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The first edition considered only linear elastic behavior of structures. This
assumption is reasonable for assessing the structural response in the early
stage of design where one is attempting to estimate design details. As a
design progresses, other critical behavioral issues need to be addressed.

The first issue concerns geometric nonlinearity which results when a
flexible member is subjected to axial compression loading as well as trans-
verse loading. This combination causes a loss in axial stiffness for the
member, which may result in a loss in stability for the structural system.
Euler buckling is an example of this type of nonlinear behavior.

The second issue is related to the behavior of the material used to fabricate
structural members. Steel and concrete are the most popular materials for
structural applications. These materials have a finite elastic range, i.e., they
behave elastically up to a certain stress level. Beyond this level, their stiffness
decreases dramatically and they experience significant deformation that
remains when the specimen is unloaded. This deformation is referred to as
“inelastic deformation.” The result of this type of member behavior is the fact
that the member has a finite load carrying capacity. From a structural system
perspective, it follows that the structure has a finite load capacity. Given the
experience with recent structural failures, structural engineers are now being
required to estimate the “limit” capacity of their design using inelastic
analysis procedures. Computer-based analysis is essential for this task.

We have addressed both issues in this edition. Geometric nonlinearity is
basically a displacement issue, so it is incorporated in Chap. 10. We derive
the nonlinear equations for a member; develop the general solution, special-
ize the solutions for various boundary conditions; and finally present the
generalized nonlinear “member” equations which are used in computer-
based analysis methods. Examples illustrating the effect of coupling between
compressive axial load and lateral displacement (P-delta effect) are included.
This treatment provides sufficient exposure to geometric nonlinearity that we
feel is necessary to prepare the student for professional practice.

Inelastic analysis is included in Part III which deals with professional
practice; we have added an additional chapter focused exclusively on inelas-
tic analysis. We start by reviewing the basic properties of structural steel and
concrete and then establish the expressions for the moment capacity of
beams. We use these results together with some simple analytical methods
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to establish the limit loading for some simple beam and frames. For complex
structures, one needs to resort to computer-based procedures. We describe a
finite element-based method that allows one to treat the nonlinear load
displacement behavior and to estimate the limiting load. This approach is
referred to as a “pushover” analysis. Examples illustrating pushover analyses
of frames subjected to combined gravity and seismic loadings are included.
Just as for the geometric nonlinear case, our objective is to provide sufficient
exposure to the material so that the student is “informed” about the nonlinear
issues. One can gain a deeper background from more advanced specialized
references.

Aside from these two major additions, the overall organization of the
second edition is similar to the first edition. Some material that we feel is
obsolete has been deleted (e.g., conjugate beam), and other materials such as
force envelopes have been expanded. In general, we have tried to place more
emphasis on computer base approaches since professional practice is moving
in that direction. However, we still place the primary emphasis on developing
a fundamental understanding of structural behavior through analytical
solutions and computer-based computations.

Audience

The intended audience of this book is that of students majoring in civil
engineering or architecture who have been exposed to the basic concepts of
engineering mechanics and mechanics of materials. The book is sufficiently
comprehensive to be used for both undergraduate and higher level structures
subjects. In addition, it can serve students as a valuable resource as they study
for the engineering certification examination and as a reference later in their
careers. Practicing professionals will also find the book useful for self-study,
for review for the professional registration examination, and as a
reference book.

Motivation

The availability of inexpensive digital computers and user-friendly structural
engineering software has revolutionized the practice of structural engineer-
ing. Engineers now routinely employ computer-based procedures throughout
the various phases of the analysis and design detailing processes. As a result,
with these tools engineers can now deal with more complex structures than in
the past. Given that these tools are now essential in engineering practice, the
critical question facing faculty involved in the teaching of structural engi-
neering is “How the traditional teaching paradigm should be modified for the
computer age?” We believe that more exposure to computer-based analysis is
needed at an early stage in the course development. However, since the
phrase “garbage in garbage out” is especially relevant for computer-based
analysis, we also believe that the student needs to develop, through formal

Preface



Preface

vii

training in analysis methodology, the ability to estimate qualitatively the
behavior of a structure subjected to a given loading and to confirm qualitative
estimates with some simple manual computations.

Based on a review of the current structural engineering academic litera-
ture, it appears that the current set of undergraduate textbooks are focused
mainly on either (1) teaching manual analysis methods and applying them to
simple idealized structures or (2) reformulating structural analysis methods
in terms of matrix notation. The first approach is based on the premise that
intuition about structural behavior is developed as one works through the
manual computations, which, at times, may seem exhaustive. The second
approach provides the basis for developing and understanding computer
software codes but does not contribute toward developing intuition about
structural behavior.

Clearly there is a need for a text that provides a balanced treatment of both
classical and modern computer-based analysis methods in a seamless way
and also stresses the development of an intuitive understanding of structural
behavior. Engineers reason about behavior using simple models and intuition
that they have acquired through problem-solving experience. The approach
adopted in this text is to develop this type of intuition through computer
simulation which allows one to rapidly explore how the structure responds to
changes in geometry and physical parameters. We believe this approach
better prepares the reader for the practice of structural engineering.

Objectives

Structural engineers have two major responsibilities during the design pro-
cess. First, they must synthesize the structural system, i.e., select the geome-
try and the type of structural members that make up the structure. Second,
they must size the members such that the structure can comfortably support
the design loading. Creating a structural concept requires a deep knowledge
of structural behavior. Sizing the members requires information about the
internal forces resulting from the loading. These data are acquired through
intelligent application of analysis methods, mainly computer-based methods.
With these responsibilities in mind, we have selected the following
objectives for this book:

e Develop the reader’s ability to analyze structures using manual computa-
tional procedures.

» Educate the reader about structural behavior. We believe that a strong
analytical background based on classical analysis methodology combined
with computer simulation facilitates the development of an understanding
of structural behavior.

e Provide the reader with an in-depth exposure to computer-based analysis
methods. Show how computer-based methods can be used to determine,
with minimal effort, how structures respond to loads and also how to
establish the extreme values of design variables required for design
detailing.
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» Develop the reader’s ability to validate computer-based predictions of
structural response.

» Provide the reader with idealization strategies for reducing complex
structures to simple structural models.

o Develop an appreciation for and an awareness of the limitations of using
simple structural models to predict structural behavior through examples
which illustrate behavioral trends as structures become more complex.

Organization

We have organized this text into three parts. Parts I and II are intended to
provide the student with the necessary computational tools and also to
develop an understanding of structural behavior by covering analysis
methodologies, ranging from traditional classical methods through
computer-based methods, for skeletal-type structures, i.e., structures com-
posed of one-dimensional slender members. Part I deals with statically
determinate structures; statically indeterminate structures are covered in
Part II. Certain classical methods which we consider redundant have been
omitted. Some approximate methods which are useful for estimating the
response using hand computations have been included. Part III is devoted
to structural engineering issues for a range of structures frequently encoun-
tered in practice. Emphasis is placed on structural idealization, how one
identifies critical loading patterns, and how one generates the extreme values
of design variables corresponding to a combination of gravity, live, wind,
earthquake loading, and support settlement using computer software
systems.

Brief descriptions of the subject content for each part are presented below.

Part I discusses statically determinate structures. We start with an intro-
duction to structural engineering. Statically determinate structures are
introduced next. The treatment is limited to linear elastic behavior and static
loading. Separate chapters are devoted to different skeletal structural types
such as trusses, beams, frames, cables, curved members, footings, and
retaining walls. Each chapter is self-contained in that all the related analysis
issues for the particular structural type are discussed and illustrated. For
example, the chapter on beams deals with constructing shear and moment
diagrams, methods for computing the deflection due to bending, influence
lines, force envelopes, and symmetry properties. We find it convenient from
a pedagogical perspective to concentrate the related material in one location.
It is also convenient for the reader since now there is a single source point for
knowledge about each structural type rather than having the knowledge
distributed throughout the text. We start with trusses since they involve the
least amount of theory. The material on frames is based on beam theory, so it
is logical to present it directly after beam theory. Cables and curved members
are special structural types that generally receive a lower priority, due to time
constraints, when selecting a syllabus. We have included these topics here, as
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well as a treatment of footings and retaining walls, because they are statically
determinate structures. We revisit these structures later in Part III.

Part II presents methods for analyzing statically indeterminate structures
and applies these methods to a broad range of structural types. Two classical
analysis methods are described, namely, the force (also referred to as the
flexibility) method and the displacement (or stiffness) method. We also
present some approximate analysis methods that are based on various types
of force and stiffness assumptions. These methods are useful for estimating
the structural response due to lateral loads using simple hand computations.
Lastly, we reformulate the traditional displacement method as a finite ele-
ment method using matrix notation. The finite element formulation (FEM) is
the basis of most existing structural analysis software packages. Our
objectives here are twofold: first, we want to enable the reader to be able to
use FEM methods in an intelligent way, and second, we want the reader to
develop an understanding of structural behavior by applying analysis
methods to a broad range of determinate and indeterminate skeletal
structures. We believe that using computer analysis software as a simulation
tool to explore structural behavior is a very effective way of building up a
knowledge base of behavioral modes, especially for the types of structures
commonly employed in practice.

Part Il discusses typical structural engineering problems. Our objective
here is to expose the reader to a select set of activities that are now routinely
carried out by structural engineers using structural engineering software.
These activities are related to the approach followed to establish the “values”
for the design variables. Defining these values is the key step in the engi-
neering design process; once they are known, one can proceed to the design
detailing phase. Specific chapters deal with horizontal structures such as
multi-span girder, arch, and cable-stayed bridge systems, modeling of
three-dimensional vertical structures subjected to lateral loading, and vertical
structures such as low- and high-rise buildings subjected to gravity loading.
The topics cover constructing idealized structural models, establishing the
critical design loading patterns for a combination of gravity and live loading,
using analysis software to compute the corresponding design values for the
idealized structures, defining the lateral loading due to wind and earthquake
excitation for buildings, and estimating the three-dimensional response of
low-rise buildings subjected to seismic and wind loadings.

Course Suggestions

The following suggestions apply for students majoring in either civil engi-
neering or architecture. Depending on the time available, we suggest
organizing the material into either a two-semester or a three-semester
sequence of subjects.



Our recommendations for the three-semester sequence are as follows:

Structures |

The goal of this subject is to provide the skills for the analysis of statically
determinate trusses, beams, frames, and cables and to introduce some
computer-based analysis methods.

Chapters 1, 2, part of 3, part of 4, and the first part of 5

Structures Il

The objectives of this subject are to present both classical and computer-
based analysis methods for statically indeterminate structures such as multi-
span beams, gable frames, arches, and cable-stayed structures subjected to
various loadings. The emphasis is on using analysis methods to develop an
understanding of the behavior of structures.

Chapters 9, 10, 11, 12, 6, and the last part of 5

Structures Il

This subject is intended to serve as an introduction to the practice of
structural engineering. The material is presented as case studies for the two
most common types of structures, bridges, and buildings. Issues such as
geometrical configurations, idealized structural models, types and distribu-
tion of loadings, determination of the values of the design variables such as
the peak moment in a beam, force envelopes, and inelastic behavior are
discussed. Both the superstructure and the substructure components are
considered. Extensive use of computer software is made throughout the
subject. Recitation classes dealing with the design detailing of steel and
concrete elements can be taught in parallel with the lectures.

Chapters 13, 14, 15, 16, 7, and 8

The makeup of the two-semester sequence depends on how much back-
ground in mechanics and elementary structures the typical student has and
the goal of the undergraduate program. One possibility is to teach Structures I
and II described above. Another possible option is to combine Structures I
and II into a single subject offering together with Structures III. A suggested
combined subject is listed below.

Structures (Combined | + 1)

Chapters 3, 4 (partial), 9 (partial), 10, 11, and 12
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Features of the Text
Organization by Structural Type

The chapters are organized such that an individual chapter contains all the
information pertaining to a particular structural type. We believe this organi-
zation facilitates access to information. Since the basic principles are generic,
it also reinforces these principles throughout the development of successive
chapters.

Classical Analysis Methods

In-depth coverage of classical analysis methods with numerous examples
helps students learn fundamental concepts and develop a “feel” and context
for structural behavior.

Analysis by Hand Computation

The book helps teach students to do simple hand computing, so that as they
move into doing more complex computational analysis, they can quickly
check that their computer-generated results make sense.

Gradual Introduction of Computer Analysis

The text provides students with a gradual transition from classical methods
to computational methods, with examples and homework problems designed
to bring students along by incorporating computational methods when
most appropriate to in-depth coverage of finite element methods for skeletal
structures.

Example Problems
Example problems in each chapter illustrate solutions to structural analysis
problems, including some problems illustrating computer analysis. Most of

the example problems are based on real scenarios that students will encounter
in professional practice.

Units

Both SI and customary US units are used in the examples and homework
problems.

Homework Problems that Build Students’ Skills

An extensive set of homework problems for each chapter provides students
with more exposure to the concepts and skills developed in the chapters. The
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difficulty level is varied so that students can build confidence by starting with
simple problems and advancing toward more complex problems.

Comprehensive Breadth and Depth, Practical Topics

The comprehensive breadth and depth of this text means it may be used for
two or more courses, so it is useful to students for their courses and as a
professional reference. Special topics such as the simplifications associated
with symmetry and antisymmetry, arch-type structures, and cable-stayed
structures are topics that a practicing structural engineer needs to be
familiar with.

Cambridge, MA Jerome J. Connor
Lowell, MA Susan Faraji

Preface



Acknowledgments

We would like to thank our spouses Barbara Connor and Richard Hennessey
for their patience and moral support over the seemingly endless time required
to complete this text. We are most appreciative. We would also like to thank
our colleagues and students who provided us with many valuable suggestions
concerning the content and organization of the text. We are especially
indebted to Dr. Moneer Tewfik and Dr. Carlos Brebbia for their constructive
criticisms and enthusiastic support as the text was evolving into its final form.

xiii






Part I Statically Determinate Structures

1 Introduction to Structural Engineering. .. .............

1.1 Types of Structures and Structural Components. . . . . .
1.1.1 Structural Components . . . . ............
1.1.2 Types of Structures . . . ................
1.2 Critical Concerns of Structural Engineering. ........
1.2.1 Reactions. . ........................

1.2.2 Initial Stability. ... ..................
1.2.3 Loss of Stability Due to Material Failure . . .
1.2.4 Buckling Failure Mode . . . .............
1.2.5 Priorities for Stability . . .. .............
1.3 Typesof Loads. ............ .. ... ... ......
1.3.1 Source of Loads . . ...................
1.3.2 Properties of Loadings . . ...............
1.3.3 Gravity Live Loads . . . . ...............
1.34 Wind Loading . . . ....................
1.3.5 Snow Loading. . .....................
1.3.6 Earthquake Loading . . . ...............
1.4 Structural Design Philosophy . . .............. ...
1.5 Basic Analytical Tools of Structural Analysis. . . . ...

1.5.1 Concept of Equilibrium: Concurrent
Force System. . .....................
1.5.2 Concept of Equilibrium: Nonconcurrent

Force System. . .....................

S I N N N NGOt

[N T O T N R N R e i e e e e
~N O WN NN W NN

1.5.3 Idealized Structure: Free Body Diagrams. . .
1.5.4 Internal Forces. . ....................
1.5.5 Deformations and Displacements. . .. ... ..
1.5.6 Structural Behavior: Structural Analysis. . . .
1.5.7 The Importance of Displacements. . . . . . ..
1.6 Summary. .. ...
1.6.1 Objectives of the Chapter. . .............
1.6.2 Key Issues and Concepts Introduced.. . . . . ..

