a3

3

� �

Fig. 9.20 Equivalent spring
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Substituting for the various flexibility terms leads to

X1 ¼ �1
L3=3EbIb
� �þ 1=kcð Þ

" #
Δ1,0 ð9:20Þ

If 1
kc
is small with respect to L3

3EbIb
, the cable acts like a rigid support, i.e., X1 approaches the value

for a rigid support. When 1
kc
is large with respect to L3

3EbIb
, the cable is flexible and provides essentially

no resistance, i.e., X1 ) 0. The ratio of cable to beam flexibilities is a key parameter for the behavior

of this system.

Cable-stayed schemes are composed of beams supported with inclined cables. Figure 9.22a shows

the case where there is just one cable. We follow essentially the same approach as described earlier

Fig. 9.21 (a) Actual
structure. (b) Primary

structure—force redundant

system. (c) Deflection due

to applied load
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except that now the cable is inclined. We take the cable force as the redundant and work with the

structure defined in Fig. 9.22b.

Note that Δ1 is the relative movement together of points B and B0 along the inclined direction. Up

to this point, we have been working with vertical displacements. Now we need to project these

movements on an inclined direction.

We start with the displacement profile shown in Fig. 9.22c. The vertical deflection is vB0.
Projecting on the direction of the cable leads to

Fig. 9.22 (a) Cable-
stayed scheme. (b) Force
redundant. (c) Deflection
due to applied load. (d)
Deflection due to X1 ¼ 1.

(e) Displacement

components
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Δ1,0 ¼ � sin θvB0 ¼ � sin θ
P

EBIB

a2LB
2
� a3

6

� �
 �
ð9:21Þ

Next, we treat the case where X1 ¼ 1 shown in Fig. 9.22d. The total movement consists of the

elongation of the cable and the displacement of the beam.

δ11 ¼ δ11
��
BC þ δ11

��
AB

The elongation of the cable is

δ11
��
BC ¼ Lc

ACEC

¼ 1

kC

The beam displacement follows from Fig. 9.22e.

δ11
��
AB ¼ vB,1 sin θ ¼ sin θ

sin θL3B
3EBIB


 �
¼ sin θð Þ2 L3B

3EBIB

� �

Requiring Δ1 ¼ 0 leads to

X1 ¼ 1

sin θð Þ2 L3B=3EBIB
� �þ 1=kCð Þ

P sin θ

EBIB

a2LB
2
� a3

6

� �
 �
ð9:22Þ

Finally, we express X1 in terms of the value of the vertical reaction corresponding to a rigid

support at B.

X1 ¼ sin θ

sin θð Þ2 þ 3 EBIB=L
3
B

� �
LC=ECACð ÞR

��
rigid support at B ð9:23Þ

There are two geometric parameters, θ, and the ratio of IB/LB
3 to AC/LC. Note that X1 varies with

the angle θ. When cables are used to stiffen beams, such as for cable-stayed bridges, the optimum

cable angle is approximately 45�. The effective stiffness provided by the cable degrades rapidly with
decreasing θ.

Example 9.4

Given: The structure defined in Fig. E9.4a.

Assume I ¼ 400 in.4, L ¼ 54 ft, w ¼ 2.1 kip/ft, kv ¼ 25 kip/in., and E ¼ 29,000 ksi.

Determine: The reactions, the axial force in the spring, and the displacement at B.

Fig. E9.4a
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Solution: The structure is indeterminate to the first degree. We take the axial force in the spring at B

as the force unknown.

The geometric compatibility equation is

Δ1,0 þ δ11jABC þ
1

kv

� �
X1 ¼ 0

The deflection terms can be determined using (3.34).

Δ1,0 ¼ � 4wL4

729EI
¼ 14:6 in:

δ
11

��ABC ¼ 4L3

243EI
¼ 0:386 in:

Fig. E9.4b Deflected shape due to X1 ¼ 1

Fig. E9.4c Deflected shape due to external loading

Solving for X1, leads to:
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X1 ¼ Δ1,0

δ
11

��ABC þ 1=kvð Þ ¼
14:6

0:386þ 1=25ð Þ ¼ 34:26kip "

The displacement at B is

vB ¼ X1

kv
¼ 34:26

25
¼ 1:37 in: #

Next, we determine the remaining reactions by using the static equilibrium equations.

Example 9.5

Given: The structure defined in Fig. E9.5a. Assume I ¼ 200(10)6 mm4, L ¼ 18 m, P ¼ 45 kN,

AC ¼ 1300 mm2, and E ¼ 200 GPa.

Fig. E9.5a

Determine: The forces in the cables, the reactions, and the vertical displacement at the intersection of

the cable and the beam.

9.3 Application of the Force Method to Beam-Type Structures 585



(a) θ ¼ 45�

(b) θ ¼ 15�

Solution: The structure is indeterminate to the second degree. We take the cable forces as the force

redundants and work with the structure defined below (Fig. E9.5b).

Fig. E9.5b Primary structure

Next, we compute the deflected shapes due to external loading P, X1 ¼ 1, and X2 ¼ 1 applied to

the primary structure (Figs. E9.5c, E9.5d, E9.5e).

Fig. E9.5c External loading P

Fig. E9.5d X1 ¼ 1

Fig. E9.5e X2 ¼ 1

The displacements of the primary structure due to the external loading and the two force

redundants are expressed as
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Δ1,0 þ δ11X1 þ δ12X2 ¼ 0

Δ2,0 þ δ21X1 þ δ22X2 ¼ 0

where

δ11 ¼ δ11jBeam þ δ11jcable
δ22 ¼ δ22jBeam þ δ22jcable
δ12 ¼ δ12jBeam
δ21 ¼ δ21jBeam

also

Δ1,0 ¼ vB,0 sin θ

Δ2,0 ¼ vC,0 sin θ

δ11jBeam ¼ vB,1 sin θ

δ21jBeam ¼ vC,1 sin θ

δ21jBeam ¼ vB,2 sin θ

δ22jBeam ¼ vC,2 sin θ

Because of symmetry:

δ11
��
Beam ¼ δ22

��
Beam ¼ vB,1 sin θ ¼ 3 sin θ2L3

256EI

δ12
��
Beam ¼ δ21

��
Beam ¼ vB,2 sin θ ¼ 7 sin θ2L3

768EI

Δ1,0 ¼ Δ2,0 ¼ vB,0 sin θ ¼ 11 sin θPL3

768EI

δ11
��
Cable ¼ δ22

��
Cable ¼ LC

ACE
¼ L

4 cos θACE

X1 ¼ X2

Lastly, the redundant forces are

X1 ¼ X2 ¼ Δ1,0

δ11
��
Beam þ δ11

��
Cable

� �þ δ12
��
Beam
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(a) For θ ¼ 45�

X1 ¼ X2 ¼ Δ1,0

δ11
��
Beam þ δ11

��
Cable

� �þ δ12
��
Beam

¼ 43kN

∴ 2X1 sin θ ¼ 2 43ð Þ sin 45 ¼ 60:8kN

The remaining reactions are determined using the static equilibrium equations.

(b) For θ ¼ 15�

X1 ¼ X2 ¼ Δ1,0

δ11
��
Beam þ δ11

��
Cable

� �þ δ12
��
Beam

¼ 109:8kN

∴ 2X1 sin θ ¼ 2 109:8ð Þ sin 15 ¼ 56:9kN

The remaining reactions are determined using the static equilibrium equations.

9.3.2 Fixed-Ended Beams

We treat next the beam shown in Fig. 9.23a. The structure is fully restrained at each end and therefore

is indeterminate to the second degree. We take as force redundants the counterclockwise end

moments at each end. The corresponding displacement measures are the counterclockwise end

rotations, θA and θB.
We write the general form of the compatibility equations as (we use θ instead of Δ to denote the

displacement measures and M instead of X for the force measures):

588 9 The Force Method



θA ¼ θA,0 þMAθAA þMBθAB

θB ¼ θB,0 þMAθBA þMBθBB
ð9:24Þ

where θA,0 and θB,0 depend on the nature of the applied loading, and the other flexibility coefficients

are

θAA ¼ L

3EI

θBB ¼ L

3EI

θAB ¼ θBA ¼ � L

6EI

We solve (9.24) for MA and MB

MA ¼ 2EI

L
2 θA � θA,0ð Þ þ θB � θB,0ð Þf g

MB ¼ 2EI

L
2 θB � θB,0ð Þ þ θA � θA,0ð Þf g

ð9:25Þ

When the ends are fixed, θA ¼ θB ¼ 0, and the corresponding values ofMA andMB are called the

fixed end moments. They are usually denoted as MA
F and MB

F

Fig. 9.23 (a) Beam with

full end restraint. (b)
Primary structure. (c)
External loading—

displacement profile. (d)
Displacement profile for

MA ¼ 1. (e) Displacement

profile for MB ¼ 1

9.3 Application of the Force Method to Beam-Type Structures 589



M F
A ¼ �

2EI

L
2θA,0 þ θB,0f g

M F
B ¼ �

2EI

L
2θB,0 þ θA,0f g

ð9:26Þ

Introducing this notation in (9.25), the expressions for the end moments reduce to

MA ¼ 2EI

L
2θA þ θBf g þM F

A

MB ¼ 2EI

L
2θB þ θAf g þM F

B

ð9:27Þ

We will utilize these equations in Chap. 10.

Example 9.6 Fixed End Moments for Uniformly Distributed Loading

Given: The uniform distributed loading applied to a fixed end beam (Fig. E9.6a).

Fig. E9.6a

Determine: The fixed end moments.

Solution: We take the end moments at A and B as force redundant (Fig. E9.6b).

Fig. E9.6b Primary structure

Noting Table 3.1, the rotations due to the applied load are (Fig. E9.6c)

EIθA,0 ¼ �wL3

24
EIθB,0 ¼ wL3

24
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Fig. E9.6c Deformation of primary structure due to applied load

Substituting their values in (9.26) leads to

M F
A ¼ �

2EI

L
2θA,0 þ θB,0f g ¼ wL2

6
� wL2

12
¼ wL2

12

M F
B ¼ �

2EI

L
2θB,0 þ θA,0f g ¼ �wL2

6
þ wL2

12
¼ �wL2

12

2
F
A

2
F
B

wL
M

12
wL

M
12

=

=

The shear and moment diagrams are plotted in Fig. E9.6d.

Fig. E9.6d

Note that the peak positive moment for the simply supported case is +(wL2/8). Points of inflection
are located symmetrically at
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x ¼ L

2
1� 1ffiffiffi

3
p

� �
� 0:21L

This solution applies for full fixity. When the member is part of a frame, the restraint is provided

by the adjacent members, and the end moments will generally be less than the fully fixed value.

Example 9.7 Fixed End Moment—Single Concentrated Force

Given: A single concentrated force applied at an arbitrary point x ¼ a on the fixed end beam shown

in Fig. E9.7a.

Fig. E9.7a

Determine: The fixed end moments.

Solution: We work with the primary structure defined in Fig. E9.7b.

Fig. E9.7b Primary structure

Using the results listed in Table 3.1, the rotations are given by (Fig. E9.7c)

EIθA,0 ¼ �Pa L� að Þ 2L� að Þ
6L

EIθB,0 ¼ Pa L� að Þ Lþ að Þ
6L

Fig. E9.7c Deformation of primary structure due to external loading
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Substituting into (9.26) leads to

M F
A ¼

Pa L� að Þ2
L2

M F
B ¼ �

P L� að Þa2
L2

The critical location for maximum fixed end moment is a ¼ L/2; the corresponding maximum

values are M F
A ¼ �M F

B ¼ PL
8
. The shear and moment diagrams are plotted below.

Note that there is a 50 % reduction in peak moment due to end fixity.

Results for various loadings and end conditions are summarized in Tables 9.1 and 9.2.
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Table 9.1 Fixed end actions for fully fixed

594 9 The Force Method



9.3.3 Analytical Solutions for Multi-Span Beams

Consider the two-span beam shown in Fig. 9.24a. We allow for different lengths and different

moments of inertia for the spans. Our objective here is to determine analytically how the maximum

positive and negative moments vary as the load moves across the total span. We choose the negative

moment at B as the redundant. The corresponding primary structure is shown in Fig. 9.24b. Here,ΔθB
is the relative rotation together of adjacent cross sections at B.

The geometric compatibility equation involves the relative rotation at B.

ΔθB ¼ ΔθB,0 þ δθBBMB ¼ 0

The various rotation terms are given in Table 3.1. Note that the δθBB term is independent of the

applied loading.

δθBB ¼ 1

3E

L1
I1
þ L2

I2

� �

When the loading is on span AB (see Table 3.1),

ΔθB,0 ¼ � P

6EI1L1
a a2 � L21
� �

Table 9.2 Fixed end actions for partially fixed
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Then

MB ¼ �ΔθB,0
δθBB

¼ L1=I1ð Þ
L1=I1ð Þ þ L2=I2ð Þ


 �
1

2
Pa 1� a2

L1
2

� �
ð9:28Þ

Given the value of MB, we can determine the reactions by using the static equilibrium equations.

Noting (9.28), the peak moments are given by:

Negativemoment MB ¼ �PL1
2

f
a

L1
1� a2

L1
2

� �

Positivemoment MD ¼ PL1
a

L1

� �
1� a

L1

� �
� f

2

a2

L21
1� a2

L21

� �
 � ð9:29Þ

where

f ¼ 1

1þ I1=L1ð Þ L2=I2ð Þ

Fig. 9.24 (a) Actual
structure—notation for

a two-span beam. (b)
Primary structure—

redundant moment. (c)
Displacement due to a unit

value of the redundant

moment. (d) Rotation due

to external loading

596 9 The Force Method



We define the ratio of I to L as the “relative stiffness” for a span and denote this parameter by r.

ri ¼ I

L

����
span i

ð9:30Þ

With this notation, f takes the form

f ¼ 1

1þ r1=r2ð Þ
The typical bending moment diagram is plotted in Fig. 9.25.

When the load is on span BC, one just has to use a different expression for ΔθB,0. Redefining the

location of P as shown in Fig. 9.26a, the solution takes the following form:

ΔθB,0 ¼ �
Pb 1� b

L2

� �
2� b

L2

� �
6EI2

Then

MB ¼ �ΔθB,0
δθBB

¼ 1

1þ r2=r1ð Þð Þ
1

2
PL2

� �
b

L2
1� b

L2

� �
2� b

L2

� �
ð9:31Þ

Given MB, one can construct the moment diagram. It is similar to Fig. 9.25, but rotated 180�.

Example 9.8

Given: The two-span beam shown in Figs. E9.8a and E9.8ab.

Fig. 9.25 Bending

moment distribution

for load on span AB
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Fig. 9.26 (a) Actual
structure—loading on span

BC. (b) Primary

structure—redundant

moment. (c) Rotation due

to external loading. (d)
Bending moment

distribution for load on

span BC
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Determine: The variation of the bending moment at B with relative stiffness of the adjacent spans (r1/

r2 ¼ 0.1, 1, and 10).

Fig. E9.8a

Fig. E9.8b

Solution: We determine the variation of the moment at B for a range of relative stiffness ratios

covering the spectrum from one span being very flexible to one span being very rigid with respect to

the other span using (9.29) and (9.31). Results for the individual spans are plotted in Figs. E9.8c and

E9.8d.

Fig. E9.8c Load on the left span (9.29)
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Fig. E9.8d Load on the right span (9.31)

Example 9.9 Two-Span Continuous Beam—Uniform Loading

Given: The two-span beam shown in Fig. E9.9a.

Fig. E9.9a

Determine: The bending moment at support B.

Solution: We take the negative moment at the interior support as the force redundant. The solution

process is similar to that followed for the case of a concentrated load. One determines the relative

rotations at B, and then enforces continuity at B (Fig. E9.9b).

Fig. E9.9b
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The various terms are (see Table 3.1)

ΔθB,0 ¼ � w1L
3
1

24EI1
� w2L

3
2

24EI2

δθBB ¼ L1
3EI1

þ L2
3EI2

Requiring the relative rotation at B equal to zero leads to

MB ¼ �ΔθB,0
δθBB

¼ w1L
2
1

8

� �
1þ w2=w1ð Þ L2=L1ð Þ2 r1=r2ð Þ

1þ r1=r2ð Þ
where

r1 ¼ I1
L1

, r2 ¼ I2
L2

Suppose the loading and span lengths are equal. In this case,

MB ¼ wL2

8

for all combinations of I1 and I2. The moment diagram is plotted below (Fig. E9.9c).

Fig. E9.9c

Another interesting case is where w2 ¼ 0 and I1 ¼ I2. The solution depends on the ratio of span

lengths.

MB ¼ w1L1
2

8

1

1þ L2=L1ð Þ
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Suppose L2 ¼ L1 and I1 ¼ I2, then

MB ¼ 1

2

w1L1
2

8

� �

Example 9.10 Two-Span Continuous Beam with Support Settlement

Given: The two-span beam shown in Fig. E9.10a. The supports at B or A experience a vertical

displacement downward due to settlement of the soil under the support.

Fig. E9.10a

Determine: The bending moment at B.

Solution: We work with the primary structure shown in Fig. E9.10b.

Fig. E9.10b Primary structure—redundant moment

If the support at B moves downward an amount vB, the relative rotation of the section at B is

ΔθB,0 ¼ vB
L1
þ vB

L2
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Compatibility requires the moment at B to be equal to

MB ¼ �ΔθB,0
δθBB

¼ � vB 1=L1ð Þ þ 1=L2ð Þð Þ
1=3Eð Þ L1=I1ð Þ þ L2=I2ð Þð Þ

The minus sign indicates that the bending moment is of opposite sense to that assumed in

Fig. E9.10b.

When the properties are the same for both spans (I1 ¼ I2 and L1 ¼ L2), MB reduces to

MB ¼ 3EI1

L21
vB.

When the support at A moves downward an amount vA, the behavior is reversed.

In this case, ΔθB,0 ¼ �vA=L1 and MB ¼ vA=L1
1=3Eð Þ L1=I1ð Þ þ L2=I2ð Þð Þ

When the properties are the same for both spans (I1 ¼ I2 and L1 ¼ L2), MB reduces to

MB ¼ 3EI1

2L21
vA.

9.4 Application to Arch-Type Structures

Chapter 6 introduced the topic of arch structures. The discussion was concerned with how the

geometry of arch structures is defined and how to formulate the equilibrium equations for statically

determinate arches. Various examples were presented to illustrate how arch structures carry
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transverse loading by a combination of both axial and bending actions. This feature makes them more

efficient than beam structures for long-span applications.

In what follows we extend the analytical formulation to statically indeterminate arches. We base

our analysis procedure on the force method and use the principle of virtual forces to compute

displacement measures. One of our objectives here is to develop a strategy for finding the geometry

for which there is minimal bending moment in the arch due to a particular loading.

We consider the two-hinged arch shown in Fig. 9.27a. This structure is indeterminate to the first

degree. We take the horizontal reaction at the right support as the force redundant and use the

Principle of Virtual Forces described in Sect. 6.5 to determine Δ1,0, the horizontal displacement due to

loading, and δ11, the horizontal displacement due to a unit value of X1.

The general expressions for these displacement measures follow from (6.9)

Δ1,0 ¼
ð
s

F0

AE
δFþ V0 xð Þ

GAs

δV þM0 xð Þ
EI

δM


 �
ds

δ11 ¼
ð
s

δFð Þ2
AE
þ δVð Þ2

GAs

þ δMð Þ2
EI

( )
ds

ð9:32Þ

We usually neglect the shear deformation term. Whether one can also neglect the axial deforma-

tion term depends on the arch geometry. For completeness, we will retain this term. The two internal

force systems are summarized below. We assume the applied load is uniform per projected length

(Fig. 9.28).

Substituting for the force terms leads to the following expressions for the displacement measures:

Δ1,0 ¼
ð L
0

1

AE cos θ

wL

2
� wx

� �
sin θ cos θ þ tan α sin θð Þ � wL

2
x� wx2

2

� �
Δy

EI cos θ


 �
dxδ11

¼
ð L
0

cos θ þ tan α sin θð Þ2
AE cos θ

þ Δyð Þ2
EI cos θ

( )
dx

ð9:33Þ

Fig. 9.27 (a) Actual
structure—geometry. (b)
Primary structure—

redundant reaction
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Geometric compatibility requires

X1 ¼ �Δ1,0

δ11
ð9:34Þ

One can use either symbolic integration or numerical integration to evaluate the flexibility

coefficients. We prefer to use the numerical integration scheme described in Sect. 3.6.6.

The solution simplifies considerably when axial deformation is neglected with respect to bending

deformation. One sets A ¼ 1 in (9.33). This leads to

Δ1,0 ¼ �
ðL
0

wL

2
x� wx2

2

� �
Δy

EI cos θ
dx ¼ �

ðL
0

M0Δy
EI cos θ

dx

δ11 ¼ þ
ðL
0

Δyð Þ2
EI cos θ

dx

ð9:35Þ

Suppose Δy is chosen such that

Δy ¼ β
wL

2
x� wx2

2


 �
�βM0 ð9:36Þ

Then,

Δ1,0 ¼ �1
β
δ11

and it follows that

X1 ¼ 1

β

M¼ M0 þ X1δM ¼ M0 þ 1

β

� �
�βM0ð Þ ¼ 0

ð9:37Þ

Fig. 9.28 (a) Force due to
applied loading (F0, M0).

(b) Force due to X1 ¼ 1

(δF, δM)
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With this choice of geometry, the arch carries the exterior load by axial action only; there is no

bending. Note that this result is based on the assumption that axial deformation is negligible. In

general, there will be a small amount of bending when h is not small with respect to L, i.e., when the

arch is “shallow.” One cannot neglect axial deformation for a shallow arch.

Example 9.11 Parabolic Arch with Uniform Vertical Loading

Given: The two-hinged parabolic arch defined in Fig. E9.11a.

Fig. E9.11a

Determine: The bending moment distribution.

Solution: The centroidal axis for the arch is defined by

y ¼ 4h
x

L
� x

L

� �2
 �

The bending moment in the primary structure due to the uniform loading per unit x is

M0 ¼ wL

2
x� wx2

2
¼ wL2

2

x

L
� x

L

� �2
 �

We note that the expressions for y andM0 are similar in form. One is a scaled version of the other.

M0 ¼ wL2

2

1

4h
y ¼ wL2

8h
y

Then, noting (9.36),

β ¼ 8h

wL2

and X1 ¼ wL2

8h
.
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The total moment is the sum of M0 and the moment due to X1.

M ¼ M0 � yX1 ¼ wL2

8h
y� wL2

8h
y ¼ 0

We see that there is no bending for this loading and geometry. We should have anticipated this result

since a uniformly loaded cable assumes a parabolic shape. By definition, a cable has no bending

rigidity and therefore no moment. We can consider an arch as an inverted cable. It follows that a

two-hinged uniformly loaded parabolic arch behaves like an inverted cable.

Example 9.12 Approximate Solutions

Given: The two-hinged arch and the loading defined in Fig. E9.12a. The integral expression for X1 is

given by 9.3.4. Noting (9.35), the solution equals to

X1 � þ

ð
Δy

M0

EI
dsð

Δyð Þ2 ds
EI

This result applies when there is no support movement.

Determine: An approximate expression for X1. Assume the cross section of the arch is deeper at the

abutment than at the crown, and use the following approximation to define I,

I ¼ I0
cos θ

where I0 is the cross-sectional inertia at the crown.

Fig. E9.12a Variable depth arch

Solution: Substituting for I and ds ¼ dx

cos θ
, the integrals simplify to

X1 ¼
þ 1=EI0ð Þ

ð
ΔyM0dx

1=EI0ð Þ
ð

Δyð Þ2dx

and now one can easily determine analytical solutions.
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Suppose a concentrated force, P, is applied at mid-span. The corresponding terms for a symmetri-

cal parabolic arch are:

Δy ¼ 4y

L
x� x2

L

� �
1

EI0

ð
ΔyM0dx) 5

48

PhL2

EI0
1

EI0

ð
Δyð Þ2dx ¼ 8

15

h2L

EI0

X1 ¼ 25

128
P

L

h

� �

Note that the bending moment is not zero in this case.

Example 9.13

Given: The two-hinged arch and the loading defined in Fig. E9.13a

Fig. E9.13a

Determine: The particular shape of the arch which corresponds to negligible bending.

Solution: This two-hinged arch is indeterminate to the first degree. We take the horizontal reaction at

the right support as the force redundant (Fig. E9.13b).
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Fig. E9.13b Primary structure—redundant reaction

The applied loading is given by (Fig. E9.13c)

w xð Þ ¼ w0 2:5� 1:5

50
x


 �
0 < x � 50

Fig. E9.13c

The corresponding shear and moment in the simply supported beam spanning AB are

dV

dx
¼ w xð Þ ) V ¼ w0 2:5x� 1:5

100
x2


 �
þ C1

dM

dx
¼ �V ) M ¼ �w0

2:5

2
x2 � 1:5

300
x3


 �
þ C1xþ C2

Enforcing the boundary conditions,

M 0ð Þ ¼ 0

M 100ð Þ ¼ 0

leads to

C2 ¼ 0

C1 ¼ w0 1:25 100ð Þ � 1:5 100ð Þ2
300

( )
¼ 75w0

Finally, the expression for M reduces to

M ¼ w0 75x� 1:25x2 þ 0:005x3
� �

0 < x � 50

follows (9.36) and (9.37).

The desired shape is
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y xð Þ ¼ M xð Þ
X1

¼ w0

X1

75x� 1:25x2 þ 0:005x3
� � ¼ w0

X1

f xð Þ

The function f(x) is plotted below. Note that the shape is symmetrical.

When the abutments are inadequate to resist the horizontal thrust, different strategies are employed

to resist the thrust. One choice is to insert a tension tie connecting the two supports, as illustrated in

Fig. 9.29a. Another choice is to connect a set of arches in series until a suitable anchorage is reached

(see Fig. 9.29b). The latter scheme is commonly used for river crossings.

We take the tension in the tie as the force redundant for the tied arch. The corresponding primary

structure is shown in Fig. 9.30. We just have to add the extension of the tie member to the deflection

δ11. The extended form for δ11 is

!← δ11 ¼
ð
y2

ds

EI
þ L

AtE
ð9:38Þ

The expression for Δ1,0 does not change. Then, the tension in the tie is given by:

X1 ¼ �Δ1,0

δ11
¼

ð
y M0ds=EIð Þð

y2 ds=EIð Þ
� �

þ L=AtEð Þ
ð9:39Þ

Note that the horizontal reaction is reduced by inserting a tie member. However, now there is

bending in the arch.

Fig. 9.29 (a) Single
tie arch. (b) Multiple

connected arches
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Example 9.14

Given: A parabolic arch with a tension tie connecting the supports. The arch is loaded with a

uniformly distributed load per horizontal projection. Consider I to be defined as
I0

cos θ
.

Determine: The horizontal thrust and the bending moment at mid-span (Fig. E9.14a).

Fig. E9.14a

Solution: We note the results generated in Example 9.12 which correspond to taking I ¼ I0
cos θ

.

Δ1,0 ¼ �
ð
yM0

ds

EI
¼ � 1

EI0

ð L
0

yM0dx

¼ � 1

EI0

wL2

8h

� �ð L
0

y2dx

¼ � 1

EI0

8

15
h2L

� �
wL2

8h

� �
¼ � whL3

15EI0

δ11 ¼ L

AE
þ 8

15

h2L

EI0

The tension in the tie is

Fig. 9.30 Choice of

redundant
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X1 ¼ �Δ1,0

δ11
¼ wL2

8h

1

1þ 15=8ð Þ I0=Ah2
� �� �

Using this value, we determine the moment at mid-span.

M
L

2

� �
¼ M0 � hX1

¼ wL2

8
1� 1

1þ 15=8ð Þ I0=Ah2
� �� �

( )

M
L

2

� �
¼ wL2

8

15=8ð Þ I0=Ah2
� �

1þ 15=8ð Þ I0=Ah2
� �� �

( )
¼ wL2

8

1

1þ 8=15ð Þ Ah2=I0
� �� �

( )

Note that the effect of the tension tie is to introduce bending in the arch.

9.5 Application to Frame-Type Structures

Chapter 4 dealt with statically determinate frames. We focused mainly on three-hinge frames since

this type of structure provides an efficient solution for enclosing a space. In this section, we analyze

indeterminate frames with the force method. In the next chapter, we apply the displacement method.

The analytical results generated provide the basis for comparing the structural response of determi-

nate vs. indeterminate frames under typical loadings.

9.5.1 General Approach

We consider the arbitrary-shaped single bay frame structure shown in Fig. 9.31. The structure is

indeterminate to the first degree. We select the horizontal reaction at the right support as the force

redundant. The corresponding compatibility equation is

Δ1,0 þ δ11X1 ¼ Δ1

where Δ1 is the horizontal support movement at D.

We compute δ11 and Δ1,0 with the Principle of the Virtual Forces described in Sect. 4.6. The

corresponding form for a plane frame specialized for negligible transverse deformation is given

by (4.8)

Fig. 9.31 (a) Actual
structure. (b) Primary

structure—redundant

reaction
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dδP ¼
X

members

ð
s

M

EI

� �
M þ F

AE

� �
δF


 �
ds

Axial deformation is small for typical non-shallow frames and therefore is usually neglected. The

δ11 term is the horizontal displacement due to a horizontal unit load at D. This term depends on the

geometry and member properties, not on the external loads, and therefore has to be computed only

once. The Δ1,0 term is the horizontal displacement due to the external loading and needs to be

evaluated for each loading. Different loading conditions are treated by determining the corresponding

values of Δ1,0. Given these displacement terms, one determines X1 with

X1 ¼ �Δ1,0

δ11

Consider the frame shown in Fig. 9.32. Now there are three force redundant and three geometric

compatibility conditions represented by the matrix equation (see (9.11)),

Δ
��
primary structure ¼ Δ0 þ δX

The flexibility matrix δ is independent of the loading, i.e., it is a property of the primary structure.

Most of the computational effort is involved with computing δ and Δ0 numerically. The integration

can be tedious. Sometimes numerical integration is used. However, one still has to generate the

moment and axial force diagrams numerically.

If the structure is symmetrical, one can reduce the computational effort by working with simplified

structural models and decomposing the loading into symmetrical and anti-symmetrical components.

It is very useful for estimating, in a qualitative sense, the structural response. We discussed this

strategy in Chap. 3.

In what follows, we list results for different types of frames. Our primary objective is to show how

these structures respond to typical loadings. We use moment diagrams and displacement profiles as

the measure of the response.

9.5.2 Portal Frames

We consider the frame shown in Fig. 9.33a. We select the horizontal reaction at D as the force

redundant.

The corresponding flexibility coefficient, δ11, is determined with the Principle of Virtual Forces

(see Chap. 4).

Fig. 9.32 (a) Actual
structure. (b) Primary

structure—redundant

reactions
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δ11 ¼ h31
3EI1

þ h32
3EI3

þ L

3EI2
h21 þ h22 þ h1h2
� � ð9:40Þ

This coefficient applies for all loading. Considering the arbitrary gravity loading shown in

Fig. 9.34, the expression for the displacement, Δ1,0, is determined in a similar way.

Δ1,0jgravity ¼ �
Pa L� að Þ
2EI2L

L� að Þh2 þ a h1f g þ Pa h2 � h1ð Þ
3EI2L

L2 þ 2a2 � 3aL
� � ð9:41Þ

Fig. 9.33 Portal Frame.

(a) Geometry.

(b) Redundant.
(c) Reactions due
to X1 ¼ 1

Fig. 9.34 Reactions—

gravity loading
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Lastly, we consider the lateral loading shown in Fig. 9.35. The displacement term due to loading is

Δ1,0jlateral ¼ �
1

EI1

Ph31
3


 �
þ 1

EI2

Ph1L

3

h2
2
þ h1

� �
 �
ð9:42Þ

When h2 ¼ h1 ¼ h and I2 ¼ I1 ¼ I, these expressions simplify to

δ11 ¼ 2h3

3EI
þ L

EI
h2
� �

Δ1,0

��
gravity ¼ � Ph

2EI
að Þ L� að Þ

Δ1,0

��
lateral ¼ �Ph3

3EI
� Ph2L

2EI

ð9:43Þ

Gravity loading:

X1

��
gravity ¼ P

2

L

h

� �
a=Lð Þ 1� a=Lð Þð Þ
1þ 2=3ð Þ h=Lð Þ

M1

��
gravity ¼ hX1

��
gravity

M2

��
gravity ¼ a 1� a

L

� �
P�M1

��
gravity

Lateral loading:

X1

��
lateral ¼ P

2
M1

��
lateral ¼ hX1

��
lateral

The corresponding bending moment diagrams for these two loading cases are shown in Fig. 9.36.

Fig. 9.35 Reactions—

lateral loading
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9.5.2.1 Lateral-Loading Symmetrical Portal Frame
We consider first the two-hinged symmetrical frame shown in Fig. 9.37. This structure is indetermi-

nate to the first degree. We decompose the loading into symmetrical and anti-symmetrical

components and generate the corresponding symmetrical and anti-symmetrical structural modes

using the material presented in Sect. 3.9. These results are shown in Fig. 9.38b. Point E is at

mid-span. The anti-symmetrical model is statically determinate since the bending moment at

mid-span must equal zero for anti-symmetrical behavior (Fig. 9.38c).

The symmetrical loading introduces no bending in the structure, only axial force in member

BE. The bending moment distribution due to the anti-symmetrical component is plotted in Fig. 9.39.

Fig. 9.37 Geometry of

two-hinged portal frame

Fig. 9.36 Two-hinged

frame (a) Gravity loading.

(b) Moment diagram.

(c) Lateral loading.
(d) Moment diagram
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Fig. 9.38 Structural models. (a) Decomposition into anti-symmetrical and symmetrical loadings. (b) Anti-symmetric

and symmetrical models. (c) Free body diagrams of anti-symmetric and symmetrical segments

Fig. 9.39 Bending

moment distribution due to

the anti-symmetrical lateral

loading
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9.5.2.2 Gravity-Loading Symmetrical Portal Frame
We consider next the case of gravity loading applied to a two-hinged portal frame. Figure 9.40a

defines the loading and geometry. Again, we decompose the loading and treat separately the two

loading cases shown in Fig. 9.40b.

Geometry and Loading

The anti-symmetrical model is statically determinate. Figure 9.41 shows the model, the

corresponding free body diagram and the bending moment distribution.

The symmetrical model is statically indeterminate to one degree. We take the horizontal reaction

at the right support as the force redundant and work with the primary structure shown in Fig. 9.42.

Assuming unyielding supports, the compatibility equation has the following form

ΔD,0 þ δDDHD ¼ 0

where ΔD,0 and δDD are the horizontal displacements at D due to the applied loading and a unit value

of HD. We use the Principle of Virtual Forces specialized for only bending deformation to evaluate

these terms. The corresponding expressions are

ΔD,0 ¼
ð
S

M0δM
dS

EI

δDD ¼
ð
S

δMð Þ2 dS
EI

ð9:44Þ

Fig. 9.40 (a) Two-hinged frame under gravity loading. (b) Decomposition of loading into symmetrical and anti-

symmetrical components
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where M0 is the moment due to the applied loading and δM is the moment due to a unit value of HD.

These moment distributions are plotted in Fig. 9.43.

Evaluating the integrals leads to:

ΔB,0 ¼ �P
2

ha

EI2
L� að Þ

δBB ¼ 2h3

3EI1
þ h2L

EI2

ð9:45Þ

Finally, the horizontal reaction at support D is

HD ¼ P
a L� að Þ
2hL

1

1þ 2=3ð Þ rg=rc
� �

" #
ð9:46Þ

where

Fig. 9.42 Primary

structure for two-hinged

frame—symmetrical

loading case

Fig. 9.41 (a) Anti-
symmetrical model. (b)
Free body diagram—anti-

symmetrical segment.

(c) Bending moment

distribution—anti-

symmetrical loading
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rc ¼ I1
h

rg ¼ I2
L

ð9:47Þ

are the relative stiffness factors for the column and girder members.

Combining the results for the symmetrical and anti-symmetrical loadings results in the net bending

moment distribution plotted in Fig. 9.44. The peak moments are defined by (9.48).

M1 ¼ �Pa
2

1� a

L

� � 1

1þ 2=3ð Þ rg=rc
� �

M2 ¼ þPa
2

a=Lð Þ þ 2=3ð Þ rg=rc
� �

1þ 2=3ð Þ rg=rc
� �

" #
� Pa

2
1� 2a

L

� �

M3 ¼ þPa
2

a=Lð Þ þ 2=3ð Þ rg=rc
� �

1þ 2=3ð Þ rg=rc
� �

" #
þ Pa

2
1� 2a

L

� � ð9:48Þ

Fig. 9.44 Final bending

moment distribution

Fig. 9.43 Bending

moment distributions—

symmetrical loading—

primary structure

620 9 The Force Method



Example 9.15 Two-Hinged Symmetrical Frame—Uniform Gravity Load

Given: The frame and loading defined in Fig. E9.15a.

Determine: The bending moment distribution.

Fig. E9.15a

Fig. E9.15b

Solution: We work with the primary structure shown in Fig. E9.15b. We only need to determine the

ΔD,0 term corresponding to the uniform loading since the δDD term is independent of the applied

loading. The solution for HD is

HD ¼ wL2

12h

1

1þ 2=3ð Þ rg=rc
� �

where

rg ¼ I2
L

rc ¼ I1
h

Figure E9.15c shows the bending moment distribution. The peak values are

M1 ¼ wL2

12

1

1þ 2=3ð Þ rg=rc
� �

M2 ¼ wL2

8
1� 2

3

1

1þ 2=3ð Þ rg=rc
� �

" #
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When members AB and CD are very stiff, rc ! 1 and HD ! wL2/12h. In this case, the moment

at B approaches wL2/12 which is the fixed end moment for member BC.

Fig. E9.15c Bending moment distribution

9.5.2.3 Symmetrical Portal Frames with Fixed Supports
We consider the symmetrical frame shown in Fig. 9.45. Because the structure is symmetrical, we

consider the loading to consist of symmetrical and anti-symmetrical components. The structure is

indeterminate to the second degree for symmetrical loading and to the first degree for anti-

symmetrical loading (there is zero moment at mid-span which is equivalent to a hinge at that

point). Figure 9.45b defines the structures corresponding to these two loading cases.

Fig. 9.45 (a) Geometry.

(b) Decomposition into

symmetrical and anti-

symmetrical loadings

622 9 The Force Method



Evaluating the various displacement terms for the anti-symmetrical loading, one obtains:

ΔE,0 ¼ �PLh2

8EI1

δEE ¼ L3

24EI2
þ L2h

4EI1

VE ¼ �ΔE,0

δEE
¼ Ph

2L

� �
1

1þ 1=6ð Þ L=I2ð Þ I1=hð Þð Þ
The moment diagrams are plotted in Fig. 9.46. The peak values are

M* ¼ �Ph

4

1

1þ 1=6ð Þ rc=rg
� �

M** ¼ �Ph

2
�1þ 1

2

1

1þ 1=6ð Þ rc=rg
� �� �

" #

rc ¼ I1
h

rg ¼ I2
L

ð9:49Þ

There are inflection points located in the columns at y* units up from the base where

y* ¼ h 1� 1

2

1

1þ 1=6ð Þ rc=rg
� �

" #
ð9:50Þ

When the girder is very stiff relative to the column, rc/rg ! 0 and y* ! h/2. A reasonable

approximation for y* for typical column and girder properties is �0.6 h.

Figure 9.47 shows the corresponding bending moment distribution for the two-hinged portal

frame. We note that the peak positive moment is reduced approximately 50 % when the supports

are fixed.

We consider next the case where the girder is uniformly loaded. We skip the intermediate details

and just list the end moments for member AB and the moment at mid-span (Fig. 9.48).

Fig. 9.46 Bending

moment distribution—

anti-symmetric loading
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MBA ¼ �wL2

12

1

1þ 1=2ð Þ rg=rc
� �

MAB ¼ 1

2
MBA

ME ¼ wL2

8
1� 2

3

1

1þ 1=2ð Þ rg=rc
� �

" # ð9:51Þ

The bending moment distribution is plotted in Fig. 9.49. The solution for the two-hinged case is

shown in Fig. 9.50. These results show that the bending moment distribution is relatively insensitive

to end fixity of the base.

M2 ¼ ME

1� 2=3

1þ 2=3 rg=rc
� �

1� 2=3

1þ 1=2 rg=rc
� � ¼

wL2

8
1� 2=3ð Þ

1þ 2=3 rg=rc
� �

 !

M1 ¼ MBA

1þ 1=2 rg=rc
� �

1þ 2=3 rg=rc
� � ¼ �wL2

12

1

1þ 2=3 rg=rc
� �

 ! ð9:52Þ

Fig. 9.47 Moment

distribution for two-hinged

frame

Fig. 9.48 (a) Portal frame

with fixed supports under

gravity loading. (b)
Moment at mid-span
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9.5.3 Pitched Roof Frames

We consider next a class of portal frames where the roof is pitched, as shown in Fig. 9.51a. We choose

to work with the primary structure defined in Fig. 9.51b.

We suppose the structure is subjected to a uniform load per horizontal projection on members BC

and CD. The bending moment distribution in the primary structure due to the applied loading, M0, is

parabolic with a peak value at C (Fig. 9.52). Taking HE ¼ 1 leads to the bending moment distribution

shown in Fig. 9.53. It is composed of linear segments.

Assuming the supports are unyielding, the flexibility coefficients are

ΔE,0 ¼ � wL3

12 cos θ
h1 þ 5

8
h2


 �
1

EI2

δEE ¼ 2

3

h31
EI1
þ L

EI2 cos θ
h21 þ h1h2 þ h22

3


 � ð9:53Þ

We define the relative stiffness factors as

r1 ¼ I1
h1

r2
* ¼ I2

L*
ð9:54Þ

where L* is the length of the inclined roof members BC and CD.

Fig. 9.50 Bending

moment distribution—

symmetrical loading—

hinged supports

Fig. 9.49 Bending

moment distribution—

symmetrical loading—

fixed supports
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Fig. 9.52 (a) Primary structure-external loading. (b)Bending moment distribution for applied loading, M0

Fig. 9.51 (a) Pitched roof frame—definition sketch. (b) Primary structure—redundant reaction
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L* ¼ L

2 cos θ
ð9:55Þ

Using this notation, the expression for the horizontal reaction at E takes the form

HE ¼ wL2

12h1

1þ 5=8ð Þ h2=h1ð Þ
1=3ð Þ r*2=r1

� �þ 1þ h2=h1ð Þ þ 1=3ð Þ h2=h1ð Þ2 ð9:56Þ

The total bending moment distribution is plotted in Fig. 9.54. Equation (9.57) contains the

expressions for the peak values.

M1 ¼ �wL2

12
a1

M2 ¼ þwL2

8
a2

ð9:57Þ

where

a1 ¼ 1þ 5=8ð Þ h2=h1ð Þ
1=3ð Þ r2*=r1ð Þ þ 1þ h2=h1ð Þ þ 1=3ð Þ h2=h1ð Þ2

a2 ¼ 1� 2

3
1þ h2

h1

� �
a1

ð9:58Þ

Fig. 9.54 Distribution of

total bending moments

Fig. 9.53 (a) Primary structure-unit load. (b)Bending moment distribution for HE ¼ 1
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These values depend on the ratio of heights h2/h1 and relative stiffness, r2
*/r1. One sets h2 ¼ 0 and

r2
* ¼ 2r2 to obtain the corresponding two-hinged portal frame solution. For convenience, we list here

the relevant solution for the three-hinge case, with the notation modified to be consistent with the

notation used in this section. The corresponding moment distributions are shown in Fig. 9.55.

The peak negative and positive moments are

M1 ¼ wL2

8

h1
h1 þ h2ð Þ

M2 ¼ wL2

8

1

4
� 1

2

h1
h1 þ h2

þ 1

4

h1
h1 þ h2

� �2
( ) ð9:59Þ

In order to compare the solutions, we assume r2* ¼ r1, and h2 ¼ h1 in the definition equations for

the peak moments. The resulting peak values are

Three-hinge case (9.59):

M1 ¼ �wL2

8

1

2

� �

M2 ¼ þwL2

8

1

16

� �

Two-hinge case (9.57):

M1 ¼ �wL2

8

13

32

� �
¼ �wL2

8
0:406ð Þ

M2 ¼ þwL2

8

3

16

� �

We see that the peak negative moment is reduced by approximately 20 % when the structure is

reduced to a two-hinged frame. However, the positive moment is increased by a factor of 3.

Fig. 9.55 Three-hinge solution. (a) Loading. (b) Bending moment distribution
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9.6 Indeterminate Trusses

Examples of indeterminate truss structures are shown in Fig. 9.56. One can choose a primary structure

by taking either reactions or member forces or a combination as the force redundants. When working

with member forces, one visualizes the member as being cut and works with the relative displacement

of the adjacent faces. Continuity requires that the net relative displacement is zero.

We illustrate the Force Method procedure for the three-member truss shown in Fig. 9.57a. The

truss is indeterminate to the first degree. The force in member BC is taken as the force redundant and

Fig. 9.56 Examples of statically indeterminate trusses
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Δ1 is the relative displacement together at the end sections. Two deflection computations are required,

one due to the external loads and the other due to X1 ¼ 1. We use the Principle of Virtual Forces

discussed in Sect. 2.3.4 for these computations. Results are summarized below.

Displacement due to external loads:

Δ1,0 ¼
X F0L

AE

� �
δF

¼ � 1

2 sin θ

Py

2 sin θ
þ Px

2 cos θ

� �
L1
A1E
þ � 1

2 sin θ

� �
Py

2 sin θ
� Px

2 cos θ

� �
L1
A1E

¼ � Py

2 sin 2θ

L1
A1E

Displacement due to X1 ¼ 1:

δ11 ¼
X

δFð Þ2 L

AE

¼ 1

4 sin 2θ

L1
A1E
þ L1 sin θ

A2E
þ 1

4 sin 2θ

L1
A1E
¼ 1

2 sin 2θ

L1
A1E
þ L1 sin θ

A2E

Enforcing compatibility (9.3) leads to

Δ1,0 þ δ11X1 ¼ 0

Fig. 9.57 (a) Three-member truss. (b) Primary structure—redundant internal force. (c) F0. (d) δF(X1 ¼ 1)
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FBC ¼ X1 ¼ �Δ1,0

δ11
¼ Py=2 sin

2θ
� �

L1=A1Eð Þ
1=2 sin 2θð Þ L1=A1Eð Þ þ L1 sin θ=A2Eð Þ

¼ Py

A2= sin θð Þ
A2= sin θð Þ þ 2A1 sin 2θ

ð9:60Þ

Lastly, the remaining forces are determined by superimposing the individual solutions.

F ¼ F0 þ δFX1

FAB ¼ Px

2 cos θ
þ Py

A1 sin θ

A2= sin θð Þ þ 2A1 sin 2θ


 �

FDB ¼ � Px

2 cos θ
þ Py

A1 sin θ

A2= sin θð Þ þ 2A1 sin 2θ


 � ð9:61Þ

As expected for indeterminate structures, the internal force distribution depends on the relative

stiffness of the members. When A2 is very large in comparison to A1, Py is essentially carried by

member BC. Conversely, if A2 is small in comparison to A1, member BC carries essentially none

of Py.

Example 9.16

Given: The indeterminate truss shown in Fig. E9.16a. Assume AE is constant, A ¼ 2 in.2, and

E ¼ 29,000 ksi.

Fig. E9.16a

Determine: The member forces.
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Solution: The truss is externally indeterminate to the first degree. The horizontal component of the

reaction at C is taken as the force redundant (Fig. E9.16b).

Fig. E9.16b Primary structure—redundant reaction

We apply the geometric compatibility equation to this truss,

Δ1,0 þ δ11X1 ¼ 0

where

Δ1,0 ¼
X

F0δF
L

AE

δ11 ¼
X

δFð Þ2 L

AE

The corresponding forces are listed in Figs. E9.16c and E9.16d.

Fig. E9.16c F0

Fig. E9.16d δF(X1 ¼ 1)

632 9 The Force Method



Member L (in.) A (in.2)

L

A F0 δF

2(dF )
L

AE 0

L
F dF

AE
AB 300 2 150 7.5 �1.67 418.3/E �1878.7/E
BC 300 2 150 14.16 �1.67 418.3/E �3547/E
CD 216.3 2 108.2 �10.21 2.4 625.1/E 2656/E

DA 216.3 2 108.2 �10.21 2.4 625.1/E 2656/E

BD 120 2 60 �11.33 2.67 422.7/E �1815/E
Σ 2509.5/E �12,552.7/E

Inserting this data in the compatibility equation leads to

X1 ¼ �Δ1,0

δ11
¼ 12552:7

2509:5
¼ 5

Then, the forces are determined by superimposing the individual solutions

F ¼ F0 þ δFX1

The final member forces and the reactions are listed below:

Member F0 δFX1 F

AB 7.5 �8.35 �0.85
BC 14.16 �8.35 5.81

CD �10.21 12.0 1.8

DA �10.21 12.0 1.8

BD �11.33 13.35 2

Rax 4.0 �5.0 �1.0
Ray �0.33 0 �0.33
Rex 0.0 +5.0 +5.0

Rey �5.67 0 �5.67
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Example 9.17

Given: The indeterminate truss shown in Fig. E9.17a.

Determine: The member forces. Assume AE is constant, A ¼ 200 mm2, and E ¼ 200 GPa.

Fig. E9.17a

Solution: The truss is internally indeterminate to the first degree. The force in member BD is taken as

the force redundant (Fig. E9.17b).

Fig. E9.17b Primary structure—internal force redundant

We apply the geometric compatibility equation to this truss,

Δ1,0 þ δ11X1 ¼ 0

where

Δ1,0 ¼
X

F0δF
L

AE

δ11 ¼
X

δFð Þ2 L

AE
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The corresponding forces are listed in Figs. E9.17c and E9.17d.

Fig. E9.17c F0

Fig. E9.17d δF(X1 ¼ 1)

Member L (mm) A (mm2)

L

A F0 δF (δF)2(L/AE) F0δF(L/AE)

AB 4000 200 20 �50 �0.8 12.8 800

BC 3000 200 15 0 �0.6 5.4 0

CD 4000 200 20 �40 �0.8 12.8 640

DA 3000 200 15 0 �0.6 5.4 0

BD 5000 200 25 0 1 25 0

AC 5000 200 25 50 1 25 1250

Σ 86.4/E 2690/E

Enforcing comparability leads to

X1 ¼ FBD ¼ �Δ1,0

δ11
¼ �2690

86:4
¼ �31:13

∴FBD ¼ 31:13kN compression
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Then, the forces are determined by superimposing the individual solutions.

F ¼ F0 þ δFX1

The final member forces and the reactions are listed below.

Member F0 δFX1 F

AB �50 24.9 �25.1
BC 0 18.68 18.68

CD �40 24.9 �15.1
DA 0 18.68 18.68

BD 0 �31.13 �31.13
AC 50 �31.13 18.87

RAx �30 0 �30
RAy 10 0 10

RDy 40 0 40

9.7 Summary

9.7.1 Objectives

• The primary objective of this chapter is to present the force method, a procedure for analyzing

statically indeterminate structures that work with force quantities as the unknown variables.

• Another objective is to use the force method to develop analytical solutions which are useful for

identifying the key parameters that control the response and for conducting parameter sensitivity

studies.
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9.7.2 Key Factors and Concepts

• The force method is restricted to linear elastic behavior.

• The first step is to reduce the structure to a statically determinate structure by either removing a

sufficient number of redundant restraints or inserting force releases at internal points. The resulting

determinate structure is called the primary structure.

• Next one applies the external loading to the primary structure and determines the resulting

displacements at the points where the restraints were removed.

• For each redundant force, the displacements produced by a unit force acting on the primary

structure are evaluated.

• Lastly, the redundant forces are scaled such that the total displacement at each constraint point is

equal to the actual displacement. This requirement is expressed as

Δ
��
actual ¼ Δ

��
loading þ

X
redundant forces

δunit forceð ÞX

where the various terms are displacements at the constraint points. One establishes a separate

equation for each constraint point. Note that all calculations are carried out on the primary structure.

9.8 Problems

Problem 9.1 Determine the vertical reaction at B. Take E ¼ 29,000 ksi and I ¼ 200 in.4

Problem 9.2 Determine the vertical reaction at B. Take E ¼ 200 GPa and I ¼ 80(10)6 mm4.
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Problem 9.3 Determine the force in spring CD.

kv ¼ 60 kip/in.

E ¼ 29,000 ksi

I ¼ 200 in.4

Problem 9.4 Given the following properties and loadings, determine the reactions.

P ¼ 40 kN

w ¼ 20 kN/m

L ¼ 10 m

E ¼ 200 GPa

I ¼ 170(10)6 mm4

kv ¼ 40 kN/mm

δ ¼ 20 mm
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Problem 9.5 Use the force method to determine the reaction at B caused by:

1. The distributed load shown

2. The support settlement at B

9.8 Problems 639



I ¼ 400 in:4

L ¼ 54ft

w ¼ 2:1kip=ft
δB ¼ 1:2 in: #
E ¼ 29, 000ksi

Problem 9.6 Use the force method to determine the forces in the cables. Assume beam is rigid.

AC ¼ 1200 mm2, L ¼ 9 m, P ¼ 40 kN, and E ¼ 200 GPa.

Problem 9.7 Consider the parabolic arch shown below. Assume the arch is non-shallow, i.e., h/L is

order of (1/2).
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y ¼ 4h
x

L
� x

L

� �2� �

I ¼ Io
cos θ

(a) Determine the horizontal reaction at B due to the concentrated load.

(b) Utilize the results of part (a) to obtain an analytical expression for the horizontal reaction due to

a distributed loading, w(x).

(c) Specialize (b) for a uniform loading, w(x) ¼ w0.

(d) Suppose the horizontal support at B is replaced by a member extending from A to B. Repeat part

(a).

Problem 9.8 Consider the semicircular arch shown below. Determine the distribution of the axial

and shear forces and the bending moment. The cross-section properties are constant.

Problem 9.9
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Use a computer software system to determine the bending moment distribution and deflected

shape produced by the following loadings.

TakeA ¼ 20, 000mm2, I ¼ 400 10ð Þ6mm4 and E ¼ 200GPa

Problem 9.10
A ¼ 30 in:2 I ¼ 1000 in4 E ¼ 29, 000ksi

Use a computer software system to determine the maximum bending moment and the axial force in

member ABC. Consider the following values for the area of the tension rod AC: 4, 8, and 16 in.2

Problem 9.11

A ¼ 40 in:2 I ¼ 1200 in:4 E ¼ 29, 000ksi

Use a computer software system to compare the bending moment distributions generated by the

following loadings:
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Problem 9.12 Determine the horizontal reaction at support D.
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Problem 9.13 Determine the peak positive and negative moments as a function of h. Consider

h ¼ 2, 4, 6 m.

Problem 9.14 Determine the peak positive and negative moments as a function of h. Consider
h ¼ 10, 20, 30 ft.

Problem 9.15 Using a computer software system, determine the bending moment distribution and

deflected shape due to the loading shown.
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Take I1 ¼ 1000 in.4, I2 ¼ 2000 in.4, E ¼ 29,000 ksi, and A ¼ 20 in.2 all members.

Problem 9.16 Compare the bending moment distributions and the vertical displacement at B for the

structures defined below. Take E ¼ 200 GPa, I ¼ 400(10)6 mm4, A ¼ 100,000 mm2, and

Ac ¼ 1200, 2400, 4800 mm2. Use a computer software system.
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Problem 9.17 Is there any difference in behavior for the structures shown below? Answer the

question without resorting to calculations.

Problem 9.18 Determine the reactions and the member forces for the truss shown. Assume the

vertical reaction at d as the force redundant.

E ¼ 200 GPa

A ¼ 660 mm2 all members

α ¼ 12 � 10–6/�C
ΔT ¼ 10 �C
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Problem 9.19 Determine the forces in the members. E ¼ 29,000 ksi and A ¼ 1 in.2 all members.

Problem 9.20 Determine the member forces of the truss shown. Assume the horizontal reaction at

c as the force redundant.

A1 ¼ A2 ¼ A3 ¼ A4 ¼ 10 in.2

A5 ¼ 5 in.2

α ¼ 6.5 � 10–6/�F
ΔT ¼ 60 F

E ¼ 29,000 ksi
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Problem 9.21 Determine the member forces for the truss shown. Assume A ¼ 1000 mm2 and

E ¼ 200 GPa for all the members. Take the force in member ac and the reaction at support f as the
force redundants.

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.
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The Displacement Method 10

Abstract

The previous chapter dealt with the force method, one of two procedures

for analyzing statically indeterminate structures. In this chapter, we

describe the second procedure, referred to as the displacement method.

This method works with equilibrium equations expressed in terms of

variables that correspond to displacement measures that define the posi-

tion of a structure, such as translations and rotations of certain points on

the structure. We start by briefly introducing the method specialized for

frame-type structures and then apply it to truss, beam, and frame

structures. Our focus in this chapter is on deriving analytical solutions

and using these solutions to explain structural behavior trends. We also

include a discussion of the effect of geometrically nonlinear behavior on

the stiffness. Later in Chap. 12, we describe how the method can be

transformed to a computer-based analysis procedure.

10.1 Introduction

The displacement method works with equilibrium equations expressed in terms of displacement

measures. For truss and frame-type structures, which are composed of members connected at node

points, the translations and rotations of the nodes are taken as the displacement measures.

Plane truss structures have two displacement measures per node. For example, the plane truss

shown in Fig. 10.1a has two unknown displacements (u2, v2). The available equilibrium equations are

the two force equilibrium equations for node 2.

Planar beam-type structures have two displacement measures per node, the transverse displace-

ment and the cross-section rotation. The corresponding equations are the shear, and moment equilib-

rium equations for each node. For example, the planar beam shown in Fig. 10.1b has five unknown

displacements (θ1, θ2, θ3, θ4, v4).
Plane frame-type structures have three displacement measures per node: two translations and one

rotation. One works with the force and moment equilibrium equations for each unrestrained node. In

general, the number of node equilibrium equationswill always be equal to the number of displacements.

For example, the plane frame shown in Fig. 10.1c has six unknown displacements (u2, v2, θ2, u3, v3, θ3).
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The approach followed to generate equations involves the following steps:

1. Firstly, we decompose the structure into nodes and members. Note that the forces applied by a

member to the node at its end are equal in magnitude but oppose in sense to the forces acting on the

end of the member. The latter are called end actions.

2. Secondly, we relate the end actions for a member to the displacement measures for the nodes at the

ends of the member. We carry out this procedure for each member.

3. Thirdly, we establish the force equilibrium equations for each node. This step involves summing

the applied external loads and the end actions for those members which are incident on the node.

4. Fourthly, we substitute for the member end actions expressed in terms of the nodal displacements.

This leads to a set of equilibrium equations relating the applied external loads and the nodal

displacements.

5. Lastly, we introduce the prescribed values of nodal displacements corresponding to the supports in

the equilibrium equations. The total number of unknowns is now reduced by the number of

prescribed displacements. We solve this reduced set of equations for the nodal displacements

and then use these values to determine the member end actions.

The solution procedure is systematic and is applicable for both statically determinate and statically

indeterminate structures. Applications of the method to various types of structure are described in the

following sections.

Fig. 10.1 (a) Plane truss.
(b) Planar beam. (c) Plane
frame
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10.2 Displacement Method Applied to a Plane Truss

Consider the truss shown in Fig. 10.2. We suppose nodes 2, 3, and 4 are unyielding. We analyzed this

structure with the force method in Sect. 9.6. We include it here to provide a comparison between the

two approaches. There are two displacement measures, the horizontal and vertical translations for

node 1. The structure is statically indeterminate to the first degree, so it is a trade-off whether one uses

the force method or the displacement method.

The first step is to develop the equations relating the member forces and the nodal displacements.

We start by expressing the change in length, e, of each member in terms of the displacements for

node 1. This analysis is purely geometrical and involves projecting the nodal displacements on

the initial direction of the member. We define an extension as positive when the length is increased.

Noting Fig. 10.3, the extensions of members (1), (2), and (3) due to nodal displacements are

given by:

e 1ð Þ ¼ u1 cos θ þ v1 sin θ

e 2ð Þ ¼ v1

e 3ð Þ ¼ �u1 cos θ þ v1 sin θ

ð10:1Þ

Next, we express the member force in terms of the corresponding extension using the stress–strain

relation for the material. Noting Fig. 10.3b, the generic equations are:

Fig. 10.2 Truss geometry

and loading

Fig. 10.3 Extension and

force quantities—axial

loaded member
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εtotal ¼ ε0 þ 1

E
σ ¼ e

L

σ ¼ F

A

where ε0 is the initial strain due to temperature change and fabrication error. Then,

F¼ AE

L
e� AEε0

¼ AE

L
eþ FF

ð10:2Þ

where FF is the magnitude of the member force due to initial strain.

Substituting for the extensions leads to the desired expressions relating the member forces and the

corresponding nodal displacements.

F 1ð Þ ¼ A1E

L1
cos θu1 þ A1E

L1
sin θv1 þ FF

1ð Þ

F 2ð Þ ¼ A2E

L2
v1 ¼ A2E

L1 sin θ
v1 þ FF

2ð Þ

F 3ð Þ ¼ �A1E

L1
cos θu1 þ A1E

L1
sin θv1 þ FF

3ð Þ

ð10:3Þ

We generate the force equilibrium equations for node 1 using the free body diagram shown below.

X
Fx ¼ 0! Px ¼ cos θ F 1ð Þ � F 3ð Þ

� �
X

Fy ¼ 0 " Py ¼ sin θ F 1ð Þ þ F 3ð Þ
� �þ F 2ð Þ

ð10:4Þ

Substituting for the member forces, one obtains a set of uncoupled equations for u1 and v1.

Px ¼ 2A1E

L1
cos 2θ


 �
u1 þ cos θ FF

1ð Þ � FF
3ð Þ

� �

Py ¼ A2E

L1 sin θ
þ 2A1E

L1
sin 2θ


 �
v1 þ sin θ FF

1ð Þ þ FF
3ð Þ

� �
þ FF

2ð Þ

ð10:5Þ
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One solves these equations for u1 and v1 and then determines the member forces using (10.3).

The resulting expressions are:

F 1ð Þ ¼ P*
x

2 cos θ
þ Py

A1 sin θ

A2=sin θ þ 2A1 sin 2θ


 �
þ FF

1ð Þ

F 2ð Þ ¼ P*
y

A2=sin θ

A2=sin θ þ 2A1 sin 2θ


 �
þ FF

2ð Þ

F 3ð Þ ¼ � P*
x

2 cos θ
þ P*

y

A1 sin θ

A2=sin θ þ 2A1 sin 2θ


 �
þ FF

3ð Þ

ð10:6Þ

where

P*
x ¼ Px � cos θ FF

1ð Þ � FF
3ð Þ

� �
P*
y ¼ Py � sin θ FF

1ð Þ þ FF
3ð Þ

� �
þ FF

2ð Þ

For this example, it may seem like more effort is required to apply the displacement method

vs. the force method (Sect. 9.6). However, the displacement method generates the complete solution,

i.e., both the member forces and the nodal displacements. A separate computation is required to

compute the displacements when using the force method.

10.3 Member Equations for Frame-Type Structures

The members in frame-type structures are subjected to both bending and axial actions. The key

equations for bending behavior of a member are the equations which relate the shear forces and

moments acting on the ends of a member to the deflection and rotation of each end. These equations

play a very important role in the analysis of statically indeterminate beams and frames and also

provide the basis for the matrix formulation of the displacement method for structural frames. In what

follows, we develop these equations using the force method.

We consider the structure shown in Fig. 10.4a. We focus specifically on member AB. Both of its

ends are rigidly attached to nodes. When the structure is loaded, the nodes displace and the member

bends as illustrated in Fig. 10.4b. This motion produces a shear force and moment at each end. The

positive sense of these quantities is defined in Figs. 10.4b, c.