30
30
33
35
40
42
42
42

XV



XVi

Statically Determinate Truss Structures. . .............

2.1

2.2

23

24
25

2.6

2.7

2.8

Introduction: Types of Truss Structures. .. .........
2.1.1 Structural Idealization. . ...............
2.1.2 Historical Background . . ...............
Analysis of Planar Trusses . . . ..................
2.2.1 Equilibrium Considerations . . . ..........
222 Statically Determinate Planar Trusses. . . . . .
223 Stability Criterion. . ... ...............
224 Method of Joints: Planar Trusses. ... ... ..
225 Method of Sections . . . ................
2.2.6 Complex Trusses. .. ..................
Computation of Deflections. . .. ................
2.3.1 Introduction. . . ........ ... .. ... ...
232 Force—Deformation Relationship. .. ... ...
233 Deformation—Displacement Relations. . . . . .
234 Method of Virtual Forces. ..............
Influence Lines. . ..................... .. ...,
Analysis of Three-Dimensional Trusses. ...........
25.1 Introduction. . . ......... ... ... ......
252 Restraining Rigid Body Motion. . ... ... ..
253 Static Determinacy. . .................
254 Method of Joints for 3-D Trusses. . .......
Matrix Formulation: Equilibrium Analysis
of Statically Determinate 3-D Trusses. ............
2.6.1 Notation. ............ .. ... .........
2.6.2 Member—Node Incidence . . .. ...........
2.6.3 Force Equilibrium Equations. . . .........
2.6.4 Stability . . . ... ... . i i oL
2.6.5 Matrix Formulation: Computation

of Displacements . . . ..................
Summary. . .......c. i
2.7.1 Objectives of the Chapter. . .............
2.1.2 Key Facts and Concepts. .. .............
Problems........... ... . ... .. . ..

Statically Determinate Beams . . . . ... ................

3.1
3.2

Definition of a Prismatic Beam. ... ..............
Stability and Determinacy of Beams:
Planar Bending . . .. ... ... .. ... .. . ... ...
3.2.1 Fixed Support: Planar Loading . . ... ......
322 Hinged Support: Planar Loading . . . . ... ..
323 Roller Support: Planar Loading. . . .......
324 3-D Fixed Support. . ..................
3.2.5 3-D Hinged Support. . ................
3.2.6 3-D Roller Support: Z Direction. .. .......
3.2.7 Static Determinacy: Planar

Beam Systems. . .....................

Contents



Contents

33
34
3.5

3.6

3.7

3.8
39

3.10

3.11

3.12

3.2.8 Unstable Support Arrangements. . . .......
329 Beam with Multiple Supports. ... ........
3.2.10 Beam with a Moment Release. . . ... ... ..
Reactions: Planar Loading . . .. .................
Internal Forces: Planar Loading . . . ..............
Differential Equations of Equilibrium:

Planar Loading. . . ........ ... ... ... ... .....
Displacement and Deformation of Slender

Beams: Planar Loading . . . ....................
3.6.1 Moment: Curvature Relationship. .. ... ...
3.6.2 Qualitative Reasoning About Deflected

3.6.3 Moment Area Theorems. . ... ..........
3.64 Computing Displacements with the Method

of Virtual Forces. . ...................
3.6.5 Computing Displacements

for Non-prismatic Members. . . ..........
Deformation—Displacement Relations
for Deep Beams: Planar Loading . . .. ............
Torsion of Prismatic Members. . .. ..............
Symmetry and Anti-symmetry . .. ...............
3.9.1 Symmetry and Anti-symmetry:

Shear and Moment Diagrams. ... ........
39.2 Symmetry and Anti-symmetry:

Deflected Shapes. . ...................
Influence Lines and Force Envelopes
for Statically Determinate Beams. .. .............
3.10.1  The Engineering Process. ..............
3.10.2  Influence Lines and Force Envelopes. . . . . .

3.11.1  Objectives of the Chapter. . .............
3.11.2 Key Facts and Concepts. . ..............
Problems. ...... ... ... . . . i

Statically Determinate Plane Frames. .. ...............

4.1
4.2
4.3

4.4

4.5
4.6

4.7

Definition of Plane Frames. ... .................
Statical Determinacy: Planar Loading . . . ... .......
Analysis of Statically Determinate Frames. . . . . .. ..

4.3.1 Behavior of Portal Frames:
Analytical Solution . . . . ...............
Pitched Roof Frames. . .. .....................

44.1 MemberLoads. . ....................
4.4.2 Analytical Solutions for Pitched
Roof Frames. .......................

Deflection of Frames Using the Principle
of Virtual Forces. . . . ................. ... ...



xviii

4.8 Computer-Based Analysis: Plane Frames. . . . . ... .. 358
4.9 Plane Frames: Out of Plane Loading . . . .. ......... 359
410 Summary. ... ... 363
4.10.1  ODbjJeCtiVeS . . . v 363
4102 KeyConcepts. .........ouviiinnnn... 363
411 Problems......... ... .. . .. . 363
Cable Structures. . . .......... ... ... ... ... ... ... .. 383
5.1 Introduction. . ...... ... ... . ... ... 383
5.2 Cables Subjected to Concentrated Loads . . . ........ 386
5.2.1 Horizontal Cables. . .. ................ 386
5.2.2 Inclined Cables. ..................... 393
53 Cables Subjected to Distributed Loading . . .. ....... 397
5.3.1 Horizontal Cable: Uniform Loading
per Horizontal Projection. ... ........... 397
5.3.2 Inclined Cables. ..................... 399
54 Advanced TOPICS . .« v oo vt e e e 403
5.4.1 ArcLength........ ... ... ... . ... 403
54.2 Equivalent Axial Stiffness. . ............ 407
543 Equivalent Axial Stiffness
for an Inclined Cable. . ................ 409
544 Cable Shape Under Self Weight:
Catenary. ..........coiiinneen. 412
5.5 Summary . . ...... ..ot . 415
5.5.1 Objectives . . oo v vt 415
5.5.2 KeyConcepts. ..........covvi... 416
5.6 Problems. ...... ... ... ... . . . 416
Statically Determinate Curved Members. ... ........... 423
6.1 A Brief History of Arch-Type Structures. .......... 423
6.2 Modeling of Arch Structures. ................... 429
6.3 Internal Forces in Curved Members. . ... ......... 431
6.4 Parabolic Geometry. . . .........ov v, 435
6.5 Method of Virtual Forces for Curved Members. . . . . . 442
6.5.1 Non-shallow Slender Curved Members. . . . . 443
6.5.2 Shallow Slender Curved Members. . . ... .. 443
6.5.3 Circular Curved Member. .. ............ 447
6.6 Analysis of Three-Hinged Arches. ............... 450
6.7 Summary. ... ... 463
6.7.1 ODbjJectiVes . . o oo oo e e 463
6.7.2 Key Factors and Concepts. . .. .......... 463
6.8 Problems. .......... ... . ... . i 464
Shallow Foundations. . . . .......................... 475
7.1 Introduction. . ........... ... ... . ... 475
7.1.1 Types of Foundations . . . .............. 475
7.1.2 Types of Shallow Foundations. . ......... 476

7.1.3 Soil Pressure Distribution. . . ... ........ 477

Contents



Contents

7.2 An Analytical Method for Evaluating the Soil Pressure
Distribution Under a Footing . . .. ...............

7.3 Dimensioning a Single Rectangular Footing . . . . . ...
7.4 Dimensioning Combined Footings. . .. ...........
7.5 Dimensioning Strap Footings. . . ................
7.6 Summary. .. ...

7.6.1 Objectives of the Chapter. . .............
7.7 Problems. .......... ... ... i

Vertical Retaining Wall Structures. . . ................
8.1 Introduction. . ........ ... ... L.
8.1.1 Types of Retaining Walls. . . ............
8.1.2 GravityWalls. . . ....... . ... ... ...
8.1.3 Cantilever Walls. . ...................
8.2 Force Due to the Backfill Material . . . . ...........
8.2.1 Different Types of Materials. . ..........
8.2.2 Rankine Theory: Active Soil Pressure . . . . ..
8.3 Stability Analysis of Retaining Walls. . ...........
8.4 Pressure Distribution Under the Wall Footing . . . . . . .
8.5 Critical Sections for Design of Cantilever Walls. . . . .
8.6 Summary. .. ...
8.6.1 Objectives of the Chapter. . .............
8.6.2 Key Concepts and Facts . . . .............
8.7 Problems.......... ... .. ... .. i i

Part IT Statically Indeterminate Structures

9

10

The Force Method . . . .. ...... ... ... ... .. ... ... ....

9.1 Introduction. . . ....... ... .. i L

9.2 Maxwell’s Law of Reciprocal Displacements. . . . . . .

9.3 Application of the Force Method to Beam-Type
Structures . . . ..o

9.3.1 Beam with Yielding Supports............
9.3.2 Fixed-Ended Beams . ..................
9.33 Analytical Solutions for Multi-Span

9.4 Application to Arch-Type Structures. . ............
9.5 Application to Frame-Type Structures. . ...........
9.5.1 General Approach. . ............... ...
9.5.2 Portal Frames. . .. ...................
9.5.3 Pitched Roof Frames . . . ...............
9.6 Indeterminate Trusses. . .. ....................
9.7 Summary. . ...
9.7.1 Objectives. . ..o vv et
9.7.2 Key Factors and Concepts. ... ..........
9.8 Problems. . ...... ... ... ...

The Displacement Method . . . ... ....................
10.1  Introduction................inueiiiuninnnnnnn
10.2  Displacement Method Applied to a Plane Truss. . .. ..

Xix



XX

11

10.3  Member Equations for Frame-Type Structures. . . . . ..
104  The Displacement Method Applied
to Beam Structures. . ....... ... .. o
104.1 Two-SpanBeams....................
1042  Multi-Span Beams . .. .................
10.5 The Displacement Method Applied
toRigid Frames. ... ........... . ... .. .......
10.5.1  Portal Frames: Symmetrical Loading. . . . . .
10.5.2  Portal Frames: Anti-symmetrical Loading . . .
10.6  The Moment Distribution Solution Procedure
for Multi-span Beams . . .. .....................
10.6.1 Introduction........................
10.6.2  Incorporation of Moment Releases
at SUPPOItS. . . oo
10.6.3  Moment Distribution for Multiple
FreeNodes.........................
10.7  Moment Distribution: Frame Structures. . ..........
10.7.1  Frames: No Sideway . .................
10.7.2  Frames with Sideway . . . ...............
10.8  Plane Frames: Out of Plane Loading . . .. ..........
10.8.1  Slope-Deflection Equations: Out
of Plane Loading . . .. .................
10.9  Nonlinear Member Equations for Frame-Type
SHUCIUIES .« .« it e e e e e e e e e
10.9.1  Geometric Nonlinearity . . . .............
10.9.2  Geometric Equations Accounting
for Geometric Nonlinearity . . .. .........
10.9.3  Solution for Compressive Axial Load. . . ...
10.9.4  Nonlinear Member End Actions—End
Displacement Equations . . . .............
10.10  Summary . .. ... ...ttt
10.10.1 Objectives. .. ....ccvvvvi...
10.10.2 Key Factors and Concepts. ... ..........
10.11 Problems............ .. . . ...

Approximate Methods for Estimating Forces
in Statically Indeterminate Structures. . ...............
11.1  Introduction............... ... ... oo,
11.2  Multi-span Beams: Gravity Loading . . ... .........
11.2.1  Basic Data-Moment Diagrams. . .........
11.2.2  Quantitative Reasoning Based
on Relative Stiffness. . ................
11.3  Multistory Rigid Frames: Gravity Loading. . . . ... ..
11.4  Multistory Rigid Frames: Lateral Loading. . ........
1141 Portal Method . . .....................
11.42  Shear Stiffness Method: Low-Rise
Rigid Frames. ... ...................
11.43  Low-Rise Rigid Frames with Bracing. . . . ..

Contents



Contents

11.5 High-Rise Rigid Frames: The Cantilever Method . . . . .
11.6  Summary. .........uiitti ...

11.6.1  Objectives of the Chapter...............

11.6.2 KeyConcepts. .. ..... ...,
117 Problems.......... ... ... .. . i

12 Finite Element Displacement Method for Framed

Structures. . . ... ... ... ...
121 Introduction...................ciiuiiiinnn.
12.2  Key Steps of the Finite Element Displacement

12.3
12.4
12.5
12.6

12.7

12.8
12.9

12.10

Method for Member Systems . . .. ...............
Matrix Formulation of the Member Equations:
Planar Behavior. . . ....... ... ... ...
Local and Global Reference Frames. . ............
Nodal Force Equilibrium Equations. . .. ..........
Introduction of Nodal Supports. .. ...............
12.6.1  Systematic Approach..................
Specialized Formulation for Beam and Truss
Structures. . . ...
12.7.1  The Steps Involved for Plane Truss
StUCtUIES . « v v v et e e e e e
12.7.2  The Steps Involved for Beam Structures
with Transverse Loading—Planar
Behavior............ ... ... ... ...
Three-Dimensional Formulation. . . ..............
Summary. . ...
129.1 Objectives. .. ... ...
Problems. .. ... ... ... ...

Part III Practice of Structural Engineering

13 Multi-span Horizontal Structures. . . .................

13.1
13.2

13.3

13.4

The Engineering Process for Girders. .. ...........
Influence Lines for Indeterminate Beams
Using Miiller-Breslau’s Principle . . . . ............
Engineering Issues for Multi-span Girder
Bridges. .. ...
13.3.1  Geometric Configurations. . ... .........
13.3.2  Choice of Span Lengths. . ..............
13.3.3  Live Loads for Multi-span Highway

Bridge Girders: Moment Envelopes. . . . . ..
13.3.4  Loading Due to Support Settlements. . . . ...
Case Studies. . ........... ... ... .. .. ...
13.4.1  Case Study I: A Three-Span Continuous

Girder Bridge . . . ................. ...
13.42  Case Study II: Two-Hinged Parabolic

Arch Response—Truck Loading . . ........

xXi



xXii

14

15

16

13.4.3  Case Study III: Three-Span Parabolic

Arch Response—Truck Loading . . .. ...... 902

13.4.4  Case Study IV: Cable-Stayed Bridge . . . . . . 903

135 Summary. . ... 907
13.5.1 Objectives. .. ... 907

13.5.2 Key Facts and Concepts. .. ............. 907

136 Problems............ ... ... .. 908
Lateral Load Issues for Buildings. . . ... .............. 915
14.1  Types of Multistory Building Systems. . . .......... 915
142 Treatment of Lateral Loading. . .. ............... 917
1421 WindLoading....................... 918

14.2.2  Earthquake Loading. ................. 920

143  Building Response Under Lateral Loads. . . ........ 925
143.1  Center of Twist: One-Story Frame . . . . . . .. 926

14.3.2  Center of Mass: One-Story Frame . . . . . ... 937

14.3.3  One-Story Frame: General Response.. . . . . . 940

143.4  Multistory Response . . .. .............. 943

143.5  Matrix Formulation: Shear Beam Model. ... 946

14.4  Response of Symmetrical Buildings. . ............ 949
145 Summary. ...... ... 964
14.5.1 Objectives. . ......covuinnee. .. 964

1452 Key Facts and Concepts. .. ............. 965

146 Problems............ ... ... . .. 965
Vertical Loads on Multistory Buildings. . . . ............ 975
151 LoadsonFrames............................ 975
15.2  Treatment of Gravity Floor Loads. . .............. 977
153  Live Load Patterns for Frame Structures. . . ........ 980
154 A Case Study: Four-Story Building . . .. ........... 989
15.4.1  Building Details and Objectives. . ........ 989

15.4.2  Case (1) Frames Are Braced in Both N-S

and E-W Directions: Computation

Details. . ....... ... ... ... 991
15.4.3  Case (2) Frames Are Rigid in the N-S

Direction But Remain Braced

in the E-W Direction. . ................ 997

1544 Discussion. .. ..........couiuiunen... 1005

155 Summary...... ... 1006
155.1 Objectives. . ... 1006

1552 KeyConceptS. ........ccouneeeenn.. 1006

156 Problems. ....... ... ... . 1006
Inelastic Response of Structures. . .................... 1013
16.1  Stress—Strain Behavior of Structural Steels. . ... .... 1013
16.2  Inelastic Moment—Curvature Relationships. . ... .. .. 1015

16.3  Limit Analysis: A Simplified Approach............ 1018

Contents



Contents

Xxiii

Nonlinear Analysis Scheme. .. ................. 1026

Summary . . ...l i 1031

16.5.1 Objectives. .. ...t .. 1031

Problems. ....... ... ... . ... i i 1032

.......................................... 1035






Chapter 1

Fig. 1.1c Offshore Platform, Brazil. This image was produced by Agéncia
Brasil, a public Brazilian news agency and published under a Creative
Commons Attribution License. It was accessed in February 2012 from
http://en.wikipedia.org/wiki/File:Oil_platform_P-51_(Brazil).jpg

Fig. 1.1a Skyscraper under construction in Kutuzovsky Prospekt, Moscow,
Russia. This image, created by Denghu, is licensed under a Creative
Commons Attribution 3.0 Unported License. The image was accessed in
April 2012 from http://commons.wikimedia.org/wiki/File:Skyscraper_
Kutuzovsky_Prospekt_Moscow.jpg

Fig. 1.8 Millau Viaduct, Author: Delphine DE ANDRIA Date: 18.11.2007,
from FreeMages. Accessed May 2012 from http://www.freemages.co.uk/
browse/photo-916-millau-viaduct.html. This work is licensed under a
Creative Commons Attribution 3.0 Unported License.