We refer to the shear and moment acting at the ends as end actions. Our objective here is to relate

the end actions (VB, MB, VA, MA) and the end displacements (vB, θB, vA, θA). Our approach is based

on treating the external loading and end actions as separate loadings and superimposing their

responses. We proceed as follows:

Step 1. Firstly, we assume the nodes at A and B are fixed and apply the external loading to member

AB. This leads to a set of end actions that we call fixed end actions. This step is illustrated in

Fig. 10.5.

Step 2. Next, we allow the nodes to displace. This causes additional bending of the member AB

resulting in additional end actions (ΔVB, ΔMB, ΔVA, ΔMA). Figure 10.6 illustrates this

notation.

Step 3. Superimposing the results obtained in these two steps leads to the final state shown in

Fig. 10.7.
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Fig. 10.4 Member

deformation and end

actions. (a) Initial
geometry. (b) Deformed

configuration for member

AB. (c) Notation for end

shear and moment

Fig. 10.5 Fixed end

Actions. (a) Initial.
(b) Deformed
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MB ¼ M F
B þ ΔMB

MA ¼ M F
A þ ΔMA

VB ¼ V F
B þ ΔVB

VA ¼ V F
A þ ΔVA

We determine the fixed end actions corresponding to the first step using the force method. Details

are described in Chap. 9. Fixed end actions for various loading cases are listed in Table 9.1.

For the second step, we visualize the process as consisting of two substeps. First, we displace node

B holding A fixed. Then, we displace node A, holding B fixed. Combining these cases result in the

response shown in Fig. 10.8c. Superposition is valid since the behavior is linear.

These two substeps are similar and can be analyzed using the same procedure. We consider first

case (a) shown in Fig. 10.8a. We analyze this case by considering AB to be a cantilever beam fixed at

A and subjected to unknown forces, ΔVB
(1) and ΔMB

(1) at B (see Fig. 10.9a).

The displacements at B are (see Table 3.1):

vB ¼ ΔV 1ð Þ
B L3

3EI
þ ΔM 1ð Þ

B L2

2EI

θB ¼ ΔV 1ð Þ
B L2

2EI
þ ΔM 1ð Þ

B L

EI

ð10:7Þ

We determine ΔVB
(1) and ΔMB

1 by requiring these displacements to be equal to the actual nodal

displacements vB and θB. Solving for ΔVB
(1) and ΔMB

(1) leads to

ΔV 1ð Þ
B ¼

12EI

L3
vB � 6EI

L2
θB

ΔM 1ð Þ
B ¼

4EI

L
θB � 6EI

L
vB

ð10:8Þ

Fig. 10.6 Response to

nodal displacements

Fig. 10.7 Final state
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The corresponding end actions at A are determined using the equilibrium conditions for the

member. X
Fy ¼ 0) ΔV 1ð Þ

B þ ΔV 1ð Þ
A ¼ 0X

at A

M ¼ 0) ΔM 1ð Þ
B þ ΔM 1ð Þ

A þ LΔV 1ð Þ
B ¼ 0

Then

ΔV 1ð Þ
A ¼ �

12EI

L3
vB þ 6EI

L2
θB

ΔM 1ð Þ
A ¼ �

6EI

L2
vB þ 2EI

L
θB

ð10:9Þ

Fig. 10.8 Superposition

of nodal motions. (a)
Support A fixed. (b)
Support B fixed. (c)
Superimposed motions

Fig. 10.9 (a) Support A
fixed. (b) Support B fixed
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Equations (10.8) and (10.9) define the end actions due to the displacement of node B with A fixed.
Case (b) of Fig. 10.8 is treated in a similar way (see Fig. 10.9b). One works with a cantilever fixed

at B and solves for ΔVA
(2) and ΔMA

(2). The result is

ΔV 2ð Þ
A ¼

12EI

L3
vA þ 6EI

L2
θA

ΔM 2ð Þ
A ¼

6EI

L2
vA þ 4EI

L
θA

ð10:10Þ

The end actions at B follow from the equilibrium conditions for the member.

ΔV 2ð Þ
B ¼ �

12EI

L3
vA � 6EI

L2
θA

ΔM 2ð Þ
B ¼

6EI

L2
vA þ 4EI

L
θA

ð10:11Þ

Equations (10.10) and (10.11) define the end actions due to the displacement of node A with B

fixed.
The complete solution is generated by superimposing the results for these two loading conditions

and the fixed end actions.

VB ¼ ΔV 1ð Þ
B þ ΔV 2ð Þ

B þ V F
B ¼ �

6EI

L2
θB þ θAð Þ þ 12EI

L3
vB � vAð Þ þ V F

B

MB ¼ ΔM 1ð Þ
B þ ΔM 2ð Þ

B þM F
B ¼ þ

2EI

L
2θB þ θAð Þ � 6EI

L2
vB � vAð Þ þM F

B

VA ¼ ΔV 1ð Þ
A þ ΔV 2ð Þ

A þ V F
A ¼ þ

6EI

L2
θB þ θAð Þ � 12EI

L3
vB � vAð Þ þ V F

A

MA ¼ ΔM 1ð Þ
A þ ΔM 2ð Þ

A þM F
A ¼ þ

2EI

L
θB þ 2θAð Þ � 6EI

L2
vB � vAð Þ þM F

A

We rearrange these equations according to moment and shear quantities. The final form is

written as

MAB ¼ 2EI

L
2θA þ θB � 3

vB � vA
L

� �n o
þM F

AB

MBA ¼ 2EI

L
θA þ 2θB � 3

vB � vA
L

� �n o
þM F

BA

ð10:12aÞ
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and

VAB ¼ þ 6EI

L2
θA þ θB � 2

vB � vA
L

� �n o
þ V F

AB

VBA ¼ � 6EI

L2
θA þ θB � 2

vB � vA
L

� �n o
þ V F

BA

ð10:12bÞ

Equations (10.12a, 10.12b) are referred to as the slope-deflection equations. They are based on the

sign conventions and notation defined above.

10.4 The Displacement Method Applied to Beam Structures

In what follows, we first describe how the slope-deflection equations are employed to analyze

horizontal beam structures, starting with two-span beams and then moving on to multi-span beams

and frames. The displacement measures for beams are taken as the nodal rotations; the transverse

displacements are assumed to be specified.

10.4.1 Two-Span Beams

We consider the two-span beam shown in Fig. 10.10a. One starts by subdividing the beam into two

beam segments and three nodes, as indicated in Figs. 10.10b, c. There are only two rotations

unknowns: the rotations at nodes A and B; the rotation at node C is considered to be zero.
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Fig. 10.10 Decomposition of two-span beam into beam segments and nodes. (a) Beam geometry and loading.

(b) Segments and nodes. (c) Segments. (d) Reactions
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Next we apply the slope-deflection equations (10.12a) to members AB and BC.

MAB ¼ 2EI1
L

2θA þ θB � 3
vB � vA

L1

� �
 �
þM F

AB

MBA ¼ 2EI1
L1

2θB þ θA � 3
vB � vA

L1

� �
 �
þM F

BA

MBC ¼ 2EI2
L2

2θB � 3
vC � vB

L2

� �
 �
þM F

BC

MCB ¼ 2EI2
L2

θB � 3
vC � vB

L2

� �
 �
þM F

CB

ð10:13Þ

Then, we enforce moment equilibrium at the nodes. The corresponding equations are:

MAB ¼ 0

MBA þMBC ¼ 0
ð10:14Þ

Substituting for the end moments in the nodal moment equilibrium equations yields

4EI1
L1

θA þ 2EI1
L1

θB ¼ 6EI1
L1

vB � vA
L1

� �
�M F

AB

2EI1
L1

θA þ 4EI1
L1
þ 4EI2

L2

� �
θB ¼ 6EI1

L1

vB � vA
L1

� �
þ 6EI2

L2

vC � vB
L2

� �
� M F

BA þM F
BC

� � ð10:15Þ

Once the loading, support motion, and member properties are specified, one can solve for θB and

θA. Substituting for the θs in (10.13) leads to the end moments. Lastly, we calculate the end shears.

Since the end moments are known, we can determine the end shear forces using either the static

equilibrium equations for the members AB and BC or by using (10.12b).

VAB ¼ 6EI1

L21
θA þ θBð Þ � 12EI1

L21

vB � vA
L1

� �
þ V F

AB

VBA ¼ � 6EI1

L21
θB þ θAð Þ þ 12EI1

L21

vB � vA
L1

� �
þ V F

BA

VBC ¼ 6EI2

L22
θBð Þ � 12EI2

L22

vC � vB
L2

� �
þ V F

BC

VBC ¼ � 6EI2

L22
θBð Þ þ 12EI2

L22

vC � vB
L2

� �
þ V F

BC

ð10:16Þ

The reactions are related to the end actions by (see Fig. 10.10d)

RA ¼ VAB

MA ¼ MAB ¼ 0

RB ¼ VBA þ VBC

RC ¼ VCB

MC ¼ MCB
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Suppose the only external action on the above two-span beam is prescribed support settlements vA,
vB, and vC as shown in Fig. 10.11. We compute the corresponding chord rotation terms and include

these terms in the slope-deflection equations. The chord rotations are

ρAB ¼
vB � vA

L1

ρBC ¼
vC � vB

L2

ð10:17Þ

Noting (10.13), the chord rotation terms introduce additional end moments for each member

connected to the support which experiences the settlement. The corresponding expressions for the end

moments due to this support settlement are

MAB ¼ 2EI1
L1

2θA þ θB � 3ρABf g

MBA ¼ 2EI1
L1

2θB þ θA � 3ρABf g

MBC ¼ 2EI2
L2

2θB � 3ρBCf g

MCB ¼ 2EI2
L2

θB � 3ρBCf g

ð10:18Þ

Substituting for the support movements, the nodal moment equilibrium equations reduce to

2θA þ θB ¼ 3ρAB

2EI1
L1

2θB þ θAf g þ 2EI2
L2

2θBf g ¼ 6EI1
L1

ρAB þ
6EI2
L2

ρBC
ð10:19Þ

Note that the solution depends on the ratio of EI to L for each span. One specifies ρ for each

member, solves (10.19) for the θs, and then evaluates the end actions.

Fig. 10.11 Beam geometry and support settlements
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Example 10.1

Given: The two-span beam defined in Fig. E10.1a. Assume the supports are unyielding.

Take E ¼ 29,000 ksi, I ¼ 428 in.4, and L ¼ 20 ft.

Fig. E10.1a

Determine: The end actions and the shear and moment diagrams due to the applied loading.

Solution: First, we compute the fixed end actions by using Table 9.1.

M F
AB ¼

1:5 20ð Þ2
12

¼ 50kip ft V F
AB ¼

1:5 20ð Þ
2

¼ 15kip

M F
BA ¼ �50kip ft V F

AB ¼
1:5 20ð Þ

2
¼ 15kip

M F
BC ¼

10 20ð Þ
8
¼ 25kip ft V F

BC ¼
10

2
¼ 5kip

M F
CB ¼ �25kip ft V F

CB ¼
10

2
¼ 5kip

We define the relative member stiffness for each member as

kmembers AB ¼ kmembers BC ¼
EI

L
¼ k1 ¼ 29, 000 428ð Þ

20

1

12ð Þ2 ¼ 4310kip ft

Next, we generate the expressions for the end moments using the slope-deflection equation

(10.12a) and noting that θA ¼ 0 and the supports are unyielding (vA ¼ vB ¼ vC ¼ 0).
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MAB ¼ 2k1 θBð Þ þ 50

MBA ¼ 2k1 2θBð Þ � 50

MBC ¼ 2k1 2θB þ θCð Þ þ 25

MCB ¼ 2k1 θB þ 2θCð Þ � 25

Enforcing moment equilibrium at nodes B and C

MBA þMBC ¼ 0

MCB ¼ 0

leads to

2k1θB þ 4k1θC ¼ 25

8k1θB þ 2k1θC ¼ 25

+
k1θB ¼ 1:786

k1θC ¼ 5:357

+
θB ¼ 0:0004rad counter clockwise

θC ¼ 0:0012rad counter clockwise

These rotations produce the following end moments

MAB ¼ 53:57kip ft

MBA ¼ �42:84kip ft
MBC ¼ þ42:84kip ft
MCB ¼ 0

Since the end moments are known, we can determine the end shear forces either by using the static

equilibrium equations for the members or by using (10.12b).
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Noting (10.12b), we find

VAB ¼ 6

L
k1θBð Þ þ V F

AB ¼
6

20
1:786ð Þ þ 15 ¼ 15:53kip

VAB ¼ �6
L
k1θBð Þ þ V F

AB ¼ �
6

20
1:786ð Þ þ 15 ¼ 14:47kip

VBC ¼ 6

L
k1θB þ k1θCð Þ þ V F

BC ¼
6

20
1:786þ 5:357ð Þ þ 5 ¼ 7:14kip

VAB ¼ �6
L
k1θB þ k1θCð Þ þ V F

CB ¼ �
6

20
1:786þ 5:357ð Þ þ 5 ¼ 2:86kip

The reactions are:

RA ¼ VAB ¼ 15:53kip "
MA ¼ MAB ¼ 53:57kip ft

RB ¼ VBA þ VBC ¼ 21:6kip "
RC ¼ VCB ¼ 2:86kip "
MC ¼ MCB ¼ 0

Lastly, the shear and moment diagrams are plotted below.
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Example 10.2: Two-Span Symmetrical Beam—Settlement of the Supports

Given: The symmetrical beam shown in Fig. E10.2a. Assume EI is constant. Take L ¼ 6 m, I ¼
180(10)6 mm4, and E ¼ 200 kN/mm2.

Fig. E10.2a

Case (i), the middle support settles an amount vB ¼ 40 mm.

Case (ii), the left support settles an amount vA ¼ 40 mm.

Determine: The end actions, the shear and bending moment diagrams.

Solution:

Case (i): Support settlement at B (Fig. E10.2b)

Fig. E10.2b Settlement at B

Noting (10.17), the chord rotations due to settlement at B are:

ρAB ¼
vB � vA

L
¼ �vB

L

ρBC ¼
vC � vB

L
¼ þvB

L

Substituting for ρAB and ρBC, the corresponding slope-deflection equation (10.12a) take the form

MAB ¼ 2EI

L
2θA þ θBð Þ � 6EI

L
ρAB

MBA ¼ 2EI

L
2θB þ θAð Þ � 6EI

L
ρAB

MBC ¼ 2EI

L
2θB þ θCð Þ � 6EI

L
ρBC

MCB ¼ 2EI

L
2θC þ θBð Þ � 6EI

L
ρBC
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We enforce moment equilibrium at nodes A, B, and C.

The corresponding equations are:

MAB ¼ 0) 2θA þ θB ¼ �3vB
L

MBA þMBC ¼ 0) θA þ 4θB þ θC ¼ 0

MCB ¼ 0) 2θC þ θB ¼ 3
vB
L

Solving for the θs leads to

θB ¼ 0

θA ¼ �3
2

vB
L

θC ¼ þ3
2

vB
L

The corresponding end moments are:

MBA ¼ 2EI

L
�3
2

vB
L

� �
� 6EI

L
�vB
L

� �
¼ þ 3EI

L2
vB ¼ 3 200ð Þ 180ð Þ106

6000ð Þ2 40ð Þ

¼ 120, 000kNmm ¼ 120kNm

MBC ¼ 2EI

L

3

2

vB
L

� �
� 6EI

L

vB
L

� �
¼ � 3EI

L2
vB ¼ �120kNm

Next, we determine the end shear forces using the static equilibrium equations for the members.

VAB ¼ VCB ¼ þ 3EI

L3
vB ¼ 3 200ð Þ 180ð Þ106

6000ð Þ3 40ð Þ ¼ 20kN "

VBA ¼ VBC ¼ � 3EI

L3
vB ¼ 20kN #
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The corresponding reactions are:

RA ¼ VAB ¼ 20kN "
RB ¼ VBA þ VBC ¼ 40kN #
RC ¼ VCB ¼ 20kN "

One should expect that θB ¼ 0 because of symmetry. The shear and moment diagrams are

plotted below.

Case (ii): Support settlement at A (Fig. E10.2c)

Fig. E10.2c Settlement at A

Settlement at A produces chord rotation in member AB only. The chord rotation for member AB

due to settlement of node A is ρAB ¼ vA/L. Substituting for ρAB, the corresponding slope-deflection

equation (10.12a) take the form

MAB ¼ 2EI

L
2θA þ θBð Þ � 6EI

L
ρAB

MBA ¼ 2EI

L
2θB þ θAð Þ � 6EI

L
ρAB

MBC ¼ 2EI

L
2θB þ θCð Þ

MCB ¼ 2EI

L
2θC þ θBð Þ
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Setting MAB ¼ MCB ¼ 0 and MBA þ MBC ¼ 0 leads to

2θA þ θB ¼ 3ρAB

2θC þ θB ¼ 0

4θB þ θA þ θC ¼ 3ρAB

Solving for the θs leads to

θA ¼ 5

4
ρAB

θB ¼ 1

2
ρAB

θC ¼ �1
4
ρAB

Finally, the bending moment at B due to support settlement at A is:

MBA ¼ 2EI

L

vA
L
þ 5

4

vA
L

� �
� 6EIvA

L2
¼ � 1:5EI

L2
vA ¼ 1:5 200ð Þ 180ð Þ106

6000ð Þ2 40ð Þ

¼ �60, 000kNmm ¼ �60kNm

MBC ¼ �MBA ¼ 60kNm counterclockwise

Next, we determine the end shear forces using the static equilibrium equations for the members.

Then,

RA ¼ RC ¼ � 1:5EI

L3
vA ¼ � 1:5 200ð Þ 180ð Þ106

6000ð Þ3 40ð Þ ¼ �10kN

RB ¼ 1:5EI

L3
vA þ 1:5EI

L3
vA ¼ þ20N
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The shear and moment diagrams are plotted below.

Example 10.3: Two-Span Beam with Overhang

Given: The beam shown in Fig. E10.3a. Assume EI is constant.

Fig. E10.3a
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Determine: The end actions and the shear and moment diagrams.

Solution: First, we compute the fixed end moments by using Table 9.1.

M F
AB ¼ þ

30 7ð Þ2
12

¼ þ122:5kNm

M F
BA ¼ �122:5kNm

M F
BC ¼

40 4ð Þ 3ð Þ2
7ð Þ2 ¼ þ29:39kNm

M F
CB ¼ �

40 4ð Þ2 3ð Þ
7ð Þ2 ¼ �39:18kNm

We define the relative member stiffness for each member as

kmember AB ¼ kmember BC ¼
EI

L
¼ k1

Noting that θA ¼ 0 and the supports are unyielding (vA ¼ vB ¼ vC ¼ 0), the corresponding slope-

deflection equation (10.12a) take the form

MAB ¼ 2k1 θBð Þ þ 122:5

MBA ¼ 2k1 2θBð Þ � 122:5

MBC ¼ 2k1 2θB þ θCð Þ þ 29:39

MCB ¼ 2k1 2θC þ θBð Þ � 39:18
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We enforce moment equilibrium at the nodes B and C.

The corresponding equations are:

MBA þMBC ¼ 0) 2k1θC þ 6k1θB ¼ 93:11

MCB þ 45 ¼ 0 ) 4k1θC þ 2k1θB ¼ �5:82
Solving these equations leads to

k1θB ¼ 13:71

k1θC ¼ �8:31
The corresponding end moments are:

MAB ¼ þ149:9kNm

MBA ¼ �67:6kNm

MBC ¼ þ67:6kNm

MCB ¼ �45kNm

Next, we determine the end shear forces using the static equilibrium equations for the members.
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The shear and moment diagrams are plotted below.

10.4.2 Multi-Span Beams

In what follows, we modify the slope-deflection equations for the end members of a multi-span

continuous beam when they have either a pin or roller support. Consider the three-span beam shown

in Fig. 10.12a. There are three beam segments and four nodes. Since the end nodes have zero moment,

we can simplify the slope-deflection equations for the end segments by eliminating the end rotations.

We did this in the previous examples, as part of the solution process. Now, we formalize the process

and modify the slope-deflection equations before setting up the nodal moment equilibrium equations

for the interior nodes.

Consider member AB. The end moment of A is zero, and we use this fact to express θA in terms of

θB. Starting with the expression for MAB,

MAB ¼ 2EI1
L1

2θA þ θB � 3
vB � vA

L1

� �� �
þM F

AB ¼ 0

and solving for θA leads to

θA ¼ �1
2
θB þ 3

2

vB � vA
L1

� �
� L1
4EI1

M F
AB
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Then, we substitute for θA in the expression MBA,

MBA ¼ 2EI1
L1

2θB þ θA � 3
vB � vA

L1

� �
þM F

BA

and obtain the following form,

MBAmodified
¼ 3EI1

L1
θB � vB � vA

L

� �� �
þ M F

BA �
1

2
M F

AB

� �
ð10:20Þ

Note that the presence of a pin or roller at A reduces the rotational stiffness at B from 4EI/L to

3EI/L. Substituting for θA in the expression VAB and VBA leads to the following expressions,

VABmodified
¼ þ 6EI

L2
1

2
θB � 1

2

vB � vA
L

� �
 �
þ V F

AB �
3

2

M F
AB

L

VBAmodified
¼ � 6EI

L2
1

2
θB � 1

2

vB � vA
L

� �
 �
þ V F

BA þ
3

2

M F
AB

L

For member BC, we use the general unchanged form

MBC ¼ 2EI2
L2

2θB þ θC � 3
vC � vB

L2

� �
þM F

BC

MCB ¼ 2EI2
L2

2θC þ θB � 3
vC � vB

L2

� �
þM F

CB

Fig. 10.12 Three-span beam
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The modified form for member CD is

MDC ¼ 0

MCD ¼ 3EI3
L3

θC � vD � vC
L3

� �
þ M F

CD �
1

2
M F

DC

� �

Nodal moment equilibrium equations
Now, we return back to Fig. 10.12. If we use the modified form of the moment expressions for

members AB and CD, we do not have to enforce moment equilibrium at nodes A and D since we have

already employed this condition to modify the equations. Therefore, we need only to consider nodes

B and C. Summing moments at these nodes,

MBA þMBC ¼ 0

MCB þMCD ¼ 0

and substituting for the end moments expressed in terms of θB and θC leads to

θB
3EI1
L1
þ 4EI2

L2


 �
þ θC

2EI2
L2


 �
� 6EI2

L2

vC � vB
L2

� �
þ 3EI1

L1

vB � vA
L1

� �
 �

þ M F
BC þ M F

BA �
1

2
M F

AB

� �
 �
¼ 0

θB
2EI2
L2


 �
þ θC

4EI2
L2
þ 3EI3

L3


 �
� 6EI2

L2

vC � vB
L2

� �
þ 3EI3

L3

vD � vC
L3

� �
 �

þ M F
CD �

1

2
M F

DC

� �
þM F

CB


 �
¼ 0

ð10:21Þ

Given the nodal fixed end moments due to the loading and the chord rotations due to support

settlement, one can solve the above simultaneous equations for θB and θC and determine the end

moments by back substitution. Note that the solution depends on the relative magnitudes of the ratio,

I/L, for each member.

In what follows, we list the modified slope-deflection equations for an end member with a pin or

roller support.
End member AB (exterior pin or roller at A end):

MAB ¼ 0

MBAmodified
¼ 3EI

L
θB � vB � vA

L

� �n o
þ M F

BA �
1

2
M F

AB

� � ð10:22aÞ

VABmodified
¼ 3EI

L2
θB � vB � vA

L

� �n o
þ V F

AB �
3

2

M F
AB

L

VBAmodified
¼ � 3EI

L2
θB � vB � vA

L

� �n o
þ V F

BA þ
3

2

M F
AB

L

ð10:22bÞ
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Equations (10.22a, 10.22b) are referred to as the modified slope-deflection equations.

Example 10.4: Two-Span Beam with Moment Releases at Both Ends

Given: The two-span beam shown in Fig. E10.4a. Assume EI is constant.

Fig. E10.4a

Determine: The end actions and the shear and moment diagrams.

Solution: The fixed end moments are (see Table 9.1):

M F
AB ¼

1:4 20ð Þ2
12

¼ 46:67kip ft

M F
BA ¼ �46:67kip ft

M F
BC ¼

12 10ð Þ 20ð Þ2
30ð Þ ¼ 53:33kip ft

M F
CB ¼ �

12 20ð Þ 10ð Þ2
30ð Þ2 ¼ �26:67kip ft

We define the relative member stiffness for each member as
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kmember BC ¼ EI

LBC
¼ k1

kmemberAB ¼ EI

LAB
¼ 1:5k1

Next, we generate the expressions for the end moments using the modified slope-deflection

equation (10.22a).

MAB ¼ 0

MBA ¼ MBAmodified
¼ 3 1:5k1ð Þ θBð Þ þ M F

BA �
1

2
M F

AB

� �
¼ 3 1:5k1ð Þ θBð Þ

þ �46:67� 1

2
46:67ð Þ


 �
¼ 4:5k1θB � 70

MBC ¼ MBCmdified
¼ 3 k1ð Þ θBð Þ þ M F

BC �
1

2
M F

CB

� �
¼ 3 k1ð Þ θBð Þ

þ þ53:33� 1

2
�26:67ð Þ


 �
¼ 3k1θB þ 66:66

MCB ¼ 0

The moment equilibrium equation for node B expands to

MBA þMBC ¼ 0

+
7:5k1θB � 3:34 ¼ 0

+
k1θB ¼ 0:4453

Finally, the bending moment at B is

MBA ¼ �68kip ft
MBC ¼ �MBA ¼ 68kip ft

Noting the free body diagrams shown below, we find the remaining end actions.
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The shear and moment diagrams are plotted below.

Example 10.5: Three-Span Beam

Given: The three-span beam shown in Figs. E10.5a, E10.5b, E10.5c.

Fig. E10.5a Uniform load

Fig. E10.5b Settlement at A
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Fig. E10.5c Settlement at B

Determine: The end moments and draw the moment diagram for

Case (i): uniform load w. No support settlement.

Case (ii): No loading. Support settlement at A. Consider I and L are constants.

Case (iii): No loading. Support settlement at B. Consider I and L are constants.

Solution:

Case (i): Uniform loading

The supports are unyielding. Therefore vA ¼ vB ¼ vC ¼ 0. The fixed end moments due to the

uniform loading are (see Table 9.1)

M F
AB ¼ þ

wL21
12

M F
BA ¼ �

wL21
12

M F
BC ¼ þ

wL22
12

M F
CB ¼ �

wL22
12

M F
CD ¼ þ

wL21
12

M F
DC ¼ �

wL21
12

We use (10.22a) for members AB and CD and (10.12a) for member BC.

MAB ¼ 0

MBA ¼ MBAmodified
¼ 3EI1

L1
θB þ M F

BA �
1

2
M F

AB

� �
¼ 3EI1

L1
θB � wL21

8

MBC ¼ 2EI2
L2

2θB þ θCf g þM F
BC ¼

2EI2
L2

2θB þ θCf g þ wL22
12

MCB ¼ 2EI2
L2

θB þ 2θCf g þM F
CB ¼

2EI2
L2

θB þ 2θCf g � wL22
12

MCD ¼ MCDmodified
¼ 3EI1

L1
θC þ M F

CD �
1

2
M F

DC

� �
¼ 3EI1

L1
θC þ wL21

8

MDC ¼ 0

The nodal moment equilibrium equations are

MBA þMBC ¼ 0

MCB þMCD ¼ 0

Substituting for the end moments, the above equilibrium equations expand to
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θB
3EI1
L1
þ 4EI2

L2


 �
þ θC

2EI2
L2


 �
¼ �wL22

12
þ wL21

8

θB
2EI2
L2


 �
þ θC

4EI2
L2
þ 3EI1

L1


 �
¼ �wL21

8
þ wL22

12

+

EI2
L2

θB ¼ wL22
12

�1þ 3

2
L1=L2ð Þ2

2þ 3 I1=I2ð Þ L2=L1ð Þ

8><
>:

9>=
>;

θC ¼ �θB
The corresponding moments are

MBC ¼ wL22
8

L1=L2ð Þ2 þ I1=I2ð Þ L2=L1ð Þ
1þ 3=2 I1=I2ð Þ L2=L1ð Þ

( )

MCB ¼ �MBC

We note that the moments are a function of (I1/I2) and (L1/L2). The sensitivity of MBC to the ratio

(L1/L2) is plotted below for various values of (I1/I2).

When I and L are constants for all the spans, the solution is

θB ¼ wL3

120EI

θC ¼ � wL3

120EI

and
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MBA ¼ MCB ¼ �wL2

10

MBC ¼ MCD ¼ wL2

10

We determine the end shear forces using the static equilibrium equations for the members.

The moment diagram is plotted below.

Case (ii): Support settlement at A, no loading, I and L are constants

The chord rotations are

ρAB ¼ þ
vA
L

ρAB ¼ ρCD ¼ 0

Specializing (10.22a) for members AB and CD and (10.12a) for member BC for I and L constant,

and the above notation results in

MBAmodified
¼ 3EI

L
θB � vA

L

n o

MBC ¼ 2EI

L
2θB þ θCf g

MCB ¼ 2EI

L
θB þ 2θCf g

MCDmodified
¼ 3EI

L
θCf g
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The nodal moment equilibrium equations are

MBA þMBC ¼ 0 7θB þ 2θC ¼ 3vA
L)

MCB þMCD ¼ 0 2θB þ 7θC ¼ 0

The solution is

θB ¼ 7vA
15L

θC ¼ � 2vA
15L

and the corresponding moments are

MBA ¼ � 8EI

5L2
vA

MCD ¼ � 2EI

5L2
vA

We determine the end shear forces using the static equilibrium equations for the members.

The moment diagram is plotted below.

10.4 The Displacement Method Applied to Beam Structures 681



Case (iii): Support settlement at B, no loading, I and L are constants

The chord rotations are

ρAB ¼ �
vB
L

ρBC ¼ þ
vB
L

ρCD ¼ 0

Specializing (10.22a) for members AB and CD and (10.12a) for member BC for I and L constant,

and the above notation results in

MBAmodified
¼ 3EI

L
θB þ vB

L

� �n o

MBC ¼ 2EI

L
2θB þ θC � 3

vB
L

n o

MCB ¼ 2EI

L
θB þ 2θC � 3

vB
L

n o

MCDmodified
¼ 3EI

L
θCf g

The nodal moment equilibrium equations are

MBA þMBC ¼ 0 7θB þ 2θC ¼ 3vB
L)

MCB þMCD ¼ 0 2θB þ 7θC ¼ 6vB
L

The solution is

θB ¼ vB
5L

θC ¼ 4vB
5L

and the corresponding moments are

MBA ¼ 18EI

5L2
vB

MCD ¼ 12EI

5L2
vB

We determine the end shear forces using the static equilibrium equations for the members.
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Noting the free body diagrams, we find the reactions. The moment diagram is plotted below.

Example 10.6: Uniformly Loaded Three-Span Symmetrical Beam—Fixed Ends

Given: The three-span symmetrical fixed end beam defined in Fig. E10.6a. This model is representa-

tive of an integral bridge with very stiff abutments at the ends of the beam.

Fig. E10.6a

Determine: The end moments.

Solution: The slope-deflection equations for unyielding supports, θA ¼ θD ¼ 0 and symmetry

θB ¼ –θC are

MAB ¼ �MDC ¼ 2EI1
L1

θBð Þ þM F
AB

MBA ¼ 2EI1
L1

2θBð Þ þM F
BA

MBC ¼ �MCB ¼ 2EI2
L2

θBð Þ þM F
BC
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where

M F
AB ¼ M F

CD ¼ þ
wL21
12

M F
BA ¼ M F

DC �
wL21
12

M F
BC ¼ þ

wL22
12

M F
CB ¼ �

wL22
12

Summing end moments at node B

MBA þMBC ¼ 0

θB
4EI1
L1
þ 2EI2

L2


 �
¼ � M F

BA þM F
BC

� �
and solving for θB leads to

θB ¼ �θC ¼
wL21=12
� �� wL22=12

� �� �
4EI1=L1ð Þ þ 2EI2=L2ð Þð Þ

Suppose I and L are constants. The end rotations corresponding to this case are

θB ¼ θC ¼ 0

It follows that the end moments are equal to the fixed end moments.

MAB ¼ wL2

12

MBA ¼ �MBC ¼ �wL2

12

The general solution for the moment at B follows by substituting for θB in either the expression for
MBA or MBC. After some algebraic manipulation, the expression for MBA reduces to

MBA ¼ wL22
12

L1=L2ð Þ2 þ 2 I1=I2ð Þ L2=L1ð Þ
n o

1þ 2 I1=I2ð Þ L2=L1ð Þð Þ
We note that the moments are a function of (I1/I2) and (L1/L2). The sensitivity of MBA to the ratio

(L1/L2) is plotted below for various values of (I1/I2).
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10.5 The Displacement Method Applied to Rigid Frames

The essential difference between the analysis of beams and frames is the choice of the nodal

displacements. The nodal variables for a beam are taken as the rotations. When there is support

movement, we prescribe the nodal translation and compute the corresponding fixed end moments. In

this way, the equilibrium equations always involve only rotation variables. Rigid frames are consid-

ered to be an assemblage of members rigidly connected at nodes. Since frame structures are formed

by joining members at an arbitrary angle, the members rotate as well as bend. When this occurs, we

need to include the chord rotation terms in the slope-deflection equations, and work with both

translation and rotation variables. Using these relations, we generate a set of equations relating the

nodal translations and rotations by enforcing equilibrium for the nodes. The approach is relatively

straightforward when there are not many displacement variables. However, for complex structures

involving many displacement unknowns, one would usually employ a computer program which

automates the generation and solution of the equilibrium equations.

The term “sideway” is used to denote the case where some of the members in a structure

experience chord rotation resulting in “sway” of the structure. Whether sideway occurs depends on

how the members are arranged and also depends on the loading applied. For example, consider the

frame shown in Fig. 10.13a. Sideway is not possible because of the horizontal restraint. The frame

shown in Fig. 10.13b is symmetrical and also loaded symmetrically. Because of symmetry, there will

be no sway. The frame shown in Fig. 10.13c will experience sideway. The symmetrical frame shown

in Fig. 10.13d will experience sideway because of the unsymmetrical loading. All three members will

experience chord rotation for the frame shown in Fig. 10.13e.

When starting an analysis, one first determines whether sideway will occur in order to identify the

nature of the displacement variables. The remaining steps are relatively straightforward. One

establishes the free body diagram for each node and enforces the equilibrium equations. The essential

difference is that now one needs to consider force equilibrium as well as moment equilibrium. We

illustrate the analysis process with the following example.

Consider the frame shown in Fig. 10.14. Under the action of the applied loading, nodes B and C

will displace horizontally an amount Δ. Both members AB and CD will have chord rotation. There are
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three displacement unknowns θB, θC, and Δ. In general, we neglect the axial deformation. The free

body diagrams for the members and nodes are shown in Fig. 10.15. We take the positive sense of

the members to be from A ! B, B ! C, and C ! D. Note that this fixes the sense of the shear

forces. The end moments are always positive when counterclockwise.

Moment equilibrium for nodes B and C requiresX
MB ¼ 0) MBA þMBC ¼ 0X
MC ¼ 0) MCB þMCD ¼ 0

ð10:23aÞ

We also need to satisfy horizontal force equilibrium for the entire frame.X
Fx ¼ 0! þ) �VAB þ VDC þ

X
Fx ¼ 0 ð10:23bÞ

where
X

Fx ¼ P1 þ P2 þ 1

2
w1h1.

The latter equation is associated with sideway.

Fig. 10.13 Examples of

sideway
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Noting that θA ¼ θD ¼ 0, vA ¼ vD ¼ 0, vB ¼ –Δ, and vC ¼ +Δ, the slope-deflection equations

(10.12a, 10.12b) simplify to

MAB ¼ 2EI1
h1

θB � 3
�Δ
h1

� �
 �
þM F

AB

MBA ¼ 2EI1
h1

2θB � 3
�Δ
h1

� �
 �
þM F

BA

MBC ¼ 2EI3
L

2θB þ θCf g þM F
BC

MCB ¼ 2EI3
L

2θC þ θBf g þM F
CB

MCD ¼ 2EI2
h2

2θC � 3
�Δ
h2

� �
 �
þM F

CD

MDC ¼ 2EI2
h2

θC � 3
�Δ
h2

� �
 �
þM F

DC

VAB ¼ 6EI1

h21
θB þ 2

Δ

h1


 �
þ V F

AB

VDC ¼ � 6EI2

h22
θC þ 2

Δ

h2


 �
þ V F

DC

ð10:24Þ

Fig. 10.14 (a) Loading.
(b) Deflected shape
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Fig. 10.15 Free body

diagrams for members

and nodes of the frame.

(a) Members. (b) Nodes.
(c) Reactions
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Substituting for the end moments and shear forces in (10.23a, 10.23b) leads to

4EI1
h1
þ 4EI3

L

� �
θB þ 2EI3

L
θC þ 6EI1

h1

Δ

h1

� �
þ M F

BC þM F
BA

� � ¼ 0

2EI3
L

θB þ 4EI3
L
þ 4EI2

h2

� �
θC þ 6EI2

h2

Δ

h2

� �
þ M F

CD þM F
CB

� � ¼ 0

� 6EI1

h21
θB � 6EI2

h32
θC þ � 12EI1

h31
� 12EI2

h3
2

 !
Δ� V F

AB þ V F
DC þ

X
Fx ¼ 0

ð10:25Þ

Once the loading and properties are specified, one can solve (10.25) for θB, θC, and Δ. The end

actions are then evaluated with (10.24).

10.5.1 Portal Frames: Symmetrical Loading

Consider the symmetrical frame defined in Fig. 10.16. When the loading is also symmetrical, nodes B

and C do not displace laterally, and therefore there is no chord rotation for members AB and

CD. Also, the rotations at B and C are equal in magnitude but opposite in sense (θB ¼ –θC). With

these simplifications, the expressions for the end moments reduce to

Fig. 10.16 Portal frame—

symmetrical loading. (a)
Loading. (b) Deflected
shape. (c) Moment diagram
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MBC ¼ 2EI2
L

θBð Þ þM F
BC

MBA ¼ 2EI1
h

2θBð Þ

MAB ¼ 1

2
MBA

ð10:26Þ

Moment equilibrium for node B requires

MBC þMBA ¼ 0 ð10:27Þ
Substituting for the moments, the equilibrium equation expands to

2EθB 2
I1
h
þ I2

L


 �
¼ �M F

BC

We solve for θB and then evaluate the end moments.

MBA ¼ 2MAB ¼ �MBC ¼ �1
1þ I2=Lð Þ=2 I1=hð ÞM

F
BC ð10:28Þ

The bending moment diagram is plotted in Fig. 10.16c.

10.5.2 Portal Frames: Anti-symmetrical Loading

Lateral loading produces anti-symmetrical behavior, as indicated in Fig. 10.17, and chord rotation for

members AB and CD. In this case, the nodal rotations at B and C are equal in both magnitude and

sense (θB ¼ θC). The chord rotation is related to the lateral displacement of B by

ρAB ¼ �
vB
h

ð10:29Þ

Note that the chord rotation sign convention for the slope-deflection equations (10.12a, 10.12b) is

positive when counterclockwise. Therefore for this choice of the sense of vB, the chord rotation for

AB is negative. The corresponding expressions for the end moments are

MBC ¼ 2E
I2
L

3θBð Þ

MBA ¼ 2E
I1
h

2θB þ 3vB
h

� �

MAB ¼ 2E
I1
h

θB þ 3vB
h

� � ð10:30Þ

Equilibrium requires

MBC þMBA ¼ 0

� VAB þ P

2
¼ 0

ð10:31Þ
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We determine the end shear with the moment equilibrium equation for member AB.

VAB ¼ MBA þMAB

h

¼ 2EI1

h2
3θB þ 6

vB
h

� � ð10:32Þ

Fig. 10.17 Portal frame—

anti-symmetric loading.

(a) Loading. (b) Deflected
shape. (c) Moment diagram
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Substituting for the moments and shear in (10.31) leads to two equations with two unknowns, θB
and vB. The solution has the following form

θB ¼ �h
2P

4EI1

1

1þ 6 I2=Lð Þ= I1=hð Þ

vB ¼ h3P

24EI1

1þ 2

3
I1=hð Þ= I2=Lð Þð Þ

1þ I1=hð Þ=6 I2=Lð Þ

0
B@

1
CA

ð10:33Þ

We evaluate MBA and MAB using (10.30).

MBA ¼ Ph

4

1

1þ 1

6
I1=hð Þ= I2=Lð Þ

MAB ¼ Ph

4

1þ 1=3 I1=hð Þ= I2=Lð Þ
1þ 1=6 I1=hð Þ= I2=Lð Þ

ð10:34Þ

A typical moment diagram is shown in Fig. 10.17c. Note the sign convention for bending moment.

When the girder is very stiff with respect to the column, I2=L� I1=h the solution approaches

θB! 0

vB! h3P

24EI1

MBA! Ph

4

MAB! Ph

4

ð10:35Þ

Example 10.7: Frame with No Sideway

Given: The frame defined in Fig. E10.7a.

Fig. E10.7a
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Determine: The end actions.

Solution: The fixed end moments are (see Table 9.1)

M F
BC ¼

40 1:5ð Þ 4:5ð Þ2
6ð Þ2 ¼ 33:75kNm

M F
CB ¼

40 4:5ð Þ 1:5ð Þ2
6ð Þ2 ¼ �11:25kNm

The modified slope-deflection equations (10.22a) which account for moment releases at A, C,

and D are

MAB ¼ MDB ¼ MCB ¼ 0

MBA ¼ MBAmodified
¼ 3

E 3Ið Þ
9

θBð Þ ¼ EIθB

MBD ¼ MBDmodified
¼ 3

E Ið Þ
3:6

θBð Þ ¼ 0:83ð ÞEIθB

MBC ¼ MBCmodified
¼ 3

E 3Ið Þ
6

θBð Þ þ M F
BC �

1

2
M F

CB


 �
¼ 1:5ð ÞEIθB þ 39:375

Moment equilibrium for node B requires (Fig. E10.7b)

Fig. E10.7b

MBA þMBC þMBD þ 30 ¼ 0

+
EIθB þ 0:83ð ÞEIθB þ 1:5ð ÞEIθB þ 39:375þ 30 ¼ 0

+
EIθB ¼ �20:83
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The final bending moments at B are

MBA ¼ �20:8) MBA ¼ 20:8kNmclockwise

MBD ¼ �17:3) MBD ¼ 17:3kNmclockwise

MBC ¼ 8:1 ) MBC ¼ 8:1kNmcounterclockwise

Noting the free body diagrams below, we find the remaining end actions (Figs. E10.7c and

E10.7d).

Fig. E10.7c Free body diagrams

Fig. E10.7d Reactions

Example 10.8: Frame with Sideway

Given: The frame defined in Fig. E10.8a.
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Fig. E10.8a

Determine: The end actions.

Solution: The fixed end moments are (see Table 9.1)

M F
BC ¼

9 5ð Þ 15ð Þ2
202

þ 9 15ð Þ 5ð Þ2
202

¼ 33:75kip ft

M F
CB ¼ �M F

BC ¼ �33:75kip ft

The chord rotations follow from the sketch below (Fig. E10.8b):

Fig. E10.8b

ρ ¼ ρAB ¼ ρCD ¼ �
Δ

10

ρBC ¼ 0
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Substituting for the chord rotations in the slope-deflection equations [(10.12a, 10.12b) and (10.22a,

10.22b)] results in (Figs. E10.8c and E10.8d)

MAB ¼ MDC ¼ 0

MBA ¼ MBAmodified
¼ 3E Ið Þ

10
θB þ ρf g ¼ 0:3EIθB þ 0:3EI ρ

MBC ¼ 2E 2Ið Þ
20

2θB þ θCf g þ 33:75 ¼ 0:4EIθB þ 0:2EIθC þ 33:75

MCB ¼ 2E 2Ið Þ
20

θB þ 2θCf g � 33:75 ¼ 0:2EIθB þ 0:4EIθC � 33:75

MCD ¼ MCDmodified
¼ 3E Ið Þ

10
θC þ ρf g ¼ 0:3EIθC þ 0:3EI ρ

Fig. E10.8c

Also

VAB ¼ MBA

10

VDC ¼ �MCD

10

The end actions are listed in Fig. E10.8c.

Enforcing equilibrium at nodes B and C yields two equations,

MBC þMBA ¼ 0! 0:7EIθB þ 0:2EIθC þ 0:3EI ρþ 33:75 ¼ 0

MCB þMCD ¼ 0! 0:2EIθB þ 0:7EIθC þ 0:3EI ρ� 33:75 ¼ 0

Summing horizontal forces for the entire frame leads to an additional equation,X
Fx ¼ 0 ! þ � VAB þ VDC þ 6 ¼ 0

+
� 0:3EIθB � 0:3EIθC � 0:6EI ρþ 60 ¼ 0

Solving these three equations, one obtains

EIθB ¼ �117:5kip ft2

EIθC ¼ 17:5 kip ft2

EI ρ ¼ 150 kip ft2

8>><
>>:
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and then

MBA ¼ þ9:75
MBC ¼ �9:75
MCB ¼ �50:25
MCD ¼ þ50:25
VAB ¼ :975

VDC ¼ �5:25

8>>>>>>>>>>><
>>>>>>>>>>>:

)

MBA ¼ 9:75kip ft

MBC ¼ 9:75kip ft

MCB ¼ 50:25kip ft

MCD ¼ 50:25kip ft

VAB ¼ :975kip

VDC ¼ 5:25kip

counterclockwise

clockwise

clockwise

counterclockwise

←

←

8>>>>>>>>>>><
>>>>>>>>>>>:

Noting the free body diagrams below, we find the remaining end actions (Figs. E10.8d and

E10.8e).

Fig. E10.8d Free body diagrams

Fig. E10.8e Reactions

10.6 The Moment Distribution Solution Procedure for Multi-span Beams

10.6.1 Introduction

In the previous sections, we developed an analysis procedure for multi-span beams that is based on

using the slope-deflection equations to establish a set of simultaneous equations relating the nodal

rotations. These equations are equivalent to the nodal moment equilibrium equations. We generated

the solution by solving these equations for the rotations and then, using these values, we determined

the end moments and end shears. The solution procedure is relatively straightforward from a
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mathematical perspective, but it is difficult to gain some physical insight as to how the structure is

responding during the solution process. This is typical of mathematical procedures which involve

mainly number crunching and are ideally suited for computer-based solution schemes.

The Moment Distribution Method is a solution procedure developed by Structural Engineers to

solve the nodal moment equilibrium equations. The method was originally introduced by Cross [1]

and has proven to be an efficient hand-based computational scheme for beam- and frame-type

structures. Its primary appeal is its computational simplicity.

The solution is generated in an iterative manner. Each iteration cycle involves only two simple

computations. Another attractive feature is the fact that one does not have to formulate the nodal

equilibrium equations expressed in terms of the nodal displacements. The method works directly with

the end moments. This feature allows one to assess convergence by comparing successive values of

the moments as the iteration progresses. In what follows, we illustrate the method with a series of

beam-type examples. Later, we extend the method to frame-type structures.

Consider the two-span beam shown in Fig. 10.18. Supports A and C are fixed, and we assume that

there is no settlement at B.

We assume initially that there is no rotation at B. Noting Fig. 10.19, the net unbalanced

clockwise nodal moment at B is equal to the sum of the fixed end moments for the members incident

on node B.

ð10:36Þ

This unbalanced moment will cause node B to rotate until equilibrium is restored. Using the slope-

deflection equations, we note that the increment in the end moment for a member which is incident on

B due to a counterclockwise rotation at B is proportional to the relative stiffness I/L for the member.

The moments acting on the node are of opposite sense, i.e., clockwise, from Newton’s law. The

equilibrium state for the node is shown in Fig. 10.20.

Fig. 10.18 Two-span

beam with fixed ends

Fig. 10.19 Nodal

moments

Fig. 10.20 Moment

equilibrium for node B
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Equilibrium requires the moment sum to vanish.

ΔMBA þ ΔMBC þMB,net ¼ 0

Substituting for the moment increments yields an equation for θB

4EI1
L1
þ 4EI2

L2

� �
θB ¼ �MB, net

+

θB ¼ 1

4EI1=L1ð Þ þ 4EI2=L2ð Þð Þ �MB,netð Þ

ð10:37Þ

Lastly, we use this value of θB to evaluate the incremental end moments.

ΔMBA ¼ 4EI1=L1ð Þ
4EI1=L1ð Þ þ 4EI2=L2ð Þð Þ �MB,netð Þ

ΔMBC ¼ 4EI2=L2ð Þ
4EI1=L1ð Þ þ 4EI2=L2ð Þð Þ �MB,netð Þ

ð10:38Þ

The form of the solution suggests that we define a dimensionless factor, DF, for each member as

follows:

DFBA ¼ I1=L1
I1=L1ð Þ þ I2=L2ð Þ

DFBC ¼ I2=L2
I1=L1ð Þ þ I2=L2ð Þ

ð10:39Þ

Note that DFBA + DFBC ¼ 1.0. With this notation, the expressions for the incremental end

moments reduce to

ΔMBA ¼ �DFBA MB,net

� �
ΔMBC ¼ �DFBC MB,net

� � ð10:40Þ

One distributes the unbalanced fixed end moment to the members incident on the node according

to their distribution factors which depend on their relative stiffness.

The nodal rotation at B produces end moments at A and C. Again, noting the slope-deflection

equations, these incremental moments are related to θB by

ΔMAB ¼ 2EI1
L1

θB ¼ 2EI1=L1
4EI1=L1ð Þ þ 4EI2=L2ð Þf g �MB,netð Þ ¼ �1

2
DFBA MB,netð Þ

ΔMCB ¼ 2EI2
L2

θB ¼ 2EI2=L2
4EI1=L1ð Þ þ 4EI2=L2ð Þf g �MB,netð Þ ¼ �1

2
DFBC MB,netð Þ

ð10:41Þ

Comparing (10.41) with (10.40), we observe that the incremental moments at the far end are ½ the
magnitude at the distributed moments at the near end.
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ΔMAB ¼ 1

2
ΔMBA

ΔMCB ¼ 1

2
ΔMBC

ð10:42Þ

We summarize the moment distribution procedure for this example. The steps are:

1. Determine the distribution factors at each free node (only node B in this case)

2. Determine the fixed end moments due to the applied loading and chord rotation for the beam

segments.

3. Sum the fixed end moments at node B. This sum is equal to the unbalanced moment at node B.

4. Distribute the unbalanced nodal moment to the members incident on node B.

5. Distribute one half of the incremental end moment to the other end of each member incident on

node B.

Executing these steps is equivalent to formulating and solving the nodal moment equilibrium

equations at node B. Moment distribution avoids the operation of setting up and solving the equations.

It reduces the effort to a series of simple computations.

Example 10.9: Moment Distribution Method Applied to a Two-Span Beam

Given: The two-span beams shown in Fig. E10.9a.

Fig. E10.9a

Determine: The end moments using moment distribution.

Solution: The fixed end moments and the distribution factors for node B are listed below.

M F
AB ¼ 30

3ð Þ2
12
¼ 22:5kNm M F

BC ¼ 0

M F
BA ¼ �22:5kNm M F

CB ¼ 0

At joint B

X I

L
¼ 1

3
þ 3I

6
¼ 5I

6

DFBA ¼ I=3

5I=6
¼ 0:4 DFBC ¼ 3I=6

5I=6
¼ 0:6

8><
>:

It is convenient to list the end moments and distribution factors on a sketch superimposed on the

multi-span beam. A typical sketch is shown below.We distribute the 22.5 kNm unbalancedmoment at

B and carry over the moments to A and C. After one distribution, moment equilibrium at B is restored.
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Since the end moments are known, one can determine the end shear forces using the static

equilibrium equations for the member.

Lastly, the reactions are listed below.

10.6.2 Incorporation of Moment Releases at Supports

We consider next the case where an end member has a moment release, as shown in Fig. 10.21. We

work with the modified slope-deflection equation for member AB developed in Sect. 10.3. The end

moments are given by (10.22a, 10.22b) which is listed below for convenience.

MBAmodified
¼ 3EI1

L1
θB þ M F

BA �
1

2
M F

AB


 �
¼ 3EI1

L1
θB þM F

BAmodified

MAB ¼ 0
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Then, the increment in moment for member BA due to a rotation at B is

ΔMBA ¼ 4E
3

4

I1
L1

� �
θB

ΔMAB ¼ 0

ð10:43Þ

We use a reduced relative rigidity factor (3/4)I1/L1 when computing the distribution factor for

node B. Also, we use a modified fixed end moment (see Table 9.2). There is no carry-over moment

to A.

Example 10.10: Two-Span Beam with a Moment Release at One End

Given: The beam shown in Fig. E10.10a.

Fig. E10.10a

Determine: The end actions.

Solution: Since member AB has a moment release, we work with the modified slope-deflection

equation for member AB. The computational details are listed below.

The modified fixed end moments (see Table 9.2):

M F
BAmodified

¼ M F
BA �

1

2
M F

AB ¼ �
30 3ð Þ2

8
¼ �33:75kNm

M F
AB
¼ 0

Fig. 10.21 Two-span

beam with a moment

release at a support
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The modified distribution factors for node B:

X
jointB

1

L
¼ 3

4

I

3

� �
þ 3I

6

� �
¼ 3I

4

DFBA ¼ 3=4ð Þ I=3ð Þ
3I=4ð Þ ¼ 1

3

DFBC ¼ 1� DFBA ¼ 2

3

The distribution details are listed below.

Noting the free body diagrams below, we find the remaining end actions (Figs. E10.10b and

E10.10c).

Fig. E10.10b Free body diagrams

Fig. E10.10c Reactions

10.6.3 Moment Distribution for Multiple Free Nodes

The previous examples have involved only a single free node. We now extend the method for

multiple free nodes. The overall approach is the same. We just have to incorporate an iterative

procedure for successively balancing the nodal moments.
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Consider the three-span beam shown in Fig. 10.22. We assume nodes B and C are fixed, determine

the fixed end moments for the members, and compute the unbalanced nodal moments at nodes B and

C. If these moments are not equal to zero, the nodes will rotate until equilibrium is restored. Allowing

a node, such as B, to rotate produces incremental end moments in members AB and BC equal to

ΔMBA ¼ 4EI1
L1

θB ΔMAB ¼ 1

2
ΔMBA

ΔMBC ¼ 4EI2
L2

θB ΔMCB ¼ 1

2
ΔMBC

ð10:44Þ

Similarly, a rotation at node C produces incremental end moments in segment BC and CD.

ΔMCB ¼ 4EI2
L2

θC ΔMBC ¼ 1

2
ΔMCB

ΔMCD ¼ 4EI3
L3

θC ΔMDC ¼ 1

2
ΔMCD

ð10:45Þ

The distribution and carry-over process is the same as described previously. One evaluates the

distribution factors using (10.39) and takes the carry-over factor as ½. Since there is more than one

node, we start with the node having the largest unbalanced moment, distribute this moment, and carry

over the distributed moment to the adjacent nodes. This operation changes the magnitudes of the

remaining unbalanced moments. We then select the node with the “largest” new unbalanced moment

and execute a moment distribution and carry-over at this node. The solution process proceeds by

successively eliminating residual nodal moments at various nodes throughout the structure. At any

step, we can assess the convergence of the iteration by examining the nodal moment residuals.

Usually, only a few cycles of distribution and carry-over are sufficient to obtain reasonably accurate

results.

Example 10.11: Moment Distribution Method Applied to a Three-Span Beam

Given: The three-span beam defined in Fig. E10.11a.

Fig. E10.11a

Fig. 10.22 Three span

beam
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Determine: The end actions.

Solution: The sequence of nodal moment balancing is at the following nodes: C, B, C, B, C. We stop

when the unbalanced nodal moment is approximately less than 0.5 kip ft.

The computations and distribution details are listed below.

M F
AB ¼ 2

10ð Þ2
12
¼ 16:67kip ft M F

BA ¼ �16:67kip ft

M F
BC ¼ 2

20ð Þ2
12
¼ 66:67kip ft M F

CB ¼ �66:67kip ft

M F
CD ¼ M F

DC ¼ 0

At joint B or C

X
modified

I

L
¼ I

10
þ 3I

20
¼ 5I

20

DFBA ¼ DFCD ¼ I=10

5I=20
¼ 0:4

DFCB ¼ DFBC ¼ 1� 0:4 ¼ 0:6

8>>>>>>>>><
>>>>>>>>>:
DFDC ¼ DFAB ¼ 1

Noting the free body diagrams below, we find the remaining end actions (Figs. E10.11b and

E10.11c).
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Fig. E10.11b Free body diagrams

Fig. E10.11c Reactions

Example 10.12: Example 10.11 with Moment Releases at the End Supports

Given: A three-span beam with moment releases at its end supports (Figs. E10.12a, E10.12b,

E10.12c).

Fig. E10.12a

Determine: The end actions.

Solution: We rework Example 10.11 with moment releases at A and D. We use reduced relative

rigidities for members AB and CD, and a modified fixed end moment for AB. There is no carry-over

from B to A or from C to D. Details are listed below.
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M F
BA

modified
¼ M F

BA �
1

2
M F

AB ¼ �
2 10ð Þ2

8
¼ �25kip ft

M F
AB

modified
¼ 0

M F
BC ¼

2 20ð Þ2
12

¼ 66:67kip ft

M F
CB ¼ �66:67kip ft

M F
CD ¼ M F

DC ¼ 0

At joint B or C

X
modified

I
L ¼

3

4

I

10

� �
þ 3I

20

� �
¼ 9I

40

DFBA
modified

¼ DFCD
modified

¼ 3I=40

9I=40
¼ 1

3

DFCB ¼ DFBC ¼ 1� 1

3
¼ 2

3

8>>>>>>>><
>>>>>>>>:

DFDC ¼ DFAB ¼ 0
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The distribution details and end actions are listed below.

Fig. E10.12b Free body diagrams

Fig. E10.12c Reactions
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10.7 Moment Distribution: Frame Structures

10.7.1 Frames: No Sideway

Sideway does not occur if there is a lateral restraint. Frames with no sideway are treated in a similar

way as beams. The following examples illustrate the process.

Example 10.13: Moment Distribution Method for a Frame with No Sideway

Given: The frame shown in Fig. E10.13a.

Fig. E10.13a

Determine: The end actions.

Solution: The distribution details and the fixed end moments and end actions are listed below.

M F
BA

modified
¼ M F

BA �
1

2
M F

AB ¼ �
1:2 30ð Þ2

8
¼ �135kip ft

M F
AB

modified
¼ 0

M F
BC

modified
¼ M F

BC �
1

2
M F

CB ¼ þ
21PL

128
¼ 26:25kip ft

M F
CB

modified
¼ 0
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At joint B

X
modified

I

L
¼ 3

4

3I

30
þ 3I

20
þ I

12

� �
¼ I

4

DFBA
modified

¼ 3=4 3I=30ð Þ
I=4

¼ 0:3

DFBC
modified

¼ 3=4 3I=20ð Þ
I=4

¼ 0:45

DFBC
modified

¼ 3=4 I=12ð Þ
I=4

¼ 0:25

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

The distribution details are listed in Fig. E10.13b.

Fig. E10.13b

Noting the free body diagrams below, we find the remaining end actions (Fig. E10.13c).
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Fig. E10.13c End actions

Example 10.14: Symmetrical Two-Bay Portal Frame—Symmetrical Loading

Given: The two-bay frame defined in Fig. E10.14a.

Fig. E10.14a

Determine: The bending moment distribution and end actions using moment distribution.

Solution: We use reduced rigidity factors for the column members and no carry-over to the hinged

ends at nodes A, D, and F (Fig. E10.14b).
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At node B or E

X I

L
¼ I

6

� �
3

4
þ 3I

18

� �

DFBAmodified
¼ DFEFmodified

¼ I=6ð Þ3=4
I=6ð Þ3=4þ 3I=18ð Þ ¼

3

7

DFBC ¼ DFEC ¼ 1� 3

7
¼ 4

7

8>>>>>>>><
>>>>>>>>:

At node C

X I

L
¼ I

6

� �
3

4
þ 3I

18
þ 3I

18
¼ 11

24
I

DFCDmodified
¼ I=6ð Þ3=4

11=24ð ÞI ¼
3

11

DFCB ¼ DFCE ¼ 1

2
1� 3

11

� �
¼ 4

11

8>>>>>>>><
>>>>>>>>:

The fixed end moments are

M F
BC ¼ �M F

CB ¼ M F
CE ¼ �M F

EC ¼ þ
30 18ð Þ2

12
¼ þ810kNm

Fig. E10.14b Distribution factors

The moment distribution sequence is listed in Fig. E10.14c. Note that there is never any redistri-

bution at node C because of symmetry (Fig. E10.14d).

Fig. E10.14c

712 10 The Displacement Method



Fig. E10.14d Free body diagram

The final bending moment distributions are plotted in Fig. E10.14e.

Fig. E10.14e

Example 10.15: Two-Bay Portal Frame—Support Settlement

Given: The frame shown in Fig. E10.15a. Consider Support D to experience a downward settlement

of δ ¼ 1 in.

Fig. E10.15a
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Determine: The end moments. Take E ¼ 29,000 ksi and I ¼ 2000 in.4

Solution: We use reduced factors for the column members AB and EF and no carry-over to the

hinged ends. The distribution factors are listed on the following sketch (Fig. E10.15b).

Fig. E10.15b Distribution factors

AtnodeBorE

X I

L
¼ I

20

� �
3

4
þ 3I

60

� �
¼ 7I

80

DFBAmodified
¼ DFEFmodified

¼ I=20ð Þ3=4
7I=80

¼ 3

7

DFBC ¼ DFEC ¼ 1� 3

7
¼ 4

7

8>>>>>>><
>>>>>>>:

AtnodeC

X I

L
¼ I

20
þ 3I

60
þ 3I

60
¼ 3I

20

DFCD ¼ DFCB ¼ DFCE ¼ I=20

3I=20
¼ 1

3

8>><
>>:

Settlement at D produces chord rotation in members BC and CE. The corresponding rotations for a

1 in. settlement are

ρBC ¼ �
δ

L

ρCE ¼ þ
δ

L

These rotations produce the following fixed end moments (see Table 9.1),

M F
BC ¼ M F

CB ¼
6E 3Ið Þδ

L2
¼ þ 18EIδ

L2
¼ 18 29; 000ð Þ 2000ð Þ 1ð Þ

60ð Þ2
1

12ð Þ3 ¼ 167:8kip ft

M F
CE ¼ M F

EC ¼ �
6E 3Ið Þδ

L2
¼ � 18EIδ

L2
¼ �167:8kip ft
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These moments are distributed at nodes B and E. Note that no unbalanced moment occurs at node

C (Fig. E10.15c).

Fig. E10.15c

The final bending moment distributions are plotted in Fig. E10.15d.

Fig. E10.15d

Example 10.16: Two-Bay Portal Frame—Temperature Increase

Given: The frame shown in Fig. E10.16a. Consider members BC and CE to experience a temperature

increase of ΔT.

Fig. E10.16a

Determine: The end moments.
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Solution: The top members will expand, causing members AB and EF to rotate. Member CD will not

rotate because of symmetry. Noting Fig. E10.16b, the rotations are

ρAB ¼
u=2

LAB

ρEF ¼ �
u=2

LEF

Fig. E10.16b

Assuming a uniform temperature increase over the total span, u is equal to

u ¼ αΔTð Þ
X

L ¼ 120αΔT

This motion is symmetrical and known. Therefore, there will be no additional displacement

(therefore no additional sideway).

Noting Table 9.2, the fixed end actions corresponding to the case where there is a hinge at one

end are

M F
BAmodified ¼ �

3EI

LAB

ρAB ¼ �
3EI

20 12ð Þ 3αΔTð Þ ¼ � 3

80
EIαΔT

M F
EFmodified ¼ þ

3

80
EIαΔT

We assume the material is steel (E ¼ 3 � 104 ksi, α ¼ 6.6 � 10–6/�F), ΔT ¼ 120 �F, and

I ¼ 2000 in.4.

The corresponding fixed end moments are

M F
BAmodified ¼ �1782kip in: ¼ �148:5kip ft

M F
EFmodified ¼ þ1782kip in: ¼ þ148:5kip ft

The distribution factors are
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At node B or E

X I

L
¼ I

20

� �
3

4
þ 3I

60

� �
¼ 7I

80

DFBAmodified
¼ DFEFmodified

¼
I=20ð Þ3

4
7I=80

¼ 0:43

DFBC ¼ DFEC ¼ 1� 0:43 ¼ 0:57

8>>>>>>>>>><
>>>>>>>>>>:

At node C

X I

L
¼ I

20

� �
3

4
þ 3I

60
þ 3I

60
¼ 11I

80

DFCDmodified
¼

I=20ð Þ3
4

11I=80
¼ 0:28

DFCB ¼ DFCE ¼ 1� 0:28

2
¼ 0:36

8>>>>>>>>>>>><
>>>>>>>>>>>>:

The distribution factors are listed on the following sketch.

The distribution details are listed below.
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The final bending moment distributions are plotted in the following figure.

10.7.2 Frames with Sideway

Given a frame structure, one needs to identify whether there will be chord rotation due to lateral

displacement. If sideway is possible, we introduce “holding” forces applied at certain nodes to

prevent this motion and carry out a conventional moment distribution based on distribution and

carry-over factors. Once the fixed end moments are distributed, we can determine the member shear

forces, and using these values, establish the magnitude of the holding forces. This computation is

illustrated in Fig. 10.23. There is one degree of sideway, and we restrain node B. The corresponding

lateral force is H1. Note that we generally neglect axial deformation for framed structures so fixing B

also fixes C.

The next step involves introducing an arbitrary amount of the lateral displacement that we had

restrained in Step 1, computing the chord rotations and corresponding fixed end moments, applying

Fig. 10.23 (a) Frame with

sideway. (b) Sideway
restraining force—case I
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the holding force again, and then distributing the fixed end moments using the conventional

distribution procedure. The holding force produced by this operation is illustrated in Fig. 10.24.

One combines the two solutions such that the resulting sideway force is zero.

Final solution ¼ case Iþ H1

H2

� �
case II ð10:46Þ

The fixed end moments due to the chord rotation produced by the horizontal displacement, Δ, are
(see Table 9.1)

M F
BA ¼ M F

AB ¼ �
6EIAB

L2AB
Δ ¼ � 6EIAB

LAB
ρAB

M F
DC ¼ M F

CD ¼ �
6EICD

L2CD
Δ ¼ � 6EICD

LCD
ρCD

where moment quantities are counterclockwise when positive. Following this approach, one works

only with chord rotation quantities and converts these measures into equivalent fixed end moments.

The standard definition equations for the distribution and carry-over factors are employed to distrib-

ute the moments.

Example 10.17: Portal Bent—Sideway Analysis

Given: The portal frame defined in Fig. E10.17a.

Fig. E10.17a

Fig. 10.24 Sideway

introduced—case II
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Determine: The end actions.

Solution: Since the loading is not symmetrical, there will be lateral motion (sideway). We restrain

node B as indicated in Fig. E10.17b. The distribution factors are also indicated in the sketch.

Fig. E10.17b

We compute the fixed end moments due to the 10 kip load.

M F
BC ¼

10 5ð Þ 15ð Þ2
202

¼ þ28:13kip ft

M F
CB ¼ �

10 15ð Þ 5ð Þ2
202

¼ �9:38kip ft

Details of the moment distribution and the end moments for case I are listed below (Fig. E10.17c).

The holding force is determined by summing the shear forces in the columns and is equal to 1.1 kip.

Fig. E10.17c Case I—end moments and column shear
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Next, we introduce a lateral displacement to the left equal to Δ. Figure E10.17d shows this

operation.

Fig. E10.17d Case II—sideway introduced

The chord rotations and corresponding fixed end moments are

M F
BA ¼ M F

AB ¼ M F
DC ¼ M F

CD ¼ �
6EIΔ

h2

Since we are interested only in relative moments, we take EIΔ/h2 ¼ 1. Details of the moment

distribution and the end moments for case II are listed below (Fig. E10.17e).

Fig. E10.17e Case II—end moments and column shear

We scale this solution byH1/H2 ¼ –1.1/1.68 and then combine these scaled results with the results

for case I.
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Final end moments ¼ end moments case I + end moments case II (H1/H2).

The final moments are summarized in Fig. E10.17f followed by free body diagrams.

Fig. E10.17f Final end moments

Using these moments, we find the axial and shear forces.

Example 10.18: Frame with Inclined Legs

Given: The frame shown in Fig. E10.18a.

Fig. E10.18a
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Determine: The end actions.

Solution: The distribution factors are listed in the sketch below (Fig. E10.18b).

Fig. E10.18b

There are no fixed end moments due to member loads. However, we need to carry out a sideway

analysis (case II). We introduce a horizontal displacement at B and compute the corresponding

rotation angles.

The rotation of members BC and CD is determined by requiring the horizontal displacement of

node C to be equal to Δ. The angles follow from the above sketch

ψAB ¼
Δ

3

ψBC ¼
3=4Δ

3
¼ Δ

4

ψDC ¼
5=4Δ

7:5
¼ Δ

6

Finally, the chord rotations are (note: positive sense is counterclockwise)
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ρAB ¼ �
Δ

3

ρBC ¼ þ
Δ

4

ρDC ¼ �
Δ

6

Using these values, we compute the fixed end moments due to chord rotation.

M F
AB ¼ M F

BA ¼
6 EIð Þ
3ð Þ

Δ

3

� �
¼ þ2

3
EIΔð Þ

M F
BC ¼ M F

CB ¼ �
6 EIð Þ
3ð Þ

Δ

4

� �
¼ �1

2
EIΔð Þ

M F
CD ¼ M F

DC ¼
6 2:5EIð Þ

7:5ð Þ
Δ

6

� �
¼ þ1

3
EIΔð Þ

Since we need only relative moments, we take EIΔ ¼ 90

Then

M F
AB ¼ M F

BA ¼ þ60kNm

M F
CB ¼ M F

BC ¼ �45kNm

M F
DC ¼ M F

CD ¼ þ30kNm

Next, we distribute the moments as shown below
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The end moments values are

Using these moments, we find the axial and shear forces.

Note that one needs the axial force in member BC in order to determine H2.

Summing horizontal force components at B leads to H2.

Therefore

H2 ¼ 35þ 35 ¼ 70kN

Given that the actual horizontal force is 45 kN, we scale the sideway moments by H1/H2 ¼
45/70 ¼ 9/14.
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Final end moments ¼ end moments case II
H1

H2

� �

The final end moments (kN m) are listed below (Fig. E10.18c).

Fig. E10.18c Final end moments

Using these moments, we find the axial and shear forces.

Example 10.19: Computer-Based Analysis—Frame with Inclined Legs

Given: The frame shown in Fig. E10.19a.

Fig. E10.19a
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Determine: The displacement components at nodes 2 and 3, the bending moment distribution, and

the reactions. Consider a range of values for I (I ¼ 100, 200, and 400 in.4). Take A ¼ 20 in.2. Use

computer software.

Solution: The computer generated deflection profiles and the reactions and moment diagram are

listed below (Figs. E10.19b, E10.19c, E10.19d, E10.19e, E10.19f). Hand computation is not feasible

for this task.

Fig. E10.19b Deflection profile—I ¼ 100 in.4

Fig. E10.19c Deflection profile—I ¼ 200 in.4
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Fig. E10.19d Deflection Profile—I ¼ 400 in.4

Fig. E10.19e Moment diagram
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Fig. E10.19f Reactions

Note that the member forces are invariant since the relative stiffness of the members is the same.

Also, the displacement varies linearly with I.

10.8 Plane Frames: Out of Plane Loading

We discussed this case briefly in Chap. 4 when we dealt with statically determinate plane frame

structures loaded normal to the plane such as highway signs. We extend the analysis methodology

here to deal with statically indeterminate cases. Our strategy is based on the displacement method,

i.e., we use generalized slope-deflection equations for the members and enforce equilibrium at the

nodes. This approach is more convenient than the force method and has the additional advantage that

it can be readily adopted for digital computation.

10.8.1 Slope-Deflection Equations: Out of Plane Loading

Consider the prismatic member shown in Fig. 10.25a. We assume that the member is loaded in the

X–Z plane (note that all the previous discussions have assumed the loading is in the X–Y plane).

The relevant displacement measures for this loading are the rotation θx, the rotation θy, and the

transverse displacement vz. Figure 10.25b defines the positive sense for these quantities and the

corresponding end actions at B.

Following the procedure described in Sect. 10.3, one can establish the equations relating the end

actions at A and B to the end displacements at A and B. Their form is
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VlAz ¼ 6EIy

L2
θBy þ θAy
� �� 12EIy

L3
vBz � vAzð Þ þ V F

lAz

MlAx ¼ �GJ

L
θBx � θAxð Þ þM F

lAx

MlAy ¼ 2EIy
L

θBy þ 2θAy
� �� 6EIy

L2
vBz � vAzð Þ þM F

lAy

VlBz ¼ � 6EIy

L2
θBy þ θAy
� �þ 12EIy

L3
vBz � vAzð Þ þ V F

lBz

MlBx ¼ GJ

L
θBx � θAxð Þ þM F

lBx

MlBy ¼ 2EIy
L

2θBy þ θAy
� �� 6EIy

L2
vBz � vAzð Þ þM F

lBy

ð10:47Þ

where GJ is the torsional rigidity for the cross section, and Iy is the second moment of area with

respect to y-axis.

Iy ¼
ð
A

z2dA ð10:48Þ

The remaining steps are essentially the same as for the planar case. One isolates the members and

nodes and enforces equilibrium at the nodes. In what follows, we illustrate the steps involved.

Consider the structure shown in Fig. 10.26. We suppose the supports are rigid. There are three

unknown nodal displacement measures, θx, θy, and vz at node 1.

Fig. 10.25 (a) Prismatic

member (b) Positive sense
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Free body diagrams for the members incident on node 1 are shown below in Fig. 10.27. Requiring

equilibrium at node 1 leads to the following equations:

V
1ð Þ
Bz þ V

2ð Þ
Bz þ P ¼ 0

M
1ð Þ
Bx �M

2ð Þ
By ¼ 0

M
1ð Þ
By þM

2ð Þ
Bx ¼ 0

ð10:49Þ

Noting the relationship between the variables,

θ 1ð Þ
Bx ¼ θ1x

θ 2ð Þ
Bx ¼ θ1y

θ 1ð Þ
By ¼ θ1y

θ 2ð Þ
By ¼ �θ1x

v
1ð Þ
Bz ¼ v

2ð Þ
Bz ¼ v1z

ð10:50Þ

the member equations take the following form,

M
1ð Þ
Bx ¼

GJ1
L1

θ1x

M
1ð Þ
By ¼

4EI1
L1

θ1y þ 6EI1

L21
v1z

V
1ð Þ
Bz ¼

12EI1

L31
v1z � 6EI1

L21
θ1y

and

M
2ð Þ
Bx ¼

GJ2
L2

θ1y

M
2ð Þ
By ¼

4EI2
L2
�θ1xð Þ þ 6EI2

L22
v1z

V
2ð Þ
Bz ¼

12EI2

L32
v1z � 6EI2

L22
�θ1xð Þ

ð10:51Þ

Fig. 10.26 Plane grid
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Lastly, we substitute for the end actions in the equilibrium equations (10.49) leading to

12E
I1

L31
þ I2

L32

� �
v1z þ 6EI2

L22
θ1x � 6EI1

L21
θ1y þ P ¼ 0

� 6EI2

L22
v1z þ GJ1

L1
þ 4EI2

L2

� �
θ1x ¼ 0

6EI1

L21
v1z þ GJ2

L2
þ 4EI1

L1

� �
θ1y ¼ 0

ð10:52Þ

The solution is

θ1x ¼ 6EI2=L
2
2

GJ1=L1 þ 4EI2=L2ð Þ v1z

θ1y ¼ �6EI1=L21
GJ2=L2 þ 4EI1=L1ð Þ v1z

12E
I1

L31
þ I2

L32

� �
þ 6EI1=L

2
1

� �2
GJ2=L2 þ 4EI1=L1ð Þ þ

6EI2=L
2
2

� �2
GJ1=L1 þ 4EI2=L2ð Þ

( )
v1z ¼ �P

ð10:53Þ

Fig. 10.27 Free body

diagrams
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When the member properties are equal,

I1 ¼ I2

L1 ¼ L2

J1 ¼ J2

the solution reduces to

v1z ¼ �P

6EI

L3

� �
1þ

12EI

L2

GJ þ 4EIð Þ

0
B@

1
CA

θ1y ¼ �θ1x ¼ 6EI=L3

GJ þ 4EIð Þ v1z ¼
�P

GJ þ 4EIð Þ þ 12EI

L2

� �

end shear forces V
1ð Þ
Bz ¼ V

2ð Þ
Bz ¼

P

2

ð10:54Þ

Note that even for this case, the vertical displacement depends on both I and J. In practice, we

usually use a computer-based scheme to analyze grid-type structures.

Example 10.20: Grid Structure

Given: The grid structure defined in Fig. E10.20a. The members are rigidly connected at all the

nodes. Assume the members are steel and the cross-sectional properties are constant. I ¼ 100 in.4,

J ¼ 160 in.4.

Fig. E10.20a
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The nodal displacement restraints are as follows:

Node 1: x, y, z translation

Node 2: z translation

Node 3: z translation
Node 4: y, z translation

Determine: The displacement measures and member end forces at node 9. Use computer software.

Solution: The computer output data for this structure is

Displacement measures at node 9:

Nade 9

w ¼ 0:189 in:

θx ¼ 0:00051rad

θy ¼ 0:00192rad

8>><
>>:

Member end forces at node 9:

Member 9ð Þ
VZ ¼ 1:31kip

Mx ¼ 0:25kip ft

My ¼ 14:5kip ft

8>><
>>: Member 10ð Þ

VZ ¼ 5:2kip

Mx ¼ 0:55kip ft

My ¼ �16:6kip ft

8>><
>>:

Member 11ð Þ
VZ ¼ 8:2kip

Mx ¼ 0:86kip ft

My ¼ 27kip ft

8>><
>>: Member 12ð Þ

VZ ¼ 5:3kip

Mx ¼ 1:2kip ft

My ¼ �26:2kip ft

8>><
>>:

One checks the results by noting that the sum of the end shears at node 9 must equal the applied

load of 20 kip.

10.9 Nonlinear Member Equations for Frame-Type Structures

10.9.1 Geometric Nonlinearity

Although we did not mention it explicitly, when dealing with equilibrium equations, we always

showed the forces acting on the initial geometry position of the structure. However, the geometry

changes due to deformation under the action of the loading, and this assumption is justified only when

the change in geometry (deformation) is negligible. This is true in most cases. However, there are

exceptions, and it is of interest to explore the consequence of accounting for geometric change when

establishing the equilibrium equations. This approach is referred to as geometric nonlinear analysis

since the additional geometric terms result in nonlinear equations. In what follows, we illustrate this

effect for different types of structures.

Consider the two-member truss shown in Fig. 10.28a. We suppose the angle θ is small, say about

15�. When a vertical force is applied, the structure deforms as shown in Fig. 10.28b. The load is

resisted by the member forces generated by the deformation resulting from the displacement, v.

Due to the displacement, the angle changes from θ to β, where β is a function of v.
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tan β ¼ h� v

b
ð10:55Þ

The equilibrium equation also depends on v.

P ¼ 2F sin β ð10:56Þ
When v is small with respect to h, β can be approximated as

tan β � h

b
� tan θ ð10:57Þ

and it follows that

P � 2F sin θ ð10:58Þ
which is the “linearized” form of the equilibrium equation. One cannot neglect the change in angle

when h is also small which is the case when θ is on the order of 15∘.

Another example of geometric nonlinearity is a beam subjected to axial compression and trans-

verse loading. Fig. 10.29 shows the loading condition and deformed geometry.

Fig. 10.28 Nonlinear truss example
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Noting Fig. 10.29c, the bending moment at location x is

M ¼ wL

2

� �
x� wx2

2
þ Pv ð10:59Þ

The last term is due to accounting for the displacement from the initial position of the beam. We will

show later that this term has a destabilizing effect on the response, i.e., it magnifies the response.

Up to this point in the text, we have neglected the geometric term and always worked with the

initial undeformed geometry. For example, we have been taking M as

M � wL

2

� �
x� wx2

2
ð10:60Þ

When P is compressive, and the beam is flexible, this linearized expression is not valid and one needs

to use the nonlinear form, (10.59). If P is a tensile force, the free body diagram shown in Fig. 10.30

now applies and the appropriate expression for M is

Fig. 10.30 Nonlinear

beam – axial tension

Fig. 10.29 Nonlinear

beam example
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M ¼ wL

2

� �
x� wx2

2
� Pv ð10:61Þ

In this case, the nonlinear contribution has a stabilizing effect.

Generalizing these observations, whenever a member is subjected to a compressive axial load, one

needs to consider the potential destabilizing effect of geometric nonlinearity on the axial stiffness of

the member. This type of behavior is usually referred to as “buckling.” From a design perspective,

buckling must be avoided. This is achieved by appropriately dimensioning the cross section and

providing bracing to limit transverse displacement.

In what follows, we extend the planar beam bending formulation presented in Sects. 3.5 and 3.6 to

account for geometric nonlinearities. This revised formulation is applied to establish the nonlinear

form of the member equations described in Sect. 10.3. Lastly, these equations are used to determine

the nonlinear behavior of some simple frame structures.

10.9.2 Geometric Equations Accounting for Geometric Nonlinearity

Figure 10.31a shows the initial and deformed position of a differential element experiencing planar

bending in the x–y plane. The geometric variables are the axial displacement, u; the transverse

displacement, v; and the rotation of the cross section, β.

Figure 10.31b defines the deformed position of line a-a; θ denotes the rotation of the centroidal

axis. Assuming θ ¼ 0 leads to the linearized expression for the strain, ε0.

θ � 0) ε0 ¼ u,x ð10:62Þ

Fig. 10.31 (a) Initial
and deformed positions

(b) Position of tangent
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The next level of approximation is based on assuming θ is sufficiently small such that θ2 
 1. This

leads to

tan θ � sin θ � θ

cos θ � 1
ð10:63Þ

Then, the exact expressions for ε0 and tan θ

1þ ε0ð Þ2 ¼ 1þ u,xð Þ2 þ v,xð Þ2

tan θ¼ v,x
1þ u,x

ð10:64Þ

reduce to

ε0 ¼ u,x þ 1

2
v,xð Þ2

θ� v,x
ð10:65Þ

Equation (10.65) applies for small strain, i.e., ε
 1. Note that the nonlinearity involves the rotation

of the centroidal axis.

The remaining steps are similar to those followed for the linear case. We assume the cross section

remains a plane and neglect the transverse shear deformation. These assumptions lead to

(see Fig. 10.32):

γ ¼ 0 ) β � θ ¼ dv

dx
and

ε ¼ ε0 � yχ

χ ¼ dβ

dx
¼ dθ

dx
¼ d2v

dx2

ð10:66Þ

Given the strains, one can determine the internal axial force and moment using the linear elastic

stress–strain relations.

F¼
ð
σdA ¼ AEε0

M¼
ð
�yσdA ¼ EIχ

ð10:67Þ

Note that F acts at an angle θ with respect to the x-axis. Since we have neglected the transverse shear
deformation, V has to be determined using an equilibrium requirement.

Fig. 10.32 Orientation of

deformed cross section
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The last step involves enforcing the equilibrium condition. We work with the differential element

shown in Fig. 10.33a; bx and by are the loads per unit length. The Cartesian components are related to

the internal forces in terms of the rotation angle, θ.

Px ¼ F cos θ � V sin θ

Py ¼ F sin θ þ V cos θ
ð10:68Þ

Noting Fig. 10.33b, it follows that

F ¼ Px cos θ þ Py sin θ

V ¼ �Px sin θ þ Py cos θ

Assuming θ is small, we simplify Eq. (10.68) to

Px � F

Py � F 	 θ þ V ¼ Fv,x þ V
ð10:69Þ

Fig. 10.33 (a) Differential element (b) Cartesian components
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The equilibrium equations for the element are

d

dx
Px þ bx ¼ 0

d

dx
Py þ by ¼ 0

dM

dx
þ Py � v,xPx ¼ 0

ð10:70Þ

Substituting for Px and Py, Equation (10.70) reduce to

dF

dx
þ bx ¼ 0

d

dx
F
dv

dx

� �
þ dV

dx
þ by ¼ 0

dM

dx
þ V ¼ 0

ð10:71Þ

The nonlinearity is present in the transverse equilibrium equation in the form of a coupling between

axial and bending actions. Lastly, the boundary conditions are:

u or Px ¼ F prescribed

v or Px ¼ Fv,x þ V prescribed

θ or M prescribed

9>=
>;at each end ð10:72Þ

We illustrate the boundary condition for various types of supports.

Case 1: Free end

Px ¼ Py ¼ M ¼ 0) F ¼ V ¼ M ¼ 0

Case 2: Axial load

Px ¼ �P
Py ¼ 0

M ¼ 0

8>><
>>: )

F ¼ �P
V ¼ v,xP

M ¼ 0

8>><
>>:

Case 3: Roller support

Px ¼ �P
v ¼ 0

M ¼ 0

8><
>: ) F ¼ �P

v ¼ M ¼ 0
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Case 4: Rotation restraint

Px ¼ �P
Py ¼ 0

θ ¼ 0

8>><
>>: )

F ¼ �P
V ¼ 0

θ ¼ 0

8>><
>>:

10.9.3 Solution for Compressive Axial Load

We consider here the case where the axial load is compressive (e.g., see Fig. 10.29). Taking

F ¼ �P ¼ constant ð10:73Þ
the remaining equations in (10.71) reduce to

V ¼ � dM

dx

d2M

dx2
þ P

d2v

dx2
¼ by

ð10:74Þ

The corresponding boundary conditions are:

vorV � P
dv

dx
prescribed

dv

dx
orM prescribed

9>>=
>>;at each end ð10:75Þ

Noting (10.67), the expression for M expands to

M ¼ EI
d2v

dx2
ð10:76Þ

Integrating the second equation in (10.74) leads to

M þ Pv ¼
ð
x

ð
x

by dxþ c1xþ c2

where c1 and c2 are integration constants.Then, substituting forM,weobtain the governing equation for v.

EI
d2v

dx2
þ Pv ¼

ð
x

ð
x

bydxþ c1xþ c2 ð10:77Þ

We suppose by and EI are constant. For this case,ð
x

ð
x

by dx ¼ 1

2
byx

2�1
2
bx2 ð10:78Þ
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and the corresponding solution of (10.77) is:

v ¼ 1

μ2
b

2EI
x2 � 2

μ2

� �
þ 1

EI
c1xþ c2ð Þ


 �
þ c3 cos μxþ c4 sin μx ð10:79Þ

where

μ2 ¼ P

EI

The integration constants are determined using the boundary conditions, (10.75).

Example 10.21

Given: The axially loaded member shown in Fig. E10.21a.

Fig. E10.21a

Determine: The transverse displacement as a function of the axial load, P.

Solution: The boundary conditions for the simply supported axially loaded member shown in

Fig. E10.21a are

v 0ð Þ ¼ v Lð Þ ¼ 0

M 0ð Þ ¼ M Lð Þ ¼ 0

Substituting for v in (10.76) leads to

M ¼ �μ2 c3 cos μxþ c4 sin μxf g þ b

μ2EI

Enforcing the boundary conditions, the corresponding integration constants are:

c1 ¼ � bL

2

c2 ¼ 0

c3 ¼ b

μ4EI

c4 ¼ b

μ4EI

1� cos μL

sin μL

� �

Using these values, the solution for v expands to
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v ¼ b

μ4EI
cos μxþ sin μx

1� cos μL

sin μL

� �
 �
þ b

μ2EI

1

2
x2 � 2

μ2

� �
� xL

2


 �

The nonlinear behavior is generated by the axial force parameter, μ.To illustrate this effect, we

evaluate v at x ¼ L/2.

v
L

2

� �
¼ b

μ4EI
cos

μL

2
þ sin

μL

2

1� cos μL

sin μL

� �
 �
þ b

μ2EI
� 1

μ2
� L2

8


 �

The linear (i.e., P ¼ 0) solution is

v
L

2

� �
¼ 5

384

bL4

EI

Figure E10.21b shows the variation of the ratio v
vlinear

vs. P
Pcr
, where Pcr is the value of P for which

sin μL ¼ 0.

sin μL ¼ 0) μL ¼ π

μL ¼ P
EI

� �1
2L ¼ π

Pcr ¼ π2EI

L2

The effect of axial load becomes pronounced when P approaches Pcr.

Fig. E10.21b
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10.9.4 Nonlinear Member End Actions–End Displacement Equations

In order to deal with framed structures, one needs the set of equations relating the forces acting on the

ends of a member and the displacement measures for the ends. The linear form of these equations is

developed in Sect. 10.3. We derive the nonlinear form here using the general solution represented by

(10.79).

Figures 10.34a, b define the notation for the displacement measures and the end actions. The only

difference for the nonlinear case is the presence of the axial load, P. All quantities are referred to the

local member frame. Note that the end actions act on the deformed configuration.

Equation (10.79) defines the solution for the case of a uniform load. To allow for an arbitrary load,

we express the solution as

v ¼ vp þ 1

μ2EI
C1xþ C2ð Þ þ C3 cos μxþ C4 sin μx ð10:80Þ

The boundary conditions now involve the displacement measures at x ¼ 0 and L.

Fig. 10.34 Notation

for nonlinear case.

(a) Displacements.

(b) End actions
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v 0ð Þ ¼ vA
dv

dx
0ð Þ ¼ ωA

v Lð Þ ¼ vB
dv

dx
Lð Þ ¼ ωB

ð10:81Þ

Specializing (10.80) for these conditions leads to expressions for the integration constants.

C1 ¼ ωA � ωA,p � μC4

C2 ¼ uA � uA,p � C3

C3 ¼ �C4

1� cos μL

sin μL
� ωB � ωA � ωB,p þ ωA,p

μ sin μL

C4 ¼ 1

D
uB � uB,p � uA þ uA,p � ωA þ ωA,p

� �
L

� �
sin μL

�
� 1� cos μL

μ
ωB � ωB,p � ωA þ ωA,p

� ��

D ¼ 2 1� cos μLð Þ � μL sin μL

ð10:82Þ

Note that D! 0 as μL! 2π. Then C4 !1 and it follows that v!1 for any arbitrary loading.

The limiting value of P is

P
��
max ¼ Pcr ¼ 4π2EI

L2
ð10:83Þ

Given v, one can evaluate the end actions. The bending moment is defined as

M ¼ EI
d2v

dx2
ð10:84Þ

Noting Fig.10.34b, the end actions are related to the bending moment by

VB ¼ �1
L

MA þMBð Þ � P
vB � vAð Þ

L

VA ¼ �VB

ð10:85Þ

The second term in the expression for VB is due to the rotation of the chord connecting A and B. This

term is neglected in the linear formulation. We will show later that it leads to a loss in lateral stiffness

(commonly referred to as the P-delta effect).
Using the above equations, we express the final equations as:

MA ¼ M F
A þ

EI

L
ϕ1ωA þ ϕ2ωB � ϕ3

L
vB � vAð Þ


 �

MB ¼ M F
B þ

EI

L
ϕ1ωB þ ϕ2ωA � ϕ3

L
vB � vAð Þ


 �

VA ¼ V F
A þ

ϕ3EI

L2
ωB þ ωA � 2

L
vB � vAð Þ


 �
þ P

L
vB � vAð Þ

VB ¼ V F
B �

ϕ3EI

L2
ωB þ ωA � 2

L
vB � vAð Þ


 �
� P

L
vB � vAð Þ

ð10:86Þ
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where

Dϕ1 ¼ μL sin μL� μL cos μLð Þ
Dϕ2 ¼ μL μL� sin μLð Þ
ϕ3 ¼ ϕ1 þ ϕ2

ð10:87Þ

The ϕ functions were introduced by Livesley [2]. Figure 10.35 shows the variation with μL.
For small μL, the coefficients reduce to the corresponding linear values

μL! 0

ϕ1 ! 4

ϕ2 ! 2

ϕ3 ! 6

ð10:88Þ

For large μL, the functions behave in a nonlinear manner

μL! 2π

ϕ1 ! �1
ϕ2 ! þ1
ϕ3 ! 0

ð10:89Þ

One can assume linear behavior and use these results to obtain an initial estimate for the axial load.

Equations (10.86) are applicable for those members which have a compressive axial load. As the

external loading is increased, the internal axial loads also increase, resulting in a reduction in stiffness

and eventually to large displacements similar to the behavior shown in Fig. E10.21b. This trend is

clearly evident in the expressions for VA and VB listed in (10.86). As P increases, ϕ3 decreases, and

the overall stiffness decreases. The following examples illustrate this effect.

Example 10.22

Given: The portal frame shown in Fig. E10.22a.

Determine: The effect of axial load on the lateral stiffness.

Solution: We assume Ig � Ic so that member BC just translates under the action of the horizontal

load. We also assume there is a gravity loading which creates compression in the columns. Of interest

Fig. 10.35 ϕ functions
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is the interaction between the gravity loading and the lateral loading. Due to the compressive nature of

the gravity loading, we should expect a reduction in lateral stiffness, leading eventually to an unstable

condition.

Fig. E10.22a

Fig. E10.22b

Noting the free body diagram shown in Fig. E10.22b, the end conditions for member AB are

θA ¼ vA ¼ 0 θB ¼ 0 VB ¼ �H

vB ¼-v P ¼ W

Using these values, the expression for VB follows from Equation (10.86).

VB ¼ �2EIcϕ3

h3
vþ P

h
v

Then

H ¼ 2EIcϕ3

h3
� P

h


 �
v�kv

Figure E10.22c shows how k degrades with increasing P. The P-delta term dominates this process; it

leads to an 80 % reduction at the critical loading, α ¼ 1. As the load approaches this load level, the

lateral stiffness approaches zero, resulting in large displacement, and eventual failure due to exces-

sive inelastic deformation.
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Fig. E10.22c

Example 10.23

Given: The pin-ended portal frame shown in Fig. E10.23a.

Fig. E10.23a

Determine: (a) The effect of axial load on the lateral stiffness. (b) The additional stiffness provided

by diagonal bracing (Fig. E10.23c).

Solution:

Part(a)

The response is anti-symmetrical so one has only to analyze member AB. Noting Fig. E10.23a, the

end conditions are
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vA ¼ MA ¼ 0 P ¼ W

θB ¼ 0 VB ¼ þH
Setting MA ¼ 0 leads to

EIc
h

ϕ1θA þ ϕ2θB � ϕ3

vB � vA
h

� �h i
¼ 0

Then, noting the end conditions, and solving for θA yields

θA ¼ ϕ3

ϕ1

EIc
h

vB
h

� �

Substituting for θA, the expression for VB becomes

VB ¼ �EIc
h

ϕ3

ϕ3

ϕ1

� 2

� �
vB
h

� �
 �
� P

h
vB

Lastly, we require VB ¼ þH.

Then

H ¼ EIc

h3
ϕ3 2� ϕ3

ϕ1

� �
 �
vB � P

h
vB

We express H as

H ¼ kvB

k ¼ 3EIc

h3
1

3
ϕ3 2� ϕ3

ϕ1

� �
� απ2

12


 �
¼ 3EIc

h3
k1 � k2ð Þ

where

α ¼ P

Pcr

¼ P
π2EIc
4h2

k2 ¼ Ph2

3EIc

Note that k2 represents the P-delta effect on stiffness. Figure E10.23b shows that k2 dominates the

stiffness reduction due to the axial compression in the columns.
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Fig. E10.23b

Part(b)

Suppose the diagonal braces shown in Fig. E10.23c are added. They provide additional stiffness

which offsets the loss in stiffness due to P-delta effect. Noting the expression for VB derived above,

the force H is now equal to the sum of VB and the horizontal component of the bracing force.

H ¼ VB þ Fbrace cos θ ¼ k þ kbraceð ÞvB
where

kbrace ¼ AbraceE

Lbrace
cos θð Þ2 ¼ AbraceE

h
cos θð Þ2 sin θ

One selects kbrace such that

kbrace ¼ AbraceE

h
cos θð Þ2 sin θ ¼ 3EIc

h3
¼ K

��
P¼0
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Fig. E10.23c

10.10 Summary

10.10.1 Objectives

• To describe the displacement method of analysis specialized for frame-type structures.

• To develop the slope-deflection equations for planar bending of beams

• To illustrate how to apply the displacement method for beams and rigid frame systems using the

slope-deflection equations.

• To formulate the moment distribution procedure and demonstrate its application to indeterminate

beams and rigid frames.

• To determine the effect of geometric nonlinearity and to formulate the geometric nonlinear form of

the slope-deflection equations.

10.10.2 Key Factors and Concepts

• The displacement method works with nodal Force Equilibrium Equations expressed in terms of

displacements

• The slope-deflection equations relate the end shears and moments to the end translations and

rotations. Their general linear form for planar bending of a prismatic member AB is

MAB ¼ 2EI

L
2θA þ θBf g þ 6EI

L

vA � vB
L

� �
þM F

AB

MBA ¼ 2EI

L
2θB þ θAf g þ 6EI

L

vA � vB
L

� �
þM F

BA

VAB ¼ 6EI

L2
θA þ θBð Þ þ 12EI

L3
vA � vBð Þ þ V F

AB

VBA ¼ � 6EI

L2
θB þ θAð Þ � 12EI

L3
vA � vBð Þ þ V F

BA

• Moment distribution is a numerical procedure for distributing the unbalanced nodal moments into

the adjacent members based on relative stiffness. If one continued the process until the moment
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residuals are reduced to zero, one would obtain the exact solution. Normally, the process is

terminated when the residuals are relatively small.

• The slope-deflection equations provide the basis for the computer-based analysis procedure

described in Chap. 12.

• Geometric nonlinear behavior is due to the coupling between compressive axial load and trans-

verse displacement. It results in a loss of stiffness and leads to unstable behavior.

10.11 Problems

Problem 10.1 Determine the displacements and member forces for the truss shown. Consider the

following values for the areas:

(a) A1 ¼ 1
2
A

(b) A1 ¼ 2A
(c) Check your results with computer-based analysis.

Take E ¼ 200 GPa and A ¼ 2000 mm2

Problem 10.2 For the truss shown below, determine the member forces for:

(a) The loading shown

(b) Support #1 moves as follows: u ¼ 1
8

in:! and v ¼ 1
2

in: "

Take A ¼ 0.1 in.2, A1 ¼ 0.4 in.2, and E ¼ 29,000 ksi.
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For the following beams and frames defined in Problems 10.3–10.18, determine the member end

moments using the slope-deflection equations.

Problem 10.3 Assume E ¼ 29,000 ksi, I ¼ 200 in.4, L ¼ 30 ft, vC ¼ 0.6 in. #, and w ¼ 1.2 kip/ft.

Problem 10.4

(a) I1 ¼ I2 and L1 ¼ L2
(b) I1 ¼ 2I2 and L1 ¼ L2
(c) I1 ¼ 2I2 and L1 ¼ 2 L2
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Assume E ¼ 200 GPa, I2 ¼ 80(10)6 mm4, and L2 ¼ 6 m.

Problem 10.5

E ¼ 29,000 ksi and I ¼ 300 in.4

Problem 10.6 Assume E ¼ 200 GPa, I ¼ 80(10)6 mm4, P ¼ 45 kN, h ¼ 3 m, and L ¼ 9 m.

Problem 10.7 Assume E ¼ 29,000 ksi, I ¼ 200 in.4, L ¼ 18 ft, and w ¼ 1.2 kip/ft.
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Problem 10.8 Assume E ¼ 200 GPa and I ¼ 80(10)6 mm4.

Problem 10.9 Assume E ¼ 29,000 ksi and I ¼ 400 in.4

Problem 10.10 Assume E ¼ 200 GPa and I ¼ 100(10)6 mm4.

Problem 10.11 Assume E ¼ 29,000 ksi and I ¼ 100 in.4
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Problem 10.12

(a) Ib ¼ Ic
(b) Ib ¼ 1.5Ic

Assume E ¼ 200 GPa, Ic ¼ 120(10)6 mm4, L ¼ 8 m, h ¼ 4 m, and P ¼ 50 kN.

Problem 10.13 Assume E ¼ 29,000 ksi and I ¼ 200 in.4

Problem 10.14 Assume E ¼ 200 GPa and I ¼ 80(10)6 mm4.
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Problem 10.15 I ¼ 600 in.4

E ¼ 29,000 kip/in.2

Problem 10.16 Assume E ¼ 200 GPa and I ¼ 120(10)6 mm4.

Problem 10.17 Assume E ¼ 29,000 ksi and I ¼ 200 in.4
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Problem 10.18 Assume E ¼ 200 GPa and I ¼ 80(10)6 mm4.

Problem 10.19 For the frame shown below, use computer software to determine the moment

diagram and displacement profile. Assume E ¼ 29,000 ksi and I ¼ 200 in.4

For the following beams and frames defined in Problems 10.20–10.34, determine the member end
moments using moment distribution.

Problem 10.20 The loading shown

(a) A support settlement of .5 in. downward at joint B in addition to the loading

(b) Check your results with computer-based analysis.

E ¼ 29,000 ksi,

I ¼ 300 in.4
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Problem 10.21 Compute the end moments and reactions. Draw the shear and moment diagrams.

Check your results with computer analysis. Assume E ¼ 200 GPa and I ¼ 75(10)6 mm4.

Problem 10.22 Determine the bending moments and the reactions for the following cases. Assume

EI is constant

Problem 10.23 Determine the bending moment distribution for the beam shown below. Assume EI
is constant.
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Problem 10.24 Determine the bending moment distribution. Assume I1 ¼ 1.4I2.

Problem 10.25 Determine the bending moment distribution.

Problem 10.26 Solve for the bending moments. δB ¼ 0.4 in. #, E ¼ 29,000 ksi, and I ¼ 240 in.4.

Problem 10.27 Determine the bending moment distribution and the deflected shape. E ¼ 29,000 ksi

(a) Take I1 ¼ I2 ¼ 1000 in.4

(b) Take I1 ¼ 1.5I1. Use computer analysis.
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Discuss the difference in behavior between case (a) and (b).

Problem 10.28 Determine the axial, shear, and bending moment distributions. Take Ig ¼ 2Ic

Problem 10.29 Determine the member forces and the reactions.

(a) Consider only the uniform load shown

(b) Consider only the support settlement of joint D (δ ¼ 0.5 in. #)
(c) Consider only the temperature increase of ΔT ¼ 80 �F for member BC.

E ¼ 29,000 ksi

IAB ¼ ICD ¼ 100 in.4

IBC ¼ 400 in.4

α ¼ 6.5 � 10�6/�F
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Problem 10.30 Determine the bending moment distribution for the following loadings. Take

Ig ¼ 5Ic.

Problem 10.31 Solve for the bending moments.

Problem 10.32 Determine the bending moment distribution.
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Problem 10.33 Solve for the bending moments.

Problem 10.34 For the frame shown, determine the end moments and the reactions. Assume

E ¼ 200 GPa and I ¼ 40(10)6 mm4.

Problem 10.35 Determine analytic expression for the rotation and end moments at B. Take

I ¼ 1000 in.4, A ¼ 20 in.2 for all members, and α ¼ 1.0, 2.0, 5.0. Is there an upper limit for the

end moment, MBD?
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Problem 10.36 Compare the end moments and horizontal displacement at A for the rigid frames

shown below. Check your results for parts (c) and (d) with a computer-based analysis. Take E ¼ 200

GPa and I ¼ 120(10)6 mm4. A ¼ 10,000 mm2 for all members.

Problem 10.37 Compute displacement at node C for

(a) No P-delta effect

(b) With P-delta effect included
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Take I1 ¼ 881 in:4, A1 ¼ 24 in:2, I2 ¼ 2960 in:4, A2 ¼ 35:9 in:2, H ¼ 100 kip, P ¼ 200 kip,

E ¼ 29,000 ksi, L ¼ 20ft, and h ¼ 10ft.

Problem 10.38 Generate the plots of P vs. u for various values of T. Starting at T¼0 and increasing
to T ¼ π2EI1

4h2
. Take I1 ¼ 400in4, I2 ¼ 1, and h ¼ 10 ft.
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Approximate Methods for Estimating
Forces in Statically Indeterminate
Structures

11

Abstract

In this chapter, we describe some approximate methods for estimating the

forces in indeterminate structures. We start with multi-span beams

subjected to gravity loading. Next, we treat rigid frame structures under

gravity loading. Then, we consider rigid frame structures under lateral

loading. For this case, we distinguish between short and tall buildings. For

short buildings, we first describe the portal method, an empirical proce-

dure, for estimating the shear forces in the columns, and then present an

approximate stiffness approach which is more exact but less convenient to

apply. For tall buildings, we model them as beams and use beam theory to

estimate the forces in the columns. With all the approximate methods, our

goal is to use simple hand calculation-based methods to estimate the

forces which are needed for preliminary design and also for checking

computer-based analysis methods.

11.1 Introduction

The internal forces in a statically indeterminate structure depend on the member cross-sectional

properties. We demonstrated this dependency with the examples presented in the previous two

chapters. However, in order to design a structure, one needs the internal forces. Therefore, when

starting the design process, it is necessary to estimate a sufficient number of force quantities so that

the structure is reduced to a statically determinate structure for which the distribution of internal

forces is independent of the material properties. For bending type structures, such as multi-span

beams and frames, the approximations are usually introduced by assuming moment releases at certain

locations. The choice of the release locations is based on an understanding of the behavior of the

structure for the particular loading under consideration. For indeterminate trusses, we assume the

magnitude of certain forces. A typical case for a truss would be when there are two diagonals in a bay.

We usually assume the transverse shear is divided equally between the two diagonals.
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11.2 Multi-span Beams: Gravity Loading

11.2.1 Basic Data-Moment Diagrams

Figures 11.1, 11.2, and 11.3 show moment diagrams due to a uniform distributed loading for a range

of beam geometries and support conditions. These results are presented in Chaps. 9 and 10. They

provide the basis for assuming the location of moment releases (points of zero moment) for different

combinations of span lengths and loading distributions. We utilize this information to develop various

strategies for generating approximate solutions for multi-span beams.

Fig. 11.1 Moment diagrams for single-span beams

Fig. 11.2 Moment

diagrams for two-span

beams
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11.2.2 Quantitative Reasoning Based on Relative Stiffness

Consider the multi-span beam shown in Fig. 11.4. Our objective is to estimate the peak positive and

negative moments in span BC. As a first step, we estimate the end moments for this span using the

member distribution factors which are related to the relative stiffness factors for the members. We

consider node B. The distribution factors for members BA and BC are as follows (see Sect. 10.6):

DFBA ¼ I1=L1
I1=L1ð Þ þ I2=L2ð Þð Þ

DFBC ¼ I2=L2
I1=L1ð Þ þ I2=L2ð Þð Þ

ð11:1Þ

Note that when I is constant for all spans, the relative stiffness parameters reduce to the inverse of

the span length. Given the initial unbalanced moment at B, we distribute it according to

Fig. 11.3 Moment diagrams for three-span beams. (a) Simply supported. (b) Fixed at each end. (c) Partial loading.
(d) Partial loading symmetrical

Fig. 11.4 Multi-span

beam
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ΔMBA ¼ �DFBA FEM
��
B

� �
ΔMBC ¼ �DFBC FEM

��
B

� � ð11:2Þ

We consider no carry-over movement to the other ends.

If I1
L1
is small in comparison to I2

L2
, then DFBA will be small in comparison to DFBC. It follows that

only a small portion of the unbalanced nodal moment at node B will be distributed to member

BA. The opposite case is where I1/L1 is large in comparison to I2/L2. Now DFBC is small vs. DFBA.

Essentially all of the unbalanced nodal moment is distributed to member BA. The final end moment in

member BC is close to its initial value (the initial fixed end moment) since there is relatively little

distribution.

When I is constant for all the spans, the relative stiffness parameters reduce to the inverse of the

span lengths. In this case, one compares the ratio of adjacent span lengths. The limiting cases for

extreme values of these ratios are listed in Fig. 11.5.

11.3 Multistory Rigid Frames: Gravity Loading

Gravity type loading is usually the dominant loading for multistory frames. It consists of both dead

and live loading. Consider the frame shown in Fig. 11.6. We suppose the loading is a uniform gravity

load, w. Our objective here is to determine the positive and negative moments in beam AB.

Fig. 11.5 Summary of approximate models for extreme values of L1/L2 and L3/L2. (a) Hinged model. (b) Clamped end

model. (c) Clamped/hinged model
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One can estimate moments at the ends and at the center by assuming moment releases in the

beams. Assuming moment releases at 0.1 L leads to

Mþcenter ¼
w 0:8Lð Þ2

8
¼ 0:08wL2

MA ¼ MB ¼ w
0:1Lð Þ2
2
þ w 0:4Lð Þ 0:1Lð Þ ¼ 0:045wL2

11.4 Multistory Rigid Frames: Lateral Loading

Consider the rigid frame shown in Fig. 11.7a. Under a lateral loading, the frame develops inflection

points (points where the bending moment is equal to zero) in the columns and beams. Most of the

approximate methods published in the literature are based on the assumption that the inflection points

occur at mid-height of the columns and mid-span of the beams, as indicated in Fig. 11.7c. This

assumption, coupled with an assumption concerning how the column axial and shear forces are

distributed within a story, is sufficient to allow us to compute estimates for the end moments, the axial

forces, and the shear forces in the columns.

In what follows, we present two different approaches for estimating the forces in the columns. The

first approach (11.4.1–11.4.3) estimates the column shears in a story, and is applicable mainly for

low-rise rigid frames. The second approach (11.5) estimates the axial forces in the columns. Because

of the nature of the underlying assumptions, the latter procedure is appropriate only for tall, narrow

rigid frames. Both procedures are derived using the idealized model of the structure shown in

Fig. 11.7c, i.e., with inflection points at mid-height of the columns and mid-span of the beams.

Fig. 11.6 Multistory

frame—gravity loading
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11.4.1 Portal Method

The portal method is an empirical procedure for estimating the forces in low-rise rigid frames

subjected to lateral loads. In addition to assuming inflection points in the columns and beams, the

shear in the exterior columns is assumed to be one-half the shear in the interior columns, which is

taken to be equal for all the interior columns. We use this method to generate the first estimate of the

member forces. Of particular interest are the end moments in the columns.

Example 11.1 Application of the Portal Method

Given: The rigid frame shown in Fig. E11.1a.

Fig. E11.1a

Fig. 11.7 Multistory rigid

frame. (a) Initial position.
(b) Deflected Position.

(c) Assumed location of

inflection points
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Determine: The axial force, shear force, and bending moment in the beams and columns using the

Portal method.

Solution: The portal method assumes the exterior column shear, VE, is equal to one-half the interior

column shear force VI, which is taken to be equal for all the interior columns.

VE ¼ 1

2
VI

Summing the column shear forces for this structure leads to an expression for the total story shear.

VT ¼ 2VE þ VI

¼ 2VI

Then,

VI ¼ 1

2
VT

VE ¼ 1

2
VI ¼ 1

4
VT

We range over the stories and generate the column shear for each story. The calculations are

summarized below.

Story VT (kN) VI (kN) VE (kN)

Top 16 8 4

Bottom 48 24 12

Given the column shear forces, one can determine the column end moments using the assumption

that there are inflection points at certain locations in the columns. For this structure, since the base is

pinned, the inflection points for the first story are at the base. The inflection points for the second story

are taken at mid-height. The free body diagrams for the various segments are shown below along with

the final results. Once the column end moments are known, we can determine the end moments and

shear forces in the beams and lastly, the axial forces in the columns using equilibrium equations

(Figs. E11.1b, E11.1c, E11.1d, E11.1e, E11.1f, E11.1g, E11.1h).

Fig. E11.1b Shear distribution for the columns (kN)
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Fig. E11.1c Bending moment distribution for the columns (kN m)

Fig. E11.1d Moments at the joints (kN m)

Fig. E11.1e Bending moment distribution for the beams (kN m)
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Fig. E11.1f Shear distribution for the beams (kN)

Fig. E11.1g Axial and shear forces (kN)
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Fig. E11.1h Reactions, shear forces, and moment distribution

Example 11.2 Application of the Portal Method

Given: The rigid frame shown in Fig. E11.2a.

Fig. E11.2a

Determine: The reactions and the bending moments in the beams and columns using the Portal

method.

Solution: The Portal method assumes the exterior column shear, VE, is equal to one-half the interior

column shear force VI. The calculations are summarized in the table below. Note that, since the base is

fixed, we assume inflection points at mid-height for the first story (Figs. E11.2b, E11.2c, E11.2d,

E11.2e, E11.2f, E11.2g, E11.2h).

Story VT (kip) VI (kip) VE (kip)

Top 5 2.5 1.25

Bottom 15 7.5 3.75
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Fig. E11.2b Shear distribution for the columns (kip)

Fig. E11.2c Bending moment distribution for the columns (kip ft)

Fig. E11.2d Moments at the joints (kip ft)
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Fig. E11.2e Bending moment distribution for the beams (kip ft)

Fig. E11.2f Shear distribution for the beams (kip)

Fig. E11.2g Axial and shear forces (kip)



Fig. E11.2h Reactions, shear forces and moment distribution

11.4.2 Shear Stiffness Method: Low-Rise Rigid Frames

In this approach, we model a frame as a set of substructures, which resist the lateral shear in the stories

through shearing action. First, we idealize the frame as a rigid frame with moment releases at the

midpoints of the columns and beams such as shown in Fig. 11.8. We consider a segment bounded by

floor i + 1 and floor i. For convenience, we assume Ib and L are constant in a story. We allow for

different values of I for the exterior and interior columns. We define VT as the sum of the lateral loads

acting on floor i + 1, and all the floors above floor i + 1. This quantity represents the :total transverse

shear for the story. Next, we define Δu as the differential lateral displacement between floor i and
floor i + 1.We assume the floor beams are rigidwith respect to axial deformation so that all points on

a floor experience the same lateral displacement. Lastly, we assume the floors do not move in

the vertical direction, and insert lines as indicated in Fig. 11.9. Our objective in this section is to

establish an expression for the column shear forces in a story as a function of the total transverse shear

for the story.
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We visualize the model to consist of the sub-elements shown in Fig. 11.9b. Each sub-element

experiences the same Δu. The resistance force ΔPi for sub-element i depends on the stiffness of the

element.

ΔPi ¼ ki Δu � Vi ð11:3Þ
Then, summing the forces over the number of sub-elements leads to

Fig. 11.8 Low-rise, frame

Fig. 11.9 (a) Idealized model for a story in a low-rise frame. (b) Sub-elements of the idealized model—low-rise frame
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VT ¼
X

Vi ¼
X

ki

� �
Δu ¼ kTΔu ð11:4Þ

Noting (11.3) and (11.4), the shear carried by sub-element i is given by

Vi ¼ ΔPi ¼ kiX
ki

 !
VT ¼ ki

kT

� �
VT ð11:5Þ

According to (11.5), the shear in a column depends on the ratio of the shear stiffness of the

corresponding sub-element to the total story shear stiffness.

Using the slope-deflection equations :presented in Sect. 10.3, one can derive the following

expressions for the sub-element shear stiffness factors (Fig. 11.10):

Exterior Element: Upper Story

kE ¼ 12EICE

h3
1

1þ ICE=hð Þ= Ib=Lð Þ

 �

¼ 12EICE

h3
f E ð11:6Þ

Interior Element: Upper Story

kI ¼ 12EICI

h3
1

1þ 1=2ð Þ ICI=hð Þ= Ib=Lð Þð Þ

 �

¼ 12EICI

h3
f I ð11:7Þ

where the dimensionless factor (Ic/h)/(Ib/L) accounts for the flexibility of the beam.

Values of kE/kI for a range of values of (ICI/h)/(Ib/L ) and ICE/ICI are tabulated in (Table 11.1).

Fig. 11.10 Typical

sub-elements. (a) Exterior.
(b) Interior

Table 11.1 Stiffness ratios: upper stories

(ICI/h)/(Ib/L )

kE
kI

ICE
ICI
¼ 1=2

ICE
ICI
¼ 1

0 0.5 1

0.25 0.5 0.9

0.5 0.5 0.83

1.0 0.5 0.75

1.5 0.5 0.75

1.5 0.5 0.7

2.0 0.5 0.67
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Noting (11.5), we observe that the ratio of the shear in the external column to the shear in the

interior column is given by

V
��
E�col

V
��
I�col

¼ kE
kI

ð11:8Þ

The derivation listed above applies for the upper stories, and needs to be modified for the bottom

story. Figure 11.11 shows the idealized model used to estimate the story stiffness for the case where

the base is fixed. The sub-elements are illustrated in Fig. 11.12 and the corresponding story stiffness

factors are defined by (11.9) and (11.10).

Exterior Element: Base Story (Fixed Support)

kBE ¼ 12EICE

h3

1þ 1
6

ICE=h
Ib=L

� �
1þ 2

3
ICE=h
Ib=L

� �
8<
:

9=
; ¼ 12EICE

h3
f BE ð11:9Þ

Interior Element: Base Story (Fixed Support)

kBI ¼ 12EICI

h3

1þ 1
12

ICI=h
Ib=L

� �
1þ 1

3
ICI=h
Ib=L

� �
8<
:

9=
; ¼ 12EICI

h3
f BI ð11:10Þ

When the base is hinged, we use the expressions listed in (11.11) and (11.12). In this case, we do

not assume an inflection point at mid-height of the first story (Fig. 11.13).

Fig. 11.11 Transverse

shear model for bottom

story—fixed support

Fig. 11.12 Typical :sub-

elements for base story—

fixed support. (a) Exterior.
(b) Interior
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Exterior Element:: Base Story (Hinged Support)

kBE ¼ 3EICE

h3
1

1þ 1=2ð Þ ICE=hð Þ= Ib=Lð Þð Þ

 �

¼ 3EICE

h3
f BE ð11:11Þ

Interior Element: Base Story (Hinged Support)

kBI ¼ 3EICI

h3
1

1þ 1=4ð Þ ICI=hð Þ= Ib=Lð Þð Þ

 �

¼ 3EICI

h3
f BI ð11:12Þ

The base shears are related by

V
��
E�col ¼ V

��
I�col

kBE
kBI

ð11:13Þ

Values of kBE/kBI for a range of (ICI/h)/(Ib/L ) for both hinged and fixed supports are listed in

Table 11.2.

Example 11.3 Approximate Analysis Based on the Shear Stiffness Method

Given: The frame shown in Fig. E11.3a.

Fig. 11.13 Typical

sub-elements for base

story—hinged support. (a)
Exterior. (b) Interior

Table 11.2 Stiffness ratios: lowest story

(ICI/h)/(Ib/L )

Hinged support Fixed support

kE
kI

kE
kI

ICE ¼ 1/2 ICI ICE ¼ ICI ICE ¼ 1/2 ICI ICE ¼ ICI

0 0.5 1 0.5 1

0.25 0.5 0.944 0.5 0.948

1.0 0.5 0.9 0.5 0.91

1.0 0.5 0.833 0.5 0.862

1.5 0.5 0.786 0.5 0.833

2.0 0.5 0.75 0.5 0.816
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Fig. E11.3a

Determine: The column shear forces using the shear stiffness model and the member properties

defined as cases A, B, C, and D.

Case A: ICext
¼ 1

2
IC and IB ¼ 4IC ) ICext=h

IB=L
¼ 0:31 IC=h

IB=L
¼ 0:62.

Case B: ICext
¼ IC and IB ¼ 4IC ) ICext=h

IB=L
¼ IC=h

IB=L
¼ 0:625.

Case C: ICext
¼ IC and IB ¼ 2IC ) ICext=h

IB=L
¼ IC=h

IB=L
¼ 1:25.

Case D: ICext
¼ 1

2
IC and IB ¼ 2IC ) ICext=h

IB=L
¼ 0:625 IC=h

IB=L
¼ 1:25.

Solution: Using (11.6), (11.7), and (11.11), (11.12) the sub-element stiffnesses are:

Case A Case B Case C Case D

Top story

fE ¼ 0.762 fE ¼ 0.615 fE ¼ 0.444 fE ¼ 0.615

fI ¼ 0.762 fI ¼ 0.762 fI ¼ 0.615 fI ¼ 0.615

kE
kI
¼ 0:5

kE
kI
¼ 0:808

kE
kI
¼ 0:722

kE
kI
¼ 0:5

Bottom story

fBE ¼ 0.865 fBE ¼ 0.762 fBE ¼ 0.615 fBE ¼ 0.762

fBI ¼ 0.865 fBI ¼ 0.865 fBI ¼ 0.762 fBI ¼ 0.762

kBE
kBI
¼ 0:5

kBE
kBI
¼ 0:881

kBE
kBI
¼ 0:808

kBE
kBI
¼ 0:5

Noting that

VE

VI

¼ kE
kI

we express the total shear as

VTotal ¼ 2VE þ VI ¼ 2
kE
kI

� �
þ 1


 �
VI

Once I is specified for the interior and exterior columns, we can evaluate the ratio, kE/kI, and then

VI. The computations corresponding to Cases A, B, C, and D are summarized below. We also list the

results predicted by the portal method. Note that the portal method agrees exactly with the stiffness

method when ICexterior
¼ 1

2
ICinterior

(Cases A and D).

Story

VT

(kip)

Stiffness method

Portal methodCase A Case B Case C Case D

VE

(kip)

VI

(kip)
VE

(kip)

VI

(kip)
VE

(kip)

VI

(kip)
VE

(kip)

VI

(kip)
VE

(kip)

VI

(kip)

Top 4 1 2 1.235 1.53 1.18 1.64 1 2 1 2

Bottom 12 3 6 3.83 4.34 3.7 4.59 3 6 3 6
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11.4.3 Low-Rise Rigid Frames with Bracing

11.4.3.1 Lateral Load
A rigid frame resists lateral loading through bending action of the columns. When a bracing system is

combined with the frame, both of these systems participate in carrying the lateral load. From a

stiffness perspective, the load is distributed according to the relative stiffness, i.e., the stiffer element

carries more load. For low-rise frames, the transverse shear stiffness is the controlling parameter.

Figure 11.14 illustrates the structural scheme for a one-story structure.. A similar arrangement is used

for multistory structures. Of particular interest is the distribution of lateral load between the rigid

frame and the brace.

The individual systems are defined in Fig. 11.15. We assume all sub-elements experience the same

lateral displacement Δu, and express the lateral loads carried by each structural system as

Pframe ¼ kframeΔu
Pbrace ¼ kbraceΔu

ð11:14Þ

where kframe, kbrace denote the frame and brace stiffness factors. Summing these forces, we write

P ¼ Pframe þ Pbrace ¼ kbrace þ kframeð ÞΔu ¼ kTΔu ð11:15Þ
Solving for Δu and back substituting in (11.14) results in

Fig. 11.14 Rigid frame

with bracing

Fig. 11.15 Individual

systems
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Pframe ¼ kframe

kT
P

Pbrace ¼ kbrace
kT

P
ð11:16Þ

Also,

Pframe

Pbrace

¼ kframe

kbrace
ð11:17Þ

According to (11.16), the lateral force carried. by a system depends on its relative stiffness.

Increasing kbrace shifts load onto the bracing system.

Considering a single story, the lateral load required to introduce an inter-story lateral displacement

Δu is equal to

Pframe ¼ kframeΔu ð11:18Þ
where kframe is estimated by combining (11.11) and (11.12).

kframe ¼ 3E

h3
2ICE

1þ 1=2ð Þ ICE=hð Þ= Ib=Lð Þð Þ þ
X

intercol

ICI
1þ 1=4ð Þ ICI=hð Þ= Ib=Lð Þð Þ


 �
ð11:19Þ

Once the member properties are known, one can evaluate kframe. We need to develop a similar

expression for a brace.

Typical bracing schemes are shown in Fig. 11.16. The lateral load is carried equally by the

diagonal members. One determines kbrace using structural mechanics concepts such as deformation

and equilibrium. The analytical expressions for the different schemes are

kbrace singleð Þ ¼ AE

h
sin θ cos 2θ
� �

kbrace chevronð Þ ¼
2AE

h
sin θ1 cos

2θ1
� �

kbrace x braceð Þ ¼ 2AE

h
sin θ cos 2θ
� �

ð11:20Þ

Thediagonal forces reversewhen the lateral load reverses,which occurs forwindand earthquake loading.

Example 11.4 Shear Force Distribution

Fig. 11.16 Diagonal bracing systems. (a) Single. (b) Chevron. (c) X Brace
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Given: The one-story frame defined in Fig. E11.4a.

Fig. E11.4a

Determine: The column shears and the diagonal brace forces.

Solution: Using (11.19), the frame stiffness is

kframe ¼ 3EIc

h3
2

1þ 1=2ð Þ Ic=hð Þ= Ib=Lð Þð Þ þ
3

1þ 1=4ð Þ Ic=hð Þ= Ib=Lð Þð Þ
� �

¼ 3EIc

h3
8

5
þ 8

3

� �
¼ 12:8

EIc

h3

The brace stiffness follows from (11.20). Note that there are two braces.

kbrace ¼ 2
AbraceE

h
sin θ cos 2θ
� � ¼ AbraceE

h
2 0:447ð Þ 0:894ð Þ2 ¼ 0:714

AbraceE

h

Noting (11.16), the individual forces are related by

Pframe ¼ kframe

kbrace

� �
Pbrace ¼ 17:9

Ic

Abraceh
2

� �
Pbrace

Summing the forces leads to

Pframe þ Pbrace ¼ P) 17:9
Ic

Abraceh
2
þ 1

� �
Pbrace ¼ 40

Then

Pbrace ¼ 40

1þ 17:9ð Þ 40 10ð Þ6
� �

= 650ð Þ 3000ð Þ2
� �� � ¼ 35:6kN

Pframe ¼ 4:36kN

The force in each diagonal brace is given by

Fb ¼ Pbrace

2 cos θ
¼ 19:9kN

We evaluate the column shear forces using the corresponding stiffness factors defined by (11.11)

and (11.12).
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kE ¼ 3EIc

h3
4

5

� �

kI ¼ 3EIc

h3
8

9

� �
VE

VI

¼ kE
kI
¼ 4=5

8=9
¼ 9

10

∴VE ¼ 0:9VI

Summing the shears,

2VE þ 3VI ¼ 4:36) 1:8VI þ 3VI ¼ 4:36

Then

VI ¼ 0:91kN

VE ¼ 0:82kN

Note that the brace carries the major portion of the story shear.

Example 11.5 Shear Force Distribution

Given: The braced rigid frame defined in Fig. E11.5a. Ab ¼ 0.8 in.2, E ¼ 29, 000 ksi, and I ¼ 150

in.4.

Fig. E11.5a

Determine: The lateral forces carried by the frame and brace systems.