Chapter 2
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reviewed on January 18, 2011 (2011-01-18) by the FlickreviewR robot and
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cc-by-2.0 (Creative Commons Attribution 2.0). It was accessed in February
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Fig. 13.34 Typical cable-stayed scheme. This work has been released into the
public domain by its author, Kelly C. Cook. This applies worldwide. The
image was accessed in February 2012 from http://commons.wikimedia.org/
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A structure is an assemblage of components which are connected in such a way that the structure can
withstand the action of loads that are applied to it. These loads may be due to gravity, wind, ground
shaking, impact, temperature, or other environmental sources. Structures are everywhere in the built
environment. Buildings, bridges, tunnels, storage tanks, and transmission lines are examples of a
“structure.” Structural engineering is the discipline which is concerned with identifying the loads that
a structure may experience over its expected life, determining a suitable arrangement of structural
members, selecting the material and dimensions of the members, defining the assembly process, and
lastly monitoring the structure as it is being assembled and possibly also over its life.

In Part I, we first present an overview of structural engineering so that the reader can develop an
appreciation for the broad range of tasks that structural engineers carry out and the challenges that
they face in creating structures which perform satisfactorily under the loadings that they are subjected
to. We then discuss a particular subgroup of structures called statically determinate structures. This
subgroup is relatively easy to deal with analytically since only equilibrium concepts are involved.
Also, most structures belong to this category. Trusses, beams, frames, cables, curved members,
shallow foundations, and vertical retaining walls are described in separate chapters. The last two
topics are not normally covered in elementary texts, but we have included them here for
completeness.

In general, all structures can be classified as either statically determinate or statically indetermi-
nate. Part IT describes techniques for dealing with statically indeterminate structures.

Part III describes how the methodologies presented in Parts I and II are applied to “engineer”
various types of bridges and buildings. This section is intended to identify the key issues involved in
structural engineering practice.



Abstract

A structure is an assemblage of components which are connected in such a
way that the structure can withstand the action of loads that are applied to
it. These loads may be due to gravity, wind, ground shaking, impact,
temperature, or other environmental sources. Examples of structures
employed in civil infrastructure are buildings, bridges, dams, tunnels,
storage tanks, and transmission line towers. Non-civil applications include
aerospace structures such as airplane fuselages, missiles; naval structures
such as ships, offshore platforms; and automotive structures such as cars
and trucks. Structural engineering is the discipline which is concerned
with identifying the loads that a structure may experience over its
expected life, determining a suitable arrangement of structural members,
selecting the material and dimensions of the members, defining the
assembly process, and lastly monitoring the structure as it is being assem-
bled and possibly also over its life.

In this chapter, we describe first the various types of structures. Each
structure is categorized according to its particular function and the config-
uration of its components. We then discuss the critical issues that a
structural engineer needs to address when designing or assessing the
adequacy of a structure. The most important issue is preventing failure,
especially a sudden catastrophic failure. We describe various failure
modes: initial instability, material failure, and buckling of individual
structural components. In order to carry out a structural design, one
needs to specify the loading which is also a critical concern. Fortunately,
the technical literature contains considerable information about loadings.
We present here an overview of the nature of the different loads and
establish their relative importance for the most common civil structures.
Conventional structural design philosophy and the different approaches
for implementing this design strategy are described next. Lastly, we
briefly discuss some basic analytical methods of structural engineering
and describe how they are applied to analyze structures.

© Springer International Publishing Switzerland 2016 3
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4 1 Introduction to Structural Engineering

1.1 Types of Structures and Structural Components

Structures are everywhere in the built environment. Buildings, bridges, tunnels, storage tanks, and
transmission lines are examples of a “structure.” Structures differ in their makeup, i.e., the type and
configuration of the components, and also in their function. Our approach to describing a structure is
based on identifying a set of attributes which relate to these properties.

1.1.1 Structural Components

The components are the basic building blocks of a structure. We refer to them as structural elements.
Elements are classified into two categories according to their geometry [1]:

1. Line Elements—The geometry is essentially one-dimensional, i.e., one dimension is large with
respect to the other two dimensions. Examples are cables, beams, columns, and arches. Another
term for a line element is member.

2. Surface Elements—One dimension is small in comparison to the other two dimensions. The
elements are plate-like. Examples are flat plates, curved plates, and shells such as spherical,
cylindrical, and hyperbolic paraboloids.

1.1.2 Types of Structures

A structure is classified according to its function and the type of elements used to make up the
structure. Typical structures and their corresponding functions are listed in Table 1.1 and illustrated in
Fig. 1.1. A classification according to makeup is listed in Table 1.2 and illustrated in Fig. 1.2.

1.2  Critical Concerns of Structural Engineering

Of primary concern to a structural engineer is ensuring that the structure will not collapse when
subjected to its design loading. This requires firstly that the engineer properly identify the extreme
loading that the structure may experience over its design life and secondly, ensure that the forces
generated internally within the structure due to external loading satisfy the conditions for force
equilibrium. In general, a structure will deform, i.e., change its shape, when loaded. It may also

Table 1.1 Structures classified by function

Structural type Function

Building Provide shelter above ground

Bridge Provide means of traversing above ground over a site

Tunnel Provide means of traversing underground through a site

Tower Support transmission lines and broadcasting devices

Retaining walls Retain earth or other material

Containments Provide means of storage of materials, also enclose dangerous devices such as nuclear reactors
Platforms Provide a platform for storage of materials and machinery either onshore or offshore
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Building

Tunnel

Fig. 1.1 Examples of typical structures classified by function

move as a rigid body if not properly restrained. Certain structures such as airplanes and automobiles
are designed to move. However, civil structures are generally limited to small motion due to
deformation, and rigid body motion is prohibited. Identifying the design loads is discussed later in
this chapter. We focus here on the force equilibrium requirement for civil structures.

1.2.1 Reactions

Civil structures are connected to the ground at certain points called supports. When the external
loading is applied to the structure, the supports develop forces which oppose the tendency of the
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Offshore platforms

Bridge

Fig. 1.1 (continued)

structure to move. These forces are called reactions [2]. The nature and number of reactions depends
on the type of support. Figure 1.3 shows the most common types of idealized structural supports for
any planar structure. A roller support allows motion in the longitudinal direction but not in the
transverse direction. A hinge prevents motion in both the longitudinal and transverse directions but
allows rotation about the pin connection. Lastly, the clamped (fixed) support restrains rotation as well
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Table 1.2 Structures classified by makeup

Structural type | Composition

Frame * Composed of members rigidly or semirigidly connected in rectangular or triangular patterns
« May be contained in a single plane (plane frame, plane grid), or in a 3D configuration (space
frame)
Truss * A type of framed structure where the members are connected together at their ends with
frictionless pins (plane or space truss)
Girder/beam « Composed of straight members connected sequentially (end to end)

« An additional descriptor related to the type of member cross section is used
Examples are plate girders, box girders, and tub girders

Arch ¢ Curved beams (usually in one plane)

Cable « Composed of cables and possibly other types of elements such as girders

Examples are cable-stayed bridges and tensioned grids

Shell « Composed of surface elements and possibly also line elements such as beams

The elements may be flat (plate structures) or curved (spherical or cylindrical roof structures)

as translation with two reaction forces and one moment. Three-dimensional supports are similar in
nature. There is an increase from 2 to 3 and from 3 to 6 in the number of reactions for the 3D hinge
and a clamped support.

1.2.2 Initial Stability

If either the number or nature of the reactions is insufficient to satisfy the equilibrium conditions, the
structure is said to be initially unstable. Figure 1.4a illustrates this case. The structure consists of a
triangular arrangement of members that are pinned at their ends. This combination of members forms
arigid body. However, the arrangement is supported on two roller supports which offer no resistance
to horizontal motion, and consequently the structure is initially unstable. This situation can be
corrected by changing one of the roller supports to a hinge support, as shown in Fig. 1.4b. In general,
a rigid body is initially stable when translational and rotational motions are prevented in three
mutually orthogonal directions.

Even when the structure is adequately supported, it still may be initially unstable if the members
are not properly connected together to provide sufficient internal forces to resist the applied external
forces. Consider the four member pin-connected planar structure shown in Fig. 1.5a. The horizontal
force, P, cannot be transmitted to the support since the force in member 1-2 is vertical and therefore
cannot have a horizontal component. Adding a diagonal member, either 1-3 or 2-4, would make the
structure stable.

In summary, initial instability can occur either due to a lack of appropriate supports or to an
inadequate arrangement of members. The test for initial instability is whether there are sufficient
reactions and internal member forces to equilibrate the applied external loads. Assuming the structure
is initially stable, there still may be a problem if certain structural components fail under the action of
the extreme loading and cause the structure to /ose its ability to carry load. In what follows, we discuss
various failure scenarios for structures which are loaded.
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Frame

Bridge girder

Space Truss

Fig. 1.2 Structures classified by makeups
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Shell

Arch bridge

Cable-girder system (suspension bridge)

Fig. 1.2 (continued)
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Fig. 1.5 Stabilizing an
initially unstable planar
structure
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1.2.3 Loss of Stability Due to Material Failure

In the first scenario, the level of stress in a component reaches the ultimate stress for the material,
causing a material failure, which, in turn, triggers a failure of the component. This type of failure
depends on the stress—strain relationship for the material. Figure 1.6 illustrates the tensile
stress—extensional strain response of tension specimens fabricated from two different types of
materials [3, 4]. The behavior of the first material is essentially linear up to a peak stress, oy, at
which point the material fractures and loses its ability to carry any load. This behavior is referred to as
brittle behavior and obviously is not desirable from a structural behavior perspective.

The second response is completely different. The initial behavior is linear up to a certain stress
value defined as the yield stress, oy. For further straining, the stress remains essentially constant.
Eventually, the material stiffens and ultimately fails at a level of strain which is considerably greater
than the yield strain, . This behavior is typical for ductile materials such as the steels used in civil
structures. In practice, the maximum allowable strain is limited to a multiple of the yield strain. This
factor is called the ductility ratio (x) and is on the order of 5. Ductile behavior is obviously more
desirable since a member fabricated out of a ductile material does not lose its load capacity when
yielding occurs. However, it cannot carry additional loading after yielding since the resistance
remains constant.

From a design perspective, the structural engineer must avoid brittle behavior since it can result in
sudden catastrophic failure. Ductile behavior and the associated inelastic deformation are acceptable
provided that the ductility demand is within the design limit. Limit state design is a paradigm for
dimensioning structural components that assumes the component is at its limit deformation state and
calculates the force capacity based on the yield stress [5]. This topic is dealt with in Chap. 16.
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1.2.4 Buckling Failure Mode

Another possible failure scenario for a structural component is buckling. Buckling is a phenomenon
associated with long slender members subjected to compressive loading [3, 4]. We illustrate this
behavior using the member shown in Fig. 1.7a. As the axial loading is increased, the member remains
straight until a critical load value is reached. At this point, the member adopts a deflected configura-
tion (Fig. 1.7b) with the load remaining constant. The member force remains essentially constant as
the end deflection, e, is increased (Fig. 1.7c). This load deflection behavior is similar to inelastic
action in the sense that the member experiences a large deflection with essentially no increase in load.
For flexible members, the critical load for buckling (P,,) is generally less than the axial compressive
strength based on yielding, therefore buckling usually controls the design.

1.2.5 Priorities for Stability

Finally, summarizing and prioritizing the different concerns discussed in the previous sections, the
highest priority is ensuring the structure is initially stable. If not stable, the structure will fail under an
infinitesimal load. The second priority is avoiding buckling of the members. Buckling can result in
large deformation and significant loss in load capacity for a member, which could cause the structure
to lose its ability to support the applied loading. The third priority is limiting inelastic deformation of
members under the extreme design loading. Although there is no loss in load capacity, the member
cannot provide any additional load capacity, and therefore the deformation will increase significantly
when the external loading is increased. We discuss this topic further in Sect. 1.4 where we present
design philosophies.

1.3  Types of Loads

As described above, structures must be proportioned so that they will not fail or deform excessively
under the loads they may be subjected to over their expected life. Therefore, it is critical that the
nature and magnitude of the loads they may experience be accurately defined. Usually, there are a
number of different loads, and the question as to which loads may occur simultaneously needs to be
addressed when specifying the design loading. In general, the structural engineer works with codes,
which specify design loadings for various types of structures. General building codes such as the
“International Building Code” [6] specify the requirements of governmental agencies for minimum
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design loads for structures and minimum standards for construction. Professional technical societies
such as the American Society of Civil Engineers (ASCE) [7], the American Concrete Institute (ACI)
[8], the American Institute of Steel Construction (AISC) [9], and the British Standards Institute (BSI)
[10] publish detailed technical standards that are also used to establish design loads and structural
performance requirements. In what follows, we present an overview of the nature of the different
loads and provide a sense of their relative importance for the most common civil structures.

1.3.1 Source of Loads

Loads are caused by various actions: the interaction of the structure with the natural environment;
carrying out the function they are expected to perform; construction of the structure; and terrorist
activities.