Solution:

Pframe + Pbrace ¼ 4 kip Upper floor

Pframe + Pbrace ¼ 12 kip Lower floor

Frame:

Upper story sub-element: Equations (11.6) and (11.7)
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kE ¼ 6EIc

h3

kI ¼ 8EIc

h3

) kframe ¼ EIc

h3
2 6ð Þ þ 8ð Þ ¼ 20EIc

h3
¼ 20 29; 000ð Þ150

12� 12ð Þ3 ¼ 29:14kip=in:

Base story sub-element: Equations (11.11) and (11.12)

kE ¼ 2EIc

h3

kI ¼ 2:4EIc

h3

) kframe ¼ EIc

h3
2 2ð Þ þ 2:4ð Þ ¼ 6:4EIc

h3
¼ 9:32kip=in:

Brace:

kbrace ¼ 2EAb

h
sin θ1 cos θ1ð Þ2 ¼ 0:707

EAb

h
¼ 0:707 0:8ð Þ 29; 000ð Þ

12 12ð Þ ¼ 113:9kip=in:

Shear distributions

Pframe ¼ kframe

kbrace

� �
Pbrace )

Pframe ¼ 29:14

113:9

� �
Pbrace ¼ 0:256Pbrace Upper floor

Pframe ¼ 9:32

113:9

� �
Pbrace ¼ 0:082Pbrace Lower floor

Then

0:256þ 1ð ÞPbrace ¼ 4kip) Pbrace ¼ 3:18kip Upper floor

0:082þ 1ð ÞPbrace ¼ 12kip) Pbrace ¼ 11:09kip Lower floor

Therefore

Pframe ¼ 0:256Pbrace ¼ 0:81kip Upper floor

Pframe ¼ 0:082Pbrace ¼ 0:91kip Lower floor

Example 11.6 Shear Force Distribution

Given: The braced frame defined in Fig. E11.6a.
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Fig. E11.6a

Determine: The required brace area Ab, to limit the inter-story displacement to 10 mm for each story.

Assume E ¼ 200 GPa.

Solution:

Pbrace ¼ 16 Upper floor

Pbrace ¼ 16 + 32 ¼ 48 Lower floor

kbrace ¼ 2EAb

h
sin θ1 cos θ1ð Þ2 ¼ 0:707

EAb

h

Pbrace ¼ kbraceu

Upper floor16 ¼ 0:707
EAb

h
Δuupper ) Ab 
 16 3500ð Þ

0:707 10ð Þ 200ð Þ ¼ 39:6mm2

Lower floor48 ¼ 0:707
EAb

h
Δuupper ) Ab 
 48 3500ð Þ

0:707 10ð Þ 200ð Þ ¼ 118:8mm2

The value for the lower floor controls the design.

∴Abrequired ¼ 118:8mm2

11.5 High-Rise Rigid Frames: The Cantilever Method

The approximate procedure described above is applicable for low-rise rigid frames, which behave as

“shear type” frames, i.e., the floors displace laterally but do not rotate. One determines the axial forces

in the columns using the shear forces in the floor beams. High-rise frames behave more like a

cantilever beam. As illustrated in Fig. 11.17b, the floors rotate as rigid planes. Their behavior is
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similar to what is assumed for the cross section of a beam in the formulation of the bending theory of

beams; the floors experience both a translation and a rotation. Just as for beams, the rotational

component produces axial strain in the columns. The column shears and moments are found from

equilibrium considerations, given the axial forces in the columns. In what follows, we describe an

idealized structural model that is used to establish the distribution of column axial forces in a story.

This approach is called the “Cantilever Method.”

Fig. 11.17 Tall building

model—lateral deflections
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One normally applies this method to estimate the axial forces in the columns at the base of the

building, i.e., where the bending moment due to lateral loading is a maximum.

We consider the typical tall building shown in Fig. 11.18. Given the lateral load, we can determine

the bending moment and transverse shear at mid-height of each story. We denote these quantities as

Mi+1 and VTiþ1 .

Now, we isolate a segment of the building consisting of floors i + 1, i, and the columns connecting

these floors. Figure 11.19 shows this segment. The floors are assumed to be rigid plates, and the

columns are represented as axial springs. Floor i + 1 experiences a rotation, Δβ, with respect to floor
i due to the moment Mi+1.

We position a reference axis at point O and define xi as the X coordinate for spring i. The

corresponding axial stiffness is ki. The origin of the reference axis is located such that

Fig. 11.18 Tall building

model (a) under lateral
loading (b) Segment

of building above floor i
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X
kixi ¼ 0 ð11:21Þ

Note that the axial stiffness is equal to the column stiffness,

ki ¼ AiE

h
ð11:22Þ

where Ai is the cross-sectional axis and h is the column height. Then, when E is constant, (11.21) can

be written as X
Aixi ¼ 0 ð11:23Þ

In this case, one can interpret the reference axis as equivalent to the centroidal axis for the column

areas in the story.

We suppose the floors rotate about O and defineΔβ as the relative rotation between adjacent floors.
The deformation introduced in spring i follows from Fig. 11.20.

ei ¼ xiΔβ
Fi ¼ kiei ¼ kixiΔβ

ð11:24Þ

Summing moments about 0, and equating the result to the applied moment, Mi+1 results in

Miþ1 ¼
X

kix
i

2
� �

Δβ ð11:25Þ

Here,Mi+1 represents the moment due to the lateral loads applied on and above floor i + 1. We solve

for Δβ and then back substitute in the expression for Fi. The result is

Fi ¼ kixi
Miþ1X
kixi

2
� � ¼ xiAi

E

h
X

kixi
2

 !
Miþ1 ð11:26Þ

Fig. 11.19 Column-beam

model for a story bounded

by floors i and i + 1

Fig. 11.20 Deformation

due to relative rotation
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We see that the column force distribution is proportional to the distance from the reference axis

and the relative column cross-sectional area. One does not need to specify the actual areas, only the

ratio of areas.

One should note that this result is based on the assumption that the floor acts as a rigid plate. Stiff

belt-type trusses are frequently incorporated at particular floors throughout the height so that the high-

rise frame behaves consistent with this hypothesis.

Example 11.7 Approximate analysis based on the cantilever method

Given: The symmetrical 42-story plane frame shown in Fig. E11.7a. Assume the building is

supported on two caissons located at the edges of the base. Consider the base to be rigid.

Determine: The axial forces in the caissons.

Fig. E11.7a

Solution: The Moment at the base is given by

R ¼ w0H

2
¼ 210w0

M ¼ 2H

3
R ¼ 58, 800w0 ¼ 8820kip ft

This moment is resisted by the pair of caisson forces which are equivalent to a couple.
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60F ¼ 8820

F ¼ 147kip

Example 11.8 Approximate Analysis Based on the Cantilever Method

Given: The symmetrical plane frame shown in Fig. E11.8a.

Determine: The column axial forces in the bottom story for the distribution of column areas shown.

Fig. E11.8a

Solution: The rotational stiffness for the story is:

Kx ¼
X

kixi
2 ¼ E

h

X
Aixi

2 ¼ 1100
EA

h

� �

The bending moment at mid-height of the first story is 2550 kip ft. Then, substituting forMi+1 and

Kx in (11.26) leads to the axial forces in the columns (Fig. E11.8b),
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F2 ¼ 10ð ÞAE
h

2550

1100 AE=hð Þ
� �

¼ 23:2kip #

F1 ¼ 30ð Þ :5AE
h

2550

1100 AE=hð Þ
� �

¼ 34:8kip #

F3 ¼ �F2 ¼ 23:2kip "
F4 ¼ �F1 ¼ 34:8kip "

Fig. E11.8b

This computation is repeated for successive stories. Once all the column axial forces are known, one

can compute the column shears by assuming inflection points at the midpoints of the columns and beams

and applying static equilibrium conditions. The procedure is similar to that followed in Example 11.2.

11.6 Summary

11.6.1 Objectives of the Chapter

Our goals in this chapter are

• To describe some approximate methods for estimating the bending moment distribution in multi-

span beams and multi-bay frames subjected to gravity loading.

• To present approximate methods for analyzing multistory rigid frames subjected to lateral loading.

11.6.2 Key Concepts

• Reasoning in a qualitative sense about the behavior using the concept of relative stiffness provides

the basis for a method to estimate the bending moment distribution in multi-span beams.

• Two methods are described for analyzing low-rise rigid frame structures.

• The Portal method: The Portal method assumes the shear forces in the interior columns are equal to

a common value, and the shears in the exterior columns are equal to ½ this value. This is an

empirical-based procedure.

• The shear stiffness method: The shear stiffness method uses simplified structural models to

estimate the shear forces in the columns given the total shear force for a story. This procedure

predicts that the shear force in a particular column is proportioned to the relative stiffness. It

follows that a stiff column attracts more load than a flexible column.
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• High-rise rigid frames are modeled as equivalent cantilever beams. The floor slabs are considered

rigid and the bending rigidity is generated through the axial action of the columns. One starts with

the bending moment at the midpoint between a set of floors and determines the axial forces in the

columns. According to this method, the axial force depends on the axial rigidity of the column and

the distance from the centroidal axis.

11.7 Problems

Problem 11.1. Estimate the bending .moment distribution for the cases listed below.. Use qualitative

reasoning based on relative stiffness. Assume I as constant.

Problem 11.2. Estimate the bending moment distribution. Use qualitative reasoning based on

relative stiffness. Assume I as constant.

Problem 11.3. Solve Problem 11.1 cases (a) and (b) using moment distribution. Compare the

approximate and exact results.
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Problem 11.4. Consider the multistory steel frame shown below. Determine the maximum positive

and negative moments in the beams using the following approaches:

1. Assume inflection points at 0.1 L from each end of the beams.

2. Use a computer software system. Assume Ig ¼ 200(10)6 mm4, Ag ¼ 16,000 mm2, Ic ¼ 100

(10)6 mm4, Ac ¼ 6000 mm2, and E ¼ 200 GPa.

Problem 11.5. Estimate the axial force, shear force, and bendingmoment distributions. Assume Ig ¼ 2Ic
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Problem 11.6. Members AC and FD are continuous. Estimate the bending moment distribution in

AC and FD, and the axial forces in the pin-ended members. Compare your results with results

generated with a computer software system. Assume I ¼ 100(10)6 mm4, A ¼ 6000 mm2, A pin-

ended ¼ 4000 mm2, and E ¼ 200 GPa.

Problem 11.7. Repeat Problem 11.6 assuming fixed supports at A and F.

Problem 11.8. Consider the steel frame shown below. Determine the moment at each end of each

member using

(a) The Portal method.

(b) The shear stiffness method:. Take Ig ¼ 300(10)6 mm4, Ag ¼ 18,000 mm2 for all the girders,

Ic ¼ 100(106) mm4, and Ac ¼ 6000 mm2 for all the columns.
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Problem 11.9. For the steel frames shown, estimate the axial force, shear force, and moments for all

of the members using the Portal method. Compare your results with results generated with a computer

software system. Take Ic ¼ 480 in.4, Ac ¼ 40 in.2 for all the columns and Ib ¼ 600 in.4, Ab ¼ 60 in.2

for all the beams.
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Problem 11.10. For the steel frames shown, estimate the axial force, shear force, and moments for

all of the members. Use the Stiffness method. Take Ic ¼ 480 in.4, Ac ¼ 40 in.2 for all the columns and

Ib ¼ 600 in.4, Ab ¼ 60 in.2 for all the beams.
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Problem 11.11. Estimate the column axial forces in the bottom story for the distribution of column

areas shown.
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Problem 11.12. Estimate the column shears for cases (a) and (b). Compare your results with

computer-based solutions. Assume Ig ¼ 300 in.4, Ag ¼ 20 in.2, Ic ¼ 100 in.4, Ac ¼ 10 in.2, Ab ¼ 0.5

in.2, and E ¼ 29,000 ksi.

Problem 11.13. Consider the rigid steel frame with bracing shown below. Estimate the column

shears and brace forces. Compare your results with a computer-based solution. Take Ig ¼ 120

(10)6 mm4, Ag ¼ 6000 mm2, Ic ¼ 40(10)6 mm4, Ac ¼ 2000 mm2, Ab ¼ 650 mm2, and E ¼ 2000

GPa.
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Finite Element Displacement Method
for Framed Structures 12

Abstract

In this chapter, we revisit the Displacement Method for structures such as

trusses, beams, and frames which are composed of member type elements.

Our objective is to identify the basic steps involved in applying the
Displacement Method that can be represented as computer procedures.

We utilize matrix notation since it is the natural language of computation,

and systematically reformulate the different steps as a sequence of matrix

operations. This reformulation is referred to as the Finite Element Dis-

placement Method. It is relatively straightforward to convert these matrix

operations into computer code once one selects a computer language.

12.1 Introduction

In Chaps. 9 and 10, we described two methods for analyzing indeterminate structures, namely the

Force and Displacement Methods. The examples that we presented were deliberately kept simple to

minimize the computational effort since our objective was to demonstrate “how” the methods are

applied rather than the computational details. However, one can appreciate that as a structure

becomes more complex, the computational effort becomes the limiting issue for hand computation.

Therefore, it is necessary to resort to computer-based procedures in order to execute the various

phases of the analysis process. One needs to be familiar with commercial computer-based analysis

codes since the extensive use of digital computers in structural analysis and design has revolutionized

the practice of structural engineering over the past 40 years.

12.2 Key Steps of the Finite Element Displacement Method
for Member Systems

Chapter 10 discussed the methodology of the Displacement Method and presented examples of beam

and frame structures analyzed by this method. We summarize here the key steps involved in applying
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the Displacement Method to member type structures. In later sections, we reexamine each step and

represent the set of actions as a set of matrix operations.

Step #1. Formulate the member end force–end displacement equations

Using beam theory, we express the forces acting on the ends of a member in terms of the

displacement measures for the ends. These equations are referred to as member end

action–end displacement equations. Their derivation is contained in Sect. 10.2. A subset

of these equations are called the slope-deflection equations. In the derivation, the force and

displacement quantities are referred to a local reference frame associated with the orienta-

tion of the member.

Step #2. Select a global reference frame and transform member variables

We select a common reference frame and refer both the nodal and member force and

displacement quantities to this common frame. This step involves shifting back and forth

from member frames to the global frame and allows one to deal with structures having

arbitrary geometries.

Step #3. Establish the nodal force equilibrium equations

We enforce force equilibrium at each node. This step involves summing the end actions for

those members which are incident on the node. Then, using the member equations, we

substitute for the end actions in terms of the nodal displacements that correspond to the end

displacements for the member. This operation leads to a set of linear algebraic equations

which relate the external forces applied to the nodes and the nodal displacements. The

coefficient matrix for this set is called the “System Stiffness Matrix.”

Step #4. Introduce displacement constraints

Supports at nodes introduce constraints on certain nodal displacements. For example, if a

node is fully fixed, all the displacement measures associated with the node are equal to zero.

Introducing displacement constraints reduces the total number of displacement variables,

and one works with a “reduced” set of equilibrium equations. Depending on the structure, a

certain number of supports are required to prevent initial instability.

Step #5. Solve the nodal equilibrium equations

We solve the nodal force equilibrium equations for the nodal displacements. When the

number of unknown displacements is large, this step is not feasible without a digital

computer.

Step #6. Determine member end actions
We substitute the values of the nodal displacements obtained from the solution of the nodal

equilibrium equations into the member force–displacement relations and solve for the

member end forces.

Step #7. Check on nodal force equilibrium

The last step involves substituting for the member end forces in the nodal force equilibrium

equations to check that the external nodal forces are equilibrated by the member forces. This

step provides information on the reactions; it also provides a check on statics. Static

discrepancy is generally related to the computational accuracy associated with solving the

nodal equilibrium equations. Most computers now use double precision representation and

numerical accuracy is usually not a problem.
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12.3 Matrix Formulation of the Member Equations: Planar Behavior

In what follows, we present the member equations for the two-dimensional case where bending

occurs in the x–y plane. Figure 12.1 shows the end actions and end displacements referred to the local

member frame. We use a subscript l to denote quantities referred to the local frame. The x-axis

coincides with the centroidal axis for the member, and the y and z axes are the principal inertia

directions for the cross section. Subscripts B and A denote the positive and negative ends of the

member. It is convenient to represent the set of end forces and end displacements as matrices defined

as follows:

• End Displacements

UℓB ¼
uℓB

vℓB

θB

8><
>:

9>=
>; UℓA ¼

uℓA

vℓA

θA

8><
>:

9>=
>; ð12:1Þ

• End Forces

PℓB ¼
FℓB

VℓB

MB

8><
>:

9>=
>; PℓA ¼

FℓA

VℓA

MA

8><
>:

9>=
>; ð12:2Þ

Note that the positive sense for moment and rotation is taken as counterclockwise, i.e., from

X toward Y.
We derived the complete set of equations relating the end forces and end displacements in

Chap. 10 and used a subset of these equations (10.12) to analyze bending of beams and frames.

That analysis was approximate in the sense that the axial deformation of the members was neglected.

Consequently, the axial forces had to be determined from the force equilibrium conditions. In what

follows, we remove this assumption. The resulting analysis is now applicable for both truss and frame

type structures. The formulation is now more involved since there are now more unknowns, but this is

Fig. 12.1 End forces and

displacements—local

member frame—planar

behavior
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not a problem when a computer is used to solve the equations. The complete set of planar equations

for the end actions at B are:

FℓB ¼
AE

L
uℓB � uℓAð Þ þ FF

ℓB

VℓB ¼ �
6EI

L2
θB þ θAð Þ þ 12EI

L3
vℓB � vℓAð Þ þ V F

ℓB

MB ¼ 2EI

L
2θB þ θAð Þ � 6EI

L2
vℓB � vℓAð Þ þM F

B

ð12:3Þ

where FℓB
F , VℓB

F , and MB
F are the fixed end actions generated by the loading applied to the member

with the ends fixed. Using the global equilibrium equations for the member, one obtains a similar set

of equations for the end actions at A.

FℓA ¼ �
AE

L
uℓB � uℓAð Þ þ FF

ℓA

VℓA ¼
6EI

L2
θB þ θAð Þ � 12EI

L3
vℓB � vℓAð Þ þ V F

ℓA

MA ¼ 2EI

L
θB þ 2θAð Þ � 6EI

L2
vℓB � vℓAð Þ þM F

A

ð12:4Þ

Both sets of (12.3) and (12.4) are restricted to prismatic members, i.e., members with constant cross-

sectional properties.

We introduce the matrix notation defined by (12.1) and (12.2) and express the end action equations as

PℓB ¼ kℓBBUℓB þ kℓBAUℓA þ PF
ℓB

PℓA ¼ kℓABUℓB þ kℓAAUℓA þ PF
ℓA

ð12:5Þ

where the expanded form of the individual stiffness and force matrices are

kℓBB¼

AE

L
0 0

0
12EI

L3
�6EI

L2

0 �6EI
L2

4EI

L

2
6666664

3
7777775

kℓBA¼

�AE

L
0 0

0 �12EI

L3
�6EI

L2

0
6EI

L2
2EI

L

2
6666664

3
7777775

PF
ℓB¼

FF
ℓB

V F
ℓB

M F
B

8>>><
>>>:

9>>>=
>>>;

kℓAA¼

AE

L
0 0

0
12EI

L3
6EI

L2

0
6EI

L2
4EI

L

2
6666664

3
7777775

kℓAB¼

�AE
L

0 0

0 �12EI

L3
6EI

L2

0 �6EI

L2
2EI

L

2
6666664

3
7777775

PF
ℓA¼

FF
ℓA

V F
ℓA

M F
A

8>>><
>>>:

9>>>=
>>>;

ð12:6Þ

The matrices kℓBB, kℓAA, kℓBA, kℓAB are called the member stiffness matrices referred to the

local member frame. Note that once the end displacements UℓB and UℓA are known, one can

determine the end actions PℓB and PℓA. The member stiffness matrices are functions of the member

properties (A, I, L ) and the material property E. The fixed end actions (PℓB
F and PℓA

F) depend on the

external loading applied to the member.
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Example 12.1: The Fixed End Actions

Given: The linearly loaded beam shown in Fig. E12.1.

Fig. E12.1

Determine: The fixed end forces.

Solution: The fixed end forces are determined using the Force Method described in Chap. 9

(Table 9.1).

PF
ℓB ¼

0
7wL

20

�wL2

20

8>>>><
>>>>:

9>>>>=
>>>>;

PF
ℓA ¼

0

3wL

20

wL2

30

8>>>><
>>>>:

9>>>>=
>>>>;

12.4 Local and Global Reference Frames

Consider the structure shown in Fig. 12.2. There are five nodes and four members. We number these

artifacts consecutively starting with one. The local X-axis for a member is selected to coincide with

the longitudinal axis, as indicated on the figure; the Y-axis is taken to be 90� counterclockwise from
the X-axis. The member equations presented in the previous section involve force and displacement

quantities referred to the local member frames. Figure 12.3 illustrates the situation for node two. The

end displacements are related to the nodal displacements. However, one must first select a common
reference frame for the nodal displacements. We choose the global frame shown in Fig. 12.2. Once

the local frames are specified with respect to the global frame (Xg, Yg), one can derive the

relationships between the displacement and force variables.

Consider the reference frames shown in Fig. 12.4. Starting with quantities referred to the local

member frame, we project them on the global directions using trigonometric relations. One obtains

u ¼ ul cos α� vl sin α
v ¼ ul sin αþ vl cos α

ð12:7Þ

12.4 Local and Global Reference Frames 809

http://dx.doi.org/10.1007/978-3-319-24331-3_9
http://dx.doi.org/10.1007/978-3-319-24331-3_9


Fig. 12.2 Local and

global reference frames

Fig. 12.3 Member and

nodal frames at node 1

Fig. 12.4 Rotation of axes
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Introducing matrix notation, we writeU ¼
u
v
θ

8<
:

9=
; andUℓ ¼

uℓ
vℓ
θ

8<
:

9=
; and express (12.7) as a matrix

product.

U ¼ RlgUℓ
ð12:8Þ

where

Rlg ¼
cos α � sin α 0

sin α cos α 0

0 0 1

2
4

3
5

We interpret Rlg as a rotation transformation matrix from the local to the global frame. The

transformation from the global to the local frame is expressed in a similar way,

Ul ¼ RglU ð12:9Þ
where Rgl has the following form:

Rgl ¼
cos α sin α 0

� sin α cos α 0

0 0 1

2
4

3
5

Comparing these two forms for R, we observe that one is both the inverse and the transpose of the

other.

Rgl ¼ Rlg

� �T ¼ Rlg

� ��1 ð12:10Þ

A matrix having this property is said to be orthogonal.

Example 12.2 Rotation Matrices

Given: The structure defined in Fig. E12.2a.

Determine: The rotation matrices for the members.

Fig. E12.2a
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Solution:

Member (1) α ¼ +90�

Rlg ¼
0 �1 0

1 0 0

0 0 1

2
4

3
5 Rgl ¼

0 1 0

�1 0 0

0 0 1

2
4

3
5

Member (2) α ¼ +45�

Rlg ¼
0:707 �0:707 0

0:707 0:707 0

0 0 1

2
4

3
5

Member (3) α ¼ –45�

Rlg ¼
0:707 0:707 0

�0:707 0:707 0

0 0 1

2
4

3
5

Member (4) α ¼ –90�

Rlg ¼
0 1 0

�1 0 0

0 0 1

2
4

3
5

We suppose the external nodal forces are referred to the global frame. Then, we need to transform

the member end forces from the member frame to the global frame. End forces transform in a similar

way as displacements, i.e.,

P ¼ RlgPℓ ð12:11Þ
Operating on the member matrix equations defined by (12.5) and noting (12.9) and (12.11), the

“transformed” equations expressed in terms of quantities referred to the global frame take the

following form:

PB ¼ kBBUB þ kBAUA þ PF
B

PA ¼ kABUB þ kAAUA þ PF
A

ð12:12Þ

where the member stiffness and end action matrices referred to the global frames are defined by

kBB ¼ RlgkℓBB Rlg

� �T
kBA ¼ RlgkℓBA Rlg

� �T
kAA ¼ RlgkℓAA Rlg

� �T
kAB ¼ RlgkℓAB Rlg

� �T
PF
B ¼ RlgP

F
ℓB PF

A ¼ RlgP
F
ℓA

ð12:13Þ

Given Rlg, one operates, according to (12.13), on the “local” stiffness matrices given by (12.6) to

obtain their global forms.

12.5 Nodal Force Equilibrium Equations

The force equilibrium equations for a node involve the end actions for those members which are

incident on the node. We need to distinguish between positive and negative incidence, i.e., whether

the positive or negative end of the member is incident on the node. Up to this point, we have used

subscript B to denote the positive end, and A for the negative end of a member. To allow for

automating the process of assembling the nodal equilibrium equations and computing the member

end forces given the member end displacements, we introduce a numbering scheme for the members

and the associated end nodes.
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We number the members consecutively from 1 to Nm, where Nm is the total number of members.

We also define

nþ ¼ nodenumber locatedat thepositiveendofmemberm
n� ¼ nodenumber locatedat thenegativeendofmemberm

ð12:14Þ

The connectivity of the members and nodes is defined by a table, which lists for each member the

node numbers corresponding to the positive end and negative end. The following table is the

member–node incidence table for the structure defined in Fig. 12.2.

Member–node incidence table

Member m Negative node n– Positive node n+

(1) 1 2

(2) 2 3

(3) 3 4

(4) 4 5

The incidence table provides the “instructions” for assembling the nodal equations. We will

illustrate this feature later.

Example 12.3: Construction of a Member–Node Incidence Table

Given: The structure shown in Fig. E12.3a.

Fig. E12.3a

Determine: The member–node incidence table.

Solution: There are seven members and eight nodes. One loops over the members and lists the node

numbers at the positive and negative ends of each member (the positive sense for a member is

indicated with an arrow). The result is listed below.

Member–node incidence table

Member m Negative node n– Positive node n+

(1) 1 2

(2) 2 4

(3) 3 4

(4) 4 6

(5) 5 6

(6) 6 8

(7) 7 8

Using the notation introduced above and noting (12.12), we denote the global end actions for

member m with a subscript (m).
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P mð ÞB ¼ k mð ÞBBU mð ÞB þ k mð ÞBAU mð ÞA þ PF
mð ÞB

P mð ÞA ¼ k mð ÞABU mð ÞB þ k mð ÞAAU mð ÞA þ PF
mð ÞA

ð12:15Þ

The expanded forms of the matrices in (12.15) referred to the global frame follow from (12.13).

We assume member m is oriented at the angle, α (see Fig. 12.5).

k mð ÞAA ¼

AE

L
cos 2αþ 12EI

L3
sin 2α

� �
AE

L
� 12EI

L3

� �
sin α cos α � 6EI

L2
sin α

AE

L
� 12EI

L3

� �
sin α cos α

AE

L
sin 2αþ 12EI

L3
cos 2α

� �
6EI

L2
cos α

� 6EI

L2
sin α

6EI

L2
cos α

4EI

L

2
66666664

3
77777775

k mð ÞAB ¼

� AE

L
cos 2αþ 12EI

L3
sin 2α

� �
� AE

L
� 12EI

L3

� �
sin α cos α � 6EI

L2
sin α

� AE

L
� 12EI

L3

� �
sin α cos α � AE

L
sin 2αþ 12EI

L3
cos 2α

� �
6EI

L2
cos α

6EI

L2
sin α � 6EI

L2
cos α

2EI

L

2
66666664

3
77777775

k mð ÞBA ¼

� AE

L
cos 2αþ 12EI

L3
sin 2α

� �
� AE

L
� 12EI

L3

� �
sin α cos α

6EI

L2
sin α

�AE

L
� 12EI

L3
sin α cos α � AE

L
sin 2αþ 12EI

L3
cos 2α

� �
� 6EI

L2
cos α

� 6EI

L2
sin α

6EI

L2
cos α

2EI

L

2
66666664

3
77777775

k mð ÞBB ¼

AE

L
cos 2αþ 12EI

L3
sin 2α

� �
AE

L
� 12EI

L3

� �
sin α cos α

6EI

L2
sin α

AE

L
� 12EI

L3

� �
sin α cos α

AE

L
sin 2αþ 12EI

L3
cos 2α

� �
� 6EI

L2
cos α

6EI

L2
sin α � 6EI

L2
cos α

4EI

L

2
66666664

3
77777775
ð12:16Þ

Fig. 12.5 Member end

actions referred to global

frame
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U mð ÞB ¼
u mð ÞB
v mð ÞB
θ mð ÞB

8><
>:

9>=
>; U mð ÞA ¼

u mð ÞA
v mð ÞA
θ mð ÞA

8><
>:

9>=
>;

P mð ÞB ¼
Fx mð ÞB
Fy mð ÞB
M mð ÞB

8><
>:

9>=
>; P mð ÞA ¼

Fx mð ÞA
Fy mð ÞA
M mð ÞA

8><
>:

9>=
>;

PF
mð ÞB ¼

FF
x mð ÞB

FF
y mð ÞB

M F
mð ÞB

8>><
>>:

9>>=
>>; PF

mð ÞA ¼
FF
x mð ÞA

FF
y mð ÞA

M F
mð ÞA

8>><
>>:

9>>=
>>;

ð12:17Þ

Note that all terms in (12.16) and (12.17) are referred to the global reference frame.

Figure 12.6 shows the forces (end actions) acting on member AB and the nodes located at each

end. The nodal forces are �P(m)A and �P(m)B, i.e., their sense is opposite to the actual end actions.

To generate the force equilibrium equations for a node, one sums up the applied external forces

and the member reaction forces associated with the node. We express the matrix equilibrium equation

for node j as

PEj þ
X
nþ¼j

�P mð ÞB
� �þX

n�¼j
�P mð ÞA
� � ¼ 0 ð12:18Þ

where PEj is the applied external force vector for node j and the Σ is for those members having one

end incident on node j. Noting (12.15), we observe that the equilibrium equation for node j involves

the displacements of those nodes which are connected to node j by members. We utilize this

observation later.

We generate the complete set of nodal equilibrium equations by evaluating (12.18) for all the

nodes. It is convenient to work with matrices expressed in a form that is partitioned according to the

“natural” size of the nodal vectors. For a planar frame, the size of the nodal vectors is 3 � 1. For a

plane truss, the size is 2 � 1. For a horizontal beam, the size is 2 � 1. We suppose there are Nn

Fig. 12.6 Member

reaction forces
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nodes. Then, there will be Nn matrix equations similar in form to (12.18). We express the total set of

equations as a single matrix equation,

PE ¼ KUþ PI ð12:19Þ
where the partitioned forms of the individual matrices are

U ¼ system displacement vector ¼
U1

U2

⋮
UNn

8>><
>>:

9>>=
>>;

PE ¼ external nodal force vector ¼
PE1

PE2

⋮
PENn

8>><
>>:

9>>=
>>;

PI ¼ nodal force vector due to member fixed end actions ¼
PF
I1

PF
I2

⋮
PF
INn

8>><
>>:

9>>=
>>;

K ¼ system stiffness matrix ¼ Kij

� �
i, j ¼ 1, 2, . . . ,Nn

Note that the system stiffness matrix, K, has Nn partitioned rows and columns.

We generate the partitioned forms of the system stiffness matrix and internal nodal force vector by

looping over the members and noting (12.18). The information for n+ and n– for a given member m is

provided by the member–node incidence table and leads to the following assembly algorithms for

m ¼ 1, 2, . . ., Nm:

For K:

k mð ÞAA in rown�, columnn�
k mð ÞAB in rown�, columnnþ
k mð ÞBA in rownþ, columnn�
k mð ÞB in rownþ, columnnþ

ð12:20Þ

For PI:

PF
mð ÞA in row n�

PF
mð ÞB in row nþ

ð12:21Þ

This assembly process is called the “Direct Stiffness Method.” It is generally employed by most

commercial analysis software codes since it is relatively straightforward to implement. We can

deduce from the assembly algorithm that the system stiffness matrix is square and symmetrical.

The nonzero elements tend to be clustered in a band centered on the diagonal.

816 12 Finite Element Displacement Method for Framed Structures



Example 12.4: Assembly Process

Given: The plane frame shown in Fig. E12.4a.

Determine: The system stiffness and nodal force matrices.

Fig. E12.4a

Solution: We first number the members and nodes as indicated in Fig. E12.4a, and then generate the

member–node incidence table listed below.

Member–node incidence table

Member m Negative node n– Positive node n+

(1) 1 2

(2) 2 3

(3) 3 4

Using the member–node incident table, we replace the member end force and displacement

matrices with

UB ) Unþ PB ) Pnþ
UA ) Un� PA ) Pn�

In (12.15), the operation is carried out for each member. The resulting expressions for the end

forces expressed in terms of the nodal displacements are

P 1ð Þ2 ¼ k 1ð ÞBBU2 þ k 1ð ÞBAU1 þ PF
1ð ÞB

P 1ð Þ1 ¼ k 1ð ÞABU2 þ k 1ð ÞAAU1 þ PF
1ð ÞA

P 2ð Þ3 ¼ k 2ð ÞBBU3 þ k 2ð ÞBAU2 þ PF
2ð ÞB

P 2ð Þ2 ¼ k 2ð ÞABU3 þ k 2ð ÞAAU2 þ PF
2ð ÞA

P 3ð Þ4 ¼ k 3ð ÞBBU4 þ k 3ð ÞBAU3 þ PF
3ð ÞB

P 3ð Þ3 ¼ k 3ð ÞABU4 þ k 3ð ÞAAU3 þ PF
3ð ÞA

Next, we equate the external nodal force to the sum of the member forces at each node. This step

leads to the nodal force equilibrium equations (see (12.18)).

PE1 ¼ P 1ð Þ1
PE2 ¼ P 2ð Þ2 þ P 1ð Þ2
PE3 ¼ P 2ð Þ3 þ P 3ð Þ3
PE4 ¼ P 3ð Þ4
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Substituting for the end forces expressed in terms of the nodal displacements, these equations

expand to

PE1 ¼ k 1ð ÞAAU1 þ k 1ð ÞABU2 þ PF
1ð ÞA

PE2 ¼ k 1ð ÞBAU1 þ k 1ð ÞBB þ k 2ð ÞAA
� �

U2 þ k 2ð ÞABU3 þ PF
2ð ÞA þ PF

1ð ÞB

PE3 ¼ k 2ð ÞBAU2 þ k 2ð ÞBB þ k 3ð ÞAA
� �

U3 þ k 3ð ÞABU4 þ PF
3ð ÞA þ PF

2ð ÞB

PE4 ¼ k 3ð ÞBAU3 þ k 3ð ÞBBU4 þ PF
3ð ÞB

Lastly, we write these equations as a single equation in terms of “system” matrices [see (12.19)].

The forms of the system matrices are listed below.

U ¼

U1

U2

U3

U4

8>>><
>>>:

9>>>=
>>>;

PE ¼

PE1

PE2

PE3

PE4

8>>><
>>>:

9>>>=
>>>;

PI ¼

PF
1ð ÞA

PF
1ð ÞB þ PF

2ð ÞA
� �
PF

2ð ÞB þ PF
3ð ÞA

� �
PF

3ð ÞB

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

K ¼

k 1ð ÞAA k 1ð ÞAB 0 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB 0

0 k 2ð ÞBA k 2ð ÞBB þ k 3ð ÞAA
� �

k 3ð ÞAB
0 0 k 3ð ÞBA k 3ð ÞBB

2
6664

3
7775

There are four nodes in this example, so the partitioned form of K is 4 � 4. The expanded size of

K for this two-dimensional plane frame will be 12 � 12 since there are three variables per node.

In this example, we chose to list all the equations first and then combine them in a single “system”

equation. Normally, one would apply the algorithms defined by (12.20) and (12.21) and directly

assemble the system matrices.

12.6 Introduction of Nodal Supports

Introducing a support at a node corresponds to prescribing the value of certain nodal displacements.

For example, a hinge prevents translation in two orthogonal directions. Full fixity eliminates both

translation and rotation at a node. When supports are introduced, the number of displacement

unknowns is decreased by the number of displacement restraints. However, each displacement

constraint produces an unknown reaction so that the “total” number of unknowns (nodal

displacements and nodal reaction forces) remains constant. In order to determine the unknown

displacements, we work with a reduced set of equilibrium equations. We illustrate this process

with the following example.

Example 12.5: Example of Fully Fixed Supports

Given: The structure defined in Fig. E12.5a. Suppose nodes one and four are fully fixed.
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Fig. E12.5a

Determine: The reduced system matrices.

Solution: The system matrices are presented in Example 12.4. We start with the complete set of nodal

force equilibrium equations generated in the previous example.

PE1 ¼ k 1ð ÞAAU1 þ k 1ð ÞABU2 þ PF
1ð ÞA

PE2 ¼ k 1ð ÞBAU1 þ k 1ð ÞBB þ k 2ð ÞAA
� �

U2 þ k 2ð ÞABU3 þ PF
2ð ÞA þ PF

1ð ÞB
PE3 ¼ k 2ð ÞBAU2 þ k 2ð ÞBB þ k 3ð ÞAA

� �
U3 þ k 3ð ÞABU4 þ PF

3ð ÞA þ PF
2ð ÞB

PE4 ¼ k 3ð ÞBAU3 þ k 3ð ÞBBU4 þ PF
3ð ÞB

Nodes 1 and 4 are fully fixed. The external nodal forces PE1 and PE2 represent the reactions at these

nodes. We setU1 ¼ U4 ¼ 0 and rearrange the order of the equations so that PE1 and PE4 are last. This

step leads to two sets of equations,

PE2 ¼ k 1ð ÞBB þ k 2ð ÞAA
� �

U2 þ k 2ð ÞABU3 þ PF
2ð ÞA þ PF

1ð ÞB
PE3 ¼ k 2ð ÞBAU2 þ k 2ð ÞBB þ k 3ð ÞAA

� �
U3 þ PF

3ð ÞA þ PF
2ð ÞB

+
PE2

PE3


 �
¼ k 1ð ÞBB þ k 2ð ÞAA

� �
k 2ð ÞAB

k 2ð ÞBA k 2ð ÞBB þ k 3ð ÞAA
� �
 �

U2

U3


 �
þ

PF
2ð ÞA þ PF

1ð ÞB
� �
PF

3ð ÞA þ PF
2ð ÞB

� �
8<
:

9=
;

and

PE1 ¼ k 1ð ÞABU2 þ PF
1ð ÞA

PE4 ¼ k 3ð ÞBAU3 þ PF
3ð ÞB

+
PE1

PE4


 �
¼ k 1ð ÞAB 0

0 k 3ð ÞBA


 �
U2

U3


 �
þ PF

1ð ÞA
PF

3ð ÞB

( )

We solve the first set for U2 and U3. Then, we use these displacements to determine the reactions

PE1 and PE4 with the second set of equations. Note that the total number of unknowns remains the

same when displacement constraint is introduced.

12.6.1 Systematic Approach

The systematic approach for introducing displacement constraints involves rearranging the system

displacement vector U into two segments and also rearranging the rows and columns of P and

K consistent with this reordering of U. We write the rearranged system matrices as
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ð12:23Þ

where U0 contains the unknown displacements, U00 contains the prescribed support movements, P0E
contains the prescribed joint loads, and P00E contains the unknown forces (reactions).

With this reordering, the system equation takes the following form:

ð12:24Þ

Expanding the matrix product results in two matrix equations

P
0
E ¼ K

0
11U

0 þK
0
12U

00 þ P
0
I

P
00
E ¼ K

0
21U

0 þK22U
00 þ P

0 0
I

ð12:25Þ

We solve the first equation for U0

U
0 ¼ K

0
11

� ��1
P
0
E �K

0
12U

00 � P
0
I

� �
ð12:26Þ

Note that the prescribed support movements are converted to equivalent nodal forces. Given U0,
we use the second equation in (12.25) to determine the reaction forces. This step involves only matrix

multiplication. With this approach, one can deal separately with the nodal loads, member loads, and

support movements.

Expanding the right hand side of (12.26) leads to solutions due to the different loading conditions

External joint loads only: P
0
E 6¼ 0,P

0
I ¼ 0,P

00
I ¼ 0,U

00 ¼ 0
� �

U
0 ¼ K

0
11

� ��1
P
0
E

� �
P
00
E ¼ K

0
21U

0

Support settlements only: P
0
E ¼ 0,P

0
I ¼ 0,P

00
I ¼ 0,U

00 6¼ 0
� �

U
0 ¼ K

0
11

� ��1 �K0
12U

00� �
P
00
E ¼ K

0
21U

0 þK
0
22U

00

Member fixed end actions only: P
0
E ¼ 0,P

0
I 6¼ 0,P

00
I 6¼ 0,U

00 ¼ 0
� �

U
0 ¼ K

0
11

� ��1 �P0I� �
P
00
E ¼ K

0
21U

0 þ P
00
I

Lastly, we determine the end member forces in the global coordinate frame and then transform

them to the local frame. The operations for member m are
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P mð ÞB ¼ k mð ÞBBUnþ þ k mð ÞBAUn� þ PF
mð ÞB

P mð ÞA ¼ k mð ÞABUnþ þ k mð ÞAAUn� þ PF
mð ÞA

Pℓ mð ÞB ¼ RgℓP mð ÞB
Pℓ mð ÞA ¼ RgℓP mð ÞA

ð12:27Þ

Example 12.6 Support Movement

Given: The structure defined in Fig. E12.6a. Consider nodes 1 and 4 to experience support

settlements of δ1 and δ4.

Fig. E12.6a

Determine: The rearranged system matrices

Solution: The system matrices are presented in Example 12.4. We place the displacement matrices

corresponding to the partially fixed nodes in U00.

K ¼
k 1ð ÞAA k 1ð ÞAB 0 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB 0

0 k 2ð ÞBA k 2ð ÞBB þ k 3ð ÞAA
� �

k 3ð ÞAB
0 0 k 3ð ÞBA k 3ð ÞBB

2
664

3
775

U
0 ¼ U2

U3


 �
¼

u2
v2
θ2
u3
v3
θ3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

U
00 ¼ U1

U4


 �
¼

u1 ¼ 0

v1 ¼ �δ1
θ1 ¼ 0

u4 ¼ 0

v4 ¼ �δ4
θ4 ¼ 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

The modified form of K consistent with this reordering of U is generated by moving the first

partitioned row and column back to the third location. The steps are
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Noting (12.24), the partitioned form of K0 is

K
0
11 ¼

k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB

k 2ð ÞBA k 2ð ÞBB þ k 3ð ÞAA
� �

" #
K
0
12 ¼

k 1ð ÞBA 0

0 k 3ð ÞBA

" #

K
0
21 ¼

k 1ð ÞAB 0

0 k 3ð ÞBA

" #
K
0
22 ¼

k 1ð ÞAA 0

0 k 3ð ÞBB

" #

We perform a similar operation on the rows of PE and PI. The corresponding reordered partitioned

nodal forces are:

P
0
E ¼

PE2

PE3


 �
P
0
I ¼

PF
1ð ÞB þ PF

2ð ÞA
� �
PF

2ð ÞB þ PF
3ð ÞA

� �
 �

P
00
E ¼

PE1

PE4


 �
¼

Rx1

Ry1

M1

Rx4

Ry4

M4

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

P
00
I ¼

PF
1ð ÞA

PF
3ð ÞB


 �

Throughout the chapter, matrix computations are carried out using computer software such as

MATLAB (29) or MATHCAD (30).

Example 12.7: Two-Member Plane Frame—Partially Fixed

Given: The frame shown in Fig. E12.7a. E, I, and A are constant for both members.

Fig. E12.7a
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Determine: (a) The various matrices for the matrix displacement formulation. (b) Solve for the

joint displacements, member forces, and reactions due to the loading defined in Fig. E12.7b. Use the

following values for the parameters: L ¼ 15 ft, I ¼ 170 in.4, A ¼ 10 in.2, and E ¼ 29,000 ksi.

Fig. E12.7b

Solution:

We start with the geometric data. The topological and geometric information is listed below.

Geometric data:

Member m n– n+ α

(1) 1 2 0

(2) 2 3 –53.13�

Member m α cos α sin α sin α cos α cos2 α sin2 α

(1) 0 1 0 0 1 0

(2) –53.13� 0.6 –0.8 –0.48 0.36 0.64

Generate stiffness matrices:

The system stiffness matrix and displacement vector have the following form:

K ¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB 0

0 0 0

2
4

3
5þ 0 0 0

0 k 2ð ÞAA k 2ð ÞAB
0 k 2ð ÞBA k 2ð ÞBB

2
4

3
5 ¼ k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB
0 k 2ð ÞBA k 2ð ÞBB

2
4

3
5

U ¼
U1

U2

U3

8<
:

9=
; ¼

u1
v1
θ1
u2
v2
θ2
u3
v3
θ3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

We determine the individual member matrices using (12.16). These matrices are referred to the

global reference frame.
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k 1ð ÞAA ¼

AE

L
0 0

0
12EI

L3
6EI

L2

0
6EI

L2
4EI

L

2
6666664

3
7777775

k 1ð ÞAB ¼

�AE

L
0 0

0 � 12EI

L3
6EI

L2

0 � 6EI

L2
2EI

L

2
6666664

3
7777775

k 1ð ÞBA ¼

�AE

L
0 0

0 � 12EI

L3
� 6EI

L2

0
6EI

L2
2EI

L

2
6666664

3
7777775

k 1ð ÞBB ¼

AE

L
0 0

0
12EI

L3
� 6EI

L2

0 � 6EI

L2
4EI

L

2
6666664

3
7777775

k 2ð ÞAA ¼

AE

L
0:36þ 12EI

L3
0:64

� �
AE

L
� 12EI

L3

� �
�0:48ð Þ � 6EI

L2
�0:8ð Þ

AE

L
� 12EI

L3

� �
�0:48ð Þ AE

L
0:64þ 12EI

L3
0:36

� �
6EI

L2
0:6

� 6EI

L2
�0:8ð Þ 6EI

L2
0:6

4EI

L

2
666666664

3
777777775

k 2ð ÞAB ¼

� AE

L
0:36þ 12EI

L3
0:64

� �
�0:48ð Þ �AE

L
þ 12EI

L3

� �
� 6EI

L2
�0:8ð Þ

�AE

L
þ 12EI

L3

� �
�0:48ð Þ � AE

L
0:64þ 12EI

L3
0:36

� �
6EI

L2
0:6

6EI

L2
�0:8ð Þ � 6EI

L2
0:6

2EI

L

2
666666664

3
777777775

k 2ð ÞBA ¼

� AE

L
0:36þ 12EI

L3
0:64

� �
�0:48ð Þ �AE

L
þ 12EI

L3

� �
� 6EI

L2
�0:8ð Þ

� �0:48ð Þ AE

L
þ 12EI

L3

� �
� AE

L
0:64þ 12EI

L3
0:36

� �
� 6EI

L2
0:6

� 6EI

L2
�0:8ð Þ 6EI

L2
0:6

2EI

L

2
666666664

3
777777775

k 2ð ÞBB ¼

AE

L
0:36þ 12EI

L3
0:64

� �
�0:48ð Þ AE

L
� 12EI

L3

� �
6EI

L2
�0:8ð Þ

AE

L
� 12EI

L3

� �
�0:48ð Þ AE

L
0:64þ 12EI

L3
0:36

� �
� 6EI

L2
0:6

6EI

L2
�0:8ð Þ � 6EI

L2
0:6

4EI

L

2
666666664

3
777777775

Substituting for these matrices, the system stiffness matrix takes the following form:
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K
¼

A
E L

0
0

�
A
E L

0
0

0
0

0

0
1
2
E
I

L
3

6
E
I

L
2

0
�
1
2
E
I

L
3

6
E
I

L
2

0
0

0

0
6
E
I

L
2

4
E
I

L
0

�
6
E
I

L
2

2
E
I

L
0

0
0

�
A
E L

0
0

A
E L
1
:3
6
þ
1
2
E
I

L
3

0
:6
4

�
�

�0
:4
8

A
E L
�
1
2
E
I

L
3

�
�

�
6
E
I

L
2
�0

:8
ð

Þ
�

A
E L
0
:3
6
þ
1
2
E
I

L
3

0
:6
4

�
�

�0
:4
8
�
A
E L
þ
1
2
E
I

L
3

�
�

�
6
E
I

L
2
�0

:8
ð

Þ

0
�
1
2
E
I

L
3
�
6
E
I

L
2

�0
:4
8

A
E L
�
1
2
E
I

L
3

�
�

A
E L
0
:6
4
þ
1
2
E
I

L
3

1
:3
6

�
�

6
E
I

L
2
�0

:4
ð

Þ
�0

:4
8
�
A
E L
þ
1
2
E
I

L
3

�
�

�
A
E L
0
:6
4
þ
1
2
E
I

L
3

0
:3
6

�
�

6
E
I

L
2
0
:6

0
6
E
I

L
2

2
E
I

L
�
6
E
I

L
2
�0

:8
ð

Þ
6
E
I

L
2
�0

:4
ð

Þ
8
E
I

L

6
E
I

L
2
�0

:8
ð

Þ
�
6
E
I

L
2

0
:6
ð
Þ

2
E
I

L

0
0

0
�

A
E L
0
:3
6
þ
1
2
E
I

L
3

0
:6
4

�
�

�0
:4
8
�
A
E L
þ
1
2
E
I

L
3

�
�

6
E
I

L
2
�0

:8
ð

Þ
A
E L
0
:3
6
þ
1
2
E
I

L
3

0
:6
4

�
�

�0
:4
8

A
E L
�
1
2
E
I

L
3

�
�

6
E
I

L
2
�0

:8
ð

Þ

0
0

0
0
:4
8

A
E L
þ
1
2
E
I

L
3

�
�

�
A
E L
0
:6
4
þ
1
2
E
I

L
3

0
:3
6

�
�

�
6
E
I

L
2

0
:6
ð
Þ

�0
:4
8

A
E L
�
1
2
E
I

L
3

�
�

A
E L
0
:6
4
þ
1
2
E
I

L
3

0
:3
6

�
�

�
6
E
I

L
2

0
:6
ð
Þ

0
0

0
�
6
E
I

L
2
�0

:8
ð

Þ
6
E
I

L
2

0
:6
ð
Þ

2
E
I

L

6
E
I

L
2
�0

:8
ð

Þ
�
6
E
I

L
2

0
:6
ð
Þ

4
E
L

L

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5



Introduce displacement constraints:

We note that node 1 is fully fixed but node 3 is partially fixed, i.e., the rotation θ3 is unknown. We

rearrange the rows and columns of K, and the rows of U, PE, and PI. This step leads to the resulting

partitioned vectors and matrices listed below.

U
0 ¼

u2
v2
θ2
θ3

8>><
>>:

9>>=
>>; U

00 ¼

u1
v1
θ1
u3
v3

8>>>><
>>>>:

9>>>>=
>>>>;

K
0
11 ¼

AE

L
1:36þ 12EI

L3
0:64

� �
�0:48ð Þ AE

L
� 12EI

L3

� �
� 6EI

L2
�0:8ð Þ � 6EI

L2
�0:8ð Þ

�0:48ð Þ AE

L
� 12EI

L3

� �
AE

L
0:64þ 12EI

L3
1:36

� �
6EI

L2
�0:4ð Þ 6EI

L2
0:6ð Þ

� 6EI

L2
�0:8ð Þ 6EI

L2
�0:4ð Þ 8EI

L

2EI

L

� 6EI

L2
�0:8ð Þ 6EI

L2
0:6ð Þ 2EI

L

4EI

L

2
66666666664

3
77777777775

K
0
12 ¼

�AE

L
0 0 � AE

L
0:36þ 12EI

L3
0:64

� �
�0:48 �AE

L
þ 12EI

L3

� �

0 � 12EI

L3
� 6EI

L2
�AE

L
þ 12EI

L3

� �
�0:48ð Þ � AE

L
0:64þ 12EI

L3
0:36

� �

0
6EI

L2
2EI

L
� 6EI

L2
�0:8ð Þ � 6EI

L2
0:6

0 0 0
6EI

L2
�0:8ð Þ � 6EI

L2
0:6

2
66666666664

3
77777777775

K
0
21 ¼

�AE

L
0 0 0

0 � 12EI

L3
6EI

L2
0

0 � 6EI

L2
2EI

L
0

� AE

L
0:36þ 12EI

L3
0:64

� �
�0:48ð Þ �AE

L
þ 12EI

L3

� �
6EI

L2
�0:8ð Þ 6EI

L2
�0:8ð Þ

� AE

L
þ 12EI

L3

� �
�0:48ð Þ � AE

L
0:64þ 12EI

L3
0:36

� �
� 6EI

L2
0:6 � 6EI

L2
0:6

2
666666666666664

3
777777777777775

K
0
22 ¼

AE

L
0 0 0 0

0
12EI

L3
6EI

L2
0 0

0
6EI

L2
4EI

L
0 0

0 0 0
AE

L
0:36þ 12EI

L3
0:64

� �
AE

L
� 12EI

L3

� �
�0:48ð Þ

0 0 0
AE

L
� 12EI

L3

� �
�0:48ð Þ AE

L
0:64þ 12EI

L3
0:36

� �

0 0 0
6EI

L2
�0:8ð Þ � 6EI

L2
0:6

2
6666666666666666664

3
7777777777777777775

826 12 Finite Element Displacement Method for Framed Structures



Introduce the member properties and evaluate the stiffness terms:

We evaluate the individual stiffness matrices using the following values for the parameters (L ¼ 15 ft,

I ¼ 170 in.4, A ¼ 10 in.2, E ¼ 29,000 ksi).

K
0
11 ¼

2:198� 103 �768:464 730:37 730:37

�768:464 1:045� 103 �365:185 547:778

730:37 �365:185 2:191� 105 5:475� 104

730:37 547:778 5:478� 104 1:096� 105

2
6664

3
7775

K
0
21 ¼

�1:61� 103 0 0 0
0

0

�10:14
�913

913

548� 104
0

0

�586:5 �768:5 �730:4 �730:4
778:2 �1:035� 103 �547:8 �547:8

2
666664

3
777775

We need the inverse of K011 to solve for the displacement due to a given loading. Its form is

K
0
11

� ��1
¼

6:17� 10�4 4:574� 10�4 3:492� 10�7 �6:575� 10�6

4:574� 10�4 1:301� 10�3 3:464� 10�6 �1:128� 10�5

3:492� 10�7 3:464� 10�6 5:227� 10�6 �2:633� 10�6

�6:575� 10�6 �1:128� 10�5 �2:633� 10�6 1:054� 10�5

2
664

3
775

Specify loading:

Next, we consider the loading shown in Fig. E12.7b. The fixed end actions due to the uniform loading

applied to member 1 are defined in Fig. E12.7c.

Fig. E12.7c

The system load vectors corresponding to these loads are:

P
0
E ¼

10

0

0

0

8>><
>>:

9>>=
>>; P

0
I ¼

0

15:0kip in
�37:5 12ð Þkip in
0

8>><
>>:

9>>=
>>; P

00
I ¼

0

15:0kip
37:5 12ð Þkip in
0

0

8>>>><
>>>>:

9>>>>=
>>>>;

Determine the unknown displacements:

Finally, we determine the unknown displacements using (12.26):
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U
0 ¼ K

0
11

� ��1
P
0
E � P

0
I

� �
+

u2

v2

θ2

θ3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

6:17� 10�4 4:574� 10�4 3:492� 10�7 �6:575� 10�6

4:574� 10�4 1:301� 10�3 3:464� 10�6 �1:128� 10�5

3:492� 10�7 3:464� 10�6 5:227� 10�6 �2:633� 10�6

�6:575� 10�6 �1:128� 10�5 �2:633� 10�6 1:054� 10�5

2
66664

3
77775

�

10

0

0

0

8>>>><
>>>>:

9>>>>=
>>>>;
�

0

15:0

� 37:5� 12ð Þ
0

8>>>><
>>>>:

9>>>>=
>>>>;

2
66664

3
77775 ¼

�5:329� 10�4

�0:013
2:304� 10�3

�1:081� 10�3

8>>>><
>>>>:

9>>>>=
>>>>;

u2 ¼ 0:00053 in: 
v2 ¼ 0:013 in: #
θ2 ¼ 0:002304radcounterclockwise

θ3 ¼ 0:001081radcounterclockwise

Determine unknown forces (reactions):

Given the displacements, one determines the reactions with

P
00
E ¼ K

0
21U

0 þK
0
22U

00 þ P
00
I )

Rx1

Ry1

M1

Rx3

Ry3

8>>>><
>>>>:

9>>>>=
>>>>;
¼ K

0
21

u2
v2
θ2
θ3

8>><
>>:

9>>=
>>;þ P

00
I

Rx1

Ry1

M1

Rx3

Ry3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

�1:61� 103 0 0 0

0 �10:14 913 0

0 �913 548� 104 0

�586:5 �768:5 �730:4 �730:4
778:2 �1:035� 103 �547:8 �547:8

2
66664

3
77775

�
�5:329� 10�4

�0:013
2:304� 10�3

�1:081� 10�3

8>><
>>:

9>>=
>>;þ

0

15:0
37:5� 12ð Þ
0

0

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0:86kip
17:24kip
588:4kip in
�10:86kip
12:76kip

8>>>><
>>>>:

9>>>>=
>>>>;
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The reactions are listed on Fig. E12.7d

Fig. E12.7d

Determine member forces in the local coordinates:

Lastly, we determine the member end actions in the global and local coordinate system using (12.27).

Applying these equations for members 1 and 2 leads to the following results:

Fixed end actions

PF
1ð ÞA ¼

0

15kip

37:5 12ð Þkip in

8<
:

9=
; PF

1ð ÞB ¼
0

15kip

�37:5 12ð Þkip in

8<
:

9=
; PF

2ð ÞA ¼ PF
2ð ÞB ¼ 0

Global end actions

P 1ð ÞA ¼ k 1ð ÞAB

u2

v2

θ2

8><
>:

9>=
>;þ PF

1ð ÞA ¼
0:86kip

17:24kip

588:4kip in

8><
>:

9>=
>;

P 1ð ÞB ¼ k 1ð ÞBB

u2

v2

θ2

8><
>:

9>=
>;þ PF

1ð ÞB ¼
�0:86kip
12:76kip

�183:4kip in

8><
>:

9>=
>;

P 2ð ÞA ¼ k 2ð ÞAB

0

0

θ3

8><
>:

9>=
>;þ k 2ð ÞAA

u2

v2

θ2

8><
>:

9>=
>; ¼

10:86kip

�12:76kip
183:4kip in

8><
>:

9>=
>;

P 2ð ÞB ¼ k 2ð ÞBB

0

0

θ3

8><
>:

9>=
>;þ k 2ð ÞBA

u2

v2

θ2

8><
>:

9>=
>; ¼

�10:86kip
12:76kip

0:0

8><
>:

9>=
>;
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Local end actions

Pℓ 1ð ÞA ¼
F 1ð ÞA
V 1ð ÞA
M 1ð ÞA

8<
:

9=
; ¼ RglP 1ð ÞA ¼

1 0 0

0 1 0

0 0 1

2
4

3
5 0:86

17:24

588:4

8<
:

9=
; ¼

0:86kip

17:24kip

588:4kip in

8<
:

9=
;

Pℓ 1ð ÞB ¼
Fx 1ð ÞB
V 1ð ÞB
M 1ð ÞB

8<
:

9=
; ¼ RglP 1ð ÞA ¼

1 0 0

0 1 0

0 0 1

2
4

3
5 �0:86

12:76

�213:96

8<
:

9=
; ¼

�0:86kip
12:76kip

�183:4kip in

8<
:

9=
;

Pℓ 2ð ÞA ¼
F 2ð ÞA

V 2ð ÞA

M 2ð ÞA

8><
>:

9>=
>; ¼ RgℓP 2ð ÞA ¼

0:6 �0:8 0

0:8 0:6 0

0 0 1

2
64

3
75

10:86

�12:76
183:4

8><
>:

9>=
>; ¼

16:72kip

1:03kip

183:4kip in

8><
>:

9>=
>;

Pℓ 2ð ÞB ¼
F 2ð ÞB

V 2ð ÞB

M 2ð ÞB

8><
>:

9>=
>; ¼ RgℓP 2ð ÞB ¼

0:6 �0:8 0

0:8 0:6 0

0 0 1

2
64

3
75�

�10:86
12:76

0:0

8><
>:

9>=
>; ¼

�16:72kip
�1:03kip

0:0

8><
>:

9>=
>;

The local member end actions are listed in Fig. E12.7e.

Fig. E12.7e

Example 12.8: Two-Member Plane Frame—Fully Fixed

Given: The frame shown in Fig. E12.8a. E, I, and A are constant for both members. Take L ¼ 5 m,

I ¼ 70(10)6 mm4, A ¼ 6500 mm2, M ¼ 20 kN m, and E ¼ 200 GPa.

Fig. E12.8a
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Determine: The reactions

Solution:We start with the geometric data. The topological and geometric information is listed below.

Geometric data:

Member m n– n+ α

(1) 1 2 0

(2) 2 3 –90�

Member m α cos α sin α sin α cos α cos2 α sin2 α

(1) 0 1 0 0 1 0

(2) –90� 0 –1 0 0 1

The system stiffness matrix and displacement vector have the following form:

K ¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB 0

0 0 0

2
64

3
75þ

0 0 0

0 k 2ð ÞAA k 2ð ÞAB

0 k 2ð ÞBA k 2ð ÞBB

2
64

3
75

¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB

0 k 2ð ÞBA k 2ð ÞBB

2
64

3
75

We determine the individual member matrices using (12.16). These matrices are referred to the

global reference frame.

k 1ð ÞAA ¼

AE

L
0 0

0
12EI

L3
6EI

L2

0
6EI

L2
4EI

L

2
666664

3
777775 k 1ð ÞAB ¼

�AE

L
0 0

0 � 12EI

L3
6EI

L2

0 � 6EI

L2
2EI

L

2
666664

3
777775

k 1ð ÞBA ¼
�AE

L
0 0

0 � 12EI

L3
� 6EI

L2

0
6EI

L2
2EI

L

2
666664

3
777775 k 1ð ÞBB ¼

AE

L
0 0

0
12EI

L3
� 6EI

L2

0 � 6EI

L2
4EI

L

2
666664

3
777775

k 2ð ÞAA ¼

12EI

L3
0

6EI

L2

0
AE

L
0

6EI

L2
0

4EI

L

2
666664

3
777775 k 2ð ÞAB ¼

� 12EI

L3
0

6EI

L2

0 �AE

L
0

6EI

L2
0

2EI

L

2
666664

3
777775
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k 2ð ÞBA ¼
� 12EI

L3
0 � 6EI

L2

0 �AE

L
0

6EI

L2
0

2EI

L

2
666664

3
777775 k 2ð ÞBB ¼

12EI

L3
0

6EI

L2

0
AE

L
0

6EI

L2
0

4EI

L

2
666664

3
777775

Substituting for these matrices, the system stiffness matrix takes the following form using the

following values for the parameters L ¼ 5 m, I ¼ 70(10)6 mm4, A ¼ 6500 mm2, and E ¼ 200 GPa.

K ¼

260 0 0 �260 0 0 0 0 0

0 1:344 3:36� 103 0 �1:344 3:36� 103 0 0 0

0 3:36� 103 1:12� 107 0 �3:36� 103 5:6� 106 0 0 0

�260 0 0 261:344 �1:584� 10�14 3:36� 103 �1:344 1:584� 10�14 3:36� 103

0 �1:344 �3:36� 103 �1:584� 10�14 261:344 �3:36� 103 1:584� 10�14 �260 2:057� 10�13

0 3:36� 103 5:6� 106 3:36� 103 �3:36� 103 2:24� 107 �3:36� 103 �2:057� 10�13 5:6� 106

0 0 0 �1:344 1:584� 10�14 �3:36� 103 1:344 �1:584� 10�14 �3:36� 103

0 0 0 1:584� 10�14 �260 �2:057� 10�13 �1:584� 10�14 260 �2:057� 10�13

0 0 0 3:36� 103 2:057� 10�13 5:6� 106 �3:36� 103 �2:057� 10�13 1:12� 107

2
6666666666664

3
7777777777775

We note that nodes 1 and 3 are fully fixed. We rearrange the rows and columns of K, and the rows

of U, PE accordingly. This step leads to the resulting partitioned vectors and matrices listed below

(Fig. E12.8b).