1.3.1.1 Interaction with the Environment
Interaction with the natural environment generates the following types of loads:

» Gravity—gravitational force associated with mass

* Snow—gravity-type loading

*  Wind—steady flow, gusts

» Earthquake—ground shaking resulting from a seismic event

» Water—scour, hydrostatic pressure, wave impact

» Ice—scour, impact

 Earth pressure—soil—structure interaction for foundations and underground structures
e Thermal—seasonal temperature variations

The relative importance of these sources depends on the nature of the structure and the geograph-
ical location of the site. For example, building design is generally governed by gravity, snow, wind,
and possibly earthquake loads. Low-rise buildings in arctic regions tend to be governed by snow
loading. Underground basement structures and tunnels are designed for earth pressure, hydrostatic
pressure, and possibly earthquake loads. Gravity is the dominant source of load for bridge structures.
Wave and ice action control the design of offshore platforms in coastal arctic waters such as the coasts
of Alaska and Newfoundland. Structures located in California need to be designed for high seismic
load. Structures located in Florida need to be designed for high wind load due to hurricanes. Thermal
loads occur when structural elements are exposed to temperature change and are not allowed to
expand or contract.

1.3.1.2 Function

Function-related loads are structure specific. For bridges, vehicular traffic consisting of cars, trucks,
and trains generates gravity-type load, in addition to the self-weight load. Office buildings are
intended to provide shelter for people and office equipment. A uniformly distributed gravity floor
load is specified according to the nature of the occupancy of the building. Legal offices and libraries
tend to have a larger design floor loading since they normally have more storage files than a normal
office. Containment structures usually store materials such as liquids and granular solids. The
associated loading is a distributed internal pressure which may vary over the height of the structure.



14 1 Introduction to Structural Engineering

1.3.1.3 Construction

Construction loading depends on the process followed to assemble the structure. Detailed force
analyses at various stages of the construction are required for complex structures such as segmented
long-span bridges for which the erection loading dominates the design. The structural engineer is
responsible for approving the construction loads when separate firms carry out engineering and
construction. A present trend is for a single organization to carry out both the engineering design
and construction (the design-build paradigm where engineering companies and construction
companies form a joint venture for the specific project). In this case, a team consisting of structural
engineers and construction engineers jointly carries out the design. An example of this type of
partnering is the construction of the Millau Viaduct in southwestern France, shown in Fig. 1.8. The
spans were constructed by cantilevering segments out from existing piers, a technically challenging
operation that required constant monitoring. The bridge piers are the highest in the world: the central
pier is 280 m high.

1.3.1.4 Terrorist Loads

Terrorist loads are a new problem for structural engineers, driven primarily by the need to protect
essential facilities from terrorist groups. Design criteria are continuously evolving, and tend to be
directed more at providing multilevel defense barriers to prevent incidents, rather than to design for a
specific incident. Clearly, there are certain incidents that a structure cannot be designed to safely
handle, such as the plane impacts that destroyed the World Trade Center Towers. Examining
progressive collapse mechanisms is now required for significant buildings and is the responsibility
of the structural engineer.

Fig. 1.8 Millau Viaduct
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1.3.2 Properties of Loadings

The previous discussion was focused on the source of loadings, i.e., environmental, functional,
construction, and terrorist activity. Loadings are also characterized by attributes, which relate to
properties of the loads. Table 1.3 lists the most relevant attributes and their possible values.

Duration relates to the time period over which the loading is applied. Long-term loads, such as
self-weight are referred to as dead loads. Loads whose magnitude or location changes are called
temporary loads. Examples of temporary loads are the weight of vehicles crossing a bridge, stored
items in buildings, wind and seismic loads, and construction loads.

Most loads are represented as being applied over a finite area. For example, a line of trucks is
represented with an equivalent uniformly distributed load. However, there are cases where the loaded
area is small, and it is more convenient to treat the load as being concentrated at a particular point. A
member partially supported by cables such as a cable-stayed girder is an example of concentrated
loading.

Temporal distribution refers to the rate of change of the magnitude of the temporary loading with
time. An impulsive load is characterized by a rapid increase over a very short duration and then a drop
off. Figure 1.9 illustrates this case. Examples are forces due to collisions, dropped masses, brittle
fracture material failures, and slamming action due to waves breaking on a structure. Cyclic loading
alternates in direction (+ and —) and the period may change for successive cycles. The limiting case
of cyclic loading is harmonic excitation where the amplitude and period are constant. Seismic
excitation is cyclic. Rotating machinery such as printing presses, electric generators, and turbines
produce harmonic excitation on their supports when they are not properly balanced. Quasi-static
loading is characterized by a relatively slow build up of magnitude, reaching essentially a steady
state. Because they are applied slowly, there is no appreciable dynamic amplification and the
structure responds as if the load was a static load. Steady winds are treated as quasi-static; wind
gusts are impulsive. Wind may also produce a periodic loading resulting from vortex shedding. We
discuss this phenomenon later in this section.

The design life of a structure is that time period over which the structure is expected to function
without any loss in operational capacity. Civil structures have long design lives vs. other structures
such as motorcars, airplanes, and computers. A typical building structure can last several centuries.
Bridges are exposed to more severe environmental actions, and tend to last a shorter period, say
50-75 years. The current design philosophy is to extend the useful life of bridges to at least 100 years.

Table 1.3 Loading attributes

Attribute ‘ Value

Duration ‘ Temporary or permanent

Spatial distribution ‘ Concentrated or distributed

Temporal distribution ‘ Impulsive; cyclic; quasi-static

Degree of certainty ‘ Return period; probability of occurrence
Fig. 1.9 Temporal a b c

variation of loading. (a) Force Force Force
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The Millau viaduct shown in Fig. 1.8 is intended to function at its full design capacity for at least
125 years.

Given that the natural environment varies continuously, the structural engineer is faced with a
difficult problem: the most critical natural event, such as a windstorm or an earthquake that is likely to
occur during the design life of the structure located at a particular site needs to be identified. To
handle this problem, natural events are modeled as stochastic processes. The data for a particular
event, say wind velocity at location x, is arranged according to return period which can be interpreted
as the average time interval between occurrences of the event. One speaks of the 10-year wind, the
50-year wind, the 100-year wind, etc. Government agencies have compiled this data, which is
incorporated in design codes. Given the design life and the value of return period chosen for the
structure, the probability of the structure experiencing the chosen event is estimated as the ratio of the
design life to the return period. For example, a building with a 50-year design life has a 50 % chance
of experiencing the 100-year event during its lifetime. Typical design return periods are ~50 years for
wind loads and between 500 and 2500 years for severe seismic loads.

Specifying a loading having a higher return period reduces the probability of occurrence of that
load intensity over the design life. Another strategy for establishing design loads associated with
uncertain natural events is to increase the load magnitude according to the importance of the
structure. Importance is related to the nature of occupancy of the structure. In ASCE Standards
7-05 [7], four occupancy categories are defined using the potential hazard to human life in the event of
a failure as a basis. They are listed in Table 1.4 for reference.

The factor used to increase the loading is called the importance factor, and denoted by /. Table 1.5
lists the values of / recommended by ASCE 7-05 [7] for each category and type of loading.

For example, one increases the earthquake loading by 50 % for an essential structure (category 4).

1.3.3 Gravity Live Loads

Gravitational loads are the dominant loads for bridges and low-rise buildings located in areas, where
the seismic activity is moderate. They act in the downward vertical direction and are generally a
combination of fixed (dead) and temporary (live) loads. The dead load is due to the weight of the
construction materials and permanently fixed equipment incorporated into the structure. As

Table 1.4 Occupancy categories

Category ‘ Description

I ‘ Structures that represent a low hazard to human life in the event of a failure

1I ‘ All structures outside of categories I, III, and IV

11 ‘ Structures that represent a substantial hazard to human life in the event of failure
v ‘ Essential structures. Failure not allowed

Table 1.5 Values of /

 Wind
Category Non-horizontal Horizontal Snow Earthquake
1 0.87 0.77 0.80 1.00
11 1.00 1.00 1.00 1.00
11 115 115 | 1.10 1125

v 115 1115 11.20 11.50
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Table 1.6 Uniformly distributed live loads (ASCE 7-05)

Occupancy Magnitude Ibs/ft* (kN/m?)
Computer equipment 150 (7.18)
Dormitories 80 (3.83)

File room 125 (6.00)

Court rooms 50-100 (2.4-4.79)
Scientific laboratories 100 (4.79)

Public rooms 100 (4.79)

Rest rooms 60 (2.87)
Laundries 150 (7.18)
Foundries 600 (28.73)

Ice manufacturing 300 (14.36)
Transformer rooms 200 (9.58)
Storage, hay, or grain 300 (14.36)

mentioned earlier, temporary live loads depend on the function of the structure. Typical values of live
loads for buildings are listed in Table 1.6. A reasonable estimate of live load for office/residential
facilities is ~100 Ibs/ft> (4.8 kN/m?). Industrial facilities have higher live loadings, ranging up to
600 Ibs/ft” for foundries.

Live loading for bridges is specified in terms of standard truck loads. In the USA, bridge loads are
defined by the American Association of State Highway and Transportation Officials (AASHTO)
[11]. They consist of a combination of the Design truck or tandem, and Design lane load.

The design truck loading has a total weight of 72 kip (323 kN), with a variable axle spacing is
shown in Fig. 1.10. The design tandem shall consist of a pair of 25 kip (112 kN) axles spaced 4 ft
(1.2 m) apart. The transverse spacing of wheels shall be taken as 6 ft (1.83 m). The design lane load
shall consist of a load of 0.64 kip/ft* (30.64 kN/m?) uniformly distributed in the longitudinal direction
and uniformly distributed over a 10 ft (3 m) width in the transverse direction.

1.3.4 Wind Loading

1.3.4.1 Wind Pressure Distribution

The effect of wind acting on a building is represented by a pressure loading distributed over the
exterior surface. This pressure loading depends on the geometry of the structure and the geographic
location of the site. Figure 1.11 illustrates the flow past a low-rise, single story, flat roof structure. The
sharp corners such as at point A causes flow separation, resulting in eddies forming and turbulence
zones on the flat roof, side faces, and leeward face. The sense of the pressure is positive (inward) on
the incident face and negative (outward) in the turbulence zones.

In general, the magnitude of the pressure varies over the faces, and depends on both the shape of
the structure and the design wind velocity at the site. The influence of shape is illustrated by Fig. 1.12,
which shows the effect of roof angle on the pressure distribution. When 8 > 45°, there is a transition
from negative to positive pressure on face AB of the inclined roof. This shift is due to the flow
separation point moving from A to B for steeply inclined roofs.

1.3.4.2 Wind Velocity

The effect of the site is characterized firstly by the topography at the site, and secondly by the regional
wind environment. Exposure categories are defined to describe the local topography and to establish
the level of exposure to wind. ASCE 7-05 adopts the following definitions of exposure categories.
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Fig. 1.12 Wind pressure
profiles for a gable roof. a B
(a) 6 < 45°. (b) 6 > 45°
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Category B: Site located within an urban or suburban area having numerous closely spaced
obstructions similar in size to a single family dwelling, and extending at least 2600 ft from the site.

Category D: Site located in a flat unobstructed area or on a water surface outside hurricane prone
regions, and extending at least 5000 ft from the site.

Category C: All cases where exposure categories B and D do not apply.

Regional wind environments are represented by maps containing wind speed data for a specified
return period and exposure category. Figure 1.13 shows US data for the 50-year wind speed observed
at 10 m elevation corresponding to Exposure C. The higher wind speeds along the East and Gulf
Coasts reflects the occurrence of hurricanes in these regions. Typical 50-year wind speeds are on the
order of 100 miles per hour (45 m/s).

Given a site, one can establish the 50-year wind speed at 10 m elevation using Fig. 1.13. In general,
the wind velocity increases with distance from the ground. A typical approximation is a power law:

V() :V@W (1.1)

where z is the elevation above the ground, Vis the velocity measured at elevationZz, and a ~ 7. For US
data, one takes Z = 10m and V given by Fig. 1.13.

1.3.4.3 Pressure Profiles

The next step is to establish the vertical pressure distribution associated with this velocity distribu-
tion, and then modify it to account for the shape of the building. Pressure and velocity are related by
Bernoulli’s Equation, which is a statement of conservation of energy. Specialized for steady irrota-
tional inviscid flow of a weightless fluid, the Law states that [12]

1
E = Energy per unit volume = p + 3 pV? (1.2)

is constant along a streamline. Here, p is the pressure energy, p is the mass density, and 1/2pV? is
the kinetic energy per unit volume. Assuming the pressure is zero in the free stream flow regime
away from the structure, and taking point (1) in the free stream and point (2) at the structure, one
obtains

1
py= ip(V% ) (1.3)

The free stream velocity, Vy, is defined by (1.1). Considering the flow to be stopped by the
structure, (V, =~ 0), it follows that the maximum pressure energy associated with the free stream
velocity is estimated as
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Fig. 1.13 Basic wind
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This pressure is called the stagnation pressure and is generally expressed in terms of the reference
velocity, V, at z = 10 m and a function k(z) which defines the vertical distribution.

I —
Pstag = EPV k(Z) (15)

ASCE 7-05 tabulates values of k(z) vs. z.

The actual pressure distribution is influenced by the geometric shape which tends to change both
the magnitude and sense of the pressure. Figures 1.11 and 1.12 illustrate this effect for flat and gable
roof structures. Design codes handle this aspect by introducing “shape” factors for different regions of
the structural surface. They also include a gust factor for “dynamic” loading, and an importance factor
for the structure. The final expression for the design pressure has the following general form:

Pdesign = IGCP (Z)pstag (16)

where C,(2) is the pressure coefficient that accounts for the shape, G is the gust factor, and / is the
importance factor corresponding to the occupancy category. Values for these parameters are code
dependent. The determination of the design pressure can be labor intensive if one wants to account
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fully for the spatial distribution of design pressure. A reasonable estimate can be obtained using the
simplified procedure illustrated in the following example which is appropriate for low-rise buildings.

Example 1.1 Wind Pressure Distribution on a Low-Rise Gable Roof Structure

Given: The structure shown in Fig. El.1a. There are four surface areas included in the sketch. Zone
(1) is the windward face, zone (2) is the leeward face, and zones (3) and (4) are on the gable roof.

Wind

Fig. E1.1a

Determine: The wind pressure distribution on the interior zone away from the ends. Assume
V = 100mph and exposure C
Solution: Applying (1.5) leads to
Ptag = (0.00256) (10*)k(z) = 25.6k(z) (Ib/ft*)

Values of k(z) and the corresponding pg,, are listed below

z (ft) k(2 Petag (Ib/f%)
15 0.85 21.8
20 0.90 23.0
25 0.94 24.1
30 0.98 25.1

We assume the structure is Category III and use / = 1.15. For low-rise buildings with 7 < 60 ft,
the factors G and C;, are combined and specified as constant for each zone. Using data from ASCE
7-05, the values are

Zone GC, IGC,,

1 0.53 0.609
2 —0.43 —0.495
3 —0.69 —0.794
4 —0.48 —0.552
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Fig. 1.14 Lateral bracing gravity

system
wind —» \ '

Lastly, we compute the design pressure using (1.6). The ASCE 7-05 code assumes that pgesion
varies on the windward force (zone 1), but specifies constant distributions for the other zones. The
details are listed below.

Zone 1 | Pacsign = 0.609 (25.6) k(z) = 15.59 k(2)

Zone 2 | Pacsign = —0.495 (25.6) k(30) = —12.42 psf
Zone 3 | Pacsign = —0.791 (25.6) k(30) = —19.92 psf
Zone 4 | Paesian = —0.552 (25.6) k(30) = —13.85 psf

Pressure distributions generated with (1.6) define the quasi-static wind load, which acts predomi-
nately in the horizontal (lateral) direction. For low-rise buildings, gravity loads are the dominant loads
and generally control the structural dimensioning process for vertical members. Since the wind loads
are horizontal, whereas the gravity loads are vertical, lateral structural bracing systems such as shown
in Fig. 1.14 need to be incorporated in certain types of structures such as a braced frames. This topic is
addressed further in Chaps. 11, 14, and 15.