Fig. E12.8b Nodal forces

U
0 ¼

u2
v2
θ2

8<
:

9=
; U

00 ¼ 0 P
00
E ¼

Rx1

Ry1

M1

Rx3

Ry3

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

P
0
E ¼

0

0

20 10ð Þ3 kNmm

8<
:

9=
; P

0
I ¼ P

00
I ¼ 0
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K
0
11 ¼

261:344 �1:584� 10�14 3:36� 103

�1:584� 10�14 261:344 �3:36� 103

3:36� 103 �3:36� 103 2:24� 107

0
B@

1
CA

K
0
21 ¼

�260 0 0

0 �1:344 3:36� 103

0 �3:36� 103 5:6� 106

�1:344 1:584� 10�14 �3:36� 103

1:584� 10�14

3:36� 103

�260
2:057� 10�13

�2:057� 10�13

5:6� 106

0
BBBBBBBBB@

1
CCCCCCCCCA

Then

K
0 �1
11 ¼

3:834� 10�3 �7:408� 10�6 �5:762� 10�7

�7:408� 10�6 3:834� 10�3 5:762� 10�7

�5:762� 10�7 �5:762� 10�7 4:482� 10�8

0
@

1
A

Then, we determine the unknown displacements using the following equation:

U
0 ¼

u2
v2
θ2

8<
:

9=
; ¼ K

0
11

� ��1
P
0
E

� �
)

u2
v2
θ2

8<
:

9=
; ¼ K

0
11

� ��1 0

0

20 10ð Þ3

8<
:

9=
; ¼

�0:0115 mm

0:0115 mm

8:964 10ð Þ�4 rad

8<
:

9=
;

Given the displacements, one determines the reactions

P
00
E ¼

Rx1

Ry1

M1

Rx3

Ry3

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ K

0
21U

0 )

Rx1

Ry1

M1

Rx3

Ry3

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

3kN

3kN

5000kNmm

�3kN
�3kN
5000kNmm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

The results are shown in Fig. E12.8c.

Fig. E12.8c
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12.7 Specialized Formulation for Beam and Truss Structures

The formulation presented in the previous sections applies for frame type structures which involve

both axial and bending actions. Beams and trusses are special cases where only one type of action

occurs. Trusses support loads by axial action; beams support transverse loads through bending action.

It is relatively easy to specialize the general frame formulation for these limiting cases.

12.7.1 The Steps Involved for Plane Truss Structures

The member end actions for a truss member consist of only an axial force, i.e., there is no shear or

moment. Also, each node of a plane truss has only two displacement unknowns; the nodal rotation

occurs independent of the translation and has no effect on the member force. We take these

simplifications into account by defining “reduced” member force and nodal matrices. The formula-

tion is exactly the same as described in Sects. 12.3–12.6. One only has to work with modified

stiffness, end action, and nodal displacement matrices.

We start with the member equations. Figure 12.7 shows the member force and displacement

measures referred to the local member frame. Note that now the member matrices are just scalar

quantities.

UℓB ¼ uℓB UℓA ¼ uℓA

PℓA ¼ FℓA PℓB ¼ FℓB

ð12:28Þ

We consider (12.5) to be the general matrix expression for the member equations but interpret the

various terms as “reduced” matrices. Their form follows by deleting the second and third row and

column of the matrices listed in (12.6).

Fig. 12.7 End force and end displacement—local member truss—planar behavior
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kℓBB ¼
AE

L
kℓBA ¼ �

AE

L

kℓBA ¼ �
AE

L
kℓAA ¼

AE

L
PF
ℓB ¼ FF

ℓB PF
ℓA ¼ FF

ℓA

ð12:29Þ

We need to modify the rotation matrix in a similar way. Now, there are two nodal displacement

measures and only one local displacement measure.

U¼ u
v


 �
Uℓ ¼ uℓ

ð12:30Þ

Noting (12.8), we write

U¼ Rℓguℓ

Rℓg ¼ cos α
sin α


 � ð12:31Þ

We use this form for Rℓg to transform between the local and global frames.

Given Rℓg, we generate the global form of the member matrices using (12.13). A typical term is

k ¼ Rℓgkl Rℓg

� �T
ð12:32Þ

where kl is defined by (12.29). Expanding (12.32) leads to

kAA ¼ kBB ¼ k ¼ AE

L

� �
cos 2α sin α cos α

sin α cos α sin 2α


 �

kAB ¼ kBA ¼ �k ¼ � AE

L

� �
cos 2α sin α cos α

sin α cos α sin 2α


 � ð12:33Þ

Noting (12.33), we observe that now k is of order of (2 � 2) for a plane truss vs. (3 � 3) for a

plane frame.

Lastly, we determine the end member forces for member m in the local frame.

Fℓ mð ÞB ¼ AE
L

� �
mð Þ cos α mð Þ sin α mð Þ
� �

Unþ � Un�ð Þ þ FF
ℓ mð ÞB

Fℓ mð ÞA ¼ � AE
L

� �
mð Þ cos α mð Þ sin α mð Þ
� �

Unþ � Un�ð Þ þ FF
ℓ mð ÞA

ð12:34Þ

Example 12.9: Statically Determinate Truss
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Given: The truss shown in Fig. E12.9a.

Fig. E12.9a

Determine: The joint displacements, reactions, and member forces using the Displacement Method.

A(1) ¼ A(2) ¼ A(3) ¼ A ¼ 2 in.2, α ¼ 6.5 � 10–6/�F, and E ¼ 29,000 ksi.

(a) Due to the loading shown

(b) Due to temperature decrease of 40 �F for all members.

Solution: We start with the geometric data. The topological and geometric information is listed

below.

Member m n� n+ α L (in.) AE
L (kip/in.)

(1) 1 2 53.13� 20(12) 241.7

(2) 1 3 0 28(12) 172.6

(3) 3 2 135� 22.63(12) 213.6

Fig. E12.9b

Member m α sin α cos α sin α cos α sin α2 cos α2

(1) 53.13 0.8 0.6 0.48 0.64 0.36

(2) 0 0 1 0 0 1

(3) 135 .707 �0.707 �0.5 0.5 0.5
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We determine the individual member matrices using (12.33).

k mð ÞAA ¼ k mð ÞBB ¼ k mð Þ ¼ AE
L

� �
mð Þ

cos 2α mð Þ sin α mð Þ cos α mð Þ
sin α mð Þ cos α mð Þ sin 2α mð Þ


 �

k mð ÞAB ¼ k mð ÞBA ¼ �k mð Þ ¼ � AE
L

� �
mð Þ

cos 2α mð Þ sin α mð Þ cos α mð Þ
sin α mð Þ cos α mð Þ sin 2α mð Þ


 �

The system stiffness matrix and displacement vector have the following form:

K ¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB 0

0 0 0

2
4

3
5þ k 2ð ÞAA 0 k 2ð ÞAB

0 0 0

k 2ð ÞBA 0 k 2ð ÞBB

2
4

3
5 0 0 0

0 k 3ð ÞAA k 3ð ÞAB
0 k 3ð ÞBA k 3ð ÞBB

2
4

3
5

¼
k 1ð ÞAA þ k 2ð ÞAA
� �

k 1ð ÞAB k 2ð ÞAB
k 1ð ÞBA k 1ð ÞBB þ k 3ð ÞAA

� �
k 3ð ÞAB

k 2ð ÞBA k 3ð ÞBA k 2ð ÞBB þ k 3ð ÞBB
� �

2
4

3
5

U ¼
U1

U2

U3

8<
:

9=
; ¼

u1
v1
u2
v2
u3
v3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

By substituting for individual matrices using (12.33), the system stiffness matrix takes the

following form:

K ¼

259:62 116 �87 �116 �172:62 0

116 154:66 �116 �154:66 0 0

�87 �116 193:79 9:21 �106:79 106:79
�116 �154:66 9:21 261:457 106:79 �106:79
�172:62 0 �106:9 106:79 279:409 �106:79

0 0 106:9 �106:79 �106:79 106:79

0
BBBBBB@

1
CCCCCCA

We note that node 1 is fully fixed but node 3 is partially fixed. We rearrange the rows and columns

ofK, and the rows of U. This step leads to the resulting partitioned vectors and matrices listed below.

U
0 ¼

u2
v2
u3

8<
:

9=
; U

00¼
u1
v1
v3

8<
:

9=
;

K
0
11 ¼

193:79 9:21 �106:79
9:21 261:46 106:79

�106:79 106:79 279:41

0
B@

1
CA K

0
12 ¼

�87 �116 106:79

�116 �154:66 �106:79
�172:62 0 �106:79

0
B@

1
CA

K
0
21 ¼

�87 �116 �172:62
�116 �154:66 0

106:79 �106:79 �106:79

0
B@

1
CA K

0
22 ¼

259:62 116 0

116 154:66 0

0 0 106:79

0
B@

1
CA

We need the inverse of K011 to solve for the displacement due to a given loading. Its form is
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K
0
11

� ��1
¼

0:007 �0:002 0:003
�0:002 0:005 �0:002
0:003 �0:002 0:006

0
@

1
A

Part (a): Loading shown in Fig. E12.9a

The system load vectors corresponding to this loading are

P
0
E ¼

�6
�10
0

8<
:

9=
; P

0
I ¼ P

00
I ¼ 0

We determine the unknown displacements using

U
0 ¼ K

0
11

� ��1
P
0
E

� �
)

u2
v2
u3

8<
:

9=
; ¼ K

0
11

� ��1
P
0
E

� �
¼

�0:026
�0:039
0:005

8<
:

9=
;

Given the displacements, one determines the reactions with

P
00
E ¼ K

0
21U

0 )
R1x

R1y

R3y

8<
:

9=
; ¼ K

0
21U

0 ¼
6

9:14
0:86

8<
:

9=
;

Finally, we determine member forces:

Fℓ mð ÞB ¼
AE

L

� �
mð Þ

cos α mð Þ sin α mð Þ
� �

Unþ � Un�ð Þ þ FF

ℓ mð ÞB

Fℓ 1ð ÞB ¼ 241:7 0:6 0:8½ � �0:026�0:039

 �

þ 0 ¼ �11:43 kip

Fℓ 2ð ÞB ¼ 172:6 1 0½ � 0:005
0


 �
þ 0 ¼ þ0:86 kip

Fℓ 3ð ÞB ¼ 213:6 �0:707 0:707½ � �0:026� 0:005ð Þ
�0:039


 �
þ 0 ¼ �1:21 kip

Part (b): ΔT ¼ –40� for all members

We determine the fixed end actions caused by the temperature decrease (Figs. E12.9c and E12.9d).

FF
lðmÞ ¼ EAαΔT ¼ 29; 000ð Þ 2ð Þ 6:5� 10�6

� �
40ð Þ ¼ 15:08 kip

Fig. E12.9c Fixed end actions—members
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Fig. E12.9d Fixed end actions—joints

The system load vectors corresponding to these loads are

P
0
E ¼ 0 P

0
I ¼

�1:61
22:73
25:74

8<
:

9=
; P

00
I ¼

�24:13
�12:06
�10:66

8<
:

9=
;

We determine the unknown displacements using

U
0¼ K

0
11

� ��1 �P0I� �)
u2
v2
u3

8<
:

9=
; ¼ K

0
11

� ��1 �P0I� � ¼ �0:037 in:
�0:05 in:
�0:087 in:

8<
:

9=
;)

u2 ¼ 0:037 in: 
v2 ¼ 0:05 in: #
u3 ¼ 0:087 in: 

8<
:

Given the displacements, one determines the reactions. For a determinate truss, the reactions will

be zero. Also the member forces will be zero.

P
00
E ¼ K

0
21 U

0þP00I )
R1x

R1y

R3y

8<
:

9=
; ¼ K

0
21U

0þP00I ¼
0

0

0

8<
:

9=
;

Fℓ mð ÞB ¼ AE
L

� �
mð Þ cos α mð Þ sin α mð Þ
� �

Unþ � Un�ð Þ þ FF

ℓ mð ÞB

Fℓ 1ð ÞB ¼ Fℓ 2ð ÞB ¼ Fℓ 3ð ÞB ¼ 0

12.7.2 The Steps Involved for Beam Structures with Transverse
Loading—Planar Behavior

The member forces for a beam member subjected to transverse loading consist only of shear and

moment, i.e., there is no axial force. Also, each node of a beam has only two displacement unknowns:
the rotation and transverse displacement. We take these simplifications into account by defining

“reduced” member and nodal matrices. The procedure is similar to that followed for the trusses.
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We start with the member equations. Figure 12.8 shows the member force and displacement

measures. For beam structures, the local and global frames are taken to be the same. The “reduced”

displacement and end action matrices are

UℓB ¼
vℓB

θB

( )
UℓA ¼

vℓA

θA

( )

PℓB ¼
VℓB

MB

( )
PℓA ¼

VℓA

MA

( ) ð12:35Þ

We obtain the “reduced” member stiffness matrices by deleting the first row and column of the

matrices listed in (12.6).

kAA ¼
12EI

L3
6EI

L2

6EI

L2
4EI

L

2
664

3
775 kAB ¼

� 12EI

L3
6EI

L2

� 6EI

L2
2EI

L

2
664

3
775

kBB ¼
12EI

L3
� 6EI

L2

� 6EI

L2
4EI

L

2
664

3
775 kBA ¼

� 12EI

L3
� 6EI

L2

6EI

L2
2EI

L

2
664

3
775

ð12:36Þ

The remaining steps involved in assembling the system matrices and introducing the support fixity

are the same as described earlier for the general frame. Note that no rotation transformations are

required here since the local and global frames coincide.

Example 12.10: Two-Span Beam

Given: The beam shown in Fig. E12.10a. The properties are taken as

Fig. 12.8 Member end

forces and displacements
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L 1ð Þ ¼ L 2ð Þ ¼ L ¼ 20 ft, I 1ð Þ ¼ I 2ð Þ ¼ I ¼ 428 in:4,E ¼ 29, 000 ksi

Fig. E12.10a

Determine: The joint displacements and member forces due to (i) the loading in Fig. E12.10b,

(ii) support settlement in Fig. E12.10c.

Fig. E12.10b

Fig. E12.10c

Solution:

We start with the geometric data listed below.

Member m n� n+

(1) 1 2

(2) 2 3

The system stiffness matrix has the following form:

K ¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB 0

0 0 0

2
4

3
5þ 0 0 0

0 k 2ð ÞAA k 2ð ÞAB
0 k 2ð ÞBA k 2ð ÞBB

2
64

3
75

¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB
0 k 2ð ÞBA k 2ð ÞBB

2
64

3
75
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The member stiffness matrices follow from Equation (12.36). Since the lengths and cross-sectional

properties are equal, the corresponding matrices are equal.

k 1ð ÞAA ¼ k 2ð ÞAA ¼
12EI

L3
6EI

L2

6EI

L2
4EI

L

2
64

3
75 k 1ð ÞAB ¼ k 2ð ÞAB ¼

� 12EI

L3
� 6EI

L2

� 6EI

L2
2EI

L

2
64

3
75

k 1ð ÞBA ¼ k 2ð ÞBA ¼
� 12EI

L3
� 6EI

L2

6EI

L2
2EI

L

2
64

3
75 k 1ð ÞBB ¼ k 2ð ÞBB ¼

12EI

L3
� 6EI

L2

� 6EI

L2
4EI

L

2
64

3
75

Substituting for the member matrices, the system matrix expands to:

K ¼

12EI

L3
6EI

L2
� 12EI

L3
� 6EI

L2
0 0

6EI

L2
4EI

L
� 6EI

L2
2EI

L
0 0

� 12EI

L3
� 6EI

L2
24EI

L3
0 � 12EI

L3
6EI

L2
6EI

L2
2EI

L
0

8EI

L
� 6EI

L2
2EI

L

0 0 � 12EI

L3
� 6EI

L2
12EI

L3
� 6EI

L2

0 0
6EI

L2
2EI

L
� 6EI

L2
4EI

L

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

The system nodal displacement and nodal load terms follow from (12.19).

U ¼

v1
θ1
v2
θ2
v3
θ3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

PE ¼

Ry1

M1

Ry2

M2

Ry3

M3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

PI ¼

V F
1ð ÞA

M F
1ð ÞA

V F
1ð ÞB þ V F

2ð ÞA
� �
M F

1ð ÞB þM F
2ð ÞA

� �
V F

2ð ÞB
M F

2ð ÞB

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

Nodes 1 and 3 are fully fixed and node 2 is partially fixed. The only unknown displacement is θ2.
We rearrange the rows and columns according to the systematic approach described in Sect. 12.6.1.

Noting (12.23) and (12.24), the rearranged terms are

U
0 ¼ θ2f g U

00¼

v1
θ1
v2
v3
θ3

8>>>><
>>>>:

9>>>>=
>>>>;

and
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P
0
E ¼ M2f g P

00
E¼

Ry1
M1

Ry2
Ry3
M3

8>>>><
>>>>:

9>>>>=
>>>>;

P
0
I ¼ M F

1ð ÞB þM F
2ð ÞA

� �n o
P
00
I¼

V F
1ð ÞA

M F
1ð ÞA

V F
1ð ÞB þ V F

2ð ÞA
� �

V F
2ð ÞB

M F
2ð ÞB

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

K
0
11 ¼

8EI

L


 �
K
0
12 ¼

6EI

L2
2EI

L
0
�6EI
L2

2EI

L


 �

K
0
21 ¼

6EI

L2
2EI

L
0�6EI
L2

2EI

L

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

K
0
22 ¼

12EI

L3
6EI

L2
�12EI
L3

0 0

6EI

L2
4EI

L

�6EI
L2

0 0

�12EI
L3

�6EI
L2

24EI

L3
�12EI
L3

6EI

L2

0 0
�12EI
L3

12EI

L3
�6EI
L2

0 0
6EI

L2
�6EI
L2

4EI

L

2
6666666666664

3
7777777777775
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The inverse of K011 is

K
0
11

� ��1
¼ L

8EI
¼ 20 12ð Þ

8 29; 000ð Þ 428ð Þ ¼ 2:417 10�6
� �

(i) Loading:
We consider the loading shown in Fig. E12.10b. The fixed end actions due to the loading applied to

members 1 and 2 are defined in Fig. E12.10d.

Fig. E12.10d

Substituting for the fixed end actions, the various nodal displacement and load terms reduce to

U
0¼ θ2f g U

00 ¼ 0 (No support movement)

P
0
E ¼ 0f g P

0
I ¼ �50þ 25ð Þf g ¼ �25 kip ftf g P

00
I ¼

15:0 kip

50:0 kip ft

15:0þ 5:0ð Þ kip

5:0 kip

�25:0 kip ft

8>>>><
>>>>:

9>>>>=
>>>>;

The unknown displacement is determined with (12.26) specialized for this example

U
0¼ K

0
11

� ��1
P
0
E �K

0
12U

00 � P
0
I

� �
+

U
0¼ K

0
11

� ��1 �P0I� �
+

θ2 ¼ L

8EI

� �
25:0kip ftð Þ ¼ 3:125L

EI
¼ 3:125 20ð Þ 12ð Þ2

29, 000 428ð Þ ¼ 0:000725rad

Given the displacement, one determines the reactions with the second equation in (12.25):

P
00
E¼K

0
21U

0 þK
0
22U

00 þ P
00
I

+
P
00
E¼K

0
21U

0 þ P
00
I

+

Ry1

M1

Ry2

Ry3

M3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

6EI

L2
2EI

L
0

� 6EI

L2
2EI

L

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

3:125L

EI

� �
þ

15

50

20

5

�25

8>>>><
>>>>:

9>>>>=
>>>>;
¼

15:94 kip

56:25 kip ft

20:0 kip

4:06 kip

�18:75 kip ft

8>>>><
>>>>:

9>>>>=
>>>>;
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The reactions are listed on Fig. E12.10e.

Fig. E12.10e

Lastly, we compute the member end actions.

P 1ð ÞA ¼ V 1ð ÞA
M 1ð ÞA


 �
¼ k 1ð ÞAB

v2
θ2


 �
þ V F

1ð ÞA
M F

1ð ÞA

( )

¼
� 12EI

L3
6EI

L2

� 6EI

L2
2EI

L

2
64

3
75 0

3:125L

EI

( )
þ 15:0

50:0


 �
¼ 15:94

56:25


 �

P 1ð ÞB ¼ V 1ð ÞB
M 1ð ÞB


 �
¼ k 1ð ÞBB

v2
θ2


 �
þ V F

1ð ÞB
M F

1ð ÞB

( )

¼
12EI

L3
� 6EI

L2

� 6EI

L2
4EI

L

2
64

3
75 0

3:125L

EI

( )
þ 15:0
�50:0


 �
¼ 14:06
�37:50


 �

P 2ð ÞA ¼ V 2ð ÞA
M 2ð ÞA


 �
¼ k 2ð ÞAA

v2
θ2


 �
þ V F

2ð ÞA
M F

2ð ÞA

( )

¼
12EI

L3
6EI

L2
6EI

L2
4EI

L

2
64

3
75 0

3:125L

EI

( )
þ 5:0

25:0


 �
¼ 5:94

37:50


 �

P 2ð ÞB ¼ V 2ð ÞB
M 2ð ÞB


 �
¼ k 1ð ÞBA

v2
θ2


 �
þ V F

2ð ÞB
M F

2ð ÞB

( )

¼
� 12EI

L3
� 6EI

L2
6EI

L2
2EI

L

2
64

3
75 0

3:125L

EI

( )
þ 5:0
�25:0


 �
¼ 4:06
�18:75


 �

The results are summarized in Fig. E12.10f.

Fig. E12.10f
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(ii) Support Settlement:
We consider a support settlement of δ ¼ 0.5 in. # at joint 2. The corresponding loading terms are

U
0 ¼ θ2f g U

00 ¼

0

0

δ
0

0

8>>>><
>>>>:

9>>>>=
>>>>;

P
0
E ¼ 0f g P

0
I ¼ 0 P

00
I ¼ 0

Then noting (12.26),

U
0 ¼ K

0
11

� ��1 �K0
12U

00� �
+

θ2 ¼ � L

8EI

6EI

L2
2EI

L
0� 6EI

L2
2EI

L


 � 0

0

δ
0

0

8>>>><
>>>>:

9>>>>=
>>>>;
¼ 0:0

We evaluate the reactions with (12.25). In this case, U0 ¼ 0.

P
00
E ¼ K

0
22U

00

+

Ry1

M1

Ry2

Ry3

M3

8>>>><
>>>>:

9>>>>=
>>>>;
¼

12EI

L3
6EI

L2
� 12EI

L3
0 0

6EI

L2
4EI

L
� 6EI

L2
0 0

� 12EI

L3
� 6EI

L2
24EI

L3
� 12EI

L3
6EI

L2

0 0 � 12EI

L3
12EI

L3
� 6EI

L2

0 0
6EI

L2
� 6EI

L2
4EI

L

2
6666666666664

3
7777777777775

0

0

δ
0

0

8>>>><
>>>>:

9>>>>=
>>>>;
¼

� 12EI

L3
δ

� 6EI

L2
δ

24EI

L3
δ

� 12EI

L3
δ

6EI

L2
δ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Using the given properties and taking δ ¼ �0.5 in. result in the forces shown in Figs. E12.10g and
E12.10h.

Fig. E12.10g

Fig. E12.10h

Example 12.11. Two-Span Beam with a Spring Support at Mid-span
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Given: The structure shown in Fig. E12.11a. Node 2 is supported with a spring of stiffness kv ¼ 200

kip/ft. Taken L ¼ 20 ft, I ¼ 428 in.4, and E ¼ 29,000 ksi.

Fig. E12.11a

Determine: The displacements at node 2 and the member end forces (Fig. E12.11b)

Fig. E12.11b

Solution:

Nodes 1 and 3 are fully fixed and node 2 is restrained by a linear elastic spring. The unknown

displacements at node 2 are the vertical displacement v2 and the rotation θ2. We arrange the rows and

columns of the system matrix consistent with this support condition. The spring is introduced by

adding an external nodal force at node 2 with a magnitude equal to F ¼ –kvv2. The minus sign is

needed since the spring force acts in the opposite direction to the displacement. We utilize the results

for K and PI contained in Example 12.10. The initial and rearranged matrices are

K ¼

12EI

L3
6EI

L2
� 12EI

L3
6EI

L2
0 0

6EI

L2
4EI

L
� 6EI

L2
2EI

L
0 0

� 12EI

L3
� 6EI

L2
24EI

L3
0 � 12EI

L3
6EI

L2
6EI

L2
2EI

L
0

8EI

L
� 6EI

L2
2EI

L

0 0 � 12EI

L3
� 6EI

L2
12EI

L3
� 6EI

L2

0 0
6EI

L2
2EI

L
� 6EI

L2
4EI

L

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA
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U ¼

v1
θ1
v2
θ2
v3
θ3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

PE ¼

Ry1

M1

V 1ð ÞB þ V 2ð ÞA
� �
M 1ð ÞB þM 2ð ÞA
� �
Ry3

M3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

and

U
0¼ v2

θ2


 �
U
00¼

v1
θ1
v3
θ3

8>><
>>:

9>>=
>>;

P
0
E ¼

�kvv2
0


 �
P
0
I ¼

20kip

�25kip ft

 �

P
0
II ¼

15kip

50kip ft

5kip

�25kip ft

8>><
>>:

9>>=
>>;

K
0¼

24EI

L3
0 � 12EI

L3
� 6EI

L2
� 12EI

L3
6EI

L2

0
8EI

L

6EI

L2
2EI

L
� 6EI

L2
2EI

L

� 12EI

L3
6EI

L2
12EI

L3
6EI

L2
0 0

� 6EI

L2
2EI

L

6EI

L2
4EI

L
0 0

12EI

L3
� 6EI

L2
0 0

12EI

L3
� 6EI

L2
6EI

L2
2EI

L
0 0 � 6EI

L2
4EI

L

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

K
0
11 ¼

24EI

L3
0

0
8EI

L

2
64

3
75 K

0
12 ¼

� 12EI

L3
� 6EI

L2
� 12EI

L3
6EI

L2

6EI

L2
2EI

L

6EI

L2
2EI

L

2
64

3
75

K
0
21 ¼

� 12EI

L3
6EI

L2

� 6EI

L2
2EI

L
12EI

L3
� 6EI

L2

6EI

L2
2EI

L

2
6666666664

3
7777777775

K
0
22 ¼

12EI

L3
6EI

L2
0 0

6EI

L2
4EI

L
0 0

0 0
12EI

L3
� 6EI

L2

0 0 � 6EI

L2
4EI

L

2
6666666664

3
7777777775

Assuming nodes 1 and 3 are fixed, the reduced equations are

P
0
E ¼ K

0
11U

0 þ P
0
I

Noting the matrices listed above, this equation expands to
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�kvv2
0


 �
¼ 20:0
�25:0


 �
þ EI

L

24

L2
0

0 8

" #
v2
θ2


 �

We transfer the term involving v2 over to the right hand side and solve for v2, θ2.

24EI

L3
þ kv

� �
0

0
8EI

L

2
64

3
75 v2

θ2


 �
¼ �20:0
þ25:0


 �

When a particular nodal displacement is elastically restrained, we modify the system stiffness

matrix K, by adding the spring stiffness to the diagonal entry that corresponds to the displacement.

We then rearrange the rows and columns to generate K0. Continuing with the computation, the

displacements at node 2 are

K
0
11

� ��1 ¼ 24EI
L3
þ kv

� �
0

0 8EI
L

" #�1
¼

1

24EI=L3
� �þ kv

0

0
L

8EI

2
664

3
775

) U0 ¼ v2
θ2


 �
¼ K

0
11

� ��1 �P0I� � ¼ � ð20 kipÞ
24EI=L3
� �þ kv

þ Lð25 kipÞ
8EI

2
664

3
775 ¼ �0:523 in:

0:000725rad


 �

Lastly, the reactions are determined with

P00E ¼ K021U0 þ P00I
+

Ry1

M1

Ry3

M3

8>><
>>:

9>>=
>>; ¼

� 12EI

L3
6EI

L2

� 6EI

L2
2EI

L

� 12EI

L3
� 6EI

L2
6EI

L2
2EI

L

2
6666666664

3
7777777775

ð20 kipÞ
24EI=L3
� �þ kv

þ Lð25 kip ftÞ
8EI

8>><
>>:

9>>=
>>;þ

15:0 kip

50 kip ft

5:0 kip

�25 kip ft

8>><
>>:

9>>=
>>; ¼

21:57kip
112:6kip ft
9:7kip
�75kip ft

8>><
>>:

9>>=
>>;

F ¼ �kvv2 ¼ � 200kip=ftð Þ 1

12

� �
�0:5230ð Þ ¼ 8:73kip

The results are listed below.
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12.8 Three-Dimensional Formulation

In what follows, we extend the planar formulation presented in the previous sections to deal with the

case where the loading is three dimensional (3D). The basic approach is the same; one just has to

expand the definition of the displacement, end action, and member stiffness matrices. The three-

dimensional formulation is much more detailed, and is generally executed using a digital computer.

We start by defining the local coordinate system for a prismatic member. We take the X1 direction

to coincide with the centroidal axis, and X2 and X3 as the principle inertia directions for the cross

section. Figure 12.9 shows this notation. The inertia properties for X2 and X3 are defined as

I2 ¼
ð
A

x23 dA

I3 ¼
ð
A

x22 dA
ð12:37Þ

There are six displacement measures for the 3D case, three translations and three rotations. The

corresponding force measures are defined in a similar manner. We refer these quantities to the local

directions and use the notation defined in Fig. 12.10.

Using this notation, the 3D versions of the displacement and end action matrices at the end points

A and B are

Fig. 12.9 Local

coordinate system for a

prismatic member

Fig. 12.10 End

displacements and forces in

local coordinate system
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F1ℓA ¼ �
AE

L
u1ℓB � u1ℓAð Þ þ FF

1ℓA

F2ℓA ¼
6EI3

L2
θ3B þ θ3Að Þ � 12EI3

L3
u2ℓB � u2ℓAð Þ þ FF

2ℓA

F3ℓA ¼
6EI2

L2
θ2B þ θ2Að Þ � 12EI2

L3
u3ℓB � u3ℓAð Þ þ FF

3ℓA

M1A ¼ �GJ

L
θ1B � θ1Að Þ þM F

1A

M2A ¼ 2EI2
L

θ2B þ 2θ2Að Þ � 6EI2

L2
u3ℓB � u3ℓAð Þ þM F

2A

M3A ¼ 2EI3
L

θ3B þ 2θ3Að Þ � 6EI3

L2
u2ℓB � u2ℓAð Þ þM F

3A

ð12:38aÞ

F1ℓB ¼
AE

L
u1ℓB � u1ℓAð Þ þ FF

1ℓB

F2ℓB ¼ �
6EI3

L2
θ3B þ θ3Að Þ þ 12EI3

L3
u2ℓB � u2ℓAð Þ þ FF

2ℓB

F3ℓB ¼ �
6EI2

L2
θ2B þ θ2Að Þ þ 12EI2

L3
u3ℓB � u3ℓAð Þ þ FF

3ℓB

M1B ¼ GJ

L
θ1B � θ1Að Þ þM F

1B

M2B ¼ 2EI2
L

2θ2B þ θ2Að Þ � 6EI2

L2
u3ℓB � u3ℓAð Þ þM F

2B

M3B ¼ 2EI3
L

2θ3B þ θ3Að Þ � 6EI3

L2
u2ℓB � u2ℓAð Þ þM F

3B

ð12:38bÞ

We express the end action–end displacement relations in the same form as for the planar case.

Uℓ ¼ u1 u2 u3 θ1 θ2 θ3f g
Pℓ ¼ F1 F2 F3 M1 M2 M3f g

Noting (12.5), we write:

PℓB ¼ kℓBBUℓB þ kℓBAUℓA þ PF
ℓB

PℓA ¼ kℓABUℓB þ kℓAAUℓA þ PF
ℓA

where the k matrices are now of order 6 � 6. Their expanded forms are listed below.

kℓAA ¼

AE

L
0 0 0 0 0

0
12EI3

L3
0 0 0

6EI3

L2

0 0
12EI2

L3
0 þ 6EI2

L2
0

0 0 0
GJ

L
0 0

0 0 þ 6EI2

L2
0

4EI2
L

0

0
6EI3

L2
0 0 0

4EI3
L

2
66666666666666664

3
77777777777777775
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kℓAB ¼

�AE

L
0 0 0 0 0

0 � 12EI3

L3
0 0 0 þ 6EI3

L2

0 0 � 12EI2

L3
0 þ 6EI2

L2
0

0 0 0 �GJ

L
0 0

0 0 � 6EI2

L2
0

2EI2
L

0

0 � 6EI3

L2
0 0 0 þ 2EI3

L

2
66666666666666664

3
77777777777777775

kℓBA ¼

�AE

L
0 0 0 0 0

0 � 12EI3

L3
0 0 0 � 6EI3

L2

0 0 � 12EI2

L3
0 � 6EI2

L2
0

0 0 0 �GJ

L
0 0

0 0
6EI2

L2
0 þ 2EI2

L
0

0 þ 6EI3

L2
0 0 0 þ 2EI3

L

2
66666666666666664

3
77777777777777775

kℓBB ¼

AE

L
0 0 0 0 0

0
12EI3

L3
0 0 0 � 6EI3

L2

0 0
12EI2

L3
0 � 6EI2

L2
0

0 0 0
GJ

L
0 0

0 0 � 6EI2

L2
0

4EI2
L

0

0 � 6EI3

L2
0 0 0

4EI3
L

2
66666666666666664

3
77777777777777775

ð12:39Þ

These matrices are transformed to the global reference frame using the following matrix:

Rlg ¼ R0 0

0 R0


 �
ð12:40Þ

where

R0 ¼
β11 β12 β13
β21 β22 β23
β31 β32 β33

2
64

3
75

βij ¼ cos Xig;Xjl

� �
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The operation involves the following computation:

k
��
global ¼ Rℓgk

��
localR

T
lg

+
kAA ¼ RℓgklAAR

T
lg

kAB ¼ RℓgklABR
T
lg

kBA ¼ RℓgklBAR
T
lg

kBB ¼ RℓgklBBR
T
lg

ð12:41Þ

The remaining steps are the same as the 2D case.

One assembles the global equations, matrix, the boundary conditions on displacement, and solve

for the modal displacements.

Simplifications are possible depending on the type of structure. For a space truss there are only

axial forces. One can delete the equilibrium equations associated with nodal rotations and moments,

and work with the reduced nodal displacement matrix,

Uℓ ¼ u1 u2 u3f g Pℓ ¼ F1 F2 F3f g

R
0 ¼

β11

β21

β31

2
664

3
775 Rlg ¼

β11 0

β21 0

β31 0

0 β11

0 β21

0 β21

�����������������

�����������������
k
��
global ¼ Rℓgk

��
localR

T
lg

+

kAA ¼ kBB ¼ �kAB ¼ �kBA ¼ AE

L
RℓgR

T
lg ¼

AE

L

β11
2 β11β21 β11β31

β21β11 β21
2 β21β31

β31β11 β31β21 β31
2

2
66664

3
77775

ð12:42Þ

Another case is a plane frame loaded normal to the plane (out of plane bending). One can delete the

equilibrium equations associated with nodal rotations and moments, and work with the reduced nodal

displacement matrix.

Taking the z axis (X3 direction) normal to the plane, the non-zero displacement measures are
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Uℓ ¼ u3 θ1 θ2f g Pℓ ¼ F3 M1 M2f g Rℓg ¼
1 0 0

0 β11 β12

0 β21 β22

2
664

3
775

kℓAA ¼

12EI2

L3
0

6EI2

L2

0
GJ

L
0

6EI2

L2
0

4EI2
L

2
66666664

3
77777775

kℓAB ¼

� 12EI2

L3
0

6EI2

L2

0 �GJ

L
0

� 6EI2

L2
0

2EI2
L

2
66666664

3
77777775

kℓBA ¼

� 12EI2

L3
0 � 6EI2

L2

0 �GJ

L
0

6EI2

L2
0

2EI2
L

2
66666664

3
77777775

kℓBB ¼

12EI2

L3
0 � 6EI2

L2

0
GJ

L
0

� 6EI2

L2
0

4EI2
L

2
66666664

3
77777775

ð12:43Þ

k
��
global ¼ Rℓgk

��
localR

T
lg

+

kAA ¼ RℓgklAAR
T
lg ¼

12EIy

L3
6EIy

L2
β21

6EIy

L2
β22

6EIy

L2
β12

4EIy
L

β12β21 þ
GJ

L
β11

2

� �
4EIy
L

β12β22 þ
GJ

L
β11β12

� �
6EIy

L2
β12

4EIy
L

β21β22 þ
GJ

L
β11β21

� �
4EIy
L

β22
2 þ GJ

L
β21β12

� �

2
66666664

3
77777775

kAB ¼ RℓgklABR
T
lg ¼

� 12EIy

L3
6EIy

L2
β21

6EIy

L2
β22

� 6EIy

L2
β12

2EIy
L

β12β21 �
GJ

L
β11

2

� �
2EIy
L

β12β22 �
GJ

L
β11β12

� �

� 6EIy

L2
β22

2EIy
L

β21β22 �
GJ

L
β11β21

� �
2EIy
L

β22
2 � GJ

L
β21β12

� �

2
6666664

3
7777775

kBA ¼ RℓgklBAR
T
lg ¼

� 12EIy

L3
6EIy

L2
β21 � 6EIy

L2
β22

6EIy

L2
β12

2EIy
L

β12β21 �
GJ

L
β11

2

� �
2EIy
L

β12β22 �
GJ

L
β11β12

� �
6EIy

L2
β22

2EIy
L

β21β22 �
GJ

L
β11β21

� �
2EIy
L

β22
2 � GJ

L
β21β12

� �

2
6666664

3
7777775

kBB ¼ RℓgklBBR
T
lg ¼

12EIy

L3
� 6EIy

L2
β21 � 6EIy

L2
β22

� 6EIy

L2
β12

4EIy
L

β12β21 þ
GJ

L
β11

2

� �
4EIy
L

β12β22 þ
GJ

L
β11β12

� �

� 6EIy

L2
β22

4EIy
L

β21β22 �
GJ

L
β11β21

� �
4EIy
L

β22
2 þ GJ

L
β21β12

� �

2
6666664

3
7777775

ð12:44Þ
Note that k is now a 3 � 3 matrix.
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Example 12.12: Plane Grid

Given: The plane grid shown in Fig. E12.12a.

Determine: joint displacements and reactions. The cross section is square tube (HSS203.2 �
203.2 � 9.5). Take L = 4 m, P = 30 kN, E = 200 GPa, and G = 77 GPa.

Fig. E12.12a

Solution:

Member m n� n+

(1) 1 2

(2) 2 3

R
0
1ð Þ ¼

β 1ð Þ
11 β 1ð Þ

12 β 1ð Þ
13

β 1ð Þ
21 β 1ð Þ

22 β 1ð Þ
23

β 1ð Þ
31 β 1ð Þ

32 β 1ð Þ
33

2
6664

3
7775 ¼

0 �1 0

1 0 0

0 0 1

2
664

3
775

R
0
2ð Þ ¼

β 2ð Þ
11 β 2ð Þ

12 β 2ð Þ
13

β 2ð Þ
21 β 2ð Þ

22 β 2ð Þ
23

β 2ð Þ
31 β 2ð Þ

32 β 2ð Þ
33

2
6664

3
7775 ¼

1 0 0

0 1 0

0 0 1

2
664

3
775

Rlg ið Þ ¼
R
0
ið Þ 0

0 R
0
ið Þ

" #

12.8 Three-Dimensional Formulation 855



k
��
global ¼ Rℓgk

��
localR

T
lg

+
kAA ¼ RℓgklAAR

T
lg

kAB ¼ RℓgklABR
T
lg

kBA ¼ RℓgklBAR
T
lg

kBB ¼ RℓgklBBR
T
lg

K¼
k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB 0

0 0 0

2
664

3
775þ

0 0 0

0 k 2ð ÞAA k 2ð ÞAB

0 k 2ð ÞBA k 2ð ÞBB

2
664

3
775 ¼

k 1ð ÞAA k 1ð ÞAB 0

k 1ð ÞBA k 1ð ÞBB þ k 2ð ÞAA
� �

k 2ð ÞAB

0 k 2ð ÞBA k 2ð ÞBB

2
664

3
775

K
0
11 ¼ k 1ð ÞBB þ k 2ð ÞAA

� �
K
0
12 ¼ k 1ð ÞBA k 2ð ÞAB

� �
K
0
21 ¼

k 1ð ÞAB

k 2ð ÞBA

" #
K
0
22 ¼

k 1ð ÞAA 0

0 k 2ð ÞBB

" #

P
0
E ¼

0

0

�30kN
0

0

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

U
0¼

u1joint 2

u2joint 2

u3joint 2

θ1 joint 2

θ2 joint 2

θ3 joint 2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

Matrix computations are carried out using Mathcad.

K
0
11 ¼

283:85 0 0 0 0 2672:21

0 283:85 0 0 0 2672:21

0 0 2:67 2672:21 2672:21 0

0 0 2672:21 8, 407, 874:79 0 0

0 0 2672:21 0 8, 407, 874:79 0

2672:21 2672:21 0 0 0 14, 251, 764

2
666666666664

3
777777777775

We determine the unknown displacements using

U
0¼

u1joint 2

u2joint 2

u3joint 2

θ1 joint 2

θ2 joint 2

θ3 joint 2

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

K
0
11

� ��1
P
0
E

� �
¼

0

0

�30:81 mm

�:00098 rad

�:00098 rad

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
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Given the displacements, one determines reactions.

P
00
E ¼

R1x

R1y

R1z

M1x

M1y

M1z

R3x

R3y

R3z

M3x

M3y

M3z

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

¼ K
0
21U

0¼
k 1ð ÞAB

k 2ð ÞBA

" #
u1joint 2

u2joint 2

u3joint 2

θ1 joint 2

θ2 joint 2

θ3 joint 2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

0

0

15kN

47:44kNm

12:55kNm

0

0

0

15kN

12:55kNm

47:44kNm

0

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

Alternative approach:

We considered analytical methods for out of plane bending in Sect. 10.8.

The approach here is based on the simplified formulate described above (12.43).

Rℓg 1ð Þ ¼
1 0 0

0 β 1ð Þ
11 β 1ð Þ

12

0 β 1ð Þ
21 β 1ð Þ

22

2
64

3
75 ¼

1 0 0

0 0 �1
0 1 0

2
64

3
75

Rℓg 2ð Þ ¼
1 0 0

0 β 2ð Þ
11 β 2ð Þ

12

0 β 2ð Þ
21 β 2ð Þ

22

2
64

3
75 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75

P
0
E ¼

�30kN
0

0

8><
>:

9>=
>; U

0¼
u3joint 2

θ1joint 2

θ2joint 2

8><
>:

9>=
>;

K
0
11 ¼ k 1ð ÞBB þ k 2ð ÞAA

� �
K
0
12 ¼ k 1ð ÞBA k 2ð ÞAB

� �
K
0
21 ¼

k 1ð ÞAB
k 2ð ÞBA

" #
K
0
22 ¼

k 1ð ÞAA 0

0 k 2ð ÞBB

" #

U
0¼

u3joint2

θ1joint2

θ2joint2

8><
>:

9>=
>; K

0
11

� ��1
P
0
E

� �
¼

�30:81mm

�:00098rad
�:00098rad

8><
>:

9>=
>;

P
00
E ¼

R1z

M1x

M1y

M1z

R3z

M3x

M3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼ K

0
21U

0¼ k 1ð ÞAB
k 2ð ÞBA


 � u3joint 2
θ1 joint 2
θ2 joint 2

8<
:

9=
; ¼

15kN

47:44kNm

12:55kNm

15kN

12:55kNm

47:44kNm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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Example 12.13: Space Truss

Given: The space truss shown in Fig. E12.13a, b.

Determine: Use the direct stiffness method to find displacements, reactions. Take

A ¼ 1300 mm2, E ¼ 200 GPa.

Fig. E12.13 Space truss geometry and supports. (a) x–y plan view. (b) x–z plan view

858 12 Finite Element Displacement Method for Framed Structures



Member n� n+ ℓx ℓy ℓz ℓm β11 β21 β31
(1) 1 2 �3.0 1.5 �5 6.0 �0.5 0.25 �0.83
(2) 1 3 3.0 1.5 �5 6.0 0.5 0.25 �0.83
(3) 1 4 1.5 �3 �5 6.0 0.25 �0.5 �0.83

kAA ¼ kBB ¼ AE

L

β11
2 β11β21 β11β31

β21β11 β21
2 β21β31

β31β11 β31β21 β31
2

2
664

3
775 kAB ¼ kBA ¼ �AE

L

β11
2 β11β21 β11β31

β21β11 β21
2 β21β31

β31β11 β31β21 β31
2

2
664

3
775

K ¼

k 1ð ÞAA k 1ð ÞAB 0 0

k 1ð ÞBA k 1ð ÞBB 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775þ

k 2ð ÞAA 0 k 2ð ÞAB 0

0 0 0 0

k 2ð ÞBA 0 k 2ð ÞBB 0

0 0 0 0

2
666664

3
777775þ

k 3ð ÞAA 0 0 k 3ð ÞAB

0 0 0 0

0 0 0 0

k 3ð ÞBA 0 0 k 3ð ÞBB

2
666664

3
777775

¼

k 1ð ÞAA þ k 2ð ÞAA þ k 3ð ÞAA
� �

k 1ð ÞAB k 2ð ÞAB k 3ð ÞAB

k 1ð ÞBA k 1ð ÞBB 0 0

k 2ð ÞBA 0 k 2ð ÞBB 0

k 3ð ÞBA 0 0 k 3ð ÞBB

2
666664

3
777775

K
0
11 ¼ k 1ð ÞAA þ k 2ð ÞAA þ k 3ð ÞAA

� �
K
0
12 ¼ k 1ð ÞAB k 2ð ÞAB k 3ð ÞAB

� �

K
0
21 ¼

k 1ð ÞBA

k 2ð ÞBA

k 3ð ÞBA

2
664

3
775 K

0
22 ¼

k 1ð ÞBB 0 0

0 k 2ð ÞBB 0

0 0 k 3ð ÞBB

2
664

3
775

P
0
E ¼

45

0

90

8>><
>>:

9>>=
>>;kN U

0 ¼
u1joint1

u2joint1

u3joint1

8>><
>>:

9>>=
>>;

Matrix computations are carried out using MathCAD:

K
0
11 ¼

24:123 �5:361 �8:935
�5:361 16:082 0

�8:935 0 89:345

0
BB@

1
CCA ) K

0
11

� ��1
¼

0:047 0:016 0:005

0:016 0:067 0:002

0:005 0:002 0:012

0
BB@

1
CCA

We determine the unknown displacements using

U
0 ¼

u1joint1

u2joint1

u3joint1

8>><
>>:

9>>=
>>; ¼ K

0
11

� ��1
P
0
E

� �
¼

2:52

0:84

1:26

8>><
>>:

9>>=
>>;mm
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Given the displacements, one determines reactions.

P
00
E ¼

R2x

R2y

R2z

R3x

R3y

R3z

R4x

R4y

R4z

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼ K
0
21U

0¼
k 1ð ÞBA

k 2ð ÞBA

k 3ð ÞBA

2
664

3
775

u1joint1

u2joint1

u3joint1

8>><
>>:

9>>=
>>; ¼

�45
22:5

�75
�9
�4:5
15

9

�18
�30

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

kN

12.9 Summary

12.9.1 Objectives

• Formulate the governing equations corresponding to the various steps in the displacement method

using matrix notation.

• Introduce the concept of a local reference frame for each member and a fixed global reference

frame for the structure.

• Develop the matrix form of the member force–displacement relations.

• Derive expressions for the various member stiffness matrices.

• Introduce the concept of a member–node incidence table and show how it is used to assemble the

system equilibrium equations.

• Develop a procedure for introducing nodal displacement restraints.

• Specialize the rigid frame formulation for trusses, multi-span beams, and grids.

12.10 Problems

Problem 12.1. For the rigid frame shown below, use the direct stiffness method to find the joint

displacements and reactions for the following conditions:
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(a) The loading shown

(b) Member 2 experiences a uniform temperature change throughout its span. The temperature

varies linearly through the depth, from 10 �C at the top to 50 �C at the bottom.

(c) Support 1 settles 12 mm.
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Problem 12.2. For the rigid frame shown below, use the direct stiffness method to find the joint

displacements, and reactions.

I ¼ 400 in:4

A ¼ 10 in:2

E ¼ 29, 000kip=in:2

Problem 12.3 For the rigid frames shown below, use the direct stiffness method to find the joint

displacements and reactions. Take I ¼ 160(10)6 mm4, A ¼ 6500 mm2, and E ¼ 200 GPa.
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Problem 12.4 For the rigid frame shown, use partitioning to determineK011,K021, P0E, and P0I for the
loadings shown. I ¼ 40(10)6 mm4, A ¼ 3000 mm2, and E ¼ 200 GPa.

Problem 12.5 For the truss shown, use the direct stiffness method to find the joint displacements,

reactions, and member forces.

A ¼ 1200mm2

E ¼ 200GPa

Problem 12.6 For the truss shown, use the direct stiffness method to find the joint displacements,

reactions, and member forces for

(a) The loading shown

(b) A support settlement of 0.5 in. at joint 4

A ¼ 2 in:2

E ¼ 29, 000ksi
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Problem 12.7 For the truss shown, use the direct stiffness method to find the joint displacements,

reactions, and member forces due to (a) the loading shown, (b) a temperature decrease of 10 �C for all

members, (c) a support settlement of δ ¼ 2 mm downward at node 4.

A ¼ 1200mm2

E ¼ 200GPa

α ¼ 12� 10�6=�C
h ¼ 3m

Problem 12.8. For the truss shown, determine K011 and K021.

A ¼ 2000mm2

E ¼ 200GPa

Problem 12.9 For the truss shown, determine K011 and K022.

A ¼ 3 in:2

E ¼ 29, 000ksi
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Problem 12.10 For the beam shown, use the direct stiffness method to find the joint displacements,

reactions, and member forces for the loading shown.

I ¼ 300 in:4

E ¼ 29, 000ksi

Problem 12.11 For the beam shown, use the direct stiffness method to find the joint displacements,

reactions, and member forces for

(a) The loading shown

(b) A support settlement of 12 mm at joint 2
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I ¼ 120 10ð Þ6 mm4

E ¼ 200GPa

Problem 12.12 For the beam shown, use partitioning to determine K011, K021, U00, PI

0
, PI

00
, PE

0
and

PE

00
for the loading and displacement constraint shown. L ¼ 30 ft, I ¼ 300 in.4, and E ¼ 29,000 ksi.

Problem 12.13 Investigate the effect of varying the spring stiffness on the behavior (moment and

deflected profile) of the structure shown below. Consider a range of values of kv.

I ¼ 120 10ð Þ6mm4,E ¼ 200GPa and kv ¼
18kN=mm

36kN=mm

90kN=mm

8<
:

866 12 Finite Element Displacement Method for Framed Structures



Problem 12.14 Determine the bending moment and deflection profiles for the following structures.

Take I ¼ 300 in.4, ACable ¼ 3 in.2, and E ¼ 29, 000 kip/in.2.

Problem 12.15 Consider the guyed tower defined in the sketch. The cables have an initial tension of

220 kN. Determine the horizontal displacements at B, C, the change in cable tension, and the bending

moment distribution in member ABC. Treat the cables as axial elements. Develop a computer-based

scheme to solve this problem. Take Itower ¼ 200(10)6 mm4, Acable ¼ 650 mm2, Atower ¼ 6000 mm2,

and the material to be steel.
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Problem 12.16

Consider the rigid frame shown above. Investigate how the response changes when A1 is varied.

Use computer software. Vary A1 from 2 to 10 in.2 Take I ¼ 600 in.4, A ¼ 5 in.2, L ¼ 200 ft,

I1 ¼ 300 in.4, and w ¼ 1 kip/ft. Material is steel.

Problem 12.17

(a) Develop a computer code to automate the generation of the member stiffness matrices defined

by (12.6). Assume A, E, I, and L are given.

(b) Develop a computer code to carry out the operations defined by (12.13).

(c) Develop a computer code to carry out the operation defined by (12.20) and (12.21).

Problem 12.18 For the space truss shown, use the direct stiffness method to find displacements at

joint 1.

A ¼ 3 in:2

E ¼ 29, 000ksi
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Problem 12.19 For the space frame shown, use the direct stiffness method to find displacements at

joint B. The load P is applied parallel to member BC. The cross section is circular tube. Take

L 1ð Þ ¼ 3:5m, L 2ð Þ ¼ 4m, L 3ð Þ ¼ 3m, P ¼ 30 kN, E ¼ 200 GPa, and G ¼ 77 GPa.

Cross section
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Part III

Practice of Structural Engineering

The practice of structural engineering involves identifying possible loading patterns, conceptualizing

candidate structural systems, developing idealized physical models, applying the possible loading

patterns to these idealized models, using analysis methods to determine the peak values of the

response variables needed for design detailing, and selecting the design details using an appropriate

design code. In this section, we focus on selecting loading patterns, idealizing three-dimensional

frame structures, and establishing the peak values of the response variables needed for design

detailing. Computer-based analysis is used extensively for this phase.

Multi-span horizontal structures are discussed in the next chapter. The topics range from girder

bridges to arch bridges to cable-stayed bridges. The following chapter presents a strategy for

modeling three-dimensional low-rise rigid frame structures subjected to varying loads. Then, the

succeeding chapter describes in detail the process followed to establish the critical loading patterns

for multistory frames. Finally, the last chapter covers the inelastic response of structures.



Multi-span Horizontal Structures 13

Abstract

In this chapter, we discuss the role of analysis in the structural engineering

process for multi-span horizontal structures such as bridges. Typical

examples of a girder bridge, an arch bridge, and a cable-stayed bridge

are shown in Fig. 13.1. Multi-span girders are actually variable depth

horizontal beams. They are used extensively in medium span highway

bridge systems. Arch and cable-stayed structures are efficient for spans

ranging up to 1000 m.

Chapters 9 and 10 dealt with analysis methods for indeterminate

structures. Some of the analytical results presented in those chapters are

utilized here to estimate critical loading patterns. Most of the analysis

effort required in the engineering process is related to determining the

maximum values of bending moment, axial force, and shear

corresponding to the typical bridge loadings. Establishing these values

for indeterminate structures requires a considerable amount of computa-

tional effort. In what follows, we illustrate this computational process for

different types of bridges such as continuous girder, arch, and cable-

stayed schemes using a commercial structural analysis software system.

13.1 The Engineering Process for Girders

The objective of the structural engineering process for a beam is to define the physical makeup, i.e.,

the location of supports, the material, the shape and dimensions of the cross section, and special cross-

section features such as steel reinforcement in the case of a reinforced concrete beam. Given the

absolute maximum values of shear and moment at a particular location, the choice of material, and the

general shape of the cross section, one determines the specific cross-sectional dimensions by applying

numerical procedures specified by a design code. This phase of the engineering process is called

design detailing.We focus here on that aspect of the process associated with the determination of the

“maximum” values of shear and moment.
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In general, shear and bending moment result when an external loading is applied to a beam.

Throughout the text, we have shown how one can establish the shear and moment distributions

corresponding to a given loading. For statically determinate beams, the internal forces depend only on

the external loading and geometry; they are independent of the cross-sectional properties. However,

when the beam is indeterminate, such as a multi-span beam, the internal forces also depend on the

Fig. 13.1 Bridge

structures. (a) Multi-span

girder bridge. (b) Arch
bridge. (c) Cable stayed
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relative span lengths and cross-sectional properties. In this case, one needs to iterate on the geometry

and properties in order to estimate the internal forces.

Now, the loading consists of two contributions: dead and live. The dead loading is fixed, i.e., its

magnitude and spatial distribution are constant over time. Live loading is, by definition, time varying

over the life of the structure. This variability poses a problem when we are trying to establish the

maximum values of shear and moment. We need to consider a number of live load positions in order

to identify the particular live load location that results in the absolute maximum values of shear and

moment. One approach for multi-span beams is based on determining, for all positions of the live

load, the absolute maximum value at sections along the span. Plots of global maxima at discrete

sections along the span are called force envelopes.

It is important to distinguish between influence lines and force envelopes. An influence line relates

a force quantity at a particular point to the position of the live load, whereas a force envelope relates
the absolute maximum value of the force quantity along the span. We apply both approaches to

establish design values.

13.2 Influence Lines for Indeterminate Beams Using Müller-Breslau’s
Principle

The topic of influence lines for statically determinate beams was introduced in Chap. 3. We include

here a discussion of how one can generate influence lines for indeterminate beams using the Müller-

Breslau principle [1]. We introduce the principle using the beam structure shown in Fig. 13.2a as an

example. Later, in Chap. 15, we apply it to rigid frames.

Suppose one wants the influence line for the negative moment at A due to a downward vertical

load. According to Müller-Breslau, one works with a modified structure obtained by inserting a

moment release at A and applies a negative moment at A. The resulting structure is shown in

Fig. 13.2b.

The deflected shapes of the modified structure due to a unit load applied at an arbitrary point, and a

unit negative moment at A, are plotted in Fig. 13.2c, d. Since the beam is continuous at A,

compatibility requires the net relative rotation at A to vanish. Then

θAx þ θAAMA ¼ 0

+
MA ¼ �θAx

θAA

ð13:1Þ

We note that θAx ¼ δxA according to Maxwell’s law of reciprocal displacements (see Sect. 9.2).

Then (13.1) can be written as

MA ¼ �δAx
θAA

ð13:2Þ

Since δxA is at an arbitrary point, it follows that the deflected shape of the modified structure due to

a unit value of MA is a scaled version of the influence line for MA. The actual sense of MA is

determined by comparing the direction of the displacement with the direction of the applied load. In

this example, the positive direction of the load is downward. We had applied a negative moment.

Therefore, the sense of MA needs to be reversed when the displacement is positive, in this case,

download. The loading zones for the positive and negative values ofMA are shown in Fig. 13.3, which

is based on the sign convention for moment, i.e., positive when compression on the upper fiber.
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A

A

a

b

Fig. 13.3 Loading zones for moment at A. (a) Negative moment at A. (b) Positive moment at A

1

1

A

A

A

A

180º – θAA

hinge

hinge

q

AM

ΑΧ

MA = 1 MA = 1

Χ

Χ

d ΧΑ

a

b

c

d

Fig. 13.2 Application of Müller-Breslau principle (a) Example structure. (b) Negative moment. (c) Deflection due to

load. (d) Deflection due to moment
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We repeat this process to establish the influence line for the maximum positive moment at D, the

center of span AC. The sequence of steps is illustrated in Fig. 13.4. Figure 13.5 defines the loading

zones for positive and negative moments.

Summarizing the discussion presented above, the process of applying the Müller-Breslau principle

to establish the influence line for a redundant force quantity involves the following steps:

1. Modify the actual structure by removing the restraint corresponding to the force quantity of

interest.

2. Apply a unit value of the force quantity at the release and determine the deflected shape.

3. This deflected shape is a scaled version of the influence line. It consists of positive and negative

zones for the force quantity. If the applied loading is a unit downward load, the positive zone

includes those regions where the deflection is upward.

Since it is relatively easy to sketch deflected shapes, the Müller-Breslau principle allows one with

minimal effort to establish the critical loading pattern for a redundant force quantity.

1

1 1

1

hinge

DD

D

D

q

a

b

Fig. 13.4 Modified structure and deflected shape for positive moment at D

D

D

a

b

Fig. 13.5 Loading zones for moment at D. (a) Positive value. (b) Negative value
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Example 13.1 Application of Müller-Breslau Principle

Given: The four-span beam shown in Fig. E13.1a.

1
1

1

L1 L3 L4L2

L3/2

2 3 4 5
a

Fig. E13.1a

Determine: The influence lines for the upward vertical reaction at support 3 (R3), the negative

moment at support 3 (M3), the positive moment at section 1-1 (M1–1), and shear at section 1-1 (V1–1).

Also determine the critical loading patterns for a uniformly distributed load that produce the

maximum values of R3, M3, M1–1, and V1–1.

Solution: The deflected shapes and influence lines for a unit downward load are plotted below.

1

R3=1

2

– –
+

3 4 5
b

Fig. E13.1b Influence line for R3

1
M3

2

– –
+ +

4 5

c

3

Fig. E13.1c Influence line for M3
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1

M1-1

2 4 5

d

3

– –
+

Fig. E13.1d Influence line for M1–1

1 2

e
4 5

3

V1–1

– –
+ ++

Fig. E13.1e Influence line for V1–1

Loading patterns that produce the peak positive and negative values of these force parameters are

shown in Figs. E13.1f, E13.1g, E13.1h, and E13.1i.

1 2 4 5

3

(Positive)

f

1
2 4 53

(Negative)

Fig. E13.1f Loading patterns for absolute maximum R3

1

2

5

3 4

(Positive)

g

1

2 43 5
(Negative)

Fig. E13.1g Loading patterns for absolute maximum M1–1
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1 2 4 5

3

(Negative)

h

1
2 4 53

(Positive)

Fig. E13.1h Loading patterns for absolute maximum M3

1 2
5

3 4

(Positive)

i

1 2
5

3 4

(Negative)

Fig. E13.1i Loading patterns for absolute maximum V1–1

13.3 Engineering Issues for Multi-span Girder Bridges

13.3.1 Geometric Configurations

The superstructure of a typical highway girder bridge consists of longitudinal girders which support a

concrete deck. The girders may be fabricated from either steel or concrete. The substructure is

composed of piers and abutments which are founded on either shallow foundations or piles. In

general, the makeup of the substructure depends on the soil conditions at the site. Bearings are

employed to connect the girders to the substructure.

Bridge spans are classified as either short, medium, or long according to the total span length.

Typical categories are

Short : less than 125 ft 38 mð Þ
Medium : 125� 400 ft 38� 120 mð Þ
Long : over 400 ft 120 mð Þ

Typical highway bridge structural systems are composed of continuous beams. One could replace

the continuous beam with an arrangement of simply supported beams. However, this choice requires

additional bearings and introduces discontinuities in the deck slab at the interior supports that creates a

serious problem since it provides a pathway for moisture and leads to corrosion of the bearings at the

supports. Using a continuous beam allows one to achieve continuity of the deck slab and also eliminates

some bearings. It is the preferred structural scheme for new bridges. Typical span arrangements are

shown in Fig. 13.6. The current trend is to use a constant girder cross section throughout the span.
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Historically, girder bridges were configured as a collection of single spans. This scheme is

illustrated in Fig. 13.7a. In order to deal with longer interior spans, the cantilever scheme shown in

Fig. 13.7b was introduced. Both schemes involve discontinuities in the girder/deck which provide

pathways for moisture and lead to deterioration. To eliminate the interior discontinuities, the obvious

option is to use a continuous girder as shown in Fig. 13.7c. We demonstrated in Chap. 9 that

continuous beams are more efficient structurally, i.e., the peak internal forces are less than the

corresponding forces for the simply supported case. Therefore, the required cross section tends to

be lighter.

Even when a continuous girder is used, there still remains the problem of the discontinuities at the

end supports (abutments). The problem is solved by using the scheme shown in Fig. 13.8. The

abutments walls are supported on flexible piles that are rigidly connected to the deck/girder system.

This concept is called an “integral abutment bridge.” Since the abutment is rigidly attached to the

deck/girder, a temperature change of the deck produces a longitudinal displacement of the abutment

wall. In order to minimize the effect of the resulting lateral force, the abutments are supported on

flexible piles and loose granular backfill is placed behind the wall. The longitudinal displacement due

to temperature varies linearly with the span length, and consequently, the maximum span length is

limited by the seasonal temperature change.

We generate an idealized model by replacing the action of the soil and piles with equivalent

springs [2]. Figure 13.9a illustrates this approach. An estimate of the effect of support stiffness is

obtained using the model shown in Fig. 13.9b.

Fig. 13.6 Span

arrangements for multi-

span beams. (a) Two spans

continuous. (b) Two spans

simply supported. (c) Three
spans continuous. (d) Three
spans simply supported
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13.3.2 Choice of Span Lengths

Given some overall crossing length, one needs to decide on the number and relative magnitude of the

spans to be used to achieve the crossing. We utilize here some of the analytical results for multi-span

continuous beams with constant I subject to uniform loading generated in Chaps. 9 and 10. Fig-

ure 13.10 shows how the maximum moment varies with increasing number of spans. Note that there

is a significant reduction in peak moment as the number of spans is increased, for a given overall
length. Note also that the bending moment distribution for constant I is independent of the value of I.

In general, for constant I, the bending moment distribution depends on the ratio of the span lengths.

For the symmetrical case shown in Fig. 13.11, the analytical solution for the negative moment at an

interior support has the form (see Example 10.5)

M�max ¼ g
L2
L1

� �
wL21
8

ð13:3Þ

where

g
L2
L1

� �
¼ 1þ L2=L1ð Þ2

1þ 3=2ð Þ L2=L1ð Þ
We express L1 and L2 as

a

b

c

Expansion joint Expansion joint

L1

L1

L1

L2

L2

L3

L3

L2 L3

hinge hinge

Fig. 13.7 Multi-span

bridge schemes (a) Simple

spans. (b) Cantilever spans.
(c) Continuous spans
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Fig. 13.8 (a) Three-span integral abutment bridge in Orange, Massachusetts. (b) Elevation—three-span integral

abutment bridge

Fig. 13.9 Idealized models for an integral abutment bridge (a) Global model. (b) Simplified model
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0.031w L2

0.009w L2

0.011w L2 0.011w L2
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Fig. 13.10 Variation of

the bending moment

distribution. (a) Simply

supported. (b) Two-span
scheme. (c) Three-span
scheme
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+
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Fig. 13.11 Bending

moment distribution—

three-span symmetrical

scheme
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L2 ¼ αL

L1 ¼ 1� αð Þ
2

L ð13:4Þ

With this notation, (13.3) expands to

M�max ¼
wL2

8
f αð Þ

f αð Þ ¼ 1� 3αþ 7α2 � 5α3

4 1þ 2αð Þ
ð13:5Þ

The variation of f with α is plotted below.

Taking L2 ¼ L1 corresponds to α ¼ 1/3. The more common case is where α is between 1/3 and

1/2. When spans L1 and L2 are chosen, one applies the uniformly distributed loading and determines

the peak value of negative moment using (13.5).

13.3.3 Live Loads for Multi-span Highway Bridge Girders: Moment Envelopes

The live load for a highway bridge is assumed to consist of two components: a uniform loading

intended to simulate small vehicles, such as cars, and a set of concentrated loads that characterize

heavy vehicles, such as trucks.

13.3.3.1 Set of Concentrated Live Loads
The action of a heavy vehicle traveling across the total span is simulated by positioning a set of

concentrated loads at various locations along the span. The load magnitude and axle spacing vary

depending on the code that governs the design. For each load position, we determine the bending

moment at specific points along the span. When the beam is statically determinate, it is possible to

develop an analytical solution for the peak moment. This approach is described in Chap. 3. However,

when the beam is indeterminate, one must resort to a numerical procedure. This approach is

illustrated in Fig. 13.12. In practice, one first discretizes the spans and then positions the load at the

individual discrete points. Assuming there are n discrete points, one needs to carry out n analyses.

This results in n bending moment distributions. At each discrete point, we determine the maximum

positive and negative values from the set of n values generated by the n analyses. Finally, we

construct a plot showing the “maximum” values of moment at each discrete point. This plot allows

one to readily identify the absolute “maximum” moment by scanning over the plot. Since the values at

each discrete point represent the peak values at the point for all positions of the loading, we interpret

the plot as a moment envelope. Working with a refined span discretization provides detailed
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information on the absolute shear and moment distributions. For example, 30 separate analyses are

required to generate the moment envelope for the span discretization shown in Fig. 13.12c. We

discuss next how one establishes the magnitudes of the concentrated loads.

13.3.3.2 Transverse Distribution of Truck Load to Stringers
Figure 13.13 shows typical slab stringer highway bridge cross sections. The roadway is supported by

a reinforced concrete slab, which rests on a set of longitudinal beams, called stringers. The stringers

may be either steel sections or concrete elements.

In order to determine the truck load applied to the stringer, we position the truck such that one set

of wheels is directly on the stringer. Figure 13.14 illustrates this case. Note that P is the axle load.

Fig. 13.12 Truck loading and span discretization. (a) Span discretization. (b) Three-axle truck. (c) Multi-span

discretization
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Fig. 13.13 Typical slab-

stringer bridge deck cross

sections (a) Steel girders.
(b) Concrete T beams.

(c) Precast concrete beams

Fig. 13.14 Transverse

position of vehicle wheel

loads



We assume the slab acts as a simply supported beam spanning between the stringers. This

assumption is conservative. Then the load on stringer “A” is

PAmax ¼ P

2
þ P

2

S� a

S

� �
¼ P

2
2� a

S

� �

The axle distribution factor is defined as

DF ¼ 1

2
2� a

S

� �
ð13:6Þ

Using this definition, the load on the stringer is represented as

PAmax ¼ P DFð Þ
Taking S ¼ 8 ft and a ¼ 6 ft yields PA max � 0.625P

Another effect that needs to be included is impact. The loading is applied rapidly as the vehicle

travels onto the bridge. A measure of the loading duration is the ratio of span length to vehicle

velocity. When a loading is applied suddenly and maintained constant, the effect on the response of a

structure is equivalent to the application of a static load whose magnitude is equal to twice the actual

load. The concept of an impact factor is introduced to handle this effect. Intuitively, one would expect

this factor to be larger for short spans, i.e., to vary inversely with span length. An impact magnifica-

tion factor (I) of 30 % is commonly used. With this notation, the load on the stringer is given by

Pi design ¼ Pi 1þ Ið ÞDF ð13:7Þ
where Pi is the axle load.

13.3.3.3 Uniform Live Load
Small vehicles are modeled as a uniform loading applied selectively to individual spans. The purpose

of this loading is to simulate the case where a set of passenger cars is stalled in a lane on one or more

spans. One uses the influence lines for the moments at mid-span and the interior supports to establish

the loading patterns for lane loads. The loading patterns for a three-span system are listed in

Fig. 13.15c, d. Loading cases 1 and 2 produce the peak positive moment at the midpoint of the

interior span; cases 3 and 4 generate the peak negative moment at the interior supports.
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Fig. 13.15 Lane load

cases—loading patterns.

(a) Influence lines for
positive moments at

mid-spans. (b) Influence
lines for negative moments

at the supports. (c)
Maximum positive

moment at mid-spans

(cases 1 and 2). (d) Max

negative moments at the

supports (cases 3 and 4)
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Given the loading patterns, one generates the bending moment distribution for each loading

condition and then establishes the maximum values of the positive and negative moments at the

same discrete locations selected for the truck loading. These results define the discrete moment

envelope for the structure. Four separate analyses (cases 1–4) are required to construct the discrete

moment envelope corresponding to the lane loading for this three-span example.

13.3.4 Loading Due to Support Settlements

In addition to the gravity loading associated with the weight of the beam and vehicles, one also needs

to consider the moments induced in the structure due to support settlement. This calculation is

relatively straightforward. The analytical solutions for two- and three-span symmetrical beams are

generated in Examples 10.2 and 10.5. We list those results in Fig. 13.16 for convenience. Note that

the peak moments are linear functions of EI. Note that the peak moment varies as 1/L2. Therefore

support settlement is more significant for short spans vs. long spans.
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Fig. 13.16 Moments due

to support settlements. (a)
Two-span case for vA.
(b) Two-span case for vB.
(c) Three-span case for vA.
(d) Three-span case for vB
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Example 13.2: Effect of Span Length on Support Settlement

Given: The three-span beam shown in Fig. E13.2a. The beam properties are E ¼ 200 GPa and

I ¼ 9000(10)6 mm4.

Fig. E13.2a

Determine: The bending moment distribution due to support settlement of 25 mm at supports A and

B. Consider the following cases: (a) L ¼ 10 m, (b) L ¼ 20 m

Solution: The resulting moments are plotted in Figs. E13.2b and E13.2c. These results demonstrate

that the effect of support settlement is more critical for the shorter span [case (a)].

Fig. E13.2b Case a results

Case a: L ¼ 10 m
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Case b: L ¼ 20 m

Fig. E13.2c Case b results

13.4 Case Studies

13.4.1 Case Study I: A Three-Span Continuous Girder Bridge

We illustrate the process of establishing design values using an actual bridge as a case study. The

bridge is a three-span continuous girder bridge, with spans measuring 80 ft, 110 ft, and with an overall

length of 270 ft. The superstructure consists of an 8 in. thick concrete slab acting in composite with

four lines of steel girders spaced at 8.67 ft on center. The girder cross section is constant throughout

the length. The deck carries two traffic lanes, continuous over the entire length of the bridge. The

bearings are either hinge or roller supports. Figures 13.17 and 13.18 show the makeup of the bridge

system and the details of the cross section. The bridge is modeled using an equivalent section equal to

approximately one-fourth of the cross section of the bridge (one girder plus a 8.67 ft slab). Fig-

ure 13.18b defines the model used for this analysis.

Our objectives are

1. To determine the moment envelopes for truck and lane loading corresponding to a live uniform

lane loading of 0.64 kip/ft and the truck loading defined in Fig. 13.19.

Fig. 13.17 Girder bridge

system
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2. To establish the absolute peak values (positive and negative) for moment due to dead loading of

2.1 kip/ft, lane loading, and design truck loading.

3. To determine the moments due to: 1 in. settlement of support A; 1 in. settlement of support B.

Loading patterns:
The loading patterns for the uniform dead and lane loading are shown in Figs. 13.20 and 13.21.

We discretize the individual spans into ten segments, as indicated in Fig. 13.22. A computer

software system is used to generate the solutions and the moment envelopes. One can assume an

Fig. 13.18 (a) Cross section—bridge deck. (b) Cross section of single composite beam

Fig. 13.19 Truck load

894 13 Multi-span Horizontal Structures



arbitrary value for I since the moment results are independent of I. Computer-based analysis is ideally

suited for envelopes. Certain software packages have incorporated special features that automate the

process of moving the load across the span and compiling the peak positive and negative moment

values at each discrete section. Both the positive and negative moment envelopes are required in

order to dimension the beam cross section.

Dead load:
The envelopes for dead load coincide with the actual moment and shear distribution shown below

(Fig. 13.23). The peak values of shear, moment, and deflection are listed below.

M�DLmax ¼ 1975kip ft

MþDLmax ¼ 1202kip ft

VDLmax ¼ 115:5kip

δDLmax ¼ 1:1 in: span II

δDLmax ¼ 1:26 in: span Ior III

8>>>>>>>><
>>>>>>>>:

13.4.1.1 Uniform Lane Load
The uniform load patterns defined in Fig. 13.21 are analyzed separately; based on this data, the

following envelopes are generated (Fig. 13.24).

2.1 kip/ftFig. 13.20 Uniform dead

load pattern

.64 kip/ft .64 kip/ft

.64 kip/ft

.64 kip/ft

.64 kip/ft

.64 kip/ft

Fig. 13.21 Uniform lane

load patterns for positive

and negative moments
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Fig. 13.22 Span discretization for live loads. (a) Truck. (b) Lane load

2.1 kip/ft

109 kip

59 kip 115.5

115.5 kip

109 kip

1202 kip ft 837 kip ft837 kip ft

–1975 kip ft –1975 kip ft

Moment (MDL)

Shear (VDL)

59 kip

Fig. 13.23 Dead load shear and moment distributions
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13.4.1.2 Truck Loading
The truck loading defined in Fig. 13.22a is passed over the span leading to the envelopes plotted in

Fig. 13.25. This moment needs to be modified to account for the distribution between adjacent

stringers and impact. The final values are determined using

DF ¼ 1

2
2� a

S

� �
¼ 1

2
2� 6

8:67

� �
¼ 0:65

MDesigntruck ¼ MLLtruck
1þ Ið ÞDF ¼ MLLtruck

1:3 0:65ð Þ ¼ 0:845MLLtruck

Numerical results for the modified moment envelope values at the discrete points (interval of L/10)

are listed in Tables 13.1, 13.2, and 13.3. Note that the results for span III are similar but not identical

to the results for span I. Although the structure is symmetrical, the truck loading is not symmetrical.

Fig. 13.24 Uniform lane

load envelopes

Fig. 13.25 Truck loading

envelopes
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Table 13.1 Discrete envelope values: Span I (kip ft)

Span I

X MDL
Mþ

Designtruck
M�

Designtruck
Mþ

LLuniform
M�

LLuniform

0 0 0 0 0 0

0.1 L 407 344 –58 168 –43

0.2 L 680 576 –117 294 –87

0.3 L 819 703 –175 380 –130

0.4 L 823 775 –233 425 –174

0.5 L 693 792 –292 428 –217

0.6 L 428 718 –350 391 –261

0.7 L 29 568 –408 313 –304

0.8 L –504 357 –466 194 –348

0.9 L –1172 106 –525 34 –419

L –1975 117 –583 – –670

Table 13.2 Discrete envelope values: Span II (kip ft)

Span II

X MDL
Mþ

Designtruck
M�

Designtruck
Mþ

LLuniform
M�

LLuniform

0 –1975 117 –583 – –670

0.1 L –831 116 –351 – –291

0.2 L 58 430 –298 192 –167

0.3 L 693 674 –247 387 –167

0.4 L 1074 823 –194 495 –167

0.5 L 1202 893 –144 533 –167

0.6 L 107 851 –196 495 –167

0.7 L 693 700 –248 378 –167

0.8 L 58 454 –301 192 –167

0.9 L –831 143 –353 – –291

L –1975 117 –583 – –670

Table 13.3 Discrete envelope values: Span III (kip ft)

Span III

X MDL
Mþ

Designtruck
M�

Designtruck
Mþ

LLuniform
M�

LLuniform

0 –1975 167 �578 – �670
0.1 L –1172 105 �520 34 �419
0.2 L –504 330 �462 194 �348
0.3 L 29 532 �405 313 �304
0.4 L 428 682 �346 391 �261
0.5 L 693 777 �289 428 �217
0.6 L 823 806 �232 425 �174
0.7 L 819 742 �173 380 �130
0.8 L 680 575 �116 294 �130
0.9 L 407 334 –57 168 –43

L 0 0 0 0 0
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13.4.1.3 Support Settlement
We deal with support settlement by assuming a value for EI (in this case, we take E ¼ 29,000 ksi and

I ¼ 48,110 in.4). Once the actual EI is established, the moment results can be scaled. The

corresponding moment diagrams are plotted in Fig. 13.26.

13.4.2 Case Study II: Two-Hinged Parabolic Arch Response—Truck Loading

This study illustrates how one evaluates the behavior of a typical two-hinged arch bridge subjected to

a truck loading. An example structure is shown in Fig. 13.27; the idealized model is defined in

Fig. 13.28. We model the roadway as a continuous longitudinal beam supported at 10 ft intervals by

A B C D

A B C D

A

B

=1 inch

=1 inch

50 kip ft

174 kip ft

337 kip ft

213 kip ft

a

b

n

n

Fig. 13.26 Moment due

to support settlements

(E ¼ 29,000 ksi and

I ¼ 48,110 in.4). (a)
Settlement at A. (b)
Settlement at B

Fig. 13.27 Two-hinged

arch bridge
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Fig. 13.28 Parabolic-arch geometry and loading-idealized model

Fig. 13.29 Force envelopes—Truck loading—100 straight segments. (a) Moment envelope. (b) Axial envelope



axial members attached to the parabolic arch. The truck loading is transmitted through the axial

elements to the arch. We generate force envelopes for the arch using an analysis software system

applied to the discretized model. A similar discretization strategy was employed in Chap. 6. Results

for the bending moment and axial force due to the truck loading are plotted in Figs. 13.29 and 13.30.

Figure 13.29 is obtained by subdividing the arch into 100 straight segments having a constant

projection, Δx, of 0.3 m. Figure 13.30 is generated by subdividing the arch into ten straight segments

having a constant projection, Δx, of 3 m.

The force envelope plots are useful for displaying the variation in response, e.g., the range in

moment values. However, to determine the absolute extreme values, one has to scan over the data.

This process leads to the following “absolute values”

100straight segment

Mþmax ¼ þ499kNm

M�max ¼ �381kNm

Pmax ¼ �283kN

8>><
>>: 10straight segment

Mþmax ¼ þ499kNm

M�max ¼ �381kNm

Pmax ¼ �283kN

8>><
>>:

In general, it is a good strategy to consider at least two discretizations. In this example, we observe

that the ten segment model produces quite reasonable results.

Fig. 13.30 Force envelopes—Truck loading—10 straight segments. (a) Bending envelope. (b) Axial envelope
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13.4.3 Case Study III: Three-Span Parabolic Arch Response—Truck Loading

We consider next the three-span arch system shown in Fig. 13.31. The span lengths, discretizations,

and the truck loading are the same as for case study I. It is of interest to compare the peak values of the

force envelopes for the two different structural models. The discretized model consists of straight

segments having a constant horizontal projection of 1 ft. A computer software package was used to

generate the corresponding force envelopes which are plotted in Figs. 13.32 and 13.33.

Comparing the moment envelopes for the arch and the girder, we note that arch system has lower

peak moment values. However, the arch system has axial forces so that the cross section must be

designed for combined bending and axial action. There are no axial forces in the girder system, just

pure bending.

Fig. 13.31 Idealized model—three-span arch

Fig. 13.32 Force envelopes—three-span arch. (a) Moment envelope—three-span arch. (b) Axial envelope—three-

span arch
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13.4.4 Case Study IV: Cable-Stayed Bridge

This case study concerns the cable-stayed bridge concept, a type of structure that requires some

special modeling strategies and exhibits a completely different behavioral pattern than girder and

arch-type structures. It has evolved as the dominant choice for long span crossings. A typical

configuration is shown in Fig. 13.34. The terms “harp” and “fan” refer to the positioning of the

cables on the tower. A modified fan arrangement is usually adopted to avoid congestion on the tower.

32kip 32kip 8kip

80 ft 80 ft110 ft

+937 kip ft

+139 kip ft

–345 kip ft

+1057 kip ft

–170 kip ft

–690 kip ft
+138 kip ft
–684 kip ft

+954 kip ft

–273 kip ft

a

b

Fig. 13.33 Force envelopes—three-span girder. (a) Geometry and loading. (b) Moment envelope

Fig. 13.34 Typical cable-

stayed scheme
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Of particular interest is the load path for vertical loading applied to the girder. Without the cables,

the girder carries the load by bending action throughout the total span. Since the maximum moment

varies as to the square of the span length, this structural concept is not feasible for long spans. The

effect of the cables is to provide a set of vertical supports to the girder, thus reducing the moment in

the girder. In what follows, we illustrate this effect using the idealized structure shown in Fig. 13.35.

We suppose the girder is continuous, and the cable layout is symmetrical (equally spaced on the

longitudinal axis). There are seven pairs of symmetrical cables. Each cable has a different cross-

sectional area. The girder is hinged at the tower, but free to expand at the two end supports. We model

the cables as straight members that are hinged at their ends to the tower and the girder. In this way,

they function as axial elements and transmit the gravity loading applied to the girder up to the tower.

The net effect is to reduce the bending moment in the girder.

Starting with nodes at the supports and the cable–girder intersection points, one may also

discretize the girder between the cable nodes to obtain more refined displacement and moment

profiles. Since the structure is indeterminate, we need to specify member properties in order to

execute an analysis. We estimate the cable areas by assuming an individual cable carries the tributary

loading on a segment adjacent to the cable. This estimate is based on strength.

AC ¼ T

σall
¼ wΔL

σall sin θ

where σall is some fraction of the yield stress andΔL is the cable spacing. This equation shows that the

required area increases with decreasing θ. Therefore, one must increase the cable area as the distance

from the tower increases. A lower limit on θ is usually taken as 15� (Fig. 13.36).
Taking w ¼ 10 kN/m, ΔL ¼ 30 m, and σall ¼ 0.687 kN/mm2 leads to the estimated cable areas

listed below.

Cable θ � 1
sin θ Acable (mm2)

C1 19.6 3 1305

C2 22.6 2.3 1130

C3 26.5 2.2 957

C4 32 1.9 827

C5 39.8 1.6 696

C6 51.3 1.3 566

C7 68.2 1.1 480

Fig. 13.35 Idealized cable-stayed scheme
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We estimate I for the girder by assuming the bending moment diagram is similar to the distribution

for a uniformly loaded beam with multiple spans equal toΔL. The peak negative moment for this case

is
w ΔLð Þ2

12
. Given these estimated properties, one analyzes the structure and iterates on the properties

until the design requirements are satisfied.

Figure 13.37 shows the forces and displacement profile corresponding to Igirder ¼ 420(10)6 mm4

and the following set of cable areas for cables 1–7, respectively (1305, 1130, 957, 827, 696, 566, and

480 mm2). The girder cross-sectional area is taken as 120,000 mm2. Note that the bending moment

diagram for the girder is similar to that observed for a multi-span uniformly loaded beam. We also

point out that the response is sensitive to the girder cross-sectional area since there is significant

compression in the girder.

An estimate of the vertical displacement based on the axial force corresponding to strength is given

by

v ¼ σLcable
E sin θ

The displacement profile for the girder agrees with this approximation. The peak value occurs for

the outermost cable which has the largest length and smallest angle.

A suggested peak value for displacement under live load is L/800, which for this geometry

translates to 300 mm. We can decrease the deflection by increasing the areas for the outer cables.

Assuming an individual cable act as a single vertical spring subjected to the loading w(ΔL), and
requiring the displacement to be equal to vall leads to the following estimate for the cable area

Ac ¼ w ΔLð ÞLc
vallE sin θð Þ2

where Lc is the cable length. Holding the girder properties constant, we use this approximate

expression to increase the cable areas to (14,000, 11,500, 8500, 5000, 3000, 3000, 2000 mm2) and

repeat the analysis. The displacement profile of the girder for this case is plotted in Fig. 13.38 and also

summarized in the table listed below. Note that the displacement is sensitive to the cable area and the

angle of inclination; the cable tension is governed primarily by strength. This case study illustrates the

Fig. 13.36 Tributary area

for cable
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Fig. 13.37 Force and displacement profiles. (a) Geometry and loading. (b) Moment in girder. (c) Axial forces in cables
and girder. (d) Displacement profile of girder

Fig. 13.38 Final

displacement profile

of girder
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role of computer simulation in developing the design of cable-stayed structures. One refines the

design through iteration. This example also illustrates how cable-stayed structures carry the load

primarily through axial action in the cables. The girder functions mainly to transmit the deck loading

to the cables, i.e., the bending is localized between the cable support points.

Cable Acable (mm2) Tension (kN) v# (mm) Acable (mm2) Tension (kN) v# (mm)

C1 1305 914 2382 14,000 998 297

C2 1130 810 1864 11,500 761 217

C3 957 665 1341 8500 675 186

C4 827 567 940 5000 566 176

C5 696 467 630 3000 467 157

C6 566 387 428 3000 386 86

C7 480 315 287 3000 386 48

13.5 Summary

13.5.1 Objectives

• To present Müller-Breslau’s principle and illustrate how it is used to establish loading patterns that

produce the maximum value of a force quantity at a particular point on a structure.

• To describe a procedure for determining the load on an individual stringer due to an axle load

applied to the deck of a slab-stringer bridge system.

• To describe and illustrate a computer-based procedure for generating force envelopes for indeter-

minate horizontal structures subjected to a set of concentrated loads.

• To illustrate the different behavioral patterns for multi-span girder, arch, and cable-stayed systems.

13.5.2 Key Facts and Concepts

• Müller-Breslau’s principle is used to establish influence lines for indeterminate structures. One

works with a structure generated by removing the constraint provided by the force quantity. The

deflected shape of the structure due to a unit value of the force quantity is a scaled version of the

influence line.

• The moment envelope for a horizontal structure is generated by applying the loading at discrete

points on the longitudinal axes, tabulating the bending moment at each discrete point for all the

loading cases, and selecting the largest positive and negative values. A computer-based procedure

is used for this task.

• Support settlement can produce bending moments which are significant for short span bridges.
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13.6 Problems

Problem 13.1

1

1

1

2 3 4 5

I I I I

10 ft

40 ft 40 ft 30 ft30 ft

(a) Using Müller-Breslau principle, sketch the influence lines for the vertical upward reaction at

support 3 (R3), the negative moment at support 2 (M2), and the negative moment at section 1-1

(M1–1)

(b) Use a software package to determine:

(i) The maximum values of R3, M2, and M1–1 cause by a uniformly distributed dead load of

2 kip/ft.

(ii) The maximum value of M2 caused by a uniformly distributed live load of 1 kip/ft.

Problem 13.2 Consider the single span bridge shown below. Using the analytical procedure

described in Sect. 3.10.2.1, determine the absolute maximum value of moment developed as the

truck loading defined below passes over the span. Repeat the analysis using computer software.

Problem 13.3 Consider the two-span bridges shown below. Use computer software to determine

global moment envelopes for both the lane and truck loadings defined below.

Lane load: w ¼ 10 kN/m uniform

Truck load:

(a) L1 ¼ L2 ¼ 30 m, EI is constant
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(b) L1 ¼ 15 m, L2 ¼ 30 m, EI is constant

(c) L1 ¼ L2 ¼ 30 m, EI is constant

(d) Compare the global moment envelopes for the structure shown below with the envelopes

generated in part (a). Is there any effect of varying I?

Problem 13.4 Consider the multi-span bridge shown below. Suppose the bridge is expected to

experience a temperature change ofΔT over its entire length. Where would you place a hinge support:

at A or at B? Determine the end movement corresponding to your choice of support location.
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Problem 13.5 Most design codes limit the deflection due to live loading to some fraction of length,

say L/α, where α is on the order of 500. Generate the global “deflection” envelope for the multi-span

beam and truck loading shown below. Take E ¼ 29,000 ksi and I ¼ 60,000 in.4

Problem 13.6 Investigate convergence of the internal forces for the parabolic arch shown as the

discretization is refined. Take the interval as 2.4, 1.2, and 0.6 m.

Problem 13.7 Suppose a uniform loading is applied to span ABC. Investigate how the response

changes as x varies from L/2 to L. Take h ¼ L/2, A ¼ 50 in.2, AC ¼ 2 in.2, w ¼ 1 kip/ft, f ¼ 1 + (2x/

L )2.
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Problem 13.8 Determine the structural response (forces and displacements) of the idealized tied

arch shown below under a uniformly distributed gravity load of 30 kN/m.

Assume Aarch ¼ 26,000 mm2, IArch ¼ 160(10)6 mm4, Ahanger ¼ 2(10)6 mm2

Note: roadway girder and arch are pinned together at points A and B.

An actual structure is shown below.

Problem 13.9 Determine the distribution of internal forces and displacements for the cable-stayed

structure shown below. Member AB acts as counterweight for loading applied on member BC. The

two members are connected by nine parallel equally spaced cables. Self-weight of members AB and

BC is 16 and 8 kN/m, respectively. Assume ACable ¼ 50,000 mm2 and E ¼ 200 GPa. Consider the

following cases:

(a) IAB ¼ IBC ¼ 40(10)9 mm4

(b) IAB ¼ 4IBC IBC ¼ 40(10)9 mm4

(c) Uniform live load of 2 kN/m applied to member BC in addition to self-weight.

IAB ¼ 4IBC IBC ¼ 40(10)9 mm4
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An illustration of this structural concept created by Santiago Calatrava is shown below. This

bridge is located in Seville, Spain. Puente del Alamillo in Seville, Spain. This work has been released

into the public domain by its author, Consorcio Turismo Sevilla. This applies worldwide. The image

was accessed in March 2012 from http://en.wikipedia.org/wiki/File:Puente_del_Alamillo.jpg.
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Problem 13.10 Consider the symmetrical cable structure shown below. Determine a set of cable

areas (C1–C10) such that the maximum vertical displacement is less than 375 mm under a uniformly

distributed live load of 10 kN/m. Assume Igirder ¼ 400(10)6 mm4, Agirder ¼ 120(10)3 mm2. Take the

allowable stress as 700 MPa.
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Lateral Load Issues for Buildings 14

Abstract

Buildings are complex physical systems. Structural Engineers deal with

this complexity by creating idealized structural models that define the key

structural components, the overall makeup of the building structure, and

the loadings that it needs to withstand. The information provided by the

idealized model allows one to apply analysis and design methods directly

to the model and then extrapolate the results to the actual building.

We begin the chapter with a description of the various types of building

systems and the associated structural components. In general, a building

consists of plane frame structures which are interconnected by floor

systems. We describe approaches for establishing the lateral loads due

to wind and earthquake excitation. These loads are evaluated at each floor

level and then distributed to the individual plane frames using the

concepts of center of mass and center of twist. At this point, one has the

appropriate lateral loading to analyze the plane frames. The topic of

loading on building frames is discussed further in the next chapter

where we also consider gravity loads acting on the floor systems.

14.1 Types of Multistory Building Systems

The majority of the activities in Structural Engineering are concerned with the design of Structural

Systems for buildings. Approximately 95 % of the building inventory consists of buildings having

less than ten stories. Buildings of this type are classified as low-rise buildings. Figure 14.1 illustrates

the typical makeup of a low-rise building. The primary structural components are beams, columns,

and floor plates. Members are usually arranged in an orthogonal pattern to form a three-dimensional

framework. Plate-type elements span between the beams to form the flooring system. We visualize

the three-dimensional (3D) framework to be composed of plane frames which are connected by floor

plates. This interpretation allows us to analyze the individual plane frames rather than the complete

3D structure.
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Frames are designated according to how the beams and columns are interconnected at their end

points. When the members are rigidly connected so that no relative rotation can occur, end moments

develop under loading and the frame is said to be “rigid.” Rigid frames may employ either Steel or

Concrete construction.

The opposite case is when the beams are pinned to the columns. No end moments are developed

and the frame behaves similar to a truss. Some form of bracing is needed since a rectangular pinned

frame is unstable under lateral load. These structures are called “braced” frames. Figure 14.2a shows

a typical braced frame structure. The bracing consists of sets of diagonal elements placed within

certain bays and extending over the height of the structure. This system is designed to carry all the

lateral loading. Note that at least two orthogonal bracing systems are needed to ensure stability under

an arbitrary lateral loading. Braced frames are constructed using steel components.

Fig. 14.1 Typical makeup

of a structural system for a

low-rise building

a b
Shear wall

Shear wall

Shear wall

Bracing

Fig. 14.2 (a) Steel braced frame with bracing. (b) Concrete frame with shear walls
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Depending on the magnitude of the lateral loading, lateral stiffness systems may also be

incorporated in rigid frames to carry a fraction of the lateral loading. For concrete rigid frames, the

stiffening is achieved by incorporating shear walls located either within or on the exterior of the

building and extending over the entire height. Figure 14.2b illustrates this scheme. These walls

function as cantilever beams and provide additional lateral restraint. For steel rigid frames, the

stiffening system may be either a concrete shear wall or a diagonal steel member scheme.

14.2 Treatment of Lateral Loading

Lateral loading may be due to either wind or earthquake acting on the building. These actions may

occur in an arbitrary direction. For rectangular buildings, such as shown in Fig. 14.3, the directions

are usually taken normal to the faces. One determines the component of the resultant force for each

direction. Figure 14.4 illustrates this approach.

The resultant force is distributed to the individual floors, and then each floor load is distributed to

the nodes on the floor. This process leads to a set of nodal forces acting on the individual frames. We

express the force acting at floor j of frame i as

Px

��frame i floor j ¼ f ijRx ð14:1Þ

How one establishes fij is discussed in Sect. 14.3.

Fig. 14.3 Rectangular

building

floor 1

floor 2

floor j

frame 1
frame 2

frame i

frame m

z
Y

X

fij Rx

RyFig. 14.4 Resultant force

components
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14.2.1 Wind Loading

We suppose the wind acts in the x direction, as shown in Fig. 14.5a. The normal pressure varies in

the vertical direction according to a power law (e.g., p ~ z1/7). We approximate the distribution with a

set of step functions centered at the floor levels and generate the resultant force for each floor by

integrating over the tributary area associated with the floor. This process is illustrated in Fig. 14.5b, c.

The individual floor forces are given by

Pi ¼ p zið Þ ziþ1 � zi
2

þ zi � zi�1
2

h i
B ¼ p zið Þ ziþ1 � zi�1

2

h i
B

i ¼ 1, 2, . . . , n
ð14:2Þ

z

zb

B

a

n

n–1

i

n

n–1

i

3

2

1

3

2

1

Y

Wind

z
Y

X

X

zi

Pi

Fig. 14.5 Lateral floor forces due to wind pressure. (a) Wind in X direction. (b) Wind on Y–Z face. (c) Floor loads due
to wind load on Y–Z face
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This computation is repeated for wind acting in the Y direction. It remains to distribute the loads

acting at the floor levels of the facade to nodes of the individual plane frames. The final result is a set

of lateral nodal loads for each plane frame.

The underlying strategy for this approach is based on analyzing plane frames vs. a three-

dimensional system. This approach works when the structural geometry is composed of parallel

plane frames which produce an orthogonal pattern of columns and beams. If the structural geometry is

irregular, one has to analyze the full 3D structural system. In this case, one subdivides the façade area

into panels centered on the structural nodes contained in the façade area and generates the force for

structural node j with

Pj ¼ p zj
� �

Aj ð14:3Þ

where Aj is the tributary area for structural node j.

n

n-1

2

1

i

n

n-1

2

1

i

n

p(z)

n-1

2

1

i

Pn

Pn-1

Pi

P2

P1

c

Fig. 14.5 (continued)
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14.2.2 Earthquake Loading

Seismic loading is generated by an earthquake passing through the site. An earthquake is the result of

slippage between adjacent tectonic plates which releases energy in the form of pressure waves that

produce both horizontal and vertical ground motion. For civil structures, in seismically active regions,

the horizontal motion produces the most critical lateral loading since the design of civil structures is

usually controlled by vertical gravity loading. Data on earthquake ground motion is continuously

collected and distributed by the US Geological Survey National Earthquake Information Center [1].

Figure 14.6 contains a typical plot of ground acceleration vs. time for the 1994 Northridge California

earthquake. The information of interest is the peak ground acceleration, denoted as pga, with respect to

g, the acceleration due to gravity. In this case, the pga is equal to 0.6g. We point out that seismic loading

is cyclic, of varying amplitude, and of short duration, on the order of 20–30 s for a typical earthquake.

Seismic loading is discussed in Sect. 1.3.6. We briefly review the important features of seismic

loading here and then describe how one uses this information to generate the lateral loading for a

building. The lateral forces produced by the horizontal ground motion require the incorporation of

lateral bracing systems. Structures located in high seismic activity regions, such as Japan, Greece, and

the Western parts of the USA, are required to meet more extreme performance standards, and the

design is usually carried out by firms that specialize in seismic design.

Figure 14.7 illustrates how a typical low-rise rigid frame building responds to horizontal ground

motion. The floor slabs act like rigid plates and displace horizontally with respect to the ground due to

bending of the columns. Since there are no external loads applied to the floors, the deformation has to
be due to the inertia forces associated with the floor masses. The magnitude of these forces depends

on the floor masses and the floor accelerations.

The lateral displacement profile is assumed to be a linear function of Z as indicated in Fig. 14.8.

ui zð Þ ¼ uground þ Zi

H
u Hð Þ

Fig. 14.6 Ground

acceleration time history—

Northbridge (1994)

California Earthquake
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where u(H ) is the relative displacement of the top floor with respect to the ground, and Zi is the

vertical coordinate of floor i. This assumption leads to the following expression for the total

acceleration of a typical floor:

a
��
floor i ¼ ag tð Þ þ Zi

H

d2u Hð Þ
dt2

ð14:4Þ

where ag(t) is the ground acceleration time history. Applying Newton’s law, the force required to

accelerate floor i, assuming it moves as a rigid body and the lateral displacement profile is linear, is

P
��
floor i ¼ Wi

g
ag tð Þ þ Zi

H

d2u Hð Þ
dt2


 �
ð14:5Þ

This force is provided by the shear forces in the columns adjacent to the floor.

Given an earthquake ground motion time history, one applies this floor loading to a structure

and determines the structural response. The solution for the acceleration at the top floor is expressed

as [2]:

d2u Hð Þ
dt2

¼ �Γ ag tð Þ þ θ tð Þ� � ð14:6Þ

where θ(t) depends on the earthquake ground motion and the structural period; Γ is a dimensionless

parameter that depends on the distribution of floor masses,

Fig. 14.7 Seismic

response of low-rise frames

with respect to ground

Fig. 14.8 Lateral

displacement profile

with respect to ground
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Γ ¼
X

N
i¼1mi

Zi

HX
N
i¼1mi

Zi

H

� �2
¼ H

X
N
i¼1WiZiX

N
i¼1Wi Zið Þ2

ð14:7Þ

Substituting for the top floor acceleration, the inertia force expands to

P
��
floor i ¼ Wi

g
ag tð Þ 1� Γ

Zi

H


 �
þWi

g
�ΓZi

H
θ tð Þ


 �
ð14:8Þ

The peak values of ag(t) and θ(t) do not generally occur at the same time. Also the magnitude of Γ
is of order one and the maximum value of θ(t) is usually larger than ag

max
. Therefore, the peak force at

floor i is approximated as:

P
��
floor i � ZiWi

H
Γ
Sa
g


 �
ð14:9Þ

where Sa is defined as the maximum absolute value of θ(t). In the seismic literature, Sa is called the

spectral acceleration. It is the maximum acceleration that an equivalent single degree of freedom

system experiences when subjected to the earthquake. Summing up the floor forces leads to the

resultant force which is also equal to the maximum shear force at the base.

V
��
base ¼

X
P
��
floor i �

X
N
i¼1WiZi

� �2
X

N
i¼1Wi Zið Þ2

Sa
g

ð14:10Þ

Finally, we express the force for floor i in terms of V|base.

P
��
floor i ¼ WiZiX

WiZi

 !
V
��
base ð14:11Þ

The spectral acceleration measure, Sa, depends on the ground motion time history ag(t) and the period
of the structure, T.

A simple approximation for T for a low-rise building is

T � N

10
s ð14:12Þ

where N is the number of stories. Values of Sa vs. the structural period, T, have been complied by

various agencies, such as the US Geological Survey’s National Earthquake Information Center [1] for

a range of earthquakes, and used to construct design plots such as illustrated below in Fig. 14.9. One

estimates T and determines Sa with this plot. The limiting values for the plot, such as SDS and SD1,
depend on SMS and SM1 which are defined for a particular site and seismic design code [3]. Values of

SMS, SM1, and TL are listed on the USGS Web site, usgs/gov/hazards: SM1 is usually taken as the

spectral acceleration for 5 % damping and 1 s period (i.e., T1 ¼ 1 s): SMS is the spectral acceleration

for 5 % damping and 0.2 s period and TL is the long transition period. The worst case scenario is for

the structural period to be between 0.2TS and TS. When T � TS, the seismic load is significantly less

than the load corresponding to the region 0.2TS < T < TS.
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Example 14.1

Given: The three-story building shown in Figs. E14.1a and E14.1b. Assume the building is subjected

to an earthquake in the North–South direction. Take the spectral acceleration as Sa ¼ 0.4 g

12 ft

12 ft

12 ft

100 ft

W3  =  900 kip

W2  = 1000 kip

W1  = 1000 kip

Fig. E14.1a Elevation N-S
100 ft

100 ft
S N

Pi

Fig. E14.1b Typical floor plan

Determine: The base shear and earthquake forces on the individual floors.

Solution: We use (14.10). The base shear is given by

V
��
base ¼

X
3
i¼1ZiW

� �2
X

3
i¼1Wi Zið Þ2

Sa
g
¼ 1000 12ð Þ þ 1000 24ð Þ þ 900 36ð Þf g2

1000 12ð Þ2 þ 1000 24ð Þ2 þ 900 36ð Þ2
n o Sa

g
¼ 3420 0:4ð Þ ¼ 1368kip

Fig. 14.9 Peak

acceleration vs. structural

period [3]
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Then, applying (14.11), we obtain the individual floor loads.X
3
i¼1WiZi ¼ 12 1000ð Þ þ 24 1000ð Þ þ 36 900ð Þðf g ¼ 68, 400

P1 ¼ 12 1000ð Þ
68, 400

V
��
base ¼ 0:175 1368ð Þ ¼ 239:4kip

P2 ¼ 24 1000ð Þ
68, 400

V
��
base ¼ 0:351 1368ð Þ ¼ 480:2kip

P3 ¼ 36 900ð Þ
68, 400

V
��
base ¼ 0:474 1368ð Þ ¼ 648:4kip

P3 = 648.4 kip

P2 = 480.2 kip

P1 = 239.4 kip

3

2

1

Example 14.2

Given: The three-story building shown in Figs. E14.2a and E14.2b. The floor weights are indicated.

There is also an additional weight located on the top floor.

12 ft

12 ft

100 ft

12 ft

W = 1000 kip
W3 = 900 kip

W2 = 1000 kip

W1 = 1000 kip

Fig. E14.2a Elevation
100 ft

100 ft
S N

Pi

Fig. E14.2b Typical floor plan
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Determine: The earthquake floor forces for a North–South earthquake of intensity Sa ¼ 0.4g.

Solution: The computations are organized in the following table.

Floor Zi Wi WiZi (10
3) Wi(Zi)

2(103)

1 12 1000 12 144

2 24 1000 24 596

3 36 900 32.4 1050

Roof 36 1000 36 1296

104.4 � 103 3086 � 103

V
��
base ¼ 0:4ð Þ 104:4 1000ð Þð Þ2

3086 1000ð Þ ¼ 1412:7kip

P1 ¼ 12, 000

104:4 1000ð Þ 1412:7ð Þ ¼ 162:3kip

P2 ¼ 24 1000ð Þ
104:4 1000ð Þ 1412:7ð Þ ¼ 324:8kip

P3 ¼ 32:4þ 36ð Þ 1000ð Þ
104:4 1000ð Þ 1412:7ð Þ ¼ 925:6kip

Note that the shear in the top story is increased considerably due to the additional mass on the third

floor.

14.3 Building Response Under Lateral Loads

Up to this point, we have discussed how one generates the lateral loads acting at the floor levels.

These loads are resisted by the frames which support the floors. In this section, we develop a

methodology for distributing a floor load to the frames which support the floor.

We model the building as a set of rigid floors supported by columns and braces between the floors.

When subjected to horizontal loading, the floor plates displace horizontally, resulting in bending of the

columns and shearing deformation in the braces. The horizontal load is resisted by the shear forces

developed in the columns and braces. We know from the examples studied in Chaps. 9 and 10 that

stiffness attracts force. Therefore, one should expect that the distribution of floor load to the supporting

elements, i.e., the columns and braces, will depend on the relative stiffness of these elements.
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14.3.1 Center of Twist: One-Story Frame

We consider first the one-story braced frame structure shown in Fig. 14.10a. The braces located at the

midpoints of the sides provide the resistance to horizontal load. We represent the braces as simple

shear springs. Figure 14.10b illustrates this modeling strategy. Each brace provides a force which acts

in the plane of the wall that contains the brace.

We locate the origin of the X–Y coordinate system at the geometric center of the floor and assume

the floor is subjected to external forces, Px, Py, M. Under the action of these forces, the floor will

experience translation (u, v) and rotation ω about the origin. These displacements produce shear

forces in the springs which oppose the motion. The free body diagram for the floor is shown in

Fig. 14.11.

L

kBkC
kA

kD

H

B

V
u

Plan

Elevation

V, u V, ub

a

k V = k u

Fig. 14.10 (a) One-story
braced frame. (b) Shear
spring model for brace

L

BFBy

FAx

FDy

kD

kA

kB

kc n w

M

B/2

PX

L/2

Py

FCx

uo

Fig. 14.11 Plan view

926 14 Lateral Load Issues for Buildings



Noting the free body diagram shown, the equilibrium equations expand to

þ !
X

Fx ¼ Px � FAx � FCx ¼ 0

þ "
X

Fy ¼ Py � FBy � FDy ¼ 0X
M0 ¼ M þ FCx � FAxð ÞB

2
þ FDy � FBy

� �L
2
¼ 0

ð14:13Þ

Assuming the floor plate is rigid; the shear forces are related to the displacements by

FAx ¼ kA uþ B

2
ω

� �

FCx ¼ kC u� B

2
ω

� �

FBy ¼ kB vþ L

2
ω

� �

FDy ¼ kD v� L

2
ω

� �
ð14:14Þ

Substituting for the forces in (14.13) leads to

Px ¼ u kA þ kCð Þ þ B

2
kA � kCð Þω

Py ¼ v kB þ kDð Þ þ L

2
kB � kDð Þω

M ¼ B

2
kA � kCð Þuþ L

2
kB � kDð Þvþ B2

4
kA þ kCð Þ þ L2

4
kB þ kDð Þ


 �
ω

ð14:15Þ

We see that the response depends on the relative stiffness of the braces. If kA 6¼ kC or kB 6¼ kD, the

floor will experience rotation when only Px or Py is applied at the geometric center. Given the

stiffness of the braces, one solves (14.15) for u, v, ω and evaluates the braces forces using (14.14).

Example 14.3

Given: The floor plan, dimensions and layout of the braces, and the brace stiffnesses shown in

Fig. E14.3a.

10 m

10 m

2k

kk

k

Px D

A

B

C
X

Y

o

Fig. E14.3a Plan view

Determine: The response due to Px.

Solution: We note that the braces at A, B, D have equal stiffnesses, and the brace at C is twice as stiff

as the others. For convenience, we show these values as just k and 2k. We set Py ¼ M ¼ 0 in (14.15).
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Px ¼ 3kð Þuþ 5 �kð Þω ¼ P
Py ¼ 2kð Þv ¼ 0

M ¼ 5 �kð Þuþ 500

4
k

� �
ω ¼ 0

Solving these equations, we obtain

u¼ 25P

70k
v¼ 0

ω¼ P

70k

Finally, the brace forces are

FAx ¼ kA uþ B

2
ω

� �
¼ P

25

70
þ 5

70

� �
¼ 3

7
P

FCx ¼ kC u� B

2
ω

� �
¼ 2P

25

70
� 5

70

� �
¼ 4

7
P

FBy ¼ kB vþ L

2
ω

� �
¼ P

5

70

� �
¼ 1

14
P

FDy ¼ kD v� L

2
ω

� �
¼ P � 5

70

� �
¼ � 1

14
P

To avoid rotation, which is undesirable, one needs to modify either the stiffness at A or C. Taking

kA ¼ kC ¼ k, the response is

u¼ P

2k
v¼ ω ¼ 0

FAx ¼ FCx ¼ P

2

The formulation described above can be generalized to deal with an arbitrary number of braces or

shear walls oriented in either the X or Y direction. We shift to the notation shown in Fig. 14.12 to

Fig. 14.12 Notation
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identify the various braces. Each brace is characterized by a stiffness magnitude (k) and the

perpendicular distance from the tangent to the origin.

Assuming the floor is rigid, the tangential motion for the X oriented braces due to a rigid body

motion of the origin o is

þ ! ui ¼ uo � yiω ð14:16Þ
Similarly, the Y motion for brace j is given by

þ " vj ¼ vo þ xjω ð14:17Þ
These motions produce shear forces which act to oppose the motion of the floor. The individual

forces are

þ ! Fxi ¼ �kxiui ¼ �kxiuo þ kxiyiω
þ " Fyj ¼ �kyjvj ¼ �kyjvo � kyjxjω

ð14:18Þ

Summing forces and moments with respect to the origin leads to the equilibrium equations for

the floor

þ ! Px � u0
X

kxi

� �
þ ω

X
yikxi

� �
¼ 0

þ " Py � v0
X

kyj

� �
� ω

X
xjkyj

� �
¼ 0

M0 þ u0
X

yikxi

� �
� v0

X
xjkyj

� �
� ω

X
y2i kxi þ

X
x2j kyj

n o
¼ 0

ð14:19Þ

where Px, Py, and M0 are the external loads on the floor.

We define the following terms: X
kxi ¼ KxxX
kyj ¼ KyyX

yikxi ¼ KxzX
xjkyj ¼ KyzX

y2i kxi þ
X

x2j kyj ¼ Ko

ð14:20Þ

With this notation, (14.19) takes the following form:

Px ¼ Kxxu0 � Kxzω

Py ¼ Kyyv0 þ Kyzω

M0 ¼ �Kxzu0 þ Kyzv0 þ Koω

ð14:21Þ

Equation (14.21) applies for an arbitrary choice of origin. Note that forces applied at the origin will

produce rotation when either Kxz 6¼ 0 or Kyz 6¼ 0. If the stiffness distribution is symmetrical, these

terms vanish. Rotation of the floor is a torsional mode of response, which introduces an undesirable

anti-symmetric deformation in the perimeter facades. Therefore, one approach is to always choose a

symmetrical stiffness layout. Another approach is to shift the origin to some other point in the floor.

Obviously, the most desirable point corresponds to Kxz ¼ Kyz ¼ 0.

Consider the floor geometry shown in Fig. 14.13. Point o denotes the initial origin and C some

arbitrary point in the floor. We locate a new set of axes at C and express the forces in terms of the

coordinates with respect to C.
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ui ¼ uc � y
0
iω

vi ¼ vc þ x
0
iω

ð14:22Þ

Fxi ¼ �kxiuc þ kxiy
0
iω

Fyi ¼ �kyivc � kyix
0
iω

ð14:23Þ

The equilibrium equations referred to point C have the following form:

Pxc � uC
X

kxi

� �
þ ω

X
y
0
ikxi

� �
¼ 0

Pyc � vC
X

kyj

� �
� ω

X
x
0
jkyj

� �
¼ 0

Mc þ uC
X

y
0
kxi

� �
� vc

X
x
0
kyj

� �
þ ω �

X
y
02
i kxi �

X
x
02
j kyj

� �
¼ 0

ð14:24Þ

We choose point C such that X
y
0
ikxi ¼

X
x
0
jkyj ¼ 0 ð14:25Þ

These conditions define the coordinates of point C. Substituting for x0 and y0 using

x
0 ¼ �xC þ x
y
0 ¼ �yC þ y

leads to

xC ¼
X

xjkyjX
kyj

yC ¼
X

yikxiX
kxi

ð14:26Þ

The equilibrium equations referred to these new axes simplify to

Px ¼ KxxuC ¼ Rx

Py ¼ KyyvC ¼ Ry

MC ¼ KCωC ¼ Mz

ð14:27Þ

where

KC ¼
X

y
02
i kxi þ

X
x
02
j kyj

The external and internal forces are shown in Fig. 14.14.

Fig. 14.13 Floor geometry
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Point C is called the “center of twist.” Figure 14.14 shows that the resultant of the “resisting”
forces acts at the center of twist. External forces applied at the center of twist produce only

translation; an external moment applied to the floor produces twist about the center of twist. We

point out that the coordinates of the center of twist depend on the stiffness of the components located

in the story. The location of the center of twist changes when either the position or magnitude of the

stiffness components is changed.

Example 14.4

Given: The floor plan shown in Fig. E14.4a. The two shear walls are orthogonal and are located on the

X and Y axes.

Fig. E14.4a

Determine: The center of twist.

Solution: The center of stiffness lies on an axis of symmetry. In this case, there are two axes of

symmetry and therefore the center of twist is at the origin.

Example 14.5

Given: The stiffness distribution shown in Fig. E14.5a.

Fig. 14.14 External and

internal forces
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Fig. E14.5a

Determine: The center of twist.

Solution: The stiffness distributions are symmetrical with respect to the X and Y axes. Therefore,

XCT ¼ YCT ¼ 0:

Example 14.6

Given: The stiffness distribution shown in Fig. E14.6a.

Fig. E14.6a

Determine: The center of twist.

Solution: The center of twist (CT) lies on the X-axis because the stiffness is symmetrical with respect

to the X-axis. Summing moments about the origin leads to

xCT ¼
X

xikyiX
kyi
¼ 4k∗ � b=2ð Þð Þ

4k*
¼ �b

2

Example 14.7

Given: The stiffness distribution and loading shown in Fig. E14.7a.
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Fig. E14.7a

Determine: The rigid body motion.

Solution: Thefloorwill experience rotation aswell as translation since there is a netmomentwith respect

to the center of twist. We determine the motion measures using (14.27). The stiffness measures are

Kxx ¼
X

kxi ¼ 2k*

Kyy ¼
X

kyj ¼ 4k*

KC ¼
X

y2i kxi þ
X

x2j kyj ¼ 2 h
2

� �2
k*

n o
¼ h

2

2
k*

Then,

u ¼ Px

Kxx
¼ Px

2k*

v ¼ Py

Kyy
¼ Py

4k*

ω ¼ Py
b
2
ð Þ

KC

¼ Py

b

2
h2

2
k*
¼ Py

k*
b

h2

The deformed configuration of the floor is shown in Fig. E14.7b.

Fig. E14.7b
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Example 14.8

Given: The stiffness distribution shown in Fig. E14.8a.

Fig. E14.8a

Determine: The center of twist for the following combination of stiffness factors:

(a) k1 ¼ k2 ¼ k3 ¼ k4
(b) k4 ¼ k3 k1 > k2
(c) k4 > k3 k1 ¼ k2
(d) k4 > k3 k1 > k2

Solution: The problem can be viewed as being equivalent to finding the centroid of a set of areas, with

area replaced by stiffness. One can use qualitative reasoning to estimate the location of the center of

twist.

Case (a) k1 ¼ k2 ¼ k3 ¼ k4
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Case (b) k4 ¼ k3 k1 > k2

Case (c) k4 > k3 k1 ¼ k2

Case (d) k4 > k3 k1 > k2

We consider next the single inclined brace shown in Fig. 14.15. Introducing displacements u and

v produces a longitudinal force F equal to ku0. Projecting F on the x and y axes leads to

Fx ¼ F cos θ ¼ k u cos θð Þ2 þ v cos θ sin θ
h i

Fy ¼ F sin θ ¼ k u sin θ cos θ þ v sin θð Þ2
h i ð14:28Þ

Summing these forces over the number of braces, the resultants are given by
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Rx ¼
X

Fx ¼ u
X

ki cos
2θ þ v

X
ki cos θ sin θ

Ry ¼
X

Fy ¼ u
X

ki sin θ cos θ þ v
X

kisin
2θ

ð14:29Þ

We write these equations as

Rx ¼ uKcc þ vKcs

Ry ¼ uKcs þ vKss

ð14:30Þ

where

Kcc ¼
X

ki cos
2θ

Kcs ¼
X

ki cos θ sin θ

Kss ¼
X

ki sin
2θ

Note that when θ ¼ 0� or 90�, these expressions reduce to (14.27).

The line of action is determined by summing moments about O. Working first with the X direction

(u) and then the Y direction (ν) leads to the following pair of equations for x* and y*, the coordinates of
the center of twist.

y*Kcc � x*Kcs ¼
X

yiki cos
2θ �

X
xiki sin θ cos θ

y*Kcs � x*Kss ¼
X

yiki sin θ cos θ �
X

xiki sin
2θ

ð14:31Þ

When the stiffness elements are parallel to either x or y, these equations reduce to

Kcc ¼
X

kx Kcs ¼ 0 Kss ¼
X

ky

y* ¼
X

ykxX
kx

x* ¼
P

xkyP
ky

FFy

Fx

u’ = u cosθ+ v sinθ
v

q

u

Fig. 14.15 Inclined brace
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Example 14.9

Given: The stiffness distribution shown in Fig. E14.9a. Two of the braces are inclined with respect to

the x-axis.

Y

k1

k1

b/2 b/2

k2k2

O

X

45°45°

h/2

h/2

Fig. E14.9a

Determine: The center of twist.

Solution: Evaluating (14.31) leads to

Kcc ¼
X

ki cos
2θ ¼ 2k1 þ 2

1

2
k2

� �
¼ 2k1 þ k2

Kcs ¼
X

ki cos θ sin θ ¼ 1

2
k2

� �
þ �1

2
k2

� �
¼ 0

Kss ¼
X

ki sin
2θ ¼ 2

1

2
k2

� �
¼ k2X

yiki cos
2θ ¼ 0X

xiki sin
2θ ¼ 0

X
xiki sin θ cos θ ¼ k2

b

4

X
�1ð Þ1

2
þ þ1ð Þ �1

2

� �
¼ �k2b

4X
yiki sin θ cos θ ¼ 0

Then,

y* ¼
bk2
4

2k1þk2 ¼
b

4

k2
k2 þ 2k1

� �

x* ¼ 0

14.3.2 Center of Mass: One-Story Frame

The center of twist for a one-story frame is a property of the stiffness components located in the story

below the floor. It defines the point of application of the inter-story resistance forces acting on the

floor. These forces depend on the translation and rotation of the floor produced by the applied loading,

i.e., they are due to inter-story deformation.
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When the loading is dynamic, additional inertia forces are generated due to the acceleration of the

masses located on the floor. In order to study the equilibrium of the floor, we need to establish the

magnitude and location of the resultant of these inertia forces. In what follows, we describe the

procedure for locating this resultant.

Figure 14.16 shows a typical plan view of a floor. We locate the origin at some arbitrary point in

the floor, and suppose that there are masses located at discrete points in the floor. The center of mass is

a particular point in the floor defined by the coordinates x and y, where

x ¼
X

ximiX
mi

y ¼
X

yimiX
mi

ð14:32Þ

Example 14.10

Given: The floor mass layout shown in Fig. E14.10a.

Fig. E14.10a

Fig. 14.16 Plan view of

floor
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Determine: The center of mass.

Solution: The center of mass is on the y-axis. In general, if the mass distribution is symmetrical, the

center of mass lies on the axis of symmetry. We determine the y coordinate by summing moments

about the x-axis (Fig. E14.10b).

y ¼
X

yimiX
mi

¼ 2mð Þh
4m

¼ h

2

Fig. E14.10b

Example 14.11

Given: The floor mass layout shown in Fig. E14.11a.

Fig. E14.11a

Determine: The center of mass.

Solution: Summing the moments leads to
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X
mi ¼ 6m

x ¼ 2mcþ 2m b=2ð Þ þ 2m �b=2ð Þ
6m

¼ c

3

y ¼ 2md þ 2m h=2ð Þ þ 2m �h=2ð Þ
6m

¼ d

3

Example 14.12

Given: The floor mass layout shown in Fig. E14.12a.

Fig. E14.12a

Determine: The center of mass.

Solution: We sum moments about the x and y axes and obtain

x ¼ m b=4ð Þ
3m

¼ b

12

y ¼ �m h=4ð Þ
3m

¼ � h

12

14.3.3 One-Story Frame: General Response

We have shown that there are two key points in the floor, the center of twist and the center of mass.

For quasi-static loading, we work with quantities referred to the center of twist. Noting (14.27), the

response of the center of twist due to an arbitrary static loading is (Fig. 14.17)

uc ¼ Px

Kxx

vc ¼ Py

Kyy

ωc ¼ MC

KC

ð14:33Þ

Note that twist occurs only when there is an external moment with respect to the center of twist;

forces applied at the center of twist produce only translation.
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When the loading is dynamic, one needs to include the inertia forces. In this case, it is more

convenient to place the origin at the center of mass and work with force and displacement quantities

referred to the axes centered at the center of mass. Figure 14.18a illustrates this choice. Note that the

resistance forces act at the center of twist and produce a moment about the center of mass. The

displacements of the two centers are related by

Fig. 14.18 Forces acting

at the center of mass (a)
Displacements. (b) Forces

Fig. 14.17 Forces acting

at the center of twist
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uCT ¼ uCM � yCTω
vCT ¼ vCM þ xCTω
ωCT ¼ ω

ð14:34Þ

The equilibrium equations referred to the center of mass have the following form:

Px ¼ m€uCM þ Kxx uCM � yCTωð Þ
Py ¼ m€vCM þ Kyy vCM þ xCTωð Þ

MCM ¼ ICM€ωþ KCωþ xCTKyy vCM þ xCTωð Þ � yCTKxx uCM � yCTωð Þ
¼ ICM€ωþ ω KC þ x2CTKyy þ y2CTKxx

� �þ xCTKyyvCM � yCTKxxuCM

ð14:35Þ

Equation (14.35) shows that the motion is coupled when the center of twist does not coincide with
the center of mass. The center of mass is usually fixed by the mass distribution on the floor and one

usually does not have any flexibility in shifting masses. Therefore, the most effective strategy is to

adjust the location of the braces in the story below the floor such that the centers of mass and twist

coincide, i.e., to take xCT ¼ yCT ¼ 0.

Example 14.13

Given: The mass and stiffness layout shown in Fig. E14.13a.

Fig. E14.13a

Determine: The magnitude of the stiffness elements k1 and k2 such that the centers of mass and twist

coincide.

Solution: First, we locate the center of mass.X
mi ¼ 4mX

ximi ¼ 10 2mð Þ � 20 2mð Þ ¼ �20m

x ¼ �20m
4m

¼ �5m

Similarly,
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X
yimi ¼ 10 mð Þ � 10 3mð Þ ¼ �20m

y ¼ �20m
4m

¼ �5m

Next, we determine k1 and k2 by requiring the center of twist to coincide with the center of mass.

The steps are

Step 1:

xCT ¼
X

xikyX
ky
¼ 20k2 � 40k

k2 þ k
¼ �5m

+
20k2 � 40k ¼ �5k � 5k2

25k2 ¼ 35k

k2 ¼ 1:4k

Step 2:

yCT ¼
X

yikxX
kx
¼ 20 k � k1ð Þ

k1 þ k
¼ �5m

+
25k ¼ 15k1

k1 ¼ 1:67k

14.3.4 Multistory Response

A typical floor in a multistory structure is connected to the adjacent floors by stiffness elements such

as columns, shear walls, and braces. When the floors displace, inter-story deformation due to the

relative motion between the floors is developed, resulting in self-equilibrating story forces which act

on the adjacent floors. Figure 14.19 illustrates this mode of behavior. Floors i and i + 1 experience

lateral displacements which produce shear deformations in the braces

γ ¼ uiþ1 � ui

and corresponding shear forces

F ¼ kγ ¼ k uiþ1 � uið Þ
These forces act on both floors i + 1 and floor i; the sense is reversed for the lower floor (this

follows from Newton’s law of action equal reaction).

In order to express these resistance forces in terms of displacements, we need to specify a common

reference frame for all the floors. We suppose the floors translate and rotate with respect to this

common reference frame. We consider floor i. We determine the inter-story displacement measures

for the two centers of twist associated with the stories above and below floor i and apply (14.27).

The resulting expressions for the resultant forces acting on floor i are listed below. Their sense is
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defined in Fig. 14.20. Note that the direction of the forces due to story i + 1 are opposite to those due

to story i.

For story i:

R ið Þ
x ¼ K ið Þ

xx ui � y
ið Þ
CTωi

n o
� ui�1 � y

ið Þ
CTωi�1

n oh i
R ið Þ
y ¼ K ið Þ

yy vi � x
ið Þ
CTωi

n o
� vi�1 � x

ið Þ
CTωi�1

n oh i
M

ið Þ
C ¼ K

ið Þ
C ωi � wi�1½ �

ð14:36Þ

For story i + 1:

R iþ1ð Þ
x ¼ K iþ1ð Þ

xx uiþ1 � y
iþ1ð Þ
CT ωiþ1

n o
� ui � y

iþ1ð Þ
CT ωi

n oh i
R iþ1ð Þ
y ¼ K iþ1ð Þ

yy viþ1 þ x
iþ1ð Þ
CT ωiþ1

n o
� vi � x

iþ1ð Þ
CT ωi

n oh i
M

iþ1ð Þ
C ¼ K

iþ1ð Þ
C ωiþ1 � ωi½ �

ð14:37Þ

The inertia forces for a floor depend on the mass distribution and acceleration of the floor. They act

at the center of mass, a property of the floor. Figure 14.21 shows the inertia forces for floor i.