1.3.4.4 Vortex Shedding Pressure

The action of a steady wind on a structure is represented by quasi-static forces. However, a steady wind
also creates periodic forces due to the shedding of vortices from the turbulence zones at the leeward
face [12]. Consider the rectangular cross-section plan view shown in Fig. 1.15. As the incident flow
velocity increases, eddies are created at the upper and lower surfaces and exit downstream. This
shedding pattern develops a cyclic mode, shedding alternately between the upper and lower surfaces,
which result in an antisymmetric pressure distribution. The net effect is a periodic force, Fy, acting in
the transverse direction with frequency, f;. An estimate for the shedding frequency is

0.2v

f(cycles per second) ~ )

(L.7)
where D is a representative dimension in the transverse direction, and V is the free stream velocity.
Vortex shedding is a major concern for tall buildings and slender long-span horizontal structures
since these structures are flexible and consequently more susceptible to transverse periodic excitation
with a frequency close to f;. Low-rise buildings are stiffer and relatively insensitive to vortex
shedding-induced transverse motion.

1.3.5 Snow Loading

Design snow loads for a structure are based on ground snow load data for the region, where the
structure is located. Snow loads act on the roof zones of structures. For a flat roof, defined as a roof
with a slope angle less than 5°, the snow load is represented as a uniform downward pressure, py. The
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Fig. 1.15 Vortex shedding
patterns—plan view (" ("
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magnitude of p; depends on the exposure category and regional environment at the site, as well as the
importance of the structure. We express py as

pr = Cp, (1.8)

where p, is the ground snow pressure given by Fig. 1.16a and C is a factor that incorporates the
exposure and importance parameters. A typical value of C is ~1. The ground snow pressure varies
from O in the southeastern zone of the USA up to ~100 psf in northern New England.

A sloped roof is defined as a roof with a slope angle greater than 5°. The snow load on a sloped roof
is expressed in terms of the horizontal projected area rather than the actual surface area. Figure 1.16b
illustrates this definition.

The sloped roof pressure depends on the slope angle as well as the other parameters mentioned
earlier.

ps = Csps (1.9)

where C; is a slope coefficient. In general, C; < 1. For 8 < 30°, one usually assumes Cy ~ 1 and
takes ps ~ py.

When the roof has projections as illustrated in Fig. 1.17, a nonuniform snow loading can result due
to the drifting on both the windward and leeward faces produced by wind. Drifts are modeled as
triangular surcharge loadings. The details are code dependent.

1.3.6 Earthquake Loading

The structural engineer’s task is to design structures such that they can resist the ground shaking
associated with an earthquake without collapsing. Since an earthquake may occur anytime during the
design life, the first task is to identify the magnitude of peak ground acceleration (pga) that has a
specified probability of occurrence during the design life. A common value is 2 % probability of
occurrence in 50 years, which corresponds to a return period of 2500 years. Earthquake ground
motion is site specific in that it depends on the location and soil conditions for the site. Sites near
known faults and sites on soft soils such as soft clay experience more intense ground motion. Factors
such as the importance of the building, the geographic location of the site, and the type of soil must be
taken into account when specifying the design magnitude for pga.

In order to understand how buildings respond to ground motion, one needs to examine the dynamic
response. Consider the three-story frame shown in Fig. 1.18a. We approximate it with the simple
beam/mass system defined in Fig. 1.18b. This approximation, known as a single degree-of-freedom
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model, provides useful information concerning the influence of certain structural properties on the
response.

The ground acceleration is defined as a,. This motion causes the mass to vibrate. We define a@r max
as the peak total acceleration of the mass (Fig. 1.19). If the frame is very stiff, ar max is essentially
equal to ag may, the peak ground acceleration. When the frame is very flexible, ar max is small in
comparison to dgmay. It follows that the stiffness of the structure has a significant influence on the
peak total acceleration response. The peak acceleration also depends on the geographic location and
the soil conditions at the site. Data concerning earthquake accelerations is published by the US
Geological Survey on their Web site [13]. This site contains an extensive set of earthquake ground
motion records for the USA and other major seismically active regions throughout the world.

The motion of the mass generates an inertia force which is resisted by the lateral shear force in the
system. The maximum value of the lateral shear force is denoted as V..
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Given the structural weight, W, and the peak total acceleration, one can estimate the peak total
lateral load that the structure will experience due to seismic excitation. This load is assumed to be
distributed linearly throughout the height of the structure, as indicated in Fig. 1.20, and used to
generate an initial structural design. The final design is checked with a more refined dynamic analysis.
Seismic design is an advanced topic within the field of structural engineering. We discuss this topic in
more detail in Chap. 14.

1.4  Structural Design Philosophy

Conventional structural design philosophy is based on satisfying two requirements, namely safety and
serviceability [7]. Safety relates to extreme loadings, which have a very low probability of occur-
rence, on the order of 2 %, during a structure’s life, and is concerned with the collapse of the structure,
major damage to the structure and its contents, and loss of life. The most important priority is
ensuring sufficient structural integrity so that sudden collapse is avoided. Serviceability pertains to
medium to large loadings, which are likely to occur during the structure’s lifetime. For service
loadings, the structure should remain operational. It should suffer minimal damage, and furthermore,
the motion experienced by the structure should not exceed specified comfort levels for humans and
motion-sensitive equipment mounted on the structure. Typical occurrence probabilities for service
loads range from 10 to 50 %.

Safety concerns are satisfied by requiring the resistance, i.e., the strength of the individual
structural elements to be greater than the demand associated with the extreme loading. Once the
structure is dimensioned, the stiffness properties are derived and used to check the various service-
ability constraints such as elastic behavior. Iteration is usually necessary for convergence to an
acceptable structural design. This approach is referred to as strength-based design since the elements
are dimensioned initially according to strength requirements.

Applying a strength-based approach for preliminary design is appropriate when strength is the
dominant design requirement. In the past, most structural design problems have fallen in this
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category. However, the following developments have occurred recently that limit the effectiveness of
the strength-based approach. Firstly, the trend toward more flexible structures such as tall buildings
and long-span horizontal structures has resulted in more structural motion under service loading, thus
shifting the emphasis toward serviceability. Secondly, some new types of facilities such as micro
device manufacturing centers and hospital operating centers have more severe design constraints on
motion than the typical civil structure. For example, the environment for micro device manufacturing
must be essentially motion free. Thirdly, recent advances in material science and engineering have
resulted in significant increases in the strength of traditional civil engineering materials. However, the
material stiffness has not increased at the same rate. The lag in material stiffness vs. material strength
has led to a problem with satisfying the requirements on the various motion parameters. Indeed, for
very high strength materials, the motion requirements control the design. Fourthly, experience with
recent earthquakes has shown that the cost of repairing structural damage due to inelastic deformation
is considerably greater than anticipated. This finding has resulted in a trend toward decreasing the
reliance on inelastic deformation to dissipate energy and shifting to other type of energy dissipating
and energy absorption mechanisms.

Performance-based design [14] is an alternate design paradigm that addresses these issues. The
approach takes as its primary objective the satisfaction of motion-related design requirements such as
restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness
and motion control devices to achieve these design targets as well as satisfy the constraints on
strength. Limit state design can be interpreted as a form of performance-based design, where the
structure is allowed to experience a specific amount of inelastic deformation under the extreme
loading.

1.5  Basic Analytical Tools of Structural Analysis

Engineering a structure involves not only dimensioning the structure but also evaluating whether the
structure’s response under the construction and design loadings satisfy the specified design criteria.
Response evaluation is commonly referred to as structural analysis and is carried out with certain
analytical methods developed in the field of Engineering Mechanics and adopted for structural
systems. In this section, we review these methods and illustrate their application to some simple
structures. Most of this material is covered in textbooks dealing with Statics and Mechanics of
Materials [2—4] and Structural Analysis [15—17]. Heyman’s text [18] contains an excellent descrip-
tion of the “underlying science of Structural Engineering.”

1.5.1 Concept of Equilibrium: Concurrent Force System

We begin with a discussion of static equilibrium conditions for solid bodies. This topic is relevant to
structural engineering since structures are solid bodies subjected to loads, and we need to ensure that a
structure remain at rest, i.e., that it is in a state of equilibrium.

The simplest case is a body subjected to a set of concurrent forces. By definition, the lines of action
of the forces comprising a concurrent force system intersect at a common point. Figure 1.21 illustrates
this case. For static equilibrium, the resultant of the force system must be a null vector.

R=F +F,+F;=0 (111)
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Fig. 1.21 Concurrent
force system Fl Fz
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We convert the vector equilibrium over to a set of algebraic equations by resolving the force
vectors into their components with respect to an arbitrary set of orthogonal directions (X, Y, Z). This
operation leads to

3

ZFi,x:Fl,x+F2,x+F3,x:0
i=1

3
ZFI',Y:FI,Y +Foy+F3y=0 (1.12)
i=1

3
ZFi,z:Fl,z+F2,z +F3,z:O
i=1

We find it more convenient to work with (1.12) rather than (1.11).

When all the force vectors are in one plane, say the X — Y plane, the force system is called a planar
force system and (1.12) reduces to two equations. Most of the force systems that we deal with will be
planar systems.

1.5.2 Concept of Equilibrium: Nonconcurrent Force System

The next level of complexity is a body subjected to a nonconcurrent planar force system. Referring to
Fig. 1.22, the forces tend to rotate the body as well as translate it. Static equilibrium requires the
resultant force vector to vanish and, in addition, the resultant moment vector about an arbitrary point
to vanish.

R=F +F, +F;=0

M.—0 (1.13)

Resolving the force and moment vectors into their X, Y, Z components leads to six scalar equations,
three for force and three for moment. When the force system is planar, say in the X — Y plane, (1.13)
reduce to three scalar equations
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Fig. 1.22 Nonconcurrent F F 2

force system 1 /

K///, » X

3
D> Fix=0
i=1

3 (1.14)

where o is an arbitrary point in the x — y plane. Note that now for a planar system there are three
equilibrium conditions vs. two for a concurrent system. Note also that since there are three equilib-
rium equations, one needs to apply three restraints to prevent planar rigid body motion.

Example 1.2 Equilibrium Equations

Given: The rigid body and force system shown in Fig. E1.2a. Forces A,, Ay, and By are unknown.

40 kN

a

Fig. E1.2a

Determine: The forces A,, Ay, and By
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Solution: We sum moments about A, and solve for By

> Mx=—40(1.5) — 200(2) + By(5) = 0

Next, summing forces in the X and Y directions leads to (Fig. E1.2b)
ZFX—>+ = A, +200=0= A, = —200 = A, = 200kN «—
> Rt =Ay+92-40=0= Ay = —52 = Ay = 52kN |

b 40 kKN

— 200 kN

200 kN <t—|—i

1921(1\1

52 kN

Fig. E1.2b

1.5.3 Idealized Structure: Free Body Diagrams

Generating an idealization of an actual structure is the key step in applying the equilibrium equations.
Given a structure acted upon by external loads and constrained against motion by supports, one
idealizes the structure by identifying the external loads and supports, and replacing the supports with
their corresponding unknown reaction forces. This process is called constructing the free body
diagram (FBD). Figure 1.23a, b illustrates the details involved.

One applies the equilibrium equations to the FBD. Note that this diagram has four unknown
reaction forces. Since there are only three equilibrium equations, one cannot determine all the
reaction forces using only the equilibrium conditions. In this case, we say that the structure is
statically indeterminate.

Constructing an FBD is an essential step in applying the equilibrium equations. The process is
particularly useful when the structure is actually a collection of interconnected structural components
such as a framed structure. One first generates an FBD for the entire structure and then works with
separate FBDs for the individual members. We illustrate this approach throughout the text.

1.5.4 Internal Forces

Consider the body shown in Fig. 1.24a. Suppose we pass a cutting plane as indicated and separate the

[T} [T L)

two segments. We represent the action of body “n” on body “m” by a force F and moment M. From
Newton’s third law, the action of body m on body 7 is opposite in sense.

Once the reaction forces are known, we can determine F and M by applying the equilibrium
conditions to either segment. These force quantities are called “internal forces” in contrast to the
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Fig. 1.23 Constructing
the free body diagram
(FBD)

Fig. 1.24 Definition of
internal forces

reactions which are “external forces.” Note that the magnitude of the internal forces varies with the
location of the cutting plane. The following example illustrates the process of computing internal

forces.



32 1 Introduction to Structural Engineering

Example 1.3

Given: The body and loading shown in Fig. E1.3a.

20 kip 10 kip
1 2
A . '

; | - , B
A ' J .
1=11=3 1 2 Ell=

I 6 ft |21’t4ﬂ|4ﬂ| 8 ft |

| I i T T 1

24 ft

Fig. E1.3a

Determine: The internal forces at Sects. 1-1 and 2-2

Solution: First, we determine the reactions at A and B by applying the equilibrium conditions to
entire body AB (Fig. E1.3b).

20 kip

10 kip
1 l 2
(] 1]
A 1 1 ‘ B
Ax +P | ' 4 .
f\\'t : - tB\'

6 fi l]fll-lftl-lﬂ 81 L
o | 1 t

Fig. E1.3b

The static equilibrium equations are
> F=0 A4,=0
D Fy=0 Ay+By=30
Y Musoua =0 8(20) + 16(10) — 24By =0

We solve for By, By =% +2%(10) =13.3kip |
and then Ay Ay = 16.7kip T
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Next, we work with the FBDs shown below. We replace the internal force vector with its normal
and tangential components, F and V (Figs. E1.3c and E1.3d).

|
[}
Ml-l
A * Vi

—l —

+ F
16.7 kip # 1 !

-~

6 ft

—

Fig. E1.3c Left segment-cutting plane 1-1

Applying the equilibrium conditions to the above segment leads to
SE—YTF_1 =0
NFIT=0 Vio14+167=0=V,_; =16.7kip |
S Mapowr1-1 =0 M;_; —16.7(6) = 0 = M,_; = 100.2kip ft counterclockwise
Applying the equilibrium conditions to the segment shown below leads to

S E—1tF, ,=0

SFT =0 V5,—-20+167=0= V,_, =3.3kip |

> Mapour2—2 =0 Ms_5 — 12(16.7) + 4(20) = 0 = M,_, = 120.4 kip ft counterclockwise

20 kip

" il

My,

—
e+
4

Fig. E1.3d Left segment-cutting plane 2—2

Note that the sense of V;_; and V,_, are opposite to the directions we chose initially.

1.5.5 Deformations and Displacements

When a body is subjected to external loads, internal forces are developed in order to maintain
equilibrium between the internal segments. These forces produce stresses which in turn produce
strains that cause the body to change its shape and displace from its unloaded position.
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Fig. 1.25 Unreformed and )
deformed states $
. L s u _— e
T 1 hal
@ ]=—p F
L+AL

Consider the member shown in Fig. 1.25. We apply an axial force which generates the axial stress,
o, equal to

c="— (1.15)

where A is the cross-sectional area. The resulting strain depends on E, the modulus of elasticity for the
material [3, 4].

e=2 (1.16)

By definition, the extensional strain is the relative change in length.