We require floor i to be in equilibrium. Summing forces with respect to the origin at O results in the

following equilibrium equations:

u
i+1

u

u i

u i

i+1

F F

F
F

″ story i+1 ″

floor i

floor i+1Fig. 14.19 Forces due to

inter-story deformation

Fig. 14.20 Forces acting

on floor i
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P ið Þ
x � m ið Þ€ui, CM � R ið Þ

x þ R iþ1ð Þ
x ¼ 0

P ið Þ
y � m ið Þ€vi, CM � R ið Þ

y þ R iþ1ð Þ
y ¼ 0

M
ið Þ
0 � I

ið Þ
CM€ω�M

ið Þ
C þM

iþ1ð Þ
C þ m ið Þy ið Þ

CM€ui, CM � m ið Þx ið Þ
CM€vi,CM þ y

ið Þ
CTR

ið Þ
x

�x ið Þ
CTR

ið Þ
y � y

iþ1ð Þ
CT R iþ1ð Þ

x þ x
iþ1ð Þ
CT R iþ1ð Þ

y ¼ 0

ð14:38Þ

The form of (14.36) and (14.37) shows that the equilibrium equations for floor i involve the

displacements for floor i – 1, i, and i + 1. Assuming there are n floors, there are n sets of equations

similar in form to (14.38).

When the location of the center of mass is the same for all the floors, we take the origin at the

“common” center of mass. If the center of twist also coincides with the center of mass, the equations

simplify to

P ið Þ
x ¼ m ið Þ€ui þ K ið Þ

xx ui � ui�1ð Þ � K iþ1ð Þ
xx uiþ1 � uið Þ

P ið Þ
y ¼ m ið Þ€vi þ K ið Þ

yy vi � vi�1ð Þ � K iþ1ð Þ
yy viþ1 � við Þ

M
ið Þ
0 ¼ I ið Þ€ωi þ K

ið Þ
C ωi � ωi�1ð Þ þ K

iþ1ð Þ
C ωiþ1 � ωið Þ

ð14:39Þ

where u, v, and ω are the displacement measures for the center of mass.

These equations are useful for qualitative reasoning about the behavior. In general, we want to

avoid torsion, if possible. Therefore, we distribute the inter-story stiffness elements such that the

location of the center of twist is constant for all stories. In regions where the seismic loading is high,

such as California, one needs to consider dynamic response. In this case, the goal in seismic design is

to have the center of mass and center of twist coincide throughout the height of the structure.

The formulation obtained above can be interpreted as a “shear beam” formulation for a building

system in the sense that the assumptions we introduced concerning the behavior of a floor are similar

to those for a beam subjected to shearing and torsional action. These assumptions are applicable for

low-rise buildings, where the aspect ratio, defined as the ratio of height to width, is of order 1. Most

buildings are in this category. For tall buildings and for those structures having flexible floors, one

creates idealized models consisting of 3D frame structures composed of columns, beams, shear walls,

and floor plates. These models generally involve a large number of variables and require computer-

based analysis methods to generate solutions. The advantage of simple models is that one can reason

about behavior through examination of analytical solutions. Both approaches are necessary and each

has a role.

Fig. 14.21 Inertia forces

for floor i
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14.3.5 Matrix Formulation: Shear Beam Model

In what follows, we introduce matrix notation and express the equations defined in the previous

section in a form similar to the equations for a member system that are presented in Chap. 12. We

number the floor and stories consecutively, and work with the common X–Y–Z reference frame shown

in Fig. 14.22. The following notation is used for floor i:

Ui ¼ ui; vi;ωif g ¼ Floordisplacementvector

Pi ¼ Pxi;Pyi;Mzi

� � ¼ External loadvector
ð14:40Þ

These quantities are referred to the common global reference frame located at point O.
The inter-story displacements at the center of twist for story i are expressed as a matrix product.

ΔU
CT, i ¼ TCT, i Ui � Ui�1

� � ð14:41Þ

where TCT has the following general form:

TCT, i ¼
1 0 �y ið Þ

CT

0 1 x
ið Þ
CT

0 0 1

2
664

3
775 ð14:42Þ

The corresponding story resistance force matrices acting at the centers of twist are related to these

inter-story displacements by

RCT, i ¼ KiΔUCT, i

RCT, iþ1 ¼ Kiþ1ΔUCT, iþ1
ð14:43Þ

Fig. 14.22 Numbering

scheme for floors and

stories
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where Kj depends on the stiffness properties for story j.

Kj ¼
K jð Þ

cc K jð Þ
cs 0

K jð Þ
cs K jð Þ

ss 0

0 0 K
jð Þ
C

2
664

3
775 ð14:44Þ

We need to transfer these forces from the center of twist to the origin of the common reference

frame. This operation involves the transpose of TCT.

Ro, i ¼ T T
CT, iRCT, i

Ro, iþ1 ¼ T T
CT, iþ1RCT, iþ1

ð14:45Þ

Using (14.41) and (14.43), (14.45) expands to

Ro, i ¼ Ko, i Ui � Ui�1
� �

Ro, iþ1 ¼ Ko, iþ1 Uiþ1 � Ui

� � ð14:46Þ

where Ko is the stiffness matrix referred to the common origin, O.

Ko, j ¼ T T
CT, jKjTCT, j ð14:47Þ

One starts with the properties of the center of twist namely, Kxx, Kyy, KC, xCT, yCT, and then generates

Ko for each story.

We consider next the inertia forces which act at the center of mass of the floor. The displacements

are related by

U
CM, i ¼ TCM, iUi

TCM, i ¼
1 0 �yCM
0 1 xCM

0 0 1

2
64

3
75 ð14:48Þ

The inertia force matrix acting at the center of mass is related to the acceleration matrix by

FCM, i ¼ �mi
€UCM, i ¼ miTCM, i

€Ui ð14:49Þ

where

mi ¼
m ið Þ

m ið Þ

I
ið Þ
CM

2
4

3
5 ð14:50Þ

Translating these forces from the center of mass to the origin leads to

Fo, i ¼ mo, i
€Ui

m
o, i ¼ T T

CM, imiTCM, i

ð14:51Þ

We interpret mo,i as the effective mass matrix for floor i.
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Finally, summing forces for floor i, the matrix equilibrium equation referred to the common

reference frame has the form.

Po, i ¼ mo, i
€Ui þ Ro, i � Ro, iþ1 ¼ 0 ð14:52Þ

Substituting for the internal resistance matrices, the expanded form for floor i is

Po, i ¼ mo, i
€Ui þ Ko, i Ui � Ui�1ð Þ � Ko, iþ1 Uiþ1 � Uið Þ ð14:53Þ

We suppose there are N floors and express the complete set of N equations as a single matrix

equation,

P ¼ m€U þ KU ð14:54Þ

We assemble m and K in partitioned form (N rows and N columns). The entries follow from

(14.53).

i ¼ 1, 2, . . . ,N
m

o, i in partitioned row i and column i of m

þ Ko:i

in row i and column i
in row i� 1 and column i� 1


 �
of K

� Ko:i

in row i and column i� 1

in row i� 1 and column i


 �
of K

Po, i in row i of P

ð14:55Þ

Note that this approach is identical to the procedure that we followed in Chap. 12 to assemble the

system matrices for a member system. The following example illustrates the steps for a three-story

structure.

Example 14.14

Given: The three-story structure shown in Fig. E14.14a. Assume the transformed mass and stiffness

properties are known for each floor.

Fig. E14.14a
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Determine: The non-zero entries in the system load, mass, and stiffness matrices.

Solution: N ¼ 3 for this example. The partitioned form of the equations is listed below.

Po,1

Po,2

Po,3

8<
:

9=
; ¼

mo,1
mo,2

m
o,3

2
4

3
5 €U1

€U2

€U3

8><
>:

9>=
>;

þ
Ko,1 þ Ko,2

� �
�Ko,2 0

�Ko,2 Ko,2 þ Ko,3

� �
�Ko,3

0 �Ko,3 Ko,3

2
664

3
775

U
1

U
2

U
3

8<
:

9=
;

14.4 Response of Symmetrical Buildings

We consider the symmetrical structural system shown in Fig. 14.23. We locate the global reference

frame on the symmetry axis. By definition, the center of mass and center of twist for all the floors are

located on the Z-axis.

We suppose the external floor loading is applied in the X direction. This loading is resisted by the

frames supporting the floors. Each frame displaces in the X direction and develops resistance through

shearing action between the floors.

A typical frame is modeled as a set of discrete masses supported by shear springs. Figure 14.24

illustrates this idealization. The shear spring stiffness for a story in a frame is determined by summing

the contribution of the columns contained in the story. Using the approximate method for estimating

lateral stiffness for frames developed in Chap. 11, the equivalent shear stiffness for a story in a frame

is estimated as

kstory i ¼ 12E

h3

X
inter colIc

1

1þ r=2ð Þð Þ þ
12E

h3

X
exter colIc

1

1þ rð Þ ð14:56Þ

where r is the ratio of relative stiffness factors for the column and girder.

r ¼ Icol=h

Igrider=L

We evaluate the story shear stiffness factors for each frame. When shear walls or braces are

present in a story, we combine the stiffness terms corresponding to the braces with the terms due to

the columns.

x

Z

A1
2

3
4

5

Px
B C D E

Fig. 14.23 Symmetrical

building structure
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k story i

�� ¼ kcol
��
story i þ kbrace

��
story i ð14:57Þ

The shear stiffness factors for the shear elements defined in Fig. 14.25 are

kshearwall ¼ h

Gbt
ð14:58Þ

kbrace ¼ 2AE

Ld
cos θð Þ2 ð14:59Þ

The complete building system is represented as a set of frames in parallel linked through the

“rigid” floor slab. Figure 14.26 illustrates this idealization. At each story level, all frames experience

the same lateral displacement. It follows that the story shear force in a particular frame is proportional

to the ratio of the frame story shear stiffness to the global story shear stiffness which is defined as

Kglobal, floor i ¼ Ki ¼
X
frames

ki

�����
frame j

Vframe j ¼
kijframe j

Ki
Vi

��
global

ð14:60Þ

Generalizing this result, we can state that the lateral global loads are distributed to the individual

parallel frames in proportion to their relative stiffness.

Noting Fig. 14.26, the global shear for a story is equal to the sum of the loads acting on the floors

above the particular floor. For example,

h

Z

X

g

g

g

g

W4 W4

k4

k3

k2

k1

W3

W2

W1

W3

W2

W1

h

h

h

L

Fig. 14.24 Shear model

of typical frame

Fig. 14.25 Shear stiffness

elements. (a) Steel brace.
(b) Concrete shear wall

950 14 Lateral Load Issues for Buildings



V1

��
global ¼ P1 þ P2 þ P3 þ P4

V2

��
global ¼ P2 þ P3 þ P4

ð14:61Þ

One first evaluates these global shear forces and then determines the individual frame story shears

with (14.60).

Suppose the ratio of story stiffness to global story stiffness is constant for all stories in frame j

kijframe j

Ki
¼ αj ð14:62Þ

Then, it follows that frame j carries a fraction equal to αj of the total applied load. This result is

useful since it allows one to reason in a qualitative way about how global floor loads are distributed

into the frames. For example, suppose that there are n frames having equal stiffness. Then, each frame

carries (1/n) of the total lateral load.

Example 14.15

Given: The symmetrical rigid frame structure shown in Fig. E14.15a. Assume the frame properties

are constant throughout the building height and also assume the structure is uniformly loaded. (a) The

columns in frames 2 and 3 are twice as stiff as the columns in frames 1 and 4 and the floor slab is rigid.

(b) Assume equal frame stiffnesses and rigid floor slab. (c) Assume equal frame stiffnesses and a

flexible floor slab.

Frame

k4

k4

K4

u4

K3

K2

K1

P4

P3

P2

P1

Frame

rigid link

5

5

1

1

a bFig. 14.26 Idealized

building model. (a) Set of
frames with rigid link. (b)
Global loads and global

story stiffnesses
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32
1

4

P

b b b

Fig. E14.15a

Determine: The distribution of the total lateral load to the individual frames.

Solution:

Part (a): A typical floor is shown in Fig. E14.15b. The equivalent story shear stiffness factors are

defined as k* and 2k*. The resultant global shear force acts at the midpoint of the side, and there is no

twist since the stiffness distribution is symmetrical.

Fig. E14.15b Typical floor

The total story stiffness is X
kj ¼ k*

� �
1þ 2þ 2þ 1ð Þ ¼ 6k*

According to (14.60), the fraction of the total story shear carried by an individual frame is equal to

the ratio of the frame story stiffness to the total story stiffness. Then,

For frames 1 and 4

V1 ¼ V4 ¼ V
k*

6k*
¼ 1

6
V

For frames 2 and 3
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V2 ¼ V3 ¼ V
2k*

6k*
¼ 1

3
V

In this case, the interior frames carry twice as much load as the exterior frames.

Part (b): If the floor slab is rigid and equal frame stiffnesses are used, the frame load distribution

shown in Fig. E14.15c is now applicable; the shear is assigned uniformly to the frames.

Fig. E14.15c Typical floor

Part (c): Suppose one generates an estimate for the global loading on an individual frame using the

tributary areas for the frames. Consider the structure shown in Fig. E14.15a. We divide the façade

area into area segments and associate these segmental areas with the frames adjacent to the areas as

illustrated in Fig. E14.15d.

Fig. E14.15d
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We note that the width for the segmental areas 1 and 4 is ½ the width for the interior tributary

areas. Therefore, assuming the external loading is constant over the width, it follows that the

magnitude of the loads for frames 1 and 4 is ½ the load for the interior frames. This breakdown is

shown in Fig. E14.15e. This distribution is based on the assumption that the frames act independently,

i.e., the floor slabs are flexible.

Fig. E14.15e

Example 14.16

Given: The five-story symmetrical rigid frame building shown in Figs. E14.16a and E14.16b.

Assume the building can be subjected to an earthquake in either the North–South or East–West

directions. Take the spectral acceleration as Sa ¼ 0.15g. Consider all the beams to be the same size

and all the columns to be the same size. Assume IB ¼ 4IC.

Fig. E14.16a Elevation
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Fig. E14.16b Typical floor plan

Determine: The maximum moments in the columns (a) for rigid floors and (b) for flexible floors.

Solution: We use (14.10). The base shear is given by

Vjbase ¼
X

5
i¼1ZiW

� �2
X

5
i¼1Wi Zið Þ2

Sa
g
¼ 2000 3ð Þ þ 2000 6ð Þ þ 2000 9ð Þ þ 2000 12ð Þ þ 2000 15ð Þð Þ2

2000 3ð Þ2 þ 2000 6ð Þ2 þ 2000 9ð Þ2 þ 2000 12ð Þ2 þ 2000 15ð Þ2 0:15ð Þ

¼ 1227kN

Then, applying (14.11), we obtain the individual floor loads (Fig. E14.16c).

Pjfloor i ¼
WiZiX
WiZi

 !
Vjbase

X
5
i¼1WiZi ¼ 2000 3ð Þ þ 2000 6ð Þ þ 2000 9ð Þ þ 2000 12ð Þ þ 2000 15ð Þ
¼ 90, 000kN=m

Pjfloor 1 ¼
3 2000ð Þ
90, 000

1227ð Þ ¼ 81:8kN

Pjfloor 2 ¼
6 2000ð Þ
90, 000

1227ð Þ ¼ 163:6kN

Pjfloor 3 ¼
9 2000ð Þ
90, 000

1227ð Þ ¼ 245:4kN

Pjfloor 4 ¼
12 2000ð Þ
90, 000

1227ð Þ ¼ 327:2kN

Pjfloor 5 ¼
15 2000ð Þ
90, 000

1227ð Þ ¼ 409kN
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Fig. E14.16c Earthquake floor loads

It remains to distribute the floor loads to the frames. Since the structure is symmetrical, we need to

consider only one direction, say the N–S direction (Fig. E14.16d).

Fig. E14.16d Floor load distribution

Part a:

When the floor slab is rigid, and the frame stiffnesses are equal, the floor load is distributed uniformly

to the frames (Fig. E14.16e).

P1 ¼ P2 ¼ P3 ¼ P4 ¼ 1

4
P floor ij

Therefore,

P1 ¼ P2 ¼ P3 ¼ P4 ¼

20:5kN

40:9kN

61:4kN

81:8kN

102:3kN

8>>>>>><
>>>>>>:
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Fig. E14.16e Frame load—rigid floors

Part b:

When the floor slab is flexible, the loads are proportioned to their tributary floor areas.

Then, it follows that (Fig. E14.16f)

P2 ¼ P3 ¼ 1

3
P floor ij ¼

27:3kN

54:5kN

81:8kN

109kN

136:3kN

8>>>>>><
>>>>>>:

P1 ¼ P4 ¼ 1

6
P floor ij ¼

13:6kN

27:3kN

40:9kN

54:5kN

68:2kN

8>>>>>><
>>>>>>:

Fig. E14.16f Frame loads—flexible floors

Part c:

We apply the stiffness method described in Chap. 11 to estimate the maximum moments in the

exterior and interior columns.
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ICext
¼ IC and IB ¼ 4IC ) ICext

=h

IB=L
¼ IC=h

IB=L
¼ IC=4ð Þ

4IC=9ð Þ ¼ 0:5625

kE ¼ 3EICE

h3
1

1þ 1

2

ICE=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼

2:34EIC

h3
) kE

kI
¼ 0:89

kI ¼ 3EICI

h3
1

1þ 1

4

ICI=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼

2:63EIC

h3

Noting that

VE

VI

¼ kE
kI

we express the total shear as

VTotal ¼ 2VE þ 2VI ¼ 2
kE
k1
þ 1

� �
VI ) VI ¼ 0:265VTotal

The distributions are shown in Figs. E14.16g and E14.16h.

Fig. E14.16g Maximum column moments—rigid floors

958 14 Lateral Load Issues for Buildings



Fig. E14.16h Maximum column moments—flexible floors

Example 14.17

Given: The one-story frame shown in Figs. E14.17a, E14.17b, E14.17c. Assume the cross sections

are equal.

Fig. E14.17a Plan
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Fig. E14.17b Elevation—section 1-1

Fig. E14.17c Elevation—section 2-2

Determine:

(a) The center of mass.

(b) The center of twist. Take Ib ¼ 2Ic.
(c) The revised stiffness required on lines B-B and 2-2 so that the center of stiffness coincides with

the center of mass.

(d) The translation and rotation of the center of twist for the structure determined in part (c) due to

load P1.

Solution:

(a) The center of mass

x ¼
X

ximiX
mi

¼ 0:5Lð Þ2mþ 1:5Lð Þmþ 2:5Lð Þm
4m

¼ 5

4
L

y ¼
X

yimiX
mi

¼ 0:5Lð Þ3mþ 1:5Lð Þm
4m

¼ 3

4
L
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(b) The center of twist

ICE ¼ ICI ¼ Ic

Ib ¼ 2Ic
ICI=h

Ib=L

� �
¼ ICE=h

Ib=L

� �
¼ 3Ic=2L

2Ic=L

� �
¼ 0:75

Using the shear stiffness equations (11.11) and (11.12), the relevant stiffness factors are

f BE ¼
1

1þ 1

2

ICE=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼ 0:73

f BI ¼
1

1þ 1

4

ICE=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼ 0:84

Let (EIc/h
3) ¼ k. Then,

kBE ¼ 3EICE

h3
1

1þ 1

2

ICE=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼

3EICE

h3
f BE ¼ 2:19k

kBI ¼ 3EICI

h3
1

1þ 1

4

ICI=h

Ib=L

� �
8>><
>>:

9>>=
>>; ¼

3EICI

h3
f BI ¼ 2:52k
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k1 ¼ k2 ¼ 2kBE þ kBI ¼ 6:9k
k3 ¼ k4 ¼ kA ¼ 2kBE ¼ 4:38k
kB ¼ kC ¼ 2kBE þ 2kBI ¼ 9:42k

Finally, one obtains the coordinates

xCT ¼
X

xjkyjX
kyj
¼ 6:9k Lð Þ þ 4:38k 2Lð Þ þ 4:38k 3Lð Þ

2 6:9k þ 4:38kð Þ ¼ 1:27L

yCT ¼
X

yikxiX
kxi
¼ 9:42k Lð Þ þ 4:38k 2Lð Þ

2 9:42kð Þ þ 4:38k
¼ 0:78L
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(c) The revised stiffness required on lines B-B and 2-2

xCT ¼ x ¼ 5

4
L ¼ 6:9k þ k*

� �
Lð Þ þ 4:38k 2Lð Þ þ 4:38k 3Lð Þ

6:9k þ 6:9k þ k*
� �þ 2 4:38kð Þ

yCT ¼ y ¼ 3

4
L ¼ 9:42k � k**

� �
Lð Þ þ 4:38k 2Lð Þ

9:42k þ 9:42k � k**
� �þ 4:38k

∴k* ¼ 2:4k k** ¼ 3:06k

(d) The translation and rotation of the center of twist

Noting the result for part (c) and (14.20) specialized for the center of twist, the displacements of

the center of twist due to P1 are
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Kyy ¼
P

kyj ¼ k 6:9þ 9:3þ 2 4:38ð Þf g ¼ 24:96k

Ko ¼
P

y2j kxi þ
P

x2j kyj ¼ 4:38k 1:25Lð Þ2 þ 9:42k 0:75Lð Þ2 þ 6:36k 0:25Lð Þ2
n o

þ 6:9k 1:25Lð Þ2 þ 9:3k 0:25Lð Þ2 þ 4:38k 0:75Lð Þ2 þ 4:38k 1:75Lð Þ2
n o

¼ 39:78kL2

Mo ¼ P1

L

4

� �

u ¼ 0

v ¼ Py

Kyy
¼ P1

24:9k

ω ¼ M0

Ko

¼ P1 L=4ð Þ
39:78kL2

¼ 0:00628
P1

kL

14.5 Summary

14.5.1 Objectives

• To describe various idealized models that are used to represent building structures as an assem-

blage of plane frames and rigid floor slabs.e

• To introduce procedures for generaeting wind and earthquake loads for building structures.

• To introduce the concepts of center of mass and center of stiffness and apply these concepts to

typical building structures.

• To formulate the governing equations for a building idealized as a three-dimensional shear beam.

• To represent these equations using matrix notation.

• To specialize the formulation for symmetrical buildings.
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14.5.2 Key Facts and Concepts

• The normal pressure due to wind varies as a power law ( p ~ z1/7) in the vertical direction.

• Seismic excitation is represented by a set of inertia forces acting at the floor levels.

These forces are defined in terms of certain parameters that depend on the site and are specified by

design codes. The vertical force distribution depends on the floor masses and increases with

distance from the base.

• The center of mass is a property of a floor, i.e., it depends on the mass distribution within the floor.

It is important since the resultant of the inertia forces passes through the center of mass.

• The center of stiffness is a property of the lateral stiffness distribution in a story. Twisting of the

floor slab will occur when the resultant force acting on a story does not pass through the center of

stiffness. Ideally one positions the center of stiffness to coincide with the center of mass if dynamic

loading is one of the design loading conditions.

• Given a set of parallel frames connected by a rigid diaphragm and subjected to a lateral load

applied at the center of twist, the load carried by an individual frame is proportional to the relative

stiffness of the frame.

14.6 Problems

Problem 14.1 Consider the plan view of one-story rigid frames shown below. Determine the center

of twist corresponding to the brace stiffness patterns shown.
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Problem 14.2

The one-story frame shown has an unsymmetrical mass distribution.

(a) Determine the center of mass.

(b) Determine the stiffness parameters k1 and k2 such that the center of stiffness coincides with the

center of mass.

(c) Determine the earthquake floor loads corresponding to Sa ¼ 0.3g. Consider both direction, i.e.,

N–S and E–W.
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Problem 14.3 For the rigid frame shown below, determine (a) the center of twist (CT) and (b) the

seismic floor loads applied at the center of mass (CM) for an N–S earthquake with Sa ¼ 0.3g. Assume

properties are equal for each floor.

V

4 m

4 m

4 m

P3

P2

P1

9 m 12 m

3k

9 m

Elevation

W3 =4000 kN

W2 =5000 kN

W1 =6000 kN

6 m

6 m

6 m

4 k4k

4k 3 m

6 k 6 k

9 m 12 m

Typical floor plan

9 m

CMN .6 m

4 k
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Problem 14.4 Consider the two-story rigid frame defined below. Assume the weight of the floor

slabs is equal to wfloor. Concentrated masses are located on each floor as indicated.

W1

W2

East
20 ft

30 ft

8 ft

8 ft

5 ft

5 ft

Plan-Floor 1

Plan-Floor 2

(a) Determine the position of the center of mass for each floor.

(b) Assume the structure is subjected to an earthquake acting in the east direction. Determine the

earthquake forces for the individual floors. Assume wfloor ¼ 1000 kip, w1 ¼ w2 ¼ 1000 kip,

and Sa ¼ 0.3g.

(c) Suppose the story stiffness distribution shown below is used. Describe qualitatively how the

structure will displace when subjected to an earthquake. Consider the stiffness distribution to be

the same for each floor.
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k

k

k

k

k

k

Problem 14.5 Consider the single-story multi-frame structure shown below. Determine the lateral

forcef in the frames due to a global load P. Consider both wind and earthquake loading. Assume the

slab is rigid.

.5k

.5k

k
k

.5k

.5k

P

Problem 14.6 Consider the stiffness distribution for the one-story rigid frame shown below.

Determine the displaced configuration under the action of the loading shown. Assume the slab is

rigid.
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Problem 14.7

(a) Determine the center of twist.

(b) Using (14.47) determine K0.

Problem 14.8 Consider the plan view of a one-story frame shown below. Using the matrix

formulation presented in Sect. 14.3.5 generate the equations of motion for the story. Take m1 ¼ 1000

Ib, m2 ¼ 500 Ib, and k ¼ 10 kip/in.
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Problem 14.9 Consider the one-story plan view shown below.

(a) Locate the center of mass.

(b) Locate the center of twist. Take k1 ¼ k2 ¼ k3 ¼ k4 ¼ k.
(c) Take k1 ¼ k3 ¼ 10. Suggest values for k2 and k4 such that the center of mass coincides with the

center of twist.

Problem 14.10 Consider the floor plan shown below. Assume the mass is uniformly distributed over

the floor area. Establish the equations of motion referred to point O.
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Problem 14.11 Consider the roof plan for a one-story structure shown below. Assume the shear

walls have equal stiffness and the roof dead load is uniform.

(a) Determine the center of mass and the center of stiffness.

(b) Describe how the structure responds to an earthquake in the N–S direction.

Problem 14.12 The framing shown below has identical rigid frames along column lines 1, 2, 3, and

4, and cross-bracing along lines A, B, and C. Consider all the beams and all the columns to be the

same size. Assume Ib ¼ 3Ic and L ¼ 2h.

(a) Assuming the roof/floor slab are rigid with respect to the rigid frames, what part of the total

seismic load due to a N–S earthquake is carried by the frame 4?

(b) Repeat part (a) considering the roof/floor slab to be flexible.
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Vertical Loads on Multistory Buildings 15

Abstract

The previous chapter dealt with issues related to the lateral loadings on

building systems. In that chapter, we described how one can represent the

global lateral loading as loads acting on the individual frames contained in

the building system. We focus in this chapter on how one treats vertical

loads such as gravity loads. Gravity loads applied to a floor slab are

converted to distributed loads acting on the beams which support the

slab. Since the floor slab loads involve both dead and live loads, one

needs to investigate various floor slab loading patterns in order to establish

the maximum values of the design parameters such as bending moment.

We apply Müller-Breslau principle for this task. The last section of the

chapter contains a case study which illustrates the process of combining

lateral and vertical loading, and demonstrates the sensitivity of the struc-

tural design to the type of structural system.

15.1 Loads on Frames

Figure 15.1 shows a multistory building system and Figure 15.2 shows a typical makeup of a

rectangular building; the structural system is composed of floor slabs that are supported by frames

arranged in an orthogonal pattern. The action of wind and earthquake is represented by concentrated

lateral loads applied to the nodes. Gravity loads acting on the floor slabs or roof are transferred to the

beams and then to the columns. The nature of these beam loads (uniform, concentrated, triangular,

trapezoidal) depends on the makeup of the flooring system. In this chapter, we examine first the

mechanism by which the floor loads are transferred to the beams and then describe how to establish

the critical loading pattern that produces the peak values of moment in an individual beam. Given the

peak moments, one can select appropriate beam cross sections.

# Springer International Publishing Switzerland 2016
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Fig. 15.1 Multistory

building

Fig. 15.2 Rectangular

building. (a) Building
frame. (b) Elevation
view—individual frame.

(c) Typical plan view—

flooring system
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15.2 Treatment of Gravity Floor Loads

Figure 15.3 shows a rectangular segment of the floor (abcd) bounded by columns at its corners and

beams along its sides. In typical concrete construction, the floor slab and beams are framed simulta-

neously. The floor slab–beam system functions as a rectangular plate supported on all its sides. If the

load is transmitted to all the sides, we refer to this behavior as two-way action. When the load tends to

be transmitted primarily in one direction, this behavior is called one-way action.

Whether one-way or two-way action occurs depends on the dimensions and makeup of the floor

slab. The most common approach is to work with the tributary areas defined in Fig. 15.4. One

constructs 45� lines and computes individual areas. The loading on an area is assigned to the adjacent

beam. When the members are located in the interior, these areas are doubled to account for the

adjacent panels. In general, the areas are either triangular or trapezoidal.

Fig. 15.3 Slab–beam

framing scheme—two-way

action

Fig. 15.4 Tributary areas

for floor panel abcd
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The floor loading is represented as a uniform load q (Ib/ft2 or N/m2) applied to the floor slab. Using

the concept of tributary areas, we convert this loading to a line loading w (Ib/ft or N/m) on the

perimeter floor beams. The loading patterns for the beams supporting panel abcd and adjacent panels

shown in Fig. 15.5 are listed below.

w1 ¼ q
B1

2

� �

w2 ¼ q
B1

2
þ B2

2

� �

w3 ¼ q
B1

2

� �
w4 ¼ qB1

8>>>>>>>>>><
>>>>>>>>>>:

When steel members are used, the usual approach is to form the floor by first installing joists, then

overlaying steel decking, and lastly casting a thin layer of concrete. Loading applied to the floor is

transferred through the decking to the joists and ultimately to the beams supporting the joists. For the

geometry shown in Fig. 15.6, beams ab and cd carry essentially all the loads applied to the floor panel

abcd. The loads on beams ad and bc are associated with the small tributary areas between them and

the adjacent joists. Depending on the joist spacing, the beam loads are represented either as

concentrated loads or as a uniformly distributed load. The loading patterns are shown in Fig. 15.7

are listed below.

P1 ¼ q a1
B1

2

� �

P2 ¼ q a1
B1

2
þ B2

2

� �

w1 ¼ q
B1

2

� �

w2 ¼ q
B1

2
þ B2

2

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Fig. 15.5 Two-way action

perimeter beam loadings

for uniform floor loading—

panel abcd
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a

b

P1 P1 P1

a b

a b

L1

w1

P2 P2 P2

d c

L1

L1

d c

w2 

L1

Fig. 15.7 One-way action

beam loading for uniform

floor loading q. (a) Large
joist spacing. (b) Small

joist spacing

Fig. 15.6 Steel joist/beam

framing scheme
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15.3 Live Load Patterns for Frame Structures

Gravity type loading is usually the dominant loading for low-rise multistory frames. It consists of

both dead and live loading. Given a multistory frame, the first step is to establish the critical loading

patterns for the individual members. Once the loading patterns are established, one can carry out an

approximate analysis to generate peak force values which are used for the initial design. From then

on, one iterates on member properties using an exact analysis method. In this section, we describe

how Müller-Breslau’s Principle can be employed to establish loading patterns for live gravity

loading. We also describe some approximate techniques for estimating the peak positive and negative

moments in beams.

Consider the frame shown in Fig. 15.8.We suppose the gravity live loading is a uniformly distributed

load, w, that can act on a portion of any member. Our objective here is to determine the loading patterns

that produce the maximum positive moment at A and maximum negative moment at B.

To determine the positive moment at A, we insert a moment release at A and apply self-

equilibrating couples as indicated in Fig. 15.9. According to the Müller-Breslau Principle, one applies

a downward load to those spans where the beam deflection is upward to produce the maximum

positive moment at A. The corresponding loading pattern is shown in Fig. 15.10.

Referring back to Fig. 15.8, we establish the loading pattern for the negative moment at B by

inserting a moment release at B and applying a negative moment. In this case, there are two possible

deflected shapes depending upon whether one assumes the inflection points are in either the columns

A B

Fig. 15.8 Multistory

frame example

A

Fig. 15.9 Deflection

pattern for positive moment

at A
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or the beams. These shapes are plotted in Figs. 15.11 and 15.12. The exact shape depends on the

relative stiffness of the beams and columns which is not known at the preliminary design phase.

Although there are cases where there is some ambiguity in the deflected shape, the Müller-Breslau

Principle is a very useful tool for generating a qualitative first estimate of the loading pattern

(Fig. 15.13). One can refine the estimate later using a structural analysis software system.

A

Fig. 15.10 Loading

pattern for maximum

positive moment at A

+

+ +

+

+

+

B

+

+Fig. 15.11 Deflection

pattern for negative

moment at B—inflection

points in beams

+

+ +

+

+

+

B

+Fig. 15.12 Deflection

pattern for negative

moment at B—inflection

points in columns
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Example 15.1

Given: The rigid steel frame defined in Fig. E15.1a. Assume the member loading is a uniformly

distributed live load.

Determine:

(a) Critical loading patterns for gravity live loading using Müller-Breslau’s Principle that

produces the peak value of moments at mid-spans and end points of the beams.

(b) Use a computer software package to compare the maximum moment corresponding to the

critical pattern loading to the results for a uniform loading on all members. Consider all

the girders to be the same size and all the columns to be the same size.

Assume L1 ¼ 6 m, L2 ¼ 9 m, h ¼ 4 m, w ¼ 10 kN/m, and IG ¼ 3.5IC

Fig. E15.1a Rigid steel frame

B

Fig. 15.13 Loading

pattern for maximum

negative moment at B—

inflection points in columns
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Solution:

Part (a): The process followed to determine the critical loading patterns for bending moment in the

beams is described below.

Step 1: Positive Moment at mid-span of the beams.

There are two live load patterns for positive moment at the midpoint of the beams. They are listed

in Fig. E15.1b.

Fig. E15.1b Positive moment loading patterns

Step 2: Negative moment at the end point of the beams

There are 15 patterns of uniform loading for negative moment. Typical patterns are shown in

Fig. E15.1c. One carries out analyses for the 15 different loading patterns, and then represents the

results by a discrete moment envelope. Figure E15.1d shows the final results.
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Fig. E15.1c Live load patterns for negative moment
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Fig. E15.1d Discrete moment envelope for pattern loading

Part (b): The moment results for uniform loading are plotted in Fig. E15.1e. We note that the uniform

loading produces results which underestimate the peak values (30 % for positive moment and 11 %

for negative moment). However, since the uniform loading case is easy to implement and provides

reasonable results, it frequently is used to generate a first estimate.

Fig. E15.1e Moment diagram for uniform loading
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Example 15.2

Given: The five-story symmetrical rigid frame building shown in Figs. E15.2a, E15.2b, and E15.2c.

Assume the building is subjected to uniform gravity dead loading and an earthquake loading in the

north–south direction. Consider the floor load to be transmitted to all sides (two-way action). Assume

the floors are rigid with respect to lateral motion.

Fig. E15.2a 3D model

Fig. E15.2b Typical floor plan
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Fig. E15.2c Earthquake in N–S direction—specified floor loads on a typical frame

Determine: The maximum forces in the columns and beams for a typical interior bay and the lateral

displacement of the floors using computer software. Assume all the beams to be the same size and all

the columns to be the same size.

The corresponding cross-sectional properties are specified for two cases:

The second case corresponds to doubling the column inertias for case one

I shapebeams

Iz = 445,146,750mm4

Iy = 22,798,170mm4

Ix = 1,135,750mm4

A = 12,320mm2

y

z

case (1)

Hollow square columns

case (2)

Iz = Iy = 148,520,925mm4

Ix = 233,390,025mm4

A = 10,677mm2

Iz = Iy = 309,106,575mm4

Ix = 486,749,250mm4

A = 15,867mm2

y

z

Solution: The floor loading is uniformly applied to the floor slab. Using the concept of tributary areas,

we convert this loading to line loadings w on the perimeter floor beams. Note that the N–S and E–W

loading are identical because of the geometry.

Wfloor total ¼ 2000kN

2000

27ð Þ 27ð Þ ¼ 2:744kN=m2

+
w1gravity ¼ 2:744 4:5ð Þ ¼ 12:35kN=m

w2gravity ¼ 2:744 9ð Þ ¼ 24:7kN=m
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The gravity line loading patterns for the perimeter floor beams are listed below.

Fig. E15.2d

Using computer software, we analyze a 2D model of the rigid frame for gravity and earthquake

loading. This approach is possible because the geometry and stiffness properties are symmetrical.

The critical values for the column forces (axial, shear, moment) occur in the first story. Results for

the beams, columns, and lateral displacement corresponding to the two choices for column properties

are listed and plotted below.

Column

Gravity Case 1ð Þ
Fmax ¼ 574kN

Vmax ¼ 36kN

Mmax ¼ 62kNm

8>><
>>: Case 2ð Þ

Fmax ¼ 567kN

Vmax ¼ 42kN

Mmax ¼ 76kNm

8>><
>>:

Earthquake Case 1ð Þ
Fmax ¼ 130kN

Vmax ¼ 95kN

Mmax ¼ 252kNm

8>><
>>: Case 2ð Þ

Fmax ¼ 127kN

Vmax ¼ 99kN

Mmax ¼ 258kNm

8>><
>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

Beam

Gravity Case 1ð Þ
Fmax ¼ 36kN

Vmax ¼ 61kN

Mmax ¼ 115kNm

8>><
>>: Case 2ð Þ

Fmax ¼ 42kN

Vmax ¼ 60kN

Mmax ¼ 113kNm

8>><
>>:

Earthquake Case 1ð Þ
Fmax ¼ 82kN

Vmax ¼ 51kN

Mmax ¼ 247kNm

8>><
>>: Case 2ð Þ

Fmax ¼ 84kN

Vmax ¼ 48kN

Mmax ¼ 224kNm

8>><
>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

Fig. E15.2e Shear, moment, axial force diagrams—gravity loading
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Fig. E15.2f Shear, moment, axial force diagrams—earthquake loading

Fig. E15.2g Lateral displacement of the floors—earthquake

Note that there is only a small difference in the force magnitudes when the column inertia values

are doubled. The main effect is on the lateral displacement which is to be expected.

15.4 A Case Study: Four-Story Building

In this section, we illustrate the computation of the design parameters for two typical structural

systems, a rigid frame and a partially braced frame, having the same loading and geometry. We also

use the same code-based procedures to estimate the structural properties. Our objective is to compare

the required design parameters which provide an estimate of the relative efficiency of the two systems.

15.4.1 Building Details and Objectives

The building is a four-story steel frame building with a green roof. Figure 15.14 shows the typical

floor plan and elevation views. The rigid flooring system transmits the gravity load primarily in the

E–W direction to the floor beams oriented in the N–S direction (one-way action).

The loading and member data are as follows:

• Floor dead load = 0.055 kip/ft2

• Floor live load = 0.07 kip/ft2

• Roof dead load = 0.18 kip/ft2
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• Roof live load = 0.02 kip/ft2

• Global wind loads acting in the N–S and E–W direction are defined in Fig. 15.15. They correspond

to a peak wind speed of 80 mph for a building located in Boston, Massachusetts.

• The weight of exterior walls will be carried by the edge beams.

• Self-weight of exterior walls = 1.1 kip/ft

• Based on economic considerations related to fabrication and construction, the choice of member

sizes is restricted to the following:

– All the roof beams in the N–S direction are the same size.

– All the floor beams in the N–S direction are the same size.

– All the floor/roof beams in the E–W direction are the same size.

– All the columns have the same size.

– All the braces have the same size.

• The following combinations of loads for strength design are to be considered:

wu ¼
1:4wD

1:2wD þ 1:6wLfloor
þ 0:5wLroof

1:2wD þ 0:5wLfloor
þ 0:5wLroof

þ 1:6wwind

8>><
>>:

Fig. 15.14 Floor plan and elevation views—case study. (a) Plan. (b) N–S elevation—Section A-A. (c) E–W

elevation—Section B-B
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• The following limits are required by the serviceability constraint:

Limit beam deflection to

Lbeam
240

for DLþ LLð Þ
Lbeam
360

for LL

8>><
>>:

Limit building drift to
Hbuilding

300

Case (1): The structure is a braced frame, i.e., all the connections between beams and columns are

pinned.

Case (2): The structure is a rigid frame in the N–S direction and a braced frame in the E–W direction.

All the connections between beams and columns in the N–S direction are moment (rigid)

connections; in the E–W direction, they remain pinned.

15.4.2 Case (1) Frames Are Braced in Both N–S and E–W Directions:
Computation Details

We suppose that since the connections between the beams and the columns are pin connections in

both the N–S and E–W directions, the lateral load (wind) is carried by the bracing. The brace layout

is governed by architectural considerations. We use the K bracing schemes shown in Fig. 15.16.

Fig. 15.15 Global Wind loads. (a) Plan. (b) N–S. (c) E–W
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The braces have equal stiffnesses and the floors are rigid. Therefore the global wind load will be

distributed equally between braces (see Chap. 14). The column load is purely axial since the members

are pinned. We establish the column load per floor working with the tributary floor area associated

with the column. The beams are simply supported, and the beam loading is based on one-way action

(uniformly loaded).

Since all the members are pinned, the total lateral wind load on a floor is carried by the bracing

systems. The axial forces in a typical brace are shown on the sketch below. We assume the shear is

equally distributed between the diagonals.

Fig. 15.16 Braced frame

configuration. (a) Plan—
braced in both directions.

(b) N–S elevation—braced

frames A-A, D-D, G-G. (c)
E–W elevation braced

frames 1-1, 4-4
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The constraint on the maximum lateral deflection at the top floor is umax � H=300:

We assume the inter-story displacement is constant for the stories and focus on the first story which

has the maximum shear force.

Noting the equations presented in Sect. 11.4.3, we solve for the required area.

kbrace ¼ 2AE

h
sin θ1 cos

2θ1
� �

P ¼ kbraceΔu

∴P ¼ 2AE

h
sin θ1 cos

2θ1
� �

Δu ) A ¼ Ph

2E sin θ1 cos 2θ1ð ÞΔu

15.4 A Case Study: Four-Story Building 993

http://dx.doi.org/10.1007/978-3-319-24331-3_11


leads to

Arequired ¼ 30:8ð Þ 12� 12ð Þ
2 29; 000ð Þ sin 38:66ð Þ cos 2 38:66ð Þð Þ 0:48ð Þ ¼ 0:42 in:2

The diagonal elements may be subjected to either tension or compression loading depending on

the direction of the wind. The maximum axial force due to wind in the bracing is 19.7 kip. Applying

the appropriate load factor, the design value is Pu = 19.7(1.6) = 31.5 kip.

NS bracing

Pumax
¼ 19:7 1:6ð Þ ¼ 31:5kip

Lbracing ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 þ 152

p
¼ 19:2ft

Δu ¼ 0:48 in:! Areq ¼ 0:42 in:2

8>><
>>:

Based on the design axial load Pu = 31.5 kip, an effective length of 19.2 ft, and the required area

based on the lateral sway of 0.48 in., one selects a cross-sectional area and uses this section for all the

brace members in the N–S direction.

We repeat the same type of analysis for the E–W bracing except that now the bracing system

is indeterminate. We assume each of the braces carries ½ the lateral load, and estimate the forces

in the brace members by hand computations or use computer analysis. The force results are listed

below.

The maximum factored axial force in the bracing is Pu = 13.55(1.6) = 21.7 kip.
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We compute the required brace area following the same approach used for the N–S bracing

system. The required area is given by

Arequired ¼ 17:35ð Þ 12� 12ð Þ
2 29; 000ð Þ sin 50:19ð Þ cos 2 50:19ð Þð Þ 0:48ð Þ ¼ 0:285 in:2

15.4.2.1 Interior Columns
The column load is purely axial since the members are pinned. We establish the column load per floor

working with the tributary floor areas for dead and live loads, and the brace forces due to wind. The

column on the first floor has the maximum axial force.

The loads in an interior column located in the first story are

PD ¼ 20 30ð Þ 0:18þ :055 3ð Þf g ¼ 207kip

PL roof ¼ 20 30ð Þ 0:02f g ¼ 12kip

PL floor ¼ 20 30ð Þ 0:07 3ð Þf g ¼ 126kip

PN�SWind ¼ 29:4kip

Evaluating the following load combinations

Pu ¼
1:4PD ¼ 290kip

1:2PD þ 1:6PL þ 0:5PLr
¼ 456kip 

1:2PD þ 0:5PL þ 0:5PLr
þ 1:6PWind ¼ 364kip

8>><
>>:

leads to the design value of Pu = 456 kip. One selects a cross section based on Pu = 456 kip and an

effective length of 12 ft.

15.4.2.2 Interior Beams
Interior Floor Beams (30 ft span):

wDfloor
¼ 0:055 20ð Þ ¼ 1:1kip=ft ) MDfloor

¼ wDL
2

8
¼ 1:1 30ð Þ2

8
¼ 124kip ft

wLfloor
¼ 0:07 20ð Þ ¼ 1:4kip=ft ) MLfloor

¼ wLL
2

8
¼ 1:4 30ð Þ2

8
¼ 157:5kip ft

wu ¼
1:4wD ¼ 1:54kip=ft

1:2wD þ 1:6wL ¼ 3:56kip=ft 

8<
:

Mu ¼ wuL
2

8
¼ 3:56 30ð Þ2

8
¼ 400:5kip ft

Vu ¼ wuL

2
¼ 3:56 30ð Þ

2
¼ 53:4kip
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Interior Roof Beams (30 ft span):

wDroof
¼ 0:18 20ð Þ ¼ 3:6kip=ft ) MDroof

¼ wDL
2

8
¼ 3:6 30ð Þ2

8
¼ 405kip ft

wLroof
¼ 0:02 20ð Þ ¼ 0:4kip=ft ) MLroof

¼ wLL
2

8
¼ 0:4 30ð Þ2

8
¼ 45kip ft

MLroof
¼ wLL

2

8
¼ 0:4 30ð Þ2

8
¼ 45kip ft

wu ¼
1:4wD ¼ 5:04kip=ft 

1:2wD þ 1:6wL ¼ 4:96kip=ft

8<
:

Mu ¼ wuL
2

8
¼ 5:04 30ð Þ2

8
¼ 567kip ft

Vu ¼ wuL

2
¼ 5:04 30ð Þ

2
¼ 75:6kip

The design is constrained by the deflection at mid-span.

vmax ¼ 5wL4

384EI

� L

240
¼ 30 12ð Þ

240
¼ 1:5 in for w ¼ wD þ wLð Þ

� L

360

30 12ð Þ
360

¼ 1:0 in for w ¼ wLð Þ

These constraints lead to the following conditions on the required I.

Floor

I DþLð Þreq ¼
5 wD þ wLð Þ 30ð Þ4 12ð Þ3
384 29; 000ð Þ 1:5ð Þ ¼ 418:96 wD þ wLð Þ ¼ 1, 047 in:4  

ILreq ¼
5 wLð Þ 30ð Þ4 12ð Þ3
384 29; 000ð Þ 1:0ð Þ ¼ 628:45 wLð Þ ¼ 880 in:4

8>>>><
>>>>:

Roof
I DþLð Þreq ¼ 418:96 3:6þ 0:4ð Þ ¼ 1, 676 in:4  
ILreq ¼ 628:45 0:4ð Þ ¼ 251 in:4

(

15.4.2.3 Summary for Case (1)
The relevant design parameters for the braced frame are listed below.

N–S roof beams Mu ¼ 567kip ft Ireq ¼ 1676 in4

N–S floor beams Mu ¼ 400kip ft Ireq ¼ 1047 in4

E–W beams Mu ¼ 77kip ft Ireq ¼ 137 in4

Columns Pu ¼ 456kip

E–W braces Pu ¼ 21:7kip Areq ¼ :285 in2

N–S braces Pu ¼ 31:5kip Areq ¼ :42 in2e
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15.4.3 Case (2) Frames Are Rigid in the N–S Direction But Remain Braced
in the E–W Direction

Figure 15.17a shows a plan view of this structural scheme. Our objective here is to generate the

response of an individual rigid frame and to compare the design values for the braced vs. rigid frame

structural concepts.

Fig. 15.17 Rigid frame N–S, braced frame E–W. (a) Plan. (b)Typical rigid frame elevation—N–S; wind loading. (c)
E–W elevation braced frames 1-1, 4-4; wind loading
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15.4.3.1 Strategy for N–S Beams and Columns
We specify moment connections between the beams and the columns in the N–S direction and

assume that the lateral wind load will be carried equally by the seven rigid frames, because the floor

slabs are rigid and the rigid frames have equal stiffnesses. The E–W direction remains the same as the

beams in this direction are pin ended. Since the beams in the N–S direction are now rigidly connected

to the columns, end moments will be developed in the beams. The net effect is a reduction in the

maximum moment in the beams. For a first estimate, assuming full fixity, the peak moment reduces

from wL2/8 to wL2/12, a reduction of 33 %. It follows that the beams will be lighter; however, the

columns will be heavier since they now must be designed for both axial force and moment.

Wind loading introduces end moments in the beams and columns. We use the portal method

(see Chap. 11) to estimate these values. The results are shown on the sketch below.
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15.4.3.2 Estimated Properties: Beams
We estimate the design moment for roof and floor beams based on the following combination of

factored moments:

Roof:

M�u �

1:4
wDL

2

12
¼ 378kip ft 

1:2wD þ 1:6wLð Þ L
2

12
¼ 372kip ft

1:2wD þ 0:5wLð Þ L
2

12
þ 1:6Mwind ¼ 343kip ft

8>>>>>>><
>>>>>>>:

Floor:

M�u �

1:4
wDL

2

12
¼ 115:5kip ft

1:2wD þ 1:6wLð Þ L
2

12
¼ 267kip ft 

1:2wD þ 0:5wLð Þ L
2

12
þ 1:6Mwind ¼ 209kip ft

8>>>>>>><
>>>>>>>:

As a first estimate, we use tributary areas to estimate the axial load in the columns due to dead and

live loads. The most critical load combinations for the columns are

Pu ¼ 1:2PD þ 1:6Pwind þ 0:5PLfloors
þ 0:5PLroof

� 317kip

Mu � 1:6Mwind � 1:6 52:2ð Þ � 84kip ft

(

Pu ¼ 1:2PD þ 1:6PLfloors
þ 0:5PLroof

� 461kip

Mu � 10kip ft

(

Based on the above estimated force values, we select the following cross-sectional properties.

Icol ¼ 272 in:4 Acol ¼ 14:4 in:2

Ibeam=floor ¼ 1070 in:4 Abeam=floor ¼ 19:1 in:2

Ibeam=roof ¼ 1830 in:4 Abeam=roof ¼ 24:3 in:2

8>><
>>:

Determining the actual properties is an iterative process. We expect the beam sizes to decrease,

and the column size to increase as the iteration proceeds due to the shift from braced frame to rigid

frame. We orient the cross sections such that the bending occurs about the strong axis as indicated on

the sketch below.

15.4 A Case Study: Four-Story Building 999



15.4.3.3 Live Load Patterns
We determine the live load patterns for the maximum positive and negative moments for the beams

and for the maximum axial force for columns and then analyze the model under the combined dead,

live, and wind loads. The wind loads are defined in Fig. 15.17b. Figure 15.18 shows live load patterns

for maximum moments in beams, and axial force in columns.

Live Load Patterns for Positive Moment—Beams:

There are two load patterns for maximum positive moment at mid-span of the beams.

Negative Moment Live Load Patterns—Beams:

There are eight loading patterns for maximum negative end moments of the beams.

Fig. 15.18 (a) Positive live load (LL) moment patterns (1)–(2). (b) Negative live load (LL) moment patterns (3)–(10).
(c) Live load patterns for axial force in column (11)–(12)
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Fig. 15.18 (continued)
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Axial Force Live Load Patterns—Columns:

The following two load patterns establish the peak values of the column axial forces.

15.4.3.4 Discrete Moment Envelop Plot-Live Load
Using a computer software system, results of the analyses for the ten live load patterns defined in

Fig. 15.18a, b are used to construct the discrete moment envelope plots shown in Fig. 15.19. These

plots show the peak positive and negative moments at various sections along the spans generated by

the ten different loading patterns. The absolute peak values are summarized in Fig. 15.20.

Fig. 15.18 (continued)

Fig. 15.19 Peak positive and negative discrete moment envelopes due to pattern live loading
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The factored discrete envelopes are plotted in Fig. 15.21. Using this updated information, we

determine revised values for the cross-sectional

Icol ¼ 341 in:4 Acol ¼ 17:7 in:2

Ibeam=floor ¼ 890 in:4 Abeam=floor ¼ 16:2 in:2

Ibeam=roof ¼ 1140 in:4 Abeam=roof ¼ 16:2 in:2

8>><
>>:

Lastly, using these properties, we generate updated values for the design moments shown in

Fig. 15.22.

Since the columns are subjected to both axial action and bending, we need to scan the results for

the individual loadings and identify the loadings that produce the maximum axial force and the

maximum moment in the columns. Carrying out this operation, we identify the combinations for

columns C1 and C5 listed in Fig. 15.23.

Given these design values, one generates new estimates for the cross-sectional properties. If these

new estimates differ significantly from the original estimates, the analysis needs to be repeated since

the results are based on the relative stiffness of the beams and columns. It turns out for this study that

the initial estimates are sufficiently accurate.

15.4.3.5 Summary for Case (2)

N–S roof beams Mu ¼ 442kip ft

N–S floor beams Mu ¼ 336kip ft

E–W beams same as case(1)

Columns Pu ¼ 490kip

Mu ¼ 10kip ft



or

Pu ¼ 306kip

Mu ¼ 111kip ft



E–W braces same as case(1)

Fig. 15.20 Absolute

maximum positive and

negative moments in the

beams due to pattern live

loading (kip ft)
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Fig. 15.21 (a) Discrete moment envelope–factored load combination. (b) Discrete axial force envelope–factored load
combination. (c) Discrete shear envelope–factored load combination
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15.4.4 Discussion

The following table contains the design values corresponding to the two cases.

Case (1) Braced Case(2) Rigid in N–S direction

N–S roof beam Mu ¼ 567kip ft Mu ¼ 442kip ft

N–S floor beam Mu ¼ 400kip ft Mu ¼ 336kip ft

E–W beams Mu ¼ 77kip ft Mu ¼ 77kip ft

Columns Pu ¼ 456kip Pu ¼ 490kip

Mu ¼ 10kip ft



or

Pu ¼ 306kip

Mu ¼ 111kip ft



E–W beams Pu ¼ 24kip Pu ¼ 24kip

N–S beams Pu ¼ 31:5kip Not required

Comparing values, we see that the N–S rigid frame structure is more efficient in the sense that its

design values are less, and therefore the required cross-sections are lighter. However, the lateral

displacements will be greater.

Fig. 15.22 Maximum and minimum design moments (kip ft)

Fig. 15.23 Critical axial

load–moment

combinations for Columns

C1 and C5. (a) Exterior
column. (b) Interior
column
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15.5 Summary

15.5.1 Objectives

• To describe how gravity floor loading is transformed into distributed loading acting on the

supporting beams.

• To show how Müller-Breslau principle can be applied to establish critical patterns of live gravity

loading for the peak bending moments in rigid frames.

• To present a case study which integrates all the different procedures for dealing with dead, live,

wind, and earthquake loads.

15.5.2 Key Concepts

• The floor slabs in concrete buildings are cast simultaneously with the supporting beams. The type

of construction provides two possible load paths for gravity loads. Which path dominates depends

on the relative magnitude of the side dimensions. The terms one-way and two-way actions are

limiting cases where (1) one side is large with respect to the other side and (2) the sides are of the

same order of magnitude.

• Gravity loading produces only positive moment in the beams of a braced frame.

• Positive moment at mid-span in the beams of a rigid frame is due only to gravity loading.

• Negative moment in the beams of a rigid frame is generated by both gravity and lateral loads.

15.6 Problems

Problem 15.1

3 m

3 m

3 m

6 m 6 m 6 m

A

A

A

Using Müller-Breslau Principle, determine the loading patterns (uniformly distributed member load)

that produce the peak values of positive moment at point A (mid-span) for each story.
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Problem 15.2

10 ft

10 ft

10 ft

25 ft 25 ft 25 ft

B

B

B

Using Müller-Breslau Principle, estimate the loading patterns (uniformly distributed member load)

that produce the peak value of negative moment at B for each story. Check the results using a software

package. Take Ic ¼ 150 in.4 for all the columns and Ig ¼ 300 in.4 for all the beams.

Problem 15.3 Using Müller-Breslau Principle, estimate the loading patterns (uniformly distributed

member load) that produce the peak value of negative moment at B for each story. Check the results

using a software package. Take Ib ¼ 300(10)6 mm4 for all the beams and Ic ¼ 100(10)6 mm4 for all

the columns.

B

B

B

8 m

3 m

3 m

4 m

6 m 9 m

Problem 15.4 For the frame shown below

(a) Using Müller-Breslau Principle, sketch the influence lines for the positive moment at A and the

negative moment at B.
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(b) Use a software package to determine the maximum values of these quantities due to a uniformly

distributed live load of 30 kN/m and a uniformly distributed dead load of 20 kN/m. Take

Ic ¼ 100(10)6 mm4 for all the columns and Ib ¼ 200(10)6 mm4 for all the beams.

Problem 15.5 For the frame shown below

(a) Using Müller-Breslau Principle, sketch the influence lines for the positive moment at A and the

negative moment at B.

(b) Use a software package to determine the maximum values of these quantities due to a uniformly

distributed live load of 1.8 kip/ft and a uniformly distributed dead load of 1.2 kip/ft. Take

Ic ¼ 480 in.4 for all the columns and Ib ¼ 600 in.4 for all the beams.

B

A

10 ft

30 ft 30 ft20 ft20 ft

10 ft

12 ft
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Problem 15.6

30 ft 30 ft

12 ft

12 ft

12 ft

15 ft

20 ft

Consider the typical frame defined above. Assume the bay spacing is 20 ft.

(a) Determine the floor loads per bay due to an earthquake of intensity Sa ¼ 0.3g. Assume the

following dead weights. Roof load ¼ 0.08 kip/ft2 and floor load ¼ 0.06 kip/ft2.

(b) Estimate the column shear forces due to this earthquake.

(c) Estimate the column shear forces due to both gravity and earthquake.

Problem 15.7 Consider the frame shown below. Assume a uniform gravity live loading for the

beams.

(a) Describe how you would apply Müller-Breslau Principle to establish the loading pattern for the

compressive axial load in column A.

(b) Compare the axial load in column A of the pattern loading to the uniform loading on all

members. Consider all the girders to be of the same size and all the columns to be of the same

size. Assume Ibeam ¼ 2.5Icolumn and w ¼ 1.2 kip/ft. Use computer software.
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Problem 15.8 Discuss the function of the structure, abcdef. How would you determine the gravity

loading acting on it? Assume uniform gravity loading for the beams.

Problem 15.9 Consider a uniform floor gravity loading on the floors of the multistory rigid frame

building shown below. Investigate how the internal forces vary with the angle α ranging from 0 to

20�, considering H constant. Is there a limiting value for α?
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Problem 15.10 Consider the structures shown below. All the members are pinned at their ends.

(a) Determine expression for the axial forces in the diagonal members.

(b) Determine the horizontal and vertical displacements of the nodes 1 and 2.

(c) Extend the analysis to the structure shown below. This structure is called a DIAGRID structure.

Problem 15.11 For the structure shown below, assume the floors are flexible and the flooring system

transits the gravity loading to the floor beams in the N–S direction (one-way action). Assume all

beams are the same size and all the columns are the same size. Ibeam ¼ 3Icolumn, Floorgravity ¼ 175

kN/m2.

Compare the maximum forces in beams and columns caused by combination of gravity and wind

for the following cases.

1. The structure is considered to be a braced frame, i.e., all the connections between beams and

columns are pinned both in N–S and E–W direction. Assume the frames are suitably braced.

2. The structure is considered to be a rigid frame in the N–S direction and a braced frame in the E–W

direction, i.e., all the connections between beams and columns are moment connections in N–S

direction, but connections in the E–W direction remain pinned.
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Typical plan

Elevation—Section A-A

Global wind
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Inelastic Response of Structures 16

Abstract

The conventional design approach works with factored loads and reduced

material capacities such as strength. When subjected to service loads, the

structure is detailed such that it behaves elastically. For extreme loadings,

the structure is allowed to experience a limited amount of deformation

beyond the elastic limit. This deformation is called “inelastic” since in

contrast to elastic deformation, when the loading is removed, the structure

does not return to its original position. Up to this point in the text, we have

assumed the behavior to be elastic. In Chap. 10, we included geometric

nonlinear effects but still assumed elastic behavior. Here, we introduce an

additional effect, inelastic behavior. We start with an in-depth discussion

of the stress–strain behavior of structural steels and concrete, apply these

ideas to beams subjected to inelastic bending, and then develop an analy-

sis procedure to determine the inelastic response of frame-type structures.

This approach allows one to estimate the “maximum” loading that a

structure can support, i.e., the “limit load.” Examples illustrating the

influence of inelastic behavior on the ultimate capacity are included.

16.1 Stress–Strain Behavior of Structural Steels

Steel and concrete are the two most popular construction materials. Steels with low carbon content are

usually referred to as “structural” steels since they are used primarily to fabricate structural elements

such as W, T, and I shapes. Structural steels have desirable properties such as strength, uniformity,

weldablity, and ductility. The latter property is related to the ability of structural steels to experience

significant deformation prior to fracture.

Figure 16.1 shows a typical stress–strain plot for a mild (low carbon) steel. There are four distinct

deformation zones: elastic; yielding; strain hardening; and necking. The stress remains constant as the

specimen yields until the strain, εy
0
, is reached. Beyond this level, strain hardening occurs with the

stress increasing to its “ultimate” value and then decreasing to the value at which rupture occurs. The

yield zone for mild steel is relatively large, on the order of 20 times the yield strain εy. Another
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measure is the rupture strain εr. By definition, εr is the fractional change in length of the specimen and

is usually expressed as a percentage. For mild steel, the percent elongation is about 24 %. Ductility

refers to the ability to deform plastically without fracturing and is measured by the ratio
εr
εy
. This ratio

is large compared to 1. The last measure of interest is the toughness, defined as the energy required to

fracture the material. Toughness is equal to the area under the stress–strain curve to fracture, and is

usually expressed as a multiple of R, the area under the linear portion of the stress–strain curve.

Figure 16.2 lists the stress–strain plots for a range of common structural steels. Note that as the

yield stress and the ultimate stress increase, the yield zone and the rupture strains decrease. There is a

Fig. 16.1 Typical

stress–strain curve for mild

structural steel

Fig. 16.2 Steel

properties—structural

steels
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trade-off between ductility and strength. The yield zones for the two lower strength steels are

essentially equal
ε
0
y

εy
� 13

� �
whereas the higher strength steels shift directly from elastic behavior

into strain hardening.

16.2 Inelastic Moment–Curvature Relationships

The fact that structural steels can experience significant deformation before rupturing is the basis for

developing an analysis procedure for tracking the response as the structure passes from the elastic

range through the yielding zone up to rupture. The starting point for the analysis is establishing the

moment capacity of a beam subjected to inelastic bending.

Assuming a cross section remains a plane, the extensional strain varies linearly with distance from

the centroidal axis.

ε ¼ yχ ð16:1Þ
where χ is the curvature of the centroidal axis. Given χ, one computes ε and then determines the stress

using a nonlinear stress–strain relation such as shown in Fig. 16.1.