AL

)

(1.17)

Then,
L
AL=Le=|—|F (1.18)
AE

We refer to the movement due to strain as the displacement and denote it by u. It follows that AL is
equal to u. Finally, we write (1.18) as
L
=|—=|F 1.19
o= (1) (1.19)

Strains are generally referred to as deformations since they relate to a change in shape. This
example illustrates that displacements are a consequence of deformations which are due to forces.
Note that deformations are dimensionless quantities whereas displacements have geometric units
such as either length (translation) or angle (rotation). The coefficient of F in (1.19) has units of
displacement/force. We interpret this coefficient as a measure of the flexibility of the member. Here,
we are defining flexibility as displacement per unit force. The inverse of flexibility is called stiffness.
Stiffness relates the force required to introduce a unit displacement. Inverting (1.19) leads to

F= <I%)u (1.20)

It follows that the stiffness of an axial loaded member is equal to f%.

Stiffness and flexibility are important concepts in structural engineering. We use them to reason
qualitatively about the change in behavior of a structure when we introduce modifications to the
geometry and structural members. Obviously, to reduce displacements, one makes the structure
stiffer. How this is achieved is one of the themes of this text.
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1.5.6 Structural Behavior: Structural Analysis

When a structure is subjected to an external loading, it responds by developing internal forces which
lead to internal stresses. The stresses generate strains, resulting in displacements from the initial
unloaded position. Figure 1.26 illustrates the displacement process for a beam-type member subjected
to a transverse loading. This process continues until the internal stresses reach a level at which the
external loading is equilibrated by the internal forces. The final displacement profile corresponds to
this equilibrium state.

Structural analysis is concerned with quantifying the response of structures subjected to external
loading. The scope includes determining the magnitude of the reactions, internal forces, and
displacements. The analysis is generally carried out in the order shown in Fig. 1.26.

Fig. 1.26 Simple beam A B
response ) [nitial
A -
P P,
A ¢ ¢ B
_L Reactions

P
i Vv
A M
-T 3 Internal forces

P
A b
] Displacements
_EH"‘-‘__‘ v ( X )
; e ——
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1.5.6.1 Study Forces

In the study of forces, we apply the equilibrium equations to various FBDs. We work initially with the
FBD for the structure treated as a single body and determine the reactions. Once the reactions are
known, we select various cutting planes and determine the corresponding internal forces. This phase
involves some heuristic knowledge as to “the best” choice of cutting planes.

1.5.6.2 Study Displacements

Displacements are the geometric measures that define the position of the structure under the applied
external loading. Displacements are a consequence of internal stresses and are usually expressed in
terms of the internal forces. The form of the “force-displacement” relations depends on the type of
structural member, e.g., a truss member and a beam. We discuss this topic in more detail in Chaps. 2
and 3. In what follows, we illustrate these computations for some fairly simple structures.

Example 1.4
Given: The structure defined in Fig. E1.4a. Member AB is a rigid member. It is connected to a hinge

support at A, and supported at B by a cable, BC.

Determine: The reactions, cable tension, and vertical displacement at B. Assume Ec = 200 Gpa,
Ac =600mm?* h =4m,L =10m, and P = 80 kN

P Cable | A E_

Fig. E1.4a

Solution: We start with the FBD of the entire structure shown in Fig. E1.4b. We note that the cable
force is tension. Requiring the sum of the moments of the forces with respect to point A to vanish
leads to the T¢
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Fig. E1.4b

L
> Mabour =P = LTc =0
I
P
TC = E
Next, we determine the reactions at A using force summations.

P
ZFy:O A)+TC_P:0$A}’:§

Zszo A, =0

The vertical displacement of B is equal to the extension of the cable. Noting (1.19), the expression

for vg is
h ho(P 4,000 (80
B (ACEC> €T AL, (2) (600)(200) (2) mm |

In what follows, we illustrate the application of the general analysis procedure to the idealized
structure defined in Fig. 1.27. Member ABCD is considered to be rigid. It is supported by a hinge at A
and springs at C and D. The force, P, is constant. Replacing the hinge support and springs with their
corresponding forces results in the FBD shown in Fig. 1.27b. There are four unknown forces; Ay, Ay,
F, and F4. Setting the resultant force equal to zero leads to

Ay =0
(1.21)
Ay +F.+Fq=P
Next, we require that the moment vanish at A.
lP—lF + IF (1.22)
4" Tt '

Since there are more force unknowns than force equilibrium equations, the structure is statically
indeterminate.
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Fig. 1:27 Rigid member a P
on springs
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Fig. 1.28 Deformation modes. (a) Extension. (b) Shear

We generate additional equations by examining how the structure deforms. Deformation is a
consequence of applying a force to a material. Deformation is associated with a change in shape.
Figure 1.28 illustrates various deformation modes: the first is extension of a spring; the second is
shear. A rigid body is an idealized case: the deformations are considered to be negligible.

An important phase in the analysis of a deformable body is the study of deformations. One first
identifies the displacement variables that define the “deformed” position and then, using geometric
analysis, establishes the expressions relating the deformations of the deformable structural elements
with the displacements. We illustrate this process for the structure defined in Fig. 1.29.
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Fig. 1.29 Deformation— A
displacement relations \ - D

Member ABCD is assumed to be rigid and therefore remains straight when the load is applied.
Deformation occurs in the springs at C and D, causing ABCD to rotate about the hinge at A. There is
only one independent displacement variable. We take it to be the rotation angle 6 shown in Fig. 1.29.
With this choice of sense, the springs compress. When 6 is small, the spring deformations can be
approximated as linear functions of 8. This approximation is valid for most cases.

e ™ (90 (1.23)

6’d219

The last step in the analysis involves relating the deformations and the corresponding internal
forces. For this example structure, the internal forces are the spring forces, F. and F4. In general, the
relationship between the force and deformation of a component is a function of the makeup of the
component (i.e., the material used and the geometry of the component). Here, we assume the behavior
is linear and write

Fc = kcec
Fd = kded

(1.24)

where k. and ky are the spring stiffness factors. Note that the units of k are force/length since e has
units of length.

At this point, we have completed the formulation phase. There are seven equations, (1.21)—(1.23),
relating the seven variables consisting of the four forces, one displacement, and two deformations.
Therefore, the problem is solvable. How one proceeds through the solution phase depends on what
variables one wants to determine first.

Starting with (1.23), we observe that the reaction A, can be determined once the spring forces are
known. Therefore, we hold this equation in reserve, and focus on the remaining equations. We can
combine (1.23) and (1.24) by substituting for the deformations. The resulting equations together with
(1.24) are

/
F. = <k05> 0, Fyq= (ka)6 (1.25a)
[ l

The most convenient strategy is to substitute for F, F4 in the second equation. Then,

[ /

and
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P
= - 1.2
0= ke £ 10 (1.26)

Finally, the spring forces corresponding to this value of 0 are

ke

Fo=—° P
€ 2(dkg + k)
L (1.27)
Fg=—9%__p
(4kg + ke)

An alternate strategy is to solve first for one of the spring forces. Suppose we take F as the primary
force variable. Using (1.25b), we solve for F..

1
Fo=5P—2F, (1.28)

Another equation relating F'. and F 4 is obtained by eliminating € in (1.25a). The steps are

1
0=— _F, 1.29
&) (1:29)
and
2%k
Fq="0F, (1.30)
ke

Equation (1.30) represents a constraint on the spring forces. The deformations of the springs are
not arbitrary; they must satisfy (1.23), which can be written as:

eq = 2e. (1.31)

Finally, substituting for F4 in (1.28) and solving for F. leads to

Fe= <1+14/k2d/l<c>P (1.32)

The rotation angle is determined with (1.29) and F with (1.30).

We refer to the first solution procedure as the displacement or stiffness method. 1t is relatively
simple to execute since it involves only substitution. Most of the structural analysis computer
programs are based on this method. The second procedure is called the force or flexibility method.
Some manipulation of the equations is required when the structure is statically indeterminate and
consequently the method is somewhat more difficult to apply in this case. However, the Force Method
is more convenient to apply than the displacement method when the structure is statically determi-
nate, since the forces can be determined using only the equilibrium equations. The approach in part I
of the text is based on the Force Method. Later in part II, we discuss the Force and Displacement
methods in more detail.

1.5.7 The Importance of Displacements

Displacements are important for two reasons. Firstly, the serviceability requirement for structures is
usually specified as a limit on the magnitude of certain displacements. Secondly, for indeterminate
structures, one cannot determine the internal forces using only the equations of static equilibrium.
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One needs to consider the displacements and internal forces simultaneously. This topic is addressed in
part II of the text. The following example illustrates one of the strategies employed for a statically
indeterminate beam.

Example 1.5: A Statically Indeterminate Beam

Given: The beam shown in Fig. E1.5a.

Fig. E1.5a

Determine: The reactions.

Solution: First, we construct the FBD for the beam (Figs. E1.5b and E1.5¢).

b P
A |
—p S 1
* A, B ?C_\. * D,
L4 L4, L»

Fig. E1.5b

Considering summation of forces in the X and Y directions and summation of moments about A,
we obtain the following three equations.

Y F—t=0 = A=0
Y F1T=0 = A+C+D,=P

L L
ZMaboutAZO = —P=_

4P =5Cs +1LD,

We have only two equations for the three vertical reactions, A,, C,, and D,. Therefore, we cannot
determine their magnitude using only the force equilibrium equations.

The Force (or Flexibility) method for this problem is based on releasing one of the roller supports,
say support C, replacing it with an unknown force, C,, and allowing point C to move vertically under

the action of the applied loads. First, we take C, = 0 and apply P. Point C moves an amount A,
P
shown in the figure below. Then, we take P = 0, C, = 1, and determine A.| the corresponding

v
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movement at C due to a unit upward force at C. Assuming the support at C is unyielding, the net
movement must be zero. Therefore, we increase the force Cy, until this condition is satisfied. Once C,
is known, we can find the remaining forces using the equations of static equilibrium. In order to carry
out this solution procedure, one needs to have a method for computing displacements of beams. These
methods are described in Chap. 3.

c P
A & C D
= B T ek
C

o

Fig. E1.5¢c

1.6 Summary
1.6.1 Objectives of the Chapter

» Provide an overview of the set of issues that a structural engineer needs to address as a practicing
professional engineer.

 Introduce the basic analytical methods of structural analysis and describe how they are applied to
determine the response of a structure.

1.6.2 Key Issues and Concepts Introduced

» A structure is an assemblage of structural components which are arranged in such a way that the
structure can withstand the action of the loads that are applied to it. Structures are classified
according to their makeup such as trusses, frames, and their functions such as bridges, office
buildings.


http://dx.doi.org/10.1007/978-3-319-24331-3_3
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» The primary concern of a structural engineer is to ensure that the structure will not collapse during
its expected lifetime. This requires firstly that the engineer properly identify the extreme loading
that the structure is likely to experience over its design life, and secondly, that the structure is
dimensioned so that it has adequate capacity to resist the extreme loading.

+ Structures are restrained against rigid body motion by supports. When the structure is loaded,
reaction forces are developed by the supports. A minimum of three nonconcurrent reaction forces
are necessary to prevent rigid body motion for a planar structure.

+ Initial instability occurs when the reactions are insufficient or the members are not properly
arranged to resist applied external forces. In this case, the structure will fail under an infinitesimal
load. This condition can be corrected by modifying the supports or including additional members.

» Loss of stability under loading can occur when a primary structural member loses its capacity to
carry load due to either elastic buckling or failure of the material. There are two modes of material
failure: “brittle” and “ductile.” Brittle failure occurs suddenly with a complete loss in load
capacity. One should avoid this mechanism. Ductile failure is evidenced by substantial inelastic
deformation and loss in stiffness. The limit state design procedure allows for a limited amount of
inelastic deformation.

» Loads applied to civil structures are categorized according to direction. Vertical loads are due to
gravitational forces and are defined in terms of the weight of objects. Lateral loads are produced by
natural events such as wind and earthquake. The relative importance of these loads depends on the
nature of the structure and the geographical location of the site.

» Loads are also generated during the construction of the structure. The design loading for certain
types of structures such as segmented concrete girders is controlled by the construction process.
Most structural failures occur during the construction process.

» Loads are also classified according to the time period over which the loads are applied. Long-term
loads, such as self-weight, are called “dead “loads. Loads whose magnitude or location changes
are called “live” loads. Typical live loads are produced by vehicles crossing bridges, and people
occupying buildings.

» Extreme loads such as wind and earthquakes are defined in terms of their return period, which is
interpreted as the average time interval between occurrences of the event. One speaks of the
50-year wind, the 50-year earthquake, etc. The magnitude of the load increases with increasing
return period.

» The design life of a structure is the time period over which the structure is expected to function
without any loss in functionality. Bridges are designed to last at least 100 years. Industrial
buildings are expected to have design lives usually greater than 100 years. The probability that a
structure will experience an extreme event over its design life is approximately equal to the ratio of
the design life to the return period.

» The effect of wind acting on a building is represented by a pressure loading distributed over the
external surfaces. The magnitude and spatial variation of the pressure depends on the shape of the
building and the local wind environment. Positive pressure is generated on windward vertical
forces and steeply inclined roofs. Turbulence zones occur on flat roof and leeward faces and result
in negative pressure.

» Design codes specify procedures for computing the spatial distribution of wind pressure given the
expected extreme wind velocity at the geographic location. The wind velocity tends to be larger in
coastal regions. A typical wind velocity for coastal regions of the USA is 100 miles per hour. The
corresponding wind pressure is approximately 20 psf.

» Snow loading is represented as a uniform download pressure acting on the roof zones of a
structure. Design snow pressure is based on ground snow data for the region where the structure
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is located. Snow is an important loading for the northern part of the USA, Canada, and Eastern
Europe.

Earthquakes produce sudden intense short-term ground motion which causes structures to vibrate.
The lateral floor loading is due to the inertia forces associated with the acceleration generated by
the ground shaking and is generally expressed as (W¢/g)amax, where Wy is the floor weight, and a,.«
is the peak value of floor acceleration. Seismic engineering is specialized technical area which is
beyond the scope of this textbook. However, the reader should be knowledgeable of the general
seismic design strategy.

Conventional structural design philosophy is based on satisfying two requirements: safety and
serviceability. Safety relates to extreme loading and is concerned with preventing collapse and loss
of life. Safety is achieved by providing more resistance than is required for the extreme loading.
Serviceability relates to loading which occurs during the structure’s lifetime. One needs to ensure
that the structure remains operational and has no damage.

Motion-Based Design, also called performance-based design, is an alternate design methodology
that takes as its primary objective the satisfaction of motion-related design requirements such as
displacement and acceleration. The goal here is to provide sufficient stiffness and energy dissipa-
tion mechanisms to limit the motion under extreme loading.

Structural analysis is concerned with quantifying the response of a structure subjected to external
loading. This effort involves determining the reactions, internal forces, and displacement
profiles. One generally carries out the analysis in two steps: study of forces and study of
displacements. In the study of forces, one applies the force equilibrium equations to isolated
segments of the structure called FBDs. Selecting appropriate FBDs is a skill acquired through
practice. In the study of displacements, one first uses a geometric-based approach to express the
deformation measures in terms of displacement measures. The displacement measures are then
related to the internal forces by introducing certain material properties such as the elastic modulus.
These relations allow one to determine the displacements, given the internal forces. We apply this
approach throughout part II of the text. It provides the basis for the analysis of statically indeter-
minate structures.
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Abstract

We begin this chapter by reviewing the historical development of truss
structures. Trusses have played a key role in the expansion of the highway
and railroad systems during the past two centuries. From a mechanics
perspective, they are ideal structures for introducing the concepts of
equilibrium and displacement. We deal first with the issues of stability
and static determinacy, and then move on to describe manual and
computer-based techniques for determining the internal forces generated
by external loads. A computational scheme for determining the
displacements of truss structures is presented next. Given a structure,
one needs information concerning how the internal forces vary as the
external live load is repositioned on the structure for the design phase.
This type of information is provided by an influence line. We introduce
influence lines in the last section of this chapter and illustrate how they are
constructed for typical trusses. This chapter focuses on linear elastic
structural analysis. Nonlinear structural analysis is playing an increasingly
more important rule in structural design. However, we believe an
understanding of linear analysis is essential before discussing the topic
of nonlinear analysis.

2.1 Introduction: Types of Truss Structures

Simple two-dimensional (2-D) truss structures are formed by combining one-dimensional linear
members to create a triangular pattern. One starts with a triangular unit, and then adds a pair of
members to form an additional triangular unit. This process is repeated until the complete structure is
assembled. Figure 2.1 illustrates this process for the case where all the members are contained in a
single plane. Such .structures are called plane trusses; the nodes are also called “Joints.”

Three members connected at their ends form a rigid structure in the sense that, when loaded, the
change in shape of the structure is due only to the deformation of the members. It follows that a
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structure constructed in the manner described above is also rigid provided that the structure is suitably
supported.

Simple three-dimensional (3-D) space trusses are composed of tetrahedral units. Starting with a
tetrahedral unit, one forms an additional tetrahedral unit by adding three linear elements, as illustrated
in Fig. 2.2. When the structure is suitably supported to prevent rigid body motion, the assemblage is
rigid. The question of suitable supports is addressed later in the chapter.

Examples of simple planar trusses are shown in Fig. 2.3. Starting with the initial triangle abc, one
adds the nodes d, e, etc.

Trusses may also be constructed by using simple trusses as the “members,” connected together by
additional members or joints. These structures are called compound trusses. Figure 2.4 shows several
examples of compound trusses, where the simple trusses are shown as shaded areas.

A truss geometry that does not fall in either the simple or compound category is called a complex
truss [1]. Examples are shown in Fig. 2.5. This type of truss is not used as frequently as either simple
or compound trusses.

2.1.1 Structural Idealization

Trusses are components of larger structural systems, such as buildings, bridges, and towers. In order
to evaluate the behavior under loading, one needs to identify the main structural components of
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Fig. 2.4 Compound
planar trusses

i

Fig. 2.5 Complex planar trusses

the system and determine how the external load is transmitted from one component to another.
This process is called “structural idealization;” it is a key step in the analysis process. In what follows,
we illustrate idealization strategies for typical bridges and roof systems.

Figure 2.6 shows a typical single span truss bridge system. The key components are the two simple
planar trusses, the lateral bracing systems at the top, sides, and bottom levels and the flooring system
consisting of floor stringers/beams and deck slab. Loading applied to the deck slab is transmitted
through the stringer/beam system to the bottom nodes of the two planar trusses. The major percentage
of the analysis effort is concerned with analyzing a simple truss for dead weight, wind, and traffic
loading.

Roofing system for buildings such as warehouses, shopping centers, and sports facilities employ
trusses to support the roof envelope. Figure 2.7 illustrates a scheme for a typical roofing system for a
single-story industrial building. The roof system consists of steel decking attached to purlins which,
in turn, are supported at the top nodes of the planar trusses. Loading applied to the roof area in a bay is
transmitted through the purlins to the trusses adjacent to the bay, and eventually to the supports.
Bracing is incorporated to carry the lateral loading which may act either in the longitudinal or
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Fig. 2.6 Single span truss
bridge system

Fig. 2.7 Typical industrial Purlin
building roofing system

Bay
Span e

transverse direction. The primary effort for this structural system is concerned with analyzing a single
planar roof truss for the tributary area loading applied at the top chord nodes.

2.1.2 Historical Background

The first application of truss type structures is believed to be in Egyptian boats built between 3100 and
2700 BC. Egyptian boat builders used trusses constructed by tying the members together with vines to
form the sides and attached the outer hull to these structures. The Romans used wood trusses for
bridges and roofs. Examples are a bridge over the Danube (circa 106 AD) and the entrance to the
Pantheon (circa 120 AD). The next time frame is that of the Middle Ages. Examples of trusses are
found in English cathedrals (Salisbury Cathedral, circa 1258 AD) and great halls (Westminster
Palace, circa 1400). Deployment of wooden trusses continued through the Gothic and Renaissance
periods, mainly to support roofs. The Engineers of these time periods intuitively understood the
rigidity provided by the triangular form, but lacked a theory that they could apply to evaluate the
response for a given load.

A major contribution to the theory is the work of Leonardo da Vinci (1452—-1519), who formulated
the concepts of force and moment as vectors and showed that forces can be combined using a
graphical construction that is now called the force parallelogram. From the early 1600s to the
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Fig. 2.8 Covered wood bridges

mid-1800s, many advances in the development of a scientific basis for a theory of structures were
made. Key contributors were Newton (1642—-1729), Hooke (1635-1703), Galileo Galilei (first
useable formula for strength of a cantilever beam-1638), Euler (theory of buckling of columns-
1757), Bernoulli (bending deformation of a beam-1741), Navier (produced an integrated theory of
Structural Mechanics—1826), and Mobius (published the Textbook of Statics—I1837).

Wooden bridge truss structures were popular in the early 1800s, especially in the USA. There are
many examples of covered wooden bridges in Vermont and New Hampshire. Figure 2.8 illustrates
some typical structural schemes.
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Fig. 2.9 Examples of
named trusses

Howe Whipple
Pratt Fink
Warren ¥ . Pairker ' - -

There was a flourishing industry in New England producing wooden bridge trusses, many of which
were exported to Europe.. As with many emerging technologies, competition from other emerging
technologies occurred and eventually took over the market for the product. The first impetus for
change was the Industrial Revolution which occurred in the early 1800s. The concept of the railroad
was invented during this period. This invention created a demand for more robust and more durable
bridges to carry the heavier moving loads over longer spans. Cost also became an issue. Up to this
time, wooden bridges were designed to carry light pedestrian and horse and carriage traffic over
relatively short spans. Their expected life was short, but since they used local materials and local
labor, they were not expensive and durability was not an issue. However, they were not adequate for
the railroad traffic and other solutions were needed.

Another technology that was evolving in the late 1700s was iron making. Processes for making
cast and wrought iron cheaper than existing methods were developed in the 1780s. Methods for
shaping wrought iron into shapes that could be used as truss members were also invented simulta-
neously. These inventions set the stage for the use of iron members in trusses during the early 1800s.
Initially, wrought iron was used for tension elements and wood for compression elements. Gradually,
cast iron replaced wood for compression elements. The first all iron truss bridge in the USA was built
in 1840 by Squire Whipple, a leading bridge designer in the USA at that time. He is also known for his
book Essay on Bridge Building, published in 1847, the first publication on Structural Theory by a US
author. Some other designers active in the 1840s were W. Howe, T. Pratt, A. Fink in North America,
and J. Warren in the UK. Trusses of this era were given the name of the individual who designed or
constructed them. Examples are shown in Fig. 2.9.

Starting around 1850, iron trusses were used not only for bridges but also for other long-span
structures such as market halls, exhibition buildings, and railway stations. Notable examples are the
Crystal Palace, the Eiffel tower, and the Saint Pancras station (Fig. 2.10).

During the period from 1850 to 1870, an improved version of iron called steel was invented.
This material was much stronger than cast iron; more ductile than wrought iron, and quickly
displaced iron as the material of choice. The first all steel truss bridge in the USA was built for the
Chicago and Alton Railroad in 1879. The structure consisted of a series of Whipple trusses with a
total length of 1500 ft spanning over the Mississippi River at Glasgow, Missouri. The first major
long-span steel bridge was the Firth of Forth Bridge built in Scotland in 1890. Another similar
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Fig. 2.10 Examples of
structures made of iron
trusses. (a) Crystal Palace.
(b) Eiffel Tower. (c) Saint
Pancras station
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Fig. 2.11 Typical pin joint connections. (a) Frictionless pin. (b) Bolted connection. (¢) Welded connection

Fig. 2.12 Example of early steel bridges—Firth of Forth Bridge, Scotland

cantilever style truss bridge was built over the St. Lawrence River in Quebec, Canada in
1919. The initial steel structures used eyebars and pins. Rivets replaced pins as connectors
in the late 1800s.

High-strength bolts and welding are now used to connect the structural members in today’s
modern steel constructions. Figure 2.11 illustrates typical bolted and welded connections. Connection
details are usually designed by the steel fabricator and checked by the structural engineer. The goal in
connection design is to minimize steel erection time.

Steel truss bridges were the dominant choice for long-span crossings until the mid-1900s when
another structural form, the cable-stayed bridge, emerged as a competitor. Cable-stayed bridges
have essentially captured the market for spans up to about 900 m. Segmented concrete girder
construction has also emerged as a major competitor for somewhat shorter spans. Plane trusses
now are used mainly for prefabricated joists, for gable roof systems, and for spanning long interior
distances in buildings and sporting facilities such as convention halls and stadiums. Three-
dimensional space trusses are used in dome type structures such as shown in Fig. 2.13, and also
for towers. One of the most notable examples of the space truss concept is the Eiffel Tower in
Paris, France.
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Fig. 2.13 Three-dimensional truss roof system

2.2  Analysis of Planar Trusses

In this section, we focus on introducing analysis and behavior issues for planar trusses. The discussion
is extended in the next section to deal with three-dimensional space structures.

The analysis of trusses is based on the following idealizations that ensure that the forces in the
members are purely axial:

1. The loads and displacement restraints are applied only at the nodes.

2. The members are connected with frictionless pins so that the members can rotate freely and no
moment exists at the ends.

3. The stress due to the weight of the members is small in comparison to the stress due to the applied
loads.

4. Each member is straight and is arranged such that its centroidal axis coincides with the line
connecting the nodal points.

With these restrictions, it follows that a member is subjected only to an axial force at each end.
These forces are equal in magnitude and their line of action coincides with the centroidal axis of the
member. There is only one unknown per member, the magnitude of the force. The resulting state is
uniform axial stress throughout the member. Depending on the loading, the member force may be
either tension or compression. Figure 2.14 illustrates free body diagrams for a truss member and its
associated nodes.
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a node b nade

Centrodal axis Centrodal axis

Pl > F

node nodc

Fig. 2.14 Free body diagram of a truss member and its associated nodes. (a) Tension. (b) Compression

Fig. 2.15 Concurrent
force system at a node

2.2.1 Equilibrium Considerations

The equilibrium requirements .for a body subjected to a non-concurrent force system are specified in
Sect. 1.5.2. In general, the resultant force vector and the resultant moment vector with respect to an
arbitrary moment center must vanish. One can apply these requirements either to the complete truss or
to the individual nodes.

Each node of a plane truss is acted upon by a set of coplanar concurrent forces. There are no
moments since the pins are frictionless and the lines of action of the forces intersect at the node.
For equilibrium of a node, the resultant force vector must vanish. In Squire Whipple’s
time (1840s), equilibrium was enforced using Leonardo da Vinci’s graphical method based
on the force polygon. Now, one applies an analytical approach based on resolving the force
vectors into components and summing the components. The corresponding scalar equilibrium
equations are

> Fy=0 Y F,=0 (2.1)

where n and s are two arbitrary nonparallel directions in the plane. Figure 2.15 illustrates this
notation.
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2.2.2 Statically Determinate Planar Trusses

In general, three motion restraints are required to prevent rigid body motion of a planar truss. Two of
these restraints may be parallel. However, the third restraint cannot be parallel to the other two
restraints since, in this case, the truss could translate in the direction normal to the parallel restraint
direction. Each restraint generates an unknown force, called a reaction. Therefore, the minimum
number of reactions is 3.

Examples of typical support motion restraints and the corresponding reactions are shown in
Fig. 2.16.

There are two scalar equilibrium equations per node for a plane truss. Assuming that there are
j nodes, it follows that there are a total of 2j equilibrium equations available to determine the
force unknowns. We suppose there are m members and r reactions. Then, since each member
and each reaction involves only one unknown force magnitude, the total number of force unknowns
is equal to m + r.

When the number of force unknowns is equal to the number of equilibrium equations,
the structure is said to be statically determinate. If m + r < 2j, the truss is unstable since there
are an insufficient number of either member forces or reactions or possibly both to equilibrate the
applied loads. It follows that a plane truss is statically determinate., unstable, or indeterminate when

m+r =2j Statically determinate
m—+r <2j Unstable (2.2)
m-+r > 2j Statically indeterminate

P

Fig.2.16 Types of supports for planar trusses. (a) Hinge support (two restraints = two reactions). (b) Roller Support
(one restraint = one reaction). (¢) Rigid link



58 2 Statically Determinate Truss Structures

A word of caution: a statically determinate truss may also be unstable if the reactions are not properly
aligned so as to prevent rigid body motion of the truss. We discuss this point in more detail in the
following section.

2.2.3 Stability Criterion

In this section, we examine in more detail the question of whether a planar truss structure is initially
stable. Assuming a plane truss has m members, r reactions, and j joints, there are 2j force equilibrium
equations that relate the known (given) joint loads and the (m + r) unknown forces. If m + r < 2j, the
number of force unknowns is less than the number of equilibrium equations that the forces must
satisfy. Mathematically, the problem is said to be underdetermined or inconsistent. One cannot find
the exact solution for an arbitrary loading, except in the trivial case where the magnitude of all the
loads is zero, and consequently the forces are zero. Once a nontrivial load is applied, the structure
cannot resist it, and motion ensues. The descriptor “initial instability” is used to denote this condition.

Even when m + r = 2j, a truss may still be unstable if the motion. restraints are not properly
arranged to prevent rigid body motion of the structure. There may be an insufficient number of
restraints or the restraints may be aligned in such a way that rotation of a segment is possible. The
stability of a complex truss depends on the geometrical arrangements of the members. Even though
the truss satisfies the condition, m + r = 2j, and has sufficient restraints, it still may be unstable. The
instability condition becomes evident when one attempts to determine the member forces using the 2
force equilibrium equations. The solution is not unique when the structure is unstable.

When m + r > 2j and the structure is suitably. restrained against rigid body motion, the structure
is said to be statically indeterminate. This terminology follows from the fact that now there are more
force unknowns than equilibrium equations, and not all the forces can be determined with only
equilibrium considerations. One needs some additional equations. We address this type of problem in
Part II.

In what follows, we illustrate the initial stability criteria with typical examples. Stability can be
defined in a more rigorous way using certain concepts of linear algebra, a branch of mathematics that
deals with linear algebraic equations. This approach is discussed in Sect. 2.6

Example 2.1 Simple Trusses

Given: The structures. shown in Fig. E2.1a—d

a b c d

'

7

el . ¢ ]

Fig. E2.1
Determine: Whether the structures are initially stable, determinate, or indeterminate.

Solutions:
Case (a): There are five members, three reactions, and four nodes. Then applying (2.2)
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m+r=2_8
2j=18

The structure is determinate and initially stable.

m=35
r=3
i=4
—}-
Case (b):
m+r=9
2=
1 m=6
r=3
j=4
4 -

t t

There is one extra force and therefore the structure is initially stable and indeterminate to the first
degree.
Case(c): The stability criterion appears to be satisfied.

m+r=2_8
2j=28

— E
I

1]
+ oo

b1

However, the number of supports is insufficient to prevent rigid body motion in the horizontal
direction. Therefore, the structure is initially unstable.
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Case (d): The stability criterion appears to be satisfied.

m+r=2_8
2j=18

- = B
Il

I
Y]

7’

f

However, the three displacement restraints are concurrent (point A), and therefore the structure
can rotate at point A. It follows that the structure is initially unstable.