ε! σ ¼ f εð Þ ! σ ¼ f χð Þ ð16:2Þ
The moment is defined by the following integral,

M ¼
ð
A

�yð ÞσdA ¼ M χð Þ ð16:3Þ

This integral is usually evaluated numerically; one ranges over χ and constructs a plot ofM vs. χ. The
exact form depends upon the assumed stress–strain relationship and the shape of the cross section.

In order to obtain an analytical solution, the stress–strain curve is usually approximated with a

linear model. The simplest model for steel is based on the assumption of elastic perfectly plastic

fracture behavior; the increase in stress due to strain hardening is neglected. Figure 16.3 illustrates

this behavior.

Fig. 16.3 Elastic perfectly

plastic fracture (EPPF)

model
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Using this model, and applying (16.1)–(16.3) to a rectangular cross section, one obtains the plot

shown in Fig. 16.4.

My ¼ σy
bh2

6

� �

Mr ¼ 3

2
My 1� 1

3

εy
εr

� �2
( )

χy ¼
2εy
h

χr ¼
2εr
h

The outer fiber fractures at χ ¼ χr, resulting in a discontinuity in the derivative.

For χ > χr, yielding progresses over the section and the moment capacity rapidly decreases.

Wide flange sections behave differently since the moment is carried primarily by the flanges.

Fracture in the flanges results in a significant loss of moment capacity, especially when the sections

are thin-walled since, in this case, the fracture occurs simultaneously throughout the flange thickness.

A typical plot is shown in Fig. 16.5.

From a computer implementation perspective, it is convenient to represent the moment–curvature

relations with the bilinear approximation shown in Fig. 16.6. Nonlinear analysis is required to

evaluate the load-deflection behavior. With this type of approximation, when yielding occurs, one

replaces the elastic stiffness with a “linearized” tangent stiffness. The simplest possible strategy is to

Fig. 16.4 Moment–curvature plot—rectangular sector and EPPF material

Fig. 16.5 Moment–curvature plot—thin walled wide flange section and EPPF material
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work with an elastic perfectly plastic fracture model, i.e., to assume the tangent stiffness is negligible

for χy < χ < χr. This behavior is introduced by inserting a hinge at the location of the cross section

and applying a constant moment equal to My. When χ 
 χr, the constant moment is removed,

resulting in no moment capacity at the section.

Although the discussion has been focused on steel, the concept of a bilinear moment–curvature

model is also adopted for concrete. The behavior of concrete differs from that of steel in that the

stress–strain relationship for concrete exhibits strain softening (a reduction in stress beyond the peak

value with increasing strain) and the peak strain is several order of magnitude smaller than that of

steel. Typical plots are shown in Fig. 16.7. The limiting strain, εr, corresponds to crushing of the

concrete and is of the order of 0.0004.

Assuming the strain varies linearly over the cross section; one can construct the moment–curvature

relationship. A typical plot for an under-reinforced section is shown in Fig. 16.8. For computer-based

analysis, one uses the nonlinear form. For hand computation, this form is approximated with

an elastic perfectly plastic fracture model where My

0
is considered to be the ultimate moment

capacity. A detailed discussion of this topic is contained in Winter and Nilson [1].

Fig. 16.6 Bilinear

moment–curvature models.

(a) General bilinear model

and (b) EPPF model

Fig. 16.7 Compressive

stress–strain curves for

concrete
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16.3 Limit Analysis: A Simplified Approach

Given the properties of a structure and a particular loading distribution, it is of interest to establish the

peak magnitude of the loading that the structure can support, i.e., the limit of the loading. In what

follows, we describe a procedure based on using an elastic perfectly plastic fracture model. Starting at

a low load level, one carries out an elastic analysis and identifies the section where the bending

moment is a relative maximum. The loading is then scaled up such that the magnitude of the moment

at that particular section equals its moment capacity. In this approach, the capacity is taken as the

yield moment. At this loading limit, a hinge is inserted and a set of self-equilibrating concentrated

moments equal toMy are applied at the section. The modified structure is then examined with respect

to its stability, i.e., its capacity to support additional load. If stable, the loading is increased until

another cross section reaches its moment capacity. The structure is again checked for stability and, if

stable, a hinge and the assumed set of moments are inserted. The process is continued until the

modified structure is unstable. The following examples illustrate the limit analysis process.

Example 16.1

Given: A simply supported beam subjected to a uniform loading defined in Fig. E16.1a.

Fig. E16.1a

Determine: The load capacity.

Solution: The peak moment occurs at mid-span.

Fig. 16.8 Moment–curvature relationship—concrete beams
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Mmax ¼ wL2

8

We increase the loading until Mmax ¼ My.

My ¼ w1L
2

8

+
w1 ¼ 8My

L2

The modified structure for this load level is shown in Fig. E16.1b.

Fig. E16.1b

Any load increase will cause the structure to collapse downward since it has no capacity to carry

any additional load. Therefore, w1 ¼ wmax.

Example 16.2

Given: The fixed-ended beam subjected to a uniform loading defined in Fig. E16.2a.

Fig. E16.2a

Determine: The load capacity.

Solution: The peak moment occurs at A and C. Therefore, yielding will first occur at these sections.

We increase the loading until Mmax ¼ My.
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My ¼ w1L
2

12

+
w1 ¼ 12My

L2

Inserting hinges at A and C results in a simply supported beam with end moments.

Fig. E16.2b

The next critical section is at mid-span. Applying an incremental load, Δw, increases the moment

at mid-span.

Fig. E16.2c

Then, superimposing the results for the two cases leads to the peak moment at mid-span which is

set equal to My.

ΔwL2

8
þ w1L

2

24
¼ My

Substituting for w1,

ΔwL2

8
¼ My � 1

2
My ¼ 1

2
My

leads to

Δw ¼ 4

L2
My
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Lastly,

wmax ¼ w1 þ Δw ¼ 16

L2
My

The final “limit state” is shown in Fig. E16.2d. This structure is unstable for any additional transverse

loading.

Fig. E16.2d

Example 16.3

Given: The two-span beam shown in Fig. E16.3a. Assume EI is constant.

Fig. E16.3a

Determine: The limit state.

Solution: The moments at section B and C are relative maxima; the value at B is the largest, so

yielding will occur first at this section.

MB ¼ 13

64
PL

MC ¼ � 6

64
PL

Load level 1:

We set MB equal to My and insert a hinge at B.

13

64
P1L ¼ My

+
P1 ¼ 64

13L
My
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At this load level, the modified structure is

Fig. E16.3b

Load level 2:

We apply an incremental load,ΔP, to themodified structure leading to an incremental moment at C.

ΔMC ¼ L

2
ΔP

Fig. E16.3c

The total negative moment at C is

MC ¼ 6

64
P1Lþ ΔPL

2


 �

Setting MC ¼ My leads to the limiting value for ΔP

6

64
P1Lþ ΔP

L

2
¼ My

Substituting for P1, one obtains

ΔP ¼ 14

13L
My

Finally

Pmax ¼ P1 þ ΔP ¼ 78

13L
My ¼ 6

L
My
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The limit state has hinges at B and C.

Fig. E16.3d

————————————————————————————————————————

The procedure followed in the above examples involved applying the loading in increments and

analyzing the structure at each load level. When yielding is reached at a particular load level, the

structural stiffness is modified by inserting a hinge (i.e., zero rotational stiffness) at the yielded

section. The loading process is continued until the structure becomes unstable. In general, instability

occurs when the number of plastic hinges is equal to 1 plus the number of degrees of static

indeterminacy. From a structural prospective, instability occurs when the tangent stiffness associated

with the complete structure vanishes.

When evaluating the response, one must also check that the curvature at a yielded section does not

exceed the “rupture” or “crushing” value. When this occurs, the moment capacity is set to zero. We

did not carry out this computation in the above examples since it requires a computer-based procedure

in order to obtain reliable results. Later in the chapter, we describe a computer procedure based on a

finite element beam discretization combined with an incremental nonlinear solution strategy. Most

modern structural software systems have this type of capability.

An alternative hand calculation approach to establishing the limit state is based on assuming a

pattern of hinges that corresponds to a limit state and evaluating the corresponding load magnitude.

One starts with the elastic moment diagram and identifies the sections where the moment is a relative

maximum. At the limit state, the number of plastic hinges is equal to 1 plus the number of degrees of

freedom. The load magnitude can be obtained either by applying the equilibrium equations or using

the principal of virtual work which is an equivalent statement of equilibrium. The latter approach is

generally more convenient. We illustrate this procedure with the following examples.

Example 16.4

Given: A two-span beam shown in Fig. E16.4a.

Fig. E16.4a
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Determine: The limit state.

Solution: The critical state has two hinges. Noting the moment diagram, we locate them at Points B

and C.

Fig. E16.4b

Fig. E16.4c

We use the principle of virtual work to establish the expression for P. Introducing a virtual

displacement at B and evaluating the work done by P and the plastic moments lead to

PΔu�My Δθ1 þ Δθ2ð Þ �MyΔθ2 ¼ 0

The displacement terms are related by

Δθ1 ¼ Δu
a

Δθ2 ¼ Δu
L� a

8><
>:

Substituting for the Δθ terms, the work equation reduces to

Δu P�My

a
� 2My

1

L� a

� �
 �
¼ 0

This must be satisfied for arbitrary Δu. Then

P ¼ My

1

a
þ 2

L� a

� �
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Example 16.5

Given: A two-story frame shown in Fig. E16.5a.

Fig. E16.5a

Determine: The limit state.

Solution: For this structure and loading, the relative moment maxima occur at the nodes. Therefore,

plastic hinges will develop at the end of the members. When designing the members, most design

codes require that one selects sectional properties such that yielding occurs only in the beams. We

assume that condition is satisfied here, and work with the limit state shown below.

Fig. E16.5b

Introducing a virtual displacement at C, the work terms are

PΔuþ P

2

Δu
2
� 4MyΔθ ¼ 0

+
5

4
PΔu ¼ 4MyΔθ ¼ 4My

Δu
2 hð Þ
� �

+
Pmax ¼ 8

5

My

h

In the above example, we assumed a particular plastic hinge pattern. Other patterns are also possible,

each with a different limit load. One needs to examine all possible patterns in order to identify the

minimum critical load. This operation is not feasible using hand computation for a complex structure.

One needs to employ a computer-based nonlinear analysis scheme which generates the load displace-

ment response allowing for the formation of plastic hinges up to the load level at which collapse is

imminent. A particular nonlinear analysis scheme is described in the next section.
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16.4 Nonlinear Analysis Scheme

We illustrate this method using the structure analyzed in Example 16.4. The first step involves

discretizing the structure with a combination of elastic and plastic finite elements. A refined mesh is

used in those zones where the moment is a relative maximum, such as adjacent to interior nodes and

concentrated loads. Since the extent of plastic yielding is not known initially, one needs to iterate,

starting with a single plastic element and adding additional plastic elements if necessary. This process

is illustrated in Fig. 16.9.

The material behavior within a plastic segment is assumed to follow the bilinear

moment–curvature model defined in Fig. 16.10. When χ < χy, the behavior is elastic, and the elastic

stiffness kE applies. When χ > χy, the behavior is inelastic and the reduced stiffness, kt, is used. When

χ > χr, the moment is set equal to zero, i.e., the section is considered to have no moment capacity.

The equilibrium equations for a member are generalized using the Principal of Virtual

Displacements [2]. Consider the element shown in Fig. 16.11. Nodes are located at each end, and

the nodal displacement measures are the translation and rotation.

Introducing matrix notation, these measures are expressed as

U
1
¼ v1

θ1


 �
U

2
¼ v2

θ2


 �

The transverse displacement is approximated as

v xð Þ ¼ Φ 1 U 1
þΦ 2 U 2

ð16:4Þ

where Φ1 and Φ2 contain interpolation functions.

Fig. 16.9 Plastic element

discretization. (a) Initial
mesh and

(b) expanded mesh

Fig. 16.10 Bilinear model
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Φ1 ¼ 1� 3 x
L

� �2 þ 2 x
L

� �3
x� 2

x2

L
þ x3

L2


 �

Φ2 ¼ 3 x
L

� �2 � 2 x
L

� �3 � x2

L
þ x3

L2


 � ð16:5Þ

Differentiating twice leads to the curvature

χ ¼ v,xx ¼ Φ 1,xx U 1
þ Φ 2,xx U 2

Φ 1,xx ¼ � 6

L2
þ 12x

L3
� 4

L
þ 6x

L2


 �

Φ 2,xx ¼ þ 6

L2
� 12x

L3
� 2

L
þ 6x

L2


 � ð16:6Þ

Note that the curvature varies linearly over the segment in this approach. Given the end

displacements, one evaluates the curvature, and then the bending moment.

The end forces are determined with the following virtual work requirement:ð
M δχ dx � PT

1 δU
1
þ PT

2 δU
2

ð16:7Þ

for arbitrary δU
1
and δU

2
. Noting

δχ ¼ v,xx ¼ Φ1,xx δU
1
þ Φ2,xx δU

2
ð16:8Þ

and expanding (16.7) result in

P 1 ¼
ð
ΦT

1,xx M dx

P 2 ¼
ð
ΦT

2,xx M dx

ð16:9Þ

When the behavior is inelastic, a numerical integration scheme, such as a 2 point Gaussian approxi-

mation, is used to evaluate the integrals. The moment is determined using Fig. 16.10.

Lastly, the global force equilibrium equation for the nodes is written as

PE ¼ P I ð16:10Þ

where PE contains the external nodal loads and PI represents the nodal loads due to the member end

actions which are functions of the nodal displacements. The solution scheme proceeds as follows.

Suppose U
��
i represents the ith solution for the response due to PEi

. The static error is

E
��
i ¼ PE

��
i � PI

��
i ð16:11Þ

We correct the error by introducing an incremental displacement ΔU
��
i which leads to the increment

ΔPI

��
i. The equilibrium requirement for ΔP I

��
i is

Fig. 16.11 Notation for

end displacements
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ΔPI

��
i ¼ PE

��
i � PI

��
i ð16:12Þ

Finally, we approximate the force increment as

ΔPI

��
i ¼ Kt

��
iΔU

��
i ð16:13Þ

where Kt represents a “tangent” stiffness matrix for the structure. The incremental equilibrium

equation takes the form

Kt

��
i ΔU

��
i ¼ PE

��
i � PI

��
i ð16:14Þ

One cycles on (16.14) until successive value ofΔU agree to a specified tolerance. Instability occurs

where Kt is singular.

One determines ΔPI by operating on (16.9). For example, noting

ΔP1 ¼
ð
ΦT

1,xx ΔM dx

ΔM ¼ 0 for χ > χr

ΔM ¼ kt Δχ for χy < χ < χr

ΔM ¼ kE Δχ for χ < χy

Δχ ¼ Φ1,xx ΔU1 þ Φ2,xx ΔU2

ð16:15Þ

leads to

ΔP1 ¼
ð
ΦT

1,xxk
*Φ1,xxdx


 �
ΔU1 þ

ð
ΦT

2,xxk
*Φ2,xxdx


 �
ΔU2

where k* ¼ kE, kt, or 0 depending on the value of χ.
One applies the external load in increments and cycles at each load level. This approach generates the

complete nonlinear load-displacement response history for the structure, i.e., it determines the order and

location of plastic hinges as the load is increased, and the final limit state. Most commercial structural

software have this capability. The following examples illustrate the nonlinear analysis process.

Example 16.6

Given: The portal frame defined in Fig. E16.6a. Consider the gravity loading w to be constant.

The lateral load P is due to seismic excitation. Material is steel, σy ¼ 50 ksi, and w ¼ 4.17 kip/ft.

Fig. E16.6a
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Determine: The inelastic response of the frame and the limiting values of P and Sa.

Solution: The analysis of gravity loaded frames subjected to lateral loading is referred to as a

pushover analysis. One common application is to estimate the capacity of a frame for seismic

excitation. One applies the lateral loading in increments and generates the nonlinear response up

to the onset of instability. The pushover analysis was done using computer software [3] and the result

is plotted in Fig. E16.6b.

Fig. E16.6b Pushover results, P vs. joint displacement

Using the materials presented in Sect. 14.2.2, one can relate P to the spectral acceleration. For a

single degree of freedom system, this relationship reduces to

P � mSa

where m is the lumped mass and Sa is the spectral acceleration.

Pmax ¼ 32kip

m ¼ 4:17 40ð Þ
g

¼ 166:8

g

Sa ¼ Pmax

m
¼ 0:19g
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Example 16.7

Given: The three-story frame defined in Fig. E16.7a. Consider the gravity floor loading to be

constant. The lateral load is due to seismic excitation. The material is steel, σy ¼ 50ksi, and the

gravity floor load ¼0.75 kip/ft

Fig. E16.7a

Determine: The lateral displacement of point A versus P and the limiting value of Sa.
Solution: We use Equation (14.9) specialized for this structure

P ¼ mΓSa

where m is the mass of a typical floor, m ¼ 0:75 60ð Þ
g

¼ 45

g

Noting (14.7), Γ ¼ 9

7
for this frame.

One applies the lateral loading in increments and generates the nonlinear response up to the onset

of instability. The pushover analysis was done using computer software [3] and the result is plotted in

Fig. E16.7b.
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Fig. E16.7b Pushover results, P vs. joint displacement

Then

Sa ¼ Pmax

mΓ
¼ 115

45
g

� �
9
7

� � ¼ 1:98g

16.5 Summary

16.5.1 Objectives

• Describe the different regions of the stress–strain behavior of structural steels and concrete:

elastic; inelastic.

• Extend the moment–curvature relationships to the inelastic range and estimate the moment

capacity of a beam subjected to inelastic bending.

• Present analysis procedures for determining the maximum external load that a structure can

support using: (a) hand calculation methods and (b) finite element computation-based methods.

This general topic is called “Limit Analysis.”

• Include some examples which illustrate how analysis is applied to simple rigid frames.
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16.6 Problems

Problem 16.1 Determine the load capacity.

Problem 16.2 Determine the load capacity.
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Problem 16.3 Determine wmax as a function of α.

Problem 16.4 Determine an expression for Pmax.

Problem 16.5 Generate the plot of P vs. u for the frame shown. Consider w as a dead loading.

Assume α ¼ 1.2.
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Problem 16.6 Using computer software, generate the plot of uA vs. P, and estimate Pmax.

Take w ¼ 1.5 kip/ft, h ¼ 12 ft, and L ¼ 30 ft. The material is steel, σy ¼ 50 ksi. The exterior

columns are W16 � 89, the interior columns are aW16 � 100, and all the beams are W24 � 131.
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Index

A
Active failure mode, 530

A-frame

description, 306

indeterminate, 309

loading, reactions and free body, 341–343

moment distribution, 342, 343

reactions and bending moment distribution, 372

Allowable soil pressure, 477, 479

American Association of State Highway and

Transportation Officials (AASHTO), 17, 18

Analysis

statically determinate plane frames

angle-type frame segment, 314–316

cantilever frame, 311–314

moment, shear and axial force, 310

sign convention, 310

Analytical solutions, multi span beams

Bending moment distribution, 597

compatibility equation, 595, 596

lengths and moments, 596

loading, 597, 598

peak moments, 596

static equilibrium equations, 596

support settlement, continuous, 602–603

uniform loading, continuous, 600–602

variation, bending moment, 599–600

Analytical tools, structural analysis

beam response, 35

concept of equilibrium, 27–30

deformations and displacements, 33–34

description, 27

displacements

deformation modes, 38

description, 36

reactions, cable tension and vertical displacement,

36–37

rigid member, springs, 37, 38

spring forces, 3, 9–40

statically indeterminate beam, 40–42

FBD, 30, 31

internal forces, 30–33

study of forces, 36

Anti-symmetry

deflected shapes, 254–257

shear and moment diagrams, 250–254

Approximate methods

bending moment distribution

approximate and exact results, 797

axial force, shear force, 798

qualitative reasoning, relative stiffness, 797

bending type structures, 767

column axial forces, 802, 803

column shears, 803

multi-span beams (gravity loading), 768–770

multistory rigid frames

gravity loading, 770–771

lateral loading, 771–790

positive and negative moments, multistory steel

frame, 798

rigid steel frame, bracing, 803

statically indeterminate structure, 767

steel frame

axial force, shear force and moments, 800–802

portal and shear stiffness method, 799–802

Arc length

differential and total, 403, 404

initial and loaded shapes, cable, 403

maximum tension, determination, 414, 422

sag profile and total arc length, 406

sag ratio, 404

temperature effect, 404, 405, 422

Arch bridge

structure, 874

two-hinged, 899

Arch structures

historical development, 424

models, 429–431

Arches

“false arch”, 424

force method

applied load, 605

axial deformation, 604

description, 604

expressions, horizontal displacement, 604

integral expression, 607–608
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Arches (cont.)
parabolic, 606–607

structure, 603, 604

tension tie, 611–612

two-hinged arch and loading, 607–608

ASCE 7-05, 16, 17, 20, 21

Assuming the supports are unyielding, the flexibility

coefficients, 625

Axial force

compressive and maximum value, 442

gable frame

3-hinge, 335–337

simply supported, 369

graphical output, 358, 360

shallow vs. deep parabolic curved members, 436–439

sign convention, 310

and transverse shear, 454, 455

triangular rigid frame, 380

Axial stress, 34, 55

Axle load, 886, 888

B
Backfill material

fluid

definition, 527

horizontal and vertical components, 529

hydrostatic forces, inclined surface, 529

granular

active and passive failure states, 530

angle of repose, 530

dry loose, 529

shear stress, 529

theories, soil pressure distribution, 530

Base shear, 783, 923, 955

Beam formulation

loading, 827, 844

member end forces and displacements, 840

nodes, 842

spring support, 846–849

stiffness matrices, 842

support settlement, 846

two-span beam, 840

Beams

deep beams, deformation and displacement relations,

244–247

differential equations, equilibrium, 190–210

displacement process, 35

external loads, 285

force method

single-span beams, analyzing frames, 571–577

Yielding Supports, 577–588

forced envelope, 286

influence line, 286

internal force, 258

mass system, 25

objectives, 285

planar bending, 286, 287

prismatic beams, 163

problems

computer software, 303–304

deflected shape, 296–297

influence lines, 300–301

loading system, span, 302

rotation, cross-section, 300

shear and moment diagrams, 286–292

single concentrated load, 301

trapezoidal rule, 299

vertical deflection, 298–299

virtual force method, 293–296

statically indeterminate, 40–42

symmetry and anti-symmetry

deflected shapes, 253–258

shear and moment diagrams, 250–254

torsion, prismatic members, 247–250

transverse displacement, 286

two span beams, displacement method

chord rotations, 661

decomposition, 658, 659

end actions, shear and moment, 662–664

end shears, 660

geometry and support settlements, 661

moment releases, 675–677

nodal moment equilibrium, 660

overhang, modified slope-deflection equations,

670–672

symmetrical beam, supports settlement, 665–669

three span beam, 677–683

uniformly loaded three span symmetrical beam,

683–685

Behavior

brittle, 11

combined bending and torsion, 164

ductile, 11

portal frames

-hinge, 3, 312–314, 324, 325

gravity loading, 323, 324

lateral loading, 323, 324

Bending moment

distribution

approximate and exact results, 797

axial force, shear force, 798, 799

beams and columns, portal method, 772–779

lateral loading, 792

multi-span beams and multi-bay frames, 796

qualitative reasoning, relative stiffness, 796

transverse shear, 792

horizontal thrust force, 458, 459

reactions and shear distributions, 204–206

uniform loading, parabolic, 283

Bilinear moment–curvature model, 1026

Braced frames

definition, 789–790

multistory, 305, 306

Braced rigid frame

analytical expressions, schemes, 786

column shear forces, 787
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definition, one-story, 787

individual systems defined, 785

one-story structure, 785

shear force distribution

base story sub-element, 789

brace stiffness, 787

column shear forces, 787

frame stiffness, 787

inter-story displacement, 790

lateral forces, 788

one-story, 787

upper story sub-element, 788

value, lower floor controls, 790

Bridge

gravity live loads, 17

segmented long-span, 14

structure

geometric arrangement, 71

and gravity, 13

iron truss bridge, USA, 52

plane bridge truss, 105, 106

steel truss bridges, 54

wooden bridge truss, 51

Brittle, 11, 12, 15, 43

Buckling, 12, 43

Building

design, 13

effect, wind, 17

gravity live loads, 17

ground motion, 23

low-rise, 21

vortex shedding, 22

Building codes, 13

Building systems

“shear beam” formulation, 945

C
Cable, 4, 7, 15, 36–37

Cable length, 387, 404–406, 416

Cable stayed

bridges, 383, 404, 409

beam displacement, 583

composition, 581, 582

configuration, 903

displacement profile of girder, 906

elongation, 582, 583

estimated areas, 904

force and displacement profiles, 905, 906

idealized scheme, 904

stiffen beams, 583

tributary area, 905

vertical displacement, cable and beam,

585–588

Cable structures

Brooklyn Bridge, USA, 383, 385

cable-strand arrangements, 383, 384

Clifton Suspension Bridge, England, 383, 384

coordinates, lowest point, 421

deflected shape, 420, 421

doubly curved single-layer cable net, 384, 385

guyed tower, 422

maximum tension, 418–420

Normandy Bridge, France, 384, 386

peak values, cable tension, 421

reactions and tension, 416–418

Cantilever frame

symmetrical, 312–314

unsymmetrical, 337–339

Cantilever method

applied moment, 793

bending moment, axial forces, columns, 795

column-beam model, 793

deformation, relative rotation, 793

description, 790

lateral deflections, 790

reference axis, 792

stiff belt type trusses, 794

symmetrical -story plane frame, 42, 794

symmetrical plane frame, 795

tall building model, 792

Catenary shape

arc length and tension, 414

equilibrium and vertical loading, 412, 413

horizontal projection, 412

iteration and sag ratio, 414

symmetrical case, 412, 414

Center of mass

description, 937

floor

mass layout, 938–940

plan view, 938

Center of twist

braces, 935–937

external and internal forces, 930

floor

configuration, 933

geometry, 929

free body diagram, floor, 926

rigid body motion, 929

shear spring model, 926

stiffness

braces, 927

distribution, 931

symmetry axes, 931

Centroid

dimension square/rectangular footings, 488

single footing, 479–481

structure, 477, 478

Centroidal axis, 1015

Chord

horizontal, 389, 393, 397

inclined, 393, 394, 400

Circular curved members

deflection, light pole, 447, 449

geometry-circular arch, 447

slender and retain, 447

Clamped end model, 770

Clamped/hinged model, 770
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Clay soil

allowable soil pressure, 477, 479

pressure distributions, 477, 478

Combined footings

description, 493

factored loads, 496

peak moment values, 496

shear and moment, 494

soil pressure distribution, 494, 495

square columns, 497–499

Complex trusses

corresponding nodal force equilibrium equations, 88

definition, 48, 86

equilibrium at joints, 87

geometrically stable, 89

individual nodal force systems, 88

matrix form, 88

planar, 137

planar truss, 87

Compound trusses, 48, 60, 61, 86

Compression, 310, 314

Computation of displacements

and deformation relations, 136

matrix equilibrium equations, 137

nodal displacement, 135, 137

planar complex truss, 137

scalar equation, 137

space truss, 139

static-geometric analogy, 136

Computer based analysis

displacement method

bending moment distribution, 760, 761

frame structures, 728–729

and member forces, truss, 752

nonlinear form, 1017, 1025

plane frames

gable, 358

graphical output, 358, 360

Concentrated load

horizontal cables

free body diagram, segment, 387

moment distributions, 389

moments and sag, 387

multiple concentrated loads, 389, 391–393

tension, 388, 389

transverse loading, pretensioned cable, 386, 387

inclined cables

description, 393–397

reactions and horizontal force, 393, 394

sag determination, 395, 396

Concept of equilibrium

non-concurrent force system, 28–30

Construction loading, 14

Containments, 4, 14

Corbel arch, 424

Critical loading

plan, rectangular area, 481, 482

pressure distributions, 481

Critical sections for design, cantilever walls, 549, 552

Cross section

beam, 164

combined bending and torsion, 164

properties, 258

Cross, H., 698

Curvature

positive and negative, deflected shapes, 213

relationship, 212–213

D
Deck

and beam system, 105

segments, 105

slab, 49

Deep beams, deformation and displacement relations

symmetry and anti-symmetry, 254–258

Deep curved members, 464

Deflection(s)

computation

deformation–displacement relations, 91–92

description, 90

force–deformation relationship, 90–91

Deflection profiles

curvature, 356

gable frames, 357, 358

lateral loading, 357

peak deflection, estimation, 377

portal and -hinge frame, 3, 357

Deformations

and displacements, 33–34

inelastic, 12, 27

modes, 38

Design codes, 16, 21, 43

Design philosophy, 26–27

Design strategies, N-S beams and columns, 998–999

Differential equations of equilibrium, planar loading

arbitrary distributed loading, differential

element, 190

cantilever beam triangular loading, 193–196

distributed and concentrated loads, 196–200

extreme value, moment, 192

integral forms, 19

jump conditions, 194

moment summation, 191

reactions, shear, and bending moment distributions,

204–212

shear and moment, interpretation, 193

uniform loading, end moments, 199

Dimensions

design code, 551

optimal geometry, 535

pressure distributions, 530

wall footing, 553

Direct stiffness method, 860–865, 868, 869

Displacement method

description, 649

displacements and member forces, truss, 752

frame structures

member equations, 653–658
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member end moments

moment distribution, 753–760

slope-deflection equations, 753–758

member forces, truss, 752

end moments and horizontal displacement, 764

planar

beam-type structures, 649, 650

frame-type structure, 649, 650

truss, 649, 650

plane truss

axial loaded member, 651

force-equilibrium equations, 651

horizontal and vertical translations, 651

nodal displacements and member forces, 651

rotation and end moments, analytic expression, 763

Distributed load

horizontal cable

description, 397, 398

tension determination, 398, 399

inclined cables

arbitrary loading, 399, 400

sag expression and lowest point, 400

tension determination, 401, 402

total moment, 399

uniform load, 400, 402

Ductile, 11, 43

Ductility, 11, 1013–1015

E
Earthquake loading

base shear, 923

elevation, 954

floor forces, 925

ground acceleration time history, 920

ground motion, 23

lateral displacement profile, 921

low-rise rigid frame, 921

peak acceleration vs. structural period, 923
peak lateral inertia force, 25

seismic lateral load profile, 26

seismic loading, 920

single degree-of-freedom model, 25

Elastic moment diagram, 1022

Engineering process

bridge structures, 874

loading, 874

objective, 873

Equivalent axial stiffness

horizontal cable

actual and perturbed configurations, 407

deflection patterns, 407, 408

modified elastic modulus, 408

net motion, 408

sag ratio, 409

inclined cable

Ernst’s formula, 411

guyed tower modeling, 409, 410

Millau Viaduct Bridge, France, 409

modified elastic modulus, 411

steel cable, 411, 412

Equivalent single degree of freedom system, 922

Extensional strain, 11, 34

External loading

creation, 182

displacements, 562, 563

primary structure, 563, 565

produce reaction forces, 182

shear and bending moment, beams, 258

structure, 173

and three force redundants, 567

and unit load results, 572

F
Factor of safety

defined, 533

requirements, 527

vs. sliding and overturning, 533

Factored soil pressure, 484, 486

Failure mode, buckling, 12

Finite element method

beam structures, 839–849

bending moment and deflection profiles, 867

description, 805

direct stiffness method, 860–865, 868, 869

horizontal displacements, 867

local and global reference frames, 809–812

matrix formulation for rigid frames, 807–809

nodal supports

displacement constraints, 819–820, 826

end member forces, 820

fixed and global end actions, 829

fully fixed supports, 818

geometric data, 823

loading conditions, 820, 827

local end actions, 830

matrix displacement formulation, 823

member forces, local coordinates, 829

member plane frame, 830

movement, 821

rearranged system matrices, 821–822

reduced system matrices, 819

stiffness matrices, 823–825, 827

system stiffness matrix, 831

unknown force and displacements, 827–829

spring stiffness, 866

steps, 805–806

three dimensional (3D) formulation, 850–860

truss structures, 834–839

Fixed support

planar loading, 168

three dimensional, 170

Fixed-end beams

compatibility equations, 588

fully fixed, 594

partially fixed, 595

single concentrated force, 592–593

structure, 588

uniformly distributed loading, 590–592

Fixed-ended beam

inelastic response, limit analysis process, 1019–1021
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Flexibility coefficients

description, 564

pitched roof frames, 625

plane frame, 612

Principle of Virtual Forces, 567

symbolic/numerical integration, 605

Flexibility method, 41

Floor loads, wind load, 918

Force envelopes

axial, 1003, 1004

definition, 258

two-hinged arches, 899

Force method

axial, shear forces and bending moment, 641

behavioral differences, 646

computer software system, use, 641–643, 645

description, 561–562

forces, cables, 640

horizontal reaction, 643

parabolic arch, 640

peak positive and negative moments, 643–644

properties and loadings, 637–639

reactions and member forces, 647–648

structure and steps

actual, 562

choices, primary, 563, 565

external loading, displacements,

561–564

flexibility coefficients, 564

force redundants, 566

“geometric compatibility equation”, 563

internal forces, 567

matrix form, 567

multi-bay multistory frame, 567

multi-span beam-type, 567

primary, 562

reaction force, displacements, 562

redundant reactions, 563, 567

truss-type, 567

vertical reaction, 637

Fracture, 11, 15, 1014–1018

Frame(s)

braced, 22

force method

arbitrary-shaped single bay frame

structure, 612

axial deformation, 613

compatibility equation, 612

description, 612

flexibility matrix, 613

matrix equations, 613

three-story, 25

Frame type structures, member equations

deformation and end actions, 654

description, 653

equilibrium conditions, 657

fixed end actions, 654, 655

moment and shear quantities, 657–658

nodal displacement, 655

slope-deflection equations, 658

superposition, 655, 656

Free body diagram (FBD)

beam

construction, 174, 175

statically indeterminate, 41

statically determinate plane frames

A-frames, 341, 342

forces acting, node B, 307, 308

member forces, 307, 308

structural analysis, 30, 31

Fully fixed arch, 429

G
Gable frame

3-hinge

lateral load, 335–337

shear and moment, 339–342

bending moment distributions, 369

deflection profiles, 356, 357

simply supported

lateral load, 369

unsymmetrical loading, 337–339

Geometric compatibility

description, 563

flexibility coefficients, 564

flexibility matrix, 569

matrix equations, 613

member forces, 631, 634

Geometric nonlinear analysis, 734

Geometric nonlinearity, 734–741

Girder, 7, 15, 43

Girder bridge system, 893

Global force equilibrium equations, planar loading, 173

Global reference frame

quantities, 946

symmetry axis, 949

Granular material, 525, 529, 530

Gravity floor loads

floor slab-beam system, 977

loading patterns, 977–978

one-way action beam loading, 979

steel joist/beam framing, 979

tributary areas, 977

Gravity load, 13, 17, 22

Gravity walls

concrete and soil backfill, 535

description, 526

retaining analysis, 534–536

Grid structures, 733

Guyed tower(s), 403, 404, 409, 410, 422

H
Heyman, J., 27

High-strength steel, 383, 384, 409

Hinged model, 770

Hinged support

3-D, 170

planar loading, 169

portal

gravity loading, 323

lateral loading, 323

variable cross-section, 325
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Horizontal cables

distributed load

description, 397, 398

tension determination, 398

equivalent axial stiffness

actual and perturbed configurations, 407

deflection patterns, 407, 408

modified elastic modulus, 408

net motion, 407

sag ratio, 409

Horizontal projection

catenary shape, 412

distributed loading, 397–399

Huntington, W.C., 530

I
Idealized dead loading, 430

Idealized model

defined, 899

integral abutment bridge, 883

loading-idealized model, 900

story stiffness, 781

sub-elements, 780

three-span arch, 902

Idealized models

integral abutment bridge, 883

Impact magnification factor, 888

Inclined cable, 394

concentrated load, description, 394

Inclined cables

cable-stayed schemes, 581

concentrated load

description, 394

reactions and horizontal force, 393

sag determination, 396, 397

equivalent axial stiffness

Ernst’s formula, 411

guyed tower modeling, 409, 410

Millau Viaduct Bridge in France, 409

modified elastic modulus, 411

steel cable, 411

Incremental load, 1022

Indeterminate, 574, 582, 584, 586, 604, 618, 622, 626,

629–636

arches, 604, 610

beams

first degree, 572, 584

second degree, 576, 586, 588

frames

first degree, 604, 616

second degree, 622

plane truss, 57

portal frames, 616, 618

trusses

internal force distribution, 631

member forces, determination, 631–634

principle of virtual forces, 630

structures, 629

three member truss, 629, 630

Inelastic analysis, 1013–1034

Inelastic behavior, 1026, 1027

Inelastic bending, 1015

Inelastic deformation, 11, 12, 27, 747

Inelastic response

computer software, 1034

dead loading, 1033

limit analysis process

fixed-ended beam, 1019–1021

loading, 1018

plastic fracture model, 1018

simply supported beam, 1018–1019

two-span beam, 1021–1025

two-story frame, 1025–1026

load capacity determination, 1032

moment capacity, 1018

moment–curvature relations, 1015–1018

nonlinear analysis scheme

bilinear moment–curvature model, 1026

end forces, 1027

equilibrium equations, 1026

force increment, 1028

global force equilibrium equation, 1027

matrix notation, 1026

2 point Gaussian approximation, 1027

portal frame, 1028–1029

refined mesh, 1026

three-story frame, 1030–1031

transverse displacement, 1026

structural steels, stress–strain behavior of, 1013–1015

Influence lines, 261, 262, 264, 272

actual loading distribution, 107

chord forces, 109

deck-beam system, 105

diagonal members, function, 107

force parameters, 879

live load analysis, gable roof structure, 111–113

load positions and corresponding member

forces, 105, 106

loading, 105

loading zones, 875, 876

Müller-Breslau principle application, 875, 878

peak value, member force, 108

shear, 107

slender members, compression vs. tension, 108
span beam, 878

structure and truck loading, 110

truss geometry, 105, 106

virtual work, principle

cantilever construction-concentrated

loading, 266

construction, 262–266

equilibrium equations, 285

uniform design loading-cantilever

construction, 272

Integral abutment bridges

elevation—three-span, 881, 883

idealized model, 881, 883

Internal bending moment, 182
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Internal forces

free body diagram, 205

planar loading

beam and eccentric lateral load, 188

cantilever beam and multiple concentrated

loads, 184

internal shear and moment, 194

maximum bending moment and shear force, 184

shear and moment diagrams, 184

sign convention, 183

uniform loading and cantilever beam, 187

structural analysis, 30–33

J
Joints

3-D trusses

analysis process, 122

direction cosines, 121

displacement computation, 127

force equilibrium equations, 119

resolution, force, 121

tetrahedron, analysis, 125–127

tripod structure, analysis, 122–124

definition, 47

deflections, 90

pin joint connections, 54

K
Keystone arch construction, 422, 423

Kirchoff’s hypothesis, 211

K-type truss, 82

L
Lambe, T.W., 530

Lane load, 17

Lateral loading

3-hinge gable frame, 335–337

building response

center of mass, 937–940

description, 925

forces acting, center of mass, 941

multistory response, 943–945

portal frames, 323–325

stiffness elements, 942, 943, 945

center of mass, 968

center of twist, 970, 971

center of twist and seismic floor loads, 967

deflection profiles, 356

displaced configuration, 969

frames, 972

pitched roof frames, 330–338

story rigid frames, 965–966

treatment

earthquake loading, 920–925

rectangular buildings, 917

wind loading, 918–919

Lateral stiffness, 409, 745–748, 917, 949

Limit analysis, 1018–1025

Limit load, 1025

Limit state, 11, 27, 1021, 1023–1025, 1028

Line elements, 4, 7, 212
Live load gravity, 16–17

Live load patterns

deflection pattern

beams, negative moment, 980, 981

columns, negative moment, 980, 981

positive moment, 980, 1000

earthquake analysis, 986–988

gravity type loading, 980

loading pattern

columns, maximum negative moment, 980, 982

maximum positive moment, 980, 1000

multistory frame, 980

uniformly distributed live load, 982–985

Live loads, bridges

truck loading and span discretization, 885, 886

uniform live load, 888–890

Load magnitude, 1023

Loading(s)

codes and technical societies, 13

gravity live loads, 16–17

properties

importance factor, values, 16

occupancy categories, 16

quasi-static loading, 15

temporal variation, 15

snow, 22–24

source

construction, 14

function, 13

interaction, environment, 30–33

terrorist loads, 14

Loading pattern

computer-based analysis, 895

dead load, 894–895

span discretization, 893, 896

Loading zones, 875–877

Local reference frame

member and nodes, 809, 810

nodal forces, 812

rotation matrices, 811

rotation of axes, 809, 810

structure, 809, 810

Low-rise rigid frames

bracing, 785–790

shear stiffness method, 779–784

M
Mass, 13, 15, 19, 25, 26

Matrix formulation, 807–809

displacements, computation, 135–141

floors and stories, 946

force equilibrium equations, 133–135

inertia forces, 947

manual techniques, 131

member–node incidence, 133

notation, 131–133

rigid frames
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end forces and displacements, 807

fixed end forces, 809

linearly loaded beam, 809

member stiffness matrices, 807–808

stability, 135

story structure, 948

system load, mass and stiffness matrices, 949

Maxwell’s law

compatibility equations, 571

definition, 569

reciprocal loading conditions, 569–571

Method of joints

cantilever truss analysis, 71–74

five member truss, 65–71

gable roof truss analysis, 75–77

plane truss, 61

three member truss analysis, 62–65

zero force members, 72

Method of sections

chord trusses, 78

design, 142

equilibrium equations, 77

hybrid analysis strategy, 84–86

joints, 77

K-type trusses, analysis, 82–84

parallel chord truss, 79–80

roof truss, 80–82

shear forces, 78

Method of virtual forces

arches, 447

beams, 231

bending, slender beams, 231

deflection computation, 232

displacement, roller support, 376

frames, 344

horizontal deflection determination, 374, 378

horizontal displacement, 376

trusses, 78

vertical deflection determination, 374, 375, 378

M1 , M2, and M3, maximum value, 277, 878, 908

Modern cables, 383

Modern structural software systems, 1023

Modulus of elasticity, 34, 44

Moment area theorems, slender beams

cantilever beam, 220

cross-sectional rotation and deflection, 218

double integral, 219

First Moment Area theorem, 218

integration, x1 and x2, 219
Second Moment Area Theorem, 219

simply supported beam, 224–230

Moment capacity, 1015–1018, 1023, 1026

Moment distribution

multi-span beams

dimensionless factor (DF), 699

incremental moments, 699

iteration cycle, 698

method, 698

moment equilibrium, 699

moment release, two span beam, 702–703

multiple free nodes, 703–704

reduced relative rigidity factor, 702

solution procedure, 698

three span beam, 704–706

two span beam, 700–704

unbalanced clockwise nodal moment, 698

Multi-bay

multistory frames, 567

portal frame, 306

Multiple concentrated loads

force envelopes

absolute maximum moment, 277

computation, maximum moments, 277–282

critical truck loading position, 283

dead + truck loading, 284

forces, 275

M1 and M2, maximum value, 277

maximum bending moments, 278

moment diagram-arbitrary position, loading, 276

truck moving across, span, 283

internal forces, cantilever beam, 184, 188

Multi-span beams (gravity loading)

data-moment diagrams

quantitative reasoning, relative stiffness, 769–770

single-span, 768

three-span, 768, 769

two-span, 768

Multi-span beams force method

structures, 567

Multi-span bridges, 878

geometric configurations

elevation—three-span, 881, 883

idealized model, 881, 883

integral abutment bridge, 883

sintegral abutment bridge, 882

span arrangements, 880, 881

span lengths

bending moment distribution, 882, 884

symmetrical scheme, 882, 884

Multi-span horizontal structures

cable-stayed

bridge, 903–907

structure, 911

engineering process, girders, 873–875

global deflection, 910

idealized tied arch, 911

influence lines, 875–880, 908

single span bridge, 908

span lengths, 908

symmetrical cable structure, 913

three-span parabolic arch response, 902–903

Two-Hinged Parabolic Arch Response, 899–901

multistory building systems

multistory building systems, 915–917

Multistory buildings

braced frames, N-S and E-W directions

beam properties E-W direction, 989

configuration, 992

deflection, 996

floor loading, 1006
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Multistory buildings (cont.)
interior columns, 982

result, 998

four-story building

floor plan and elevation structure, 989

global wind loads, 990

loading and member data, 989

load paths, 1006

loading patterns estimation, Müller–Breslau principle,

1006–1009

loads, frames

rectangular building, 975, 976

structure, 975, 976

system, 975

rigid frames, N-S and E-W direction

beams, N-S, 998

braced vs. rigid frame, 997

columns, N-S, 998

connection, N-S beams and columns, 998

dead load, 1008

design values, 1005

live load patterns, 980–989

moment diagrams, 1024

result, 1006

uniform live load, 888–889

wind load N-S, 990–992, 997, 998

systems

braced frame structure, 916

lateral stiffness systems, 917

low-rise building, 916, 917

Multistory response

forces

floor, 943

inertia, 944

interstory deformation, 943

shear beam, 945

Multistory rigid and braced frame, 306

Multistory rigid frames

gravity loading, 771

lateral loading

approaches, estimation, 771

inflection points, 771

low-rise, bracing, 785–790

shear stiffness method, 779–784

N
Nodal equilibrium equations

direct stiffness method, 816

equilibrium equations, 815

member end actions, 814

member node incidence, 812–813

member reaction forces, 815

positive/negative end, 812

system matrices, 818

Nodes

and member incidence, 133

concurrent force system, 56

description, 47

horizontal displacement, 94–99

member af and cf, extreme values, 108

plane trusses, 118

positive and negative, member n, 131
scalar equilibrium equations, 57

Non prismatic members, 241–244

Nonlinear analysis

bilinear moment–curvature model, 1026

end forces, 1027

equilibrium equations, 1026

force increment, 1028

global force equilibrium equation, 1027

matrix notation, 1026

2 point Gaussian approximation, 1027

portal frame, 1028–1029

refined mesh, 1026

three-story frame, 1030–1031

transverse displacement, 1026

Nonlinear equations, 734

Nonlinear stress–strain relation, 1015

O
Optimal shape

parabolic arch, 435

statically determinate arch, 462–463

Out of plane loading

end actions, 729

equilibrium equations, 731

free body diagrams, 686, 688

grid structure, 733–734

plane frames

3-D system, 359, 361

displacement and rotation, 358

gravity load, 359

highway signpost, 359

transversely loaded grid structure, 362

prismatic member, 729

Overturning

base pressure distribution, 553

defined, 533

stability, 553

toe and sliding, 532

vs. safety, 545

P
Parabolic geometry

notation, parabolic shape function, 435

shallow vs. deep parabolic curved members, 436–442

Passive soil pressure, 531

Pattern loading

three-span system, 888–889

uniform dead and lane, 894

P-delta effect, 745, 749, 750, 764
Peak acceleration, 23, 25, 26

Peak pressure, 480, 481, 502

Peck, R.B., 479, 530

Piles/caissons, 476, 547–549

Pitched roof frames

analytical solutions

gravity loading, 330, 331
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displacement profiles, shear and moment

diagrams, 379

expression, horizontal reaction, 627

member loads

equivalent vertical loading, 328

inclined member, 326, 327

normal and tangential directions, 329

reactions, 326–320

peak negative and positive moments, 628

primary structure, 625

relative stiffness factors, 625–626

structures, 326

three-hinge solution, 628

total bending moment distribution, 627

two vs. three-hinge solution, 628
Planar beam systems, 171

Planar bending, 164

definition, 164

stability and determinacy, beams see Stability
transverse displacement, 286

Planar trusses

analysis

axial force, 90

equilibrium considerations, 56

statically determinate, 57–58

bottom and top nodes, 49

complex and compound, 49

simple planar truss construction, 48

structure, 91

two member, 91

Plane frames

transverse deformation, 612

Plane trusses

2-D, 118

definition, 47

node, 56

statical determinacy, 142

plastic fracture model, 1018

plastic hinges, 1023, 1025

Platforms, 4, 13

Portal framesanti-symmetrical loading, displacement

method

chord rotation, 690

frame with no sideway, 692–694

frame with sideway, 694–697

moments and shear, 692

slope-deflection equations, 690

bending moment distribution, 621–622

expression, displacement, 614

gravity-loading

anti-symmetrical model, 618

bending moment distributions, 619

compatibility equation, 618

decomposition, loading, 617

horizontal reaction, 619

net bending moment distribution, 620

peak moments, 620

symmetrical model, 618, 619

two-hinged, 618

lateral loading symmetrical

two-hinged, 616

overhang, 321–323

reaction, gravity loading, 613, 614

simply supported, 316–318

structure, 613, 614

symmetrical

anti-symmetrical loading, 622

bending moment distribution, two-hinged frame,

623, 624

displacement, 622

hinged and fixed supports, bending moment

distribution, 624, 625

structures, 622

symmetrical loading, displacement method

description, 689–690

moment equilibrium, 690

Portal method

axial and shear forces, 773, 775, 776, 778

bending moment distribution

beams, 773, 775, 776, 778

columns, 773, 776, 777

description, 772, 796

moments, joints, 772, 773, 777

reactions, shear forces and moment distribution, 773,

775, 776, 778

rigid frame, 771–772, 776

steel frame, 799

Positive sense, bending, 310

Primary structure

description, 562

displacement, 564, 577

fixed end moments, 590

flexibility

coefficients, 564

matrix, 613

force redundants, 566, 568

geometric compatibility equation, 563

multi-span beam, 568

pitched roof frames, 625–629

redundant moment, 568

vertical restraints, 564

Principle of virtual forces

axial and shear forces, 345

deflections, computation

cantilever-type structure, 345–347

horizontal displacements and rotation, 348–350

non-prismatic member, 352–355

steel structure, 350–353

low-rise frames, 345

planar frame structure, 344–345

Prismatic beams

combined bending and torsion, 164, 166

cross-sections and bending mode, 163, 164, 166

geometrical parameters and notation, 163

Mechanics Theory, 164

planar bending, 164, 286
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Q
Qualitative reasoning, deflected shapes

beam and moment release, 217–218

cantilever beam, 216

moments, positive and negative, 213, 215

overhang and beam, 216

positive and negative curvature, 213

shape transition at inflection point, 214

supports-displacement measures, types, 213, 214

uniformly loaded and simply supported beam, 215

R
Rankine theory

defined, magnitude per unit wide strip, 531

distribution, soil pressure, 530

horizontal forces, 531

soil pressure, surcharge, 532

Reactions

planar loading

beam and two over hangs, 174–175

beam free body diagram, construction, 175

horizontal beam supports, vertical sign, 180–182

simply supported beam, 175–176

statically determinate and indeterminate structure,

173

three-span beam and two moment releases,

179–180

two-span beam and moment release, 176–179

structural engineering

forces, 30

statically indeterminate beam, 41–42

supports, planar structures, 7, 10

Rectangular footing, loading, 483, 496

Redundant

cable force, 582

displacements, primary structure, 586

external loading, 586

force

expression, primary structure, 567

reaction, 563, 567

steps, 562

internal force, 567

matrix equations, 613

tension, tie, 610

three-span beam, 576

Refined mesh, 1026

Relative stiffness

bending moment distribution, 597

clamped/hinged model, 770

end moments estimation, 771

flexibility coefficients, 625

hinged and clamped end model, 770

internal force distribution, 631

multi-span beam, 768, 769

qualitative reason, 797

two-span beam, 597

Resultant

centroid, 480

force, 479

pressure distributions, 505

Resultant

combined footings, 493

factored loads, 494

line of action, 481, 493

Rigid body motion

prevent

arranged, 58

insufficient, 59

order, 114

reactions, 87

required, 57

respect, 114

supported, 48

Rigid frame

displacement method

anti-symmetrical loading, portal frames, 690–697

description, 685

free body diagrams, members and nodes, 686, 688

moment equilibrium, 686, 690

sideway, 686

slope-deflection equations, 658

symmetrical loading, portal frames, 689–690

five story symmetrical rigid frame building, 986

lateral loading, 330, 332

multistory, 306

pitched roof frames, 326

simply supported gable, 330–335

triangular, 380

Roller support, 169–170

Rotation, 309, 345–346, 348, 350, 358, 359, 375, 376

Rupture strain, 1014

S
Sag

arc length, 403–406

concentrated loads, horizontal cables

angle of inclination, relationship, 388

downward vertical, 391

expression, 387, 389

profile, 392

distributed loading, 395–397

equivalent axial stiffness, 409

inclined cables and concentrated loading, 393–397

Sandy soil

allowable pressures, 477, 479

pressure distributions, 477, 478

Sections

cantilever walls design, 549–552

Service loads, 26, 483, 486, 498, 500, 501, 516

Shallow curved members

non-shallow curved member, 445–446

trigonometric measures, 436

vs. deep, 436
Shallow foundations

allowable soil pressure, 516

combined footing, 520

dimensions, square/rectangular, 517

pad footing, 522

service loads, 516

square columns, 517
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strap footing, 521

types

combined footing, 477

footings, 476

single footing, 476

strap footing, 476

structure, 475, 476

superstructure, 475

Shear force, 184, 246, 262–266

influence line

construction, 262–266

maximum bending moment, 184

transverse, 246

maximum moment occurs at mid-span, 442

Shear stiffness method

approximate analysis, 783–784, 794–796

bottom story-fixed support, transverse shear

model, 782

description, 796–797

elements, 950

exterior and interior element—upper story, 781

factors, 949

low-rise frame, 780

parameter, 785

ratios

lowest story, 783

upper stories, 781

slope-deflection equations, 781

steel frame, 799

sub-elements, base story

fixed support, 782

hinged support, 783

total transverse shear, 779

Shear walls, concrete frame, 916

Shell, 4, 7

Sideway

with sideway, frame’s moment distribution, 694–697

computer-based analysis, frame with inclined legs,

726–729

fixed end moments, 718

frame with inclined legs, 722–726

“holding” forces, 718

portal bent, 719–722

without sideway, frame’s moment distribution

end actions, 723–726

support settlement, two-bay portal frame,

713–715

symmetrical loading, two-bay portal frame,

711–713

temperature increase, two-bay portal frame,

715–718

Sign convention

matrix formulation, beam bending problem, 183

positive directions, 183

Simple planar truss, 48, 49

Simple space truss, 48

Single footings

column position, 483

dowels use, 485

effective soil pressure, 483

procedure, 484

service loads, 486–489

shear and moment, 484, 485

shear, location, 484, 485

square/rectangular, 488–493

steel reinforcement, 485

Slender beams

centroidal axis, strain, 211

cross section rotation angle, 212

curvature relationship, moment, 212–213

differential elements, 211, 212

express and curvature, extensional strain, 212

homogeneous beam, 211, 213

Kirchoff’s hypothesis, 211

moment area theorems, 218–230

non prismatic members, 241–244

qualitative reasoning, deflected shapes see Qualitative
reasoning, deflected shapes

virtual forces method, 231–232

Sliding

defined, 532, 536

stability, 553

vs. safety, 533
Snow load

drift profiles, 24

flat and sloped roof, 23, 24

Soil friction angle, 553

Soil pressure distributions

allowable pressures, 477, 479

analytical method

equilibrium, 480

line of action, 481

peak pressure, 480, 481

plan, rectangular area, 482

single footing, 479

trapezoidal, 481

concentric load, 477, 478

description, 477

determination, 515

dimensions, footing, 477–479

footing/wall base, 539

Rankine theory, 531–532

Spectral acceleration, 922, 923

Stability

3-D trusses, equilibrium analysis

Cramer’s rule, 135

requirement, 135

and determinacy, beams

concurrent displacement constraints, 166, 167

fixed and hinged support, 168

3-D fixed support, 170

3-D hinged support, 170

moment release, 172–173

multiple supports, 171, 172

planar rigid body motions, 165, 167

3-D roller support, 170

roller support, 169

static determinacy, 171
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Stability (cont.)
unstable support arrangements, 171

X–Y plane, 165

planar truss

complex truss, 61

compound truss, 60, 61

equilibrium equations, 58

plane truss, 57, 58

simple and compound trusses, 61

simple trusses, 58

suitably restrain, 58

unstable, motion restraints, 58

structural engineering

initial, 7–11

loss and material failure, 11–12

priorities, 12

Stabilizing effect, 527

Static determinacy

2-D plane trusses, 118

stable determinate structure, 118

structure, 118

unstable structure, 119–120

Statically determinate beams

engineering process, 258–259

force envelopes, 259–262

influence lines, 259–262

Statically determinate curved members

arch-type structures, 423–428

factors and concepts, 463–464

internal forces, 431–435

models, arch structures, 429–431

objectives, 463

parabolic geometry, 435–436, 439, 443, 451, 454

problems, parabolic member, 464–473

three-hinged arches, analysis, 450–463

virtual forces

circular, 447–450

displacements, 442

non-shallow slender, 443

shallow slender, 443–447

Statically determinate plane frames

axial forces and end moments, 380

beams and columns, 305

bending moment distributions, 369

computer-based analysis, 358

displacement determination, 381

planar loading

adequate support schemes, 307

indeterminate portal and A-frames, 309

indeterminate support schemes, 307

nodal forces and rigid plane frames, 309

three-hinge plane frames, 306–310

reactions, shear and moment distributions, 363

rigid plane frames, 305, 309

steel material, 380

virtual force

method, 374–378

Steel base plate, 485

Stiffness

definition, 34

material, 27

method, 40

Stiffness factor, 39

Straight members

“equivalent”, 409

slender, 442

Strain hardening, 1013, 1015

Strands, 384, 409

Strap footings

description, 504

design approach, 505, 511

equilibrium, 503

notation and pressure distribution, 504, 505

reinforcing patterns, 507

soil pressure profile, 509

summing moments, 505

Stress-strain, 11, 213, 651, 738, 1013–1015, 1017

Structural components, 4, 11, 12, 30, 42

Structural engineering

components and types, 4, 5

design

loading, 4, 7

philosophy, 26–27

reactions, 7, 11

stability

initial, 7–11

loss and material failure, 11–12

priorities, 12

Structural idealization, 48, 50

Structural steels, 1013–1015

Structural types

function, 4, 5

makeup, 4, 7

Superposition, 655, 656

Support constraints, 806

Support settlement

moments, 891

resulting moments, 891

three-span beam, 890

Surcharge, soil pressure, 532, 553

Surface elements, 4, 7

Symmetrical buildings

earthquake floor loads, 956

flexible floors, 955

floor load distribution, 956

frame load-rigid, 957

idealized building model, 945

maximum column moments-rigid and flexible

floors, 955

one story frame, 960

rigid frame building, 954

rigid frame structure, 951

segmental areas, 953

shear stiffness factors, 952

structure, 949

total story stiffness, 952
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typical floor, 952

typical frame, 949

Symmetry and anti-symmetry

deflected shapes, 254–258

shear and moment diagrams, 250–252

T
Tall building

lateral deflections, 791, 792

quantities, Mi+ and VTi+, 1, 792

segment, 792

Tandem, 17

“Tangent” stiffness matrix, 1028

Temperature change

effect, 103

total extension, 91

Tension

cable-stayed structures, 384

concentrated loads

horizontal cables, 386, 389

determination

catenary equations, 414

maximum tension, 418

peak values, 421

segment, cable, 413, 414, 416

distributed loading

horizontal cables, 398, 408

inclined cable, 399, 401

equivalent axial stiffness, 407–409

Terrorist loads, 14

Terzaghi, K., 479, 530

Thermal loading, 13

Three-dimensional (D) formulation, 3

displacement measures, 850–851

notation, 850

Three-dimensional (D) trusses, 3

equilibrium analysis, 114

joints, 120–131

restraining rigid body motion, 114–117

restraints, rigid object, 115

space truss structures, 114

static determinacy, 118–120

tetrahedron units, -D trusses, 3, 114

Three-hinged arches

and geometry and reactions, 450

1� indeterminate, 429

optimal shape, statically determinate arch, 462, 463

parabolic arch

concentrated load, mid-span, 456–459

force equilibrium, 451

horizontal and vertical loads, 460, 461

uniform vertical loading, 452–456

Three-Hinge frames

deflection profiles, 356–358

description, 309

gable

lateral loading, 335–337

gravity loading, 330, 331

lateral loading, 330, 332

portal

shear and moment distributions, 363

shear and moment, 339–341

3-D Hinged support, 170

Three-span arch study

discrete force envelopes, 895, 897

idealized model, 902, 904

Three-span continuous girder bridge

axle loading, 888

cross-section, 895

loading patterns, 894, 895

support settlement, 899

truck loading, 896, 897

uniform load patterns, 895

Three-span parabolic arch response, 902–903

Thrust, 610, 611

Tied arches, 610

Torsional response

floor rotation, 929

shearing, 945

Toughness, 1014

Tower, 4, 14

Transverse distribution, truck loading

axle distribution factor, 888

loading, 888

slab-stringer bridge deck cross-sections, 887, 888

vehicle wheel loads, 887

Trapezoidal rule, 299

Truck load, 17

Truss

defined, 7

formulation

fixed end actions—members and joints, 838

force and displacement, 834

load vectors, 838

local and global frames, 835

stiffness matrix and displacement vector, 837

topological and geometric information, 823

unknown displacements, 838

Truss structures

facts and concepts, 142

matrix formulation

displacements, computation, 135–141

force equilibrium equations, 133–135

manual techniques, 131

member–node incidence, 133

notation, 131–133

stability, 135

objectives, 141

planar trusses, analysis

3-D space structures, 55

complex trusses, 86–89

equilibrium considerations, 56

joints, method, 61–77

sections, method, 77–86

stability criterion, 58–61

statically determinate planar trusses, 57–58

problems

plane trusses, classification, 142, 161
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Truss structures (cont.)
types

complex planar, 49

compound planar, 49

compression elements, 52

covered wood bridges, 51

Egyptian boat built, 50

flourishing industry, New England, 52

force parallelogram, 50

high-strength bolts and welding, 54

iron trusses, 52, 53

pin joint connections, 54

plane and joints, 47

simple planar and space, construction, 48

single span truss bridge system, 50

steel, 52

structural systems, 49

three-dimensional truss roof system, 55

wooden bridge truss structures, 52

Two-hinged arch

and 1� indeterminate, 429

structure, 429

Two-hinged parabolic arch response

discrete force envelopes—truck loading, 890, 894,

897

idealized model, 902, 904

3-D Hinged support, 170

Type of foundations

footings

description, 475

single, 476

strap, 476, 477

structure, 475, 476

superstructure, 475

U
Unstable

initially, 59

structure, 119

V
Vertical retaining wall structures

cantilever, 527, 544

concrete piles, 547

design, cantilever walls, 549–551

gravity, 526–527

gravity wall, 533, 534

peak pressure, 534

stability analysis

cantilever and gravity, 533

concrete gravity wall and soil backfill, 535

defined, safety for sliding, 533

equilibrium, 532

force summation, 533

gravity wall, 532

overturning, 533

types, 525

with footing, 539, 544

Virtual forces method

and actual force, 101

application, 141

curved members

circular, 447–450

displacements, 442

non-shallow slender, 443

shallow slender, 443–447

definition, 93

deflection, computation, 95–97

diagonal pattern reversed, 102

matrix equations, 137

procedure, 93

truss applications, 103

W
Whitman, R.V., 530

Wind load

pressure

distribution, 17–19

profiles, 19–22

vortex shedding, 22

velocity distribution, 19, 20

Wind pressure

distribution, 17–19

profiles

Bernoulli’s equation, 19

stagnation and design pressure, 20

vortex shedding, 22

Wind speed, 19, 20

Wind velocity, 19

Y
Yielding

bending envelopes, 901

concrete, 1013

elastic limit, 1015

factor loads, 516

necking, 1013

steel, 1013, 1014

yield strain, 11, 1013

Yielding support, beam

axial force, 583–584

deflection, 578–579

external concentrated loading, 580

force redundant and displacement profiles, 577, 579

force redundant system, primary structure, 580

linear elastic behavior, 579

supporting members, 577

vertical restraint, 578
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