Example 2.2 A Compound Truss

Given: The structure shown in Fig. E2.2a. This compound truss is actually a combination of two
simple trusses.

Fig. E2.2a
Determine: Is the structure statically determinate?

Solution: The structure is statically determinate and stable.

m+r=24
2j=24

Example 2.3 A Complex Truss
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Given: The complex truss defined in Fig. E2.3a.

m=9
r=3
j=6

/

Determine: Is the truss statically determinate?

Fig. E2.3a

Solution: There are three restraints, six joints, and nine members.

m+r=12
2j=12

The truss appears to be stable. Note that the condition, m + r = 2j is necessary but not sufficient to
ensure stability of this truss. Sufficient conditions are discussed further in Sect. 2.6.

In what follows, we describe two classical hand computation-based procedures for finding the
member forces in simple and compound trusses due to an applied loading. .These approaches are
useful for gaining insight as to how loads are carried by structures. That is the most important aspect
of structural engineering that one needs to master in order to be a successful practitioner. Also,
although most current structural analysis is computer based, one still needs to be able to assess the
computer-generated results with a simple independent hand computation.

2.2.4 Method of Joints: Planar Trusses

Each joint of a plane truss is subjected to a concurrent force system. Since there are two equilibrium
equations for a 2-D concurrent force system, one can solve for at most two force unknowns at a
particular joint. The strategy for the method of joints is to proceed from joint to joint, starting with the
free body diagram of a joint that has only two unknowns, solving for these unknowns, and then using
this newly acquired force information to identify another eligible joint. One continues until equilib-
rium has been enforced at all the joints. When all the joints are in equilibrium, the total structure will
be in equilibrium. This analysis procedure was first described in Squire Whipple’s 1840 Essay on
Bridge Building.

Enforcing the equilibrium conditions is simplified if one works with the force components referred
to a common reference frame. Once one component is known, it is a simple step to determine the
magnitude of the other component and the force. As an illustration, we consider the member shown in
Fig. 2.17. The ratio of force components is equal to the ratio of the projected lengths. This equality
follows from the fact that the direction of the force is the same as the direction of the line. Here, we
are taking the horizontal and vertical directions as the common reference frame.
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Fig. 2.17 Force
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Another simplification is possible when the joint has only three members, two of which are
colinear, and there is no applied load at the joint. Figure 2.18 illustrates this case. There is only one
force acting at an angle to the direction of the two common members, and equilibrium in the normal
direction (n) requires the magnitude of this force to be zero. The other two forces must have the same
magnitude.

When applying the method of joints, it is convenient to first determine the reactions by enforcing
global equilibrium on the total structure. With the reactions known, it may be easier to locate a joint
having only two unknown member forces.

In what follows, we present a set of examples that illustrate how the method of joints is efficiently
applied.

Example 2.4 Three-Member Truss Analyzed by the Methods of Joints

Given: The truss and loading defined by Fig. E2.4a.
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Determine: The reactions and member forces.

IS kip

10 ft

Fig. E2.4a

Solution: We first find the reactions at joints a and b. Moment summation about joint a leads to the
y reaction at b. Force summations provide the remaining two reaction forces. The results are shown in

Fig. E2.4b.
YM, =0 2 10(10)-15(10)—R,(20)=0 = R, =-2.5 .. R, =2.5kipJ

D Fx=0—+ Ryu+10=0 = Ry=-10 .. Ry = 10kip —

D Fy=01+ Ry+15-25=0 = Ry=-125 . Ry =125kip|

a
Rax a—> ¥
’d

77% 7,%}; 10 + t
?Rb ,

Ra)’1

o =45

Fig. E2.4b Reactions

One can start at any joint since they all have just two unknown member forces. We pick joint b
(Fig. E2.4c). Summation of forces in the y direction gives Fy., = 2.5 kip. Then, summing forces in
the x direction requires Fy, being compressive and equal to 2.5 kip. We indicate a tensile member
force with an arrow pointing away from the joint. The opposite sense is used for compression.
One converts the force components to the force magnitude using the Pythagorean Theorem,

F=,/Fi+F;.
> Fy=0 Fpey =251 Then Fyex =25« ..Fy =25V2 kip (tension)

ZF-" =0 Fp, =2.5 kip (compression)
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Foo=2542

2-5 2.5

There is only one unknown member force left, F.,. One can work with either joint a or joint c. We
pick joint c. The free body diagram for joint c is shown in Fig. E2.4d. Equilibrium in the x direction
requires F, . = 12.5 kip.

Fig. E2.4c Joint b

D Fe=0 Fey=125« . Fq=125V2 kip (tension)

1_5
I = 12.5
e ‘n‘— L » 10
[C;L\n' v 25 -
Fea=12.5V2 Foe = 2.542

Fig. E2.4d Joint C

Note that in this example we do not need to use the remaining equilibrium equations (one for joint
¢ and two for joint a) since we used instead three global equilibrium equations to calculate the
reactions. The total number of joint equilibrium equations is equal to six (two per joint X three
joints). If we use three equations for global equilibrium, there are only three independent equations
left to apply to the joints. The final results are shown on the sketch below. Tensile forces are denoted
with a + sign, and compressive forces with a — sign.
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Fig. E2.4e

Example 2.5 Five-Member Truss Analyzed by the Methods of Joints

Given: The truss defined in Fig. E2.5a.

Determine: The reactions and member forces for the loading shown.

27 kN

Fig. E2.5a

Solution: We first find the reactions and then proceed starting with joint a, and then moving to joints
c and d.
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27 kN

18 kN T

Fig. E2.5b

IM, =0 2 -27(4)-18(8)~R(8)=0 = R ,=-31.5 .. R ,=315kip{

Fig. E2.5¢
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b
* d
45 8 cosﬁ = 0.447 8 5 C(:"S o = 0.8
i smo =0_6
S sin 8 = 0.894 bﬁ .
Fab
F
ad
p
-H a a
18 kN
4.5 kN

Fig. E2.5d Joint a

{ZFXZO Facos a+ Fypcos f+18=0 :{Fad:—3l.5kN

Y Fy,=0 Fygsina+ Fysinf+45=0 Fap = 16.1kN

Fcb

ch

31.5 kN

Fig. E2.5e Joint ¢
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A et foen =0 = {ch:—31.5kN
Y Fy,=0 Fgsina+Fgsinf—315=0 Fep = 56.35kN
Fpq = 37.8
315

Fig. E2.5f Joint d

ZFy =0 Fpq =37.8kN (compression)

The final forces are listed below.

-31.5 =315

{ 45kN i 31.5kN

18 KN e 21

Example 2.6 Five-Member Truss Analyzed by the Methods of Joints

Given: The truss defined in Fig. E2.6a.

Determine: The reactions and member forces for the loading shown.
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4m

10kN 10kN 10kN

4m 4m 4m 4m

Fig. E2.6a Bridge truss

Solution: We note that the structure and loading are symmetrical with respect to a vertical axis
through points e and d. It follows that the forces in symmetrically located members are equal, and
therefore we need to find the forces in only Y5 of the structure. Joints c, e, and f are special in the sense
that two incident members are colinear. Then, noting Fig. 2.18,

Fo, = 10kN (tension) Feq =0 Fg = 10kN (tension)

0
+10 +10
h o o o a

Yl

10 kN 10 kN 10 kN

Fig. E2.6b

There are multiple options. We can first find the reactions and then proceed inward, starting with
joint a, and then moving to joints c and b. An alternate approach would be to start at joint d, find the
y component of Fy4, and then move to joint b.

$. [J' -di ‘:l

I0kN  10kN  10kN p _jspn

th=0 =i

Rhy = 15kN

Fig. E2.6c Reactions

We list the results for the first approach below. We first find Fy,, with the vertical equilibrium
condition at joint a. Then, we find F,. from the horizontal component of Fy,.
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ZFy =0 Fpay=15kN| Then Fy, = I5kN —

. Fpa = 15v/2kN (compression)
ZF" =0 F,. = 15kN (tension)

is hs

At joint ¢, we note from the sketch that Fq. = 15 kN (tension).

Fig. E2.6d Joint a

10
A

Fig. E2.6e Joint ¢

At joint b, we note from the sketch that Fy, must be in tension and Fy,, must be in compression.

Fbcz 20 b

152
FJb: 5 Vr?

Fap
Fig. E2.6f Joint b
We first find Fgp, , with the vertical equilibrium condition at joint b.
> Fy=0 Fay=5]

Then, Fap. =5 < ..Fg, = 5v/2kN (tension).
Then, we apply the horizontal equilibrium equation at joint b.

ZF" =0 Fp =20kN (compression)



2.2 Analysis of Planar Trusses 71

The resultant member forces are shown below. Note that, for this loading, the members in the
top zone (the top chord) are in compression and the bottom chord members are in tension.
The interior vertical and diagonal members are in tension. When iron was used as a structural
material, cast iron, which is relatively weak in tension, was employed for the top chord members
and wrought iron, which is relatively strong in tension, for the verticals, diagonals, and bottom
chord members.

-20 -20
212 +7.07 | +7.07 2013
+10 0 / 410
5 415 l +15 +15 +15
% W k' 4 1
10 kN 10 kKN 10 kKN
15 kN 15 kN

Fig. E2.6g

If the truss structure is inverted as shown below, the sense of the member forces is also reversed.
This geometric arrangement is preferred for bridge crossings when the clearance below the structure
is not a problem.

10 kN 10 kN 10 kN
-5 ¥ 15 l -15 l -15
v -10 - i, rrd
$ 0 10 4m
+21.2 =107 | _707 +21.2
‘N S kN
15 kN +20 +20 el

4m l 4m 4 m 4m

Fig. E2.6h

Example 2.7 A Cantilever Truss Analyzed by Methods of Joints

Given: The truss and loading defined by Fig. E2.7a.

Determine: The member forces for the loading shown.
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91t

9t

121t

Fig. E2.7a
Solution: First, we determine the zero force members. Starting at joint ¢, we observe that F, = 0.
Then, moving to joint b, it follows that Fy,. = O.

Fra
}: : 0 -1 -
be "cb" 0
Fig. E2.7b Zero force members

In this case, we do not need to first find the reactions. We can start at joint a.

Fba =50

30

Fig. E2.7c Joint a

> Fy=0 Fpy =30 Fp =40 ..Fy =50kip (tension)
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Given Fy,, we determine F .
ZF-" =0 F, =25kip (compression)

Next, we move to joint d and determine Fy¢

80 40
Fgp = 50
40 4

Fig. E2.7d Joint d
Y Fy=0 Fg,=40 . Fy,,=80 Fg =40V5Kkip (tension)
With F4 known, we can determine Fy,
ZFy =0 Fge = 110kip (compression)

At joint e, we determine Fer and Fl,.

110
iczo
o = 25 3 25
Fer = 25 28
F, = 110

Fig. E2.7e Jointe
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The last joint is joint f. We first determine F, ,

ZFx =0 Fgr=15 ..Fryy =20 Fg =25kip (compression)

Then, ZFy =0 Fm = 100kip (tension)

Far = 40S

80

40
f Fg=25

Fig. E2.7f Joint f

The final forces are listed below.

100 kip 130 kip

Fig. E2.7g
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Example 2.8 Gable Roof Truss Analyzed by the Method of Joints

Given: The truss and loading defined by Fig. E2.8a.

Determine: The member forces.

Fig. E2.8a

Solution: Fig. E2.8a shows a typical truss structure for supporting roof (top joints) and ceiling
(bottom joints) loads. Members cb and gf function to transfer loads to the top joints (b and f). Their
force magnitudes are

Fyc = 5kN (tension) Fyr = 5kN (tension)

All the remaining joints have at least three unknown member forces and reactions. Therefore, we
start the analysis by first finding the reactions.

R a}' $

Fig. E2.8b Reactions

Given the reactions, we start at joint a. Force F,, must be compression and Fy,, = 22.5 |. Then,

Frax =225 «— and Fyy = 22.5v/2kN (compression). It follows that, F, is in tension and equal
to 22.5 kN.
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I :h.t

‘s
2
(7

Fig. E2.8c Joint a

We then move on to joint b. Members ab and bd are colinear, and member be is normal to this
common direction. Summing forces in the normal direction results in

2
ZF,, =0 Fpe=(10+35)cosa= 15\/7_kN (compression)

Next, summing forces in the tangential direction leads to Fpg.

ZF; =0 Fpg=225V2— (104 5)cos @ = 15v/2kN (compression)

n t 10 Fpg

—

Fp, = 22.5V2

Fpe
Fig. E2.8d Joint b

The last force is F'y.. We use joint d shown in Fig. E2.8e. Summing forces in the y direction leads to
F4. = 20 kN (tension)
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10

l-dl 15v2

Fig. E2.8e Joint d

The final forces are listed below.

Fig. E2.8f

2.2.5 Method of Sections

If one wants to determine only the force in a particular member, applying the method of joints might
not be convenient since in general it involves first finding the force in other members. For example,
consider the truss shown in Fig. 2.19a. Suppose the force in member ef is desired. One possible
strategy is to first determine the reactions at joint a, then proceed to joints b, ¢, d, and lastly e, where
the Y component of F.; can be determined once F4 is known. Another possible strategy is to start at
joint j, and then precede to joints i, h, g, and f. Either approach requires some preliminary computa-
tion that provides information on forces that may or may not be of interest.

The method of sections is an analysis procedure that avoids this preliminary computation. One
passes a cutting plane through the truss, isolates either the left or right segment, and applies the
equilibrium equations for a rigid body to the segment. The choice of cutting plane is critical. It must
cut the particular member whose force is desired, and other members that are concurrent. This
restriction is necessary since there are only three equilibrium equations for planar loading, and
therefore, one can only determine three unknowns.

We illustrate this method for the truss defined in Fig. 2.19a. We start by determining the reaction at
a. To determine F.;, we use the vertical cutting plane 1-1 and consider the left segment shown in
Fig. 2.19c. Summing forces in the Y direction leads to:
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Fig. 2.19 (a) Anexample a b
of a truss. (b) Cutting

d f
vertical plane. (¢) Truss v h
segment for method of
sections i
a c e g i

h

[ ll]
X
% ! =
Py P, P3 Ps
r . & . ¢ P
b @
b d i f h

v
Py P, O Py P4

[
§ | — Feg
i \ y :
Ray P, P, Q)
L A
D Fy=0 1% Fecosaa=Py+P;— Ry (2.3)

We point out here that the function of the diagonal members is to equilibrate the unbalanced
vertical forces at the sections along the longitudinal axis. These forces are called “shear” forces.

If the force in member df is desired, one can use the moment equilibrium condition with respect to
joint e which is the point of concurrency for members ef and eg.

> Muowe =0 hFar = /Py — 2/ Ry (2.4)
Similarly, for member eg, we use moment equilibrium about joint f:
> Mupous =0 hFeg =3/ Roy = 2/Py — /P, (2.5)

For parallel chord trusses (top and bottom chords are parallel), the function of the chords is to
equilibrate the unbalanced moments at the various sections. One chord force is compressive, the other
force is tensile. For downward vertical loading, the top chord is generally in compression, and the
bottom is in tension. The method of section is convenient in the sense that it allows one to easily
identify the sense of a particular member force.
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Example 2.9 Application of the Method of Sections to a Parallel Chord Truss

Given: The structure and loading shown in Fig. E2.9a

Determine: The force in members Fyq, Fyp, and Fic.

b [ d

N\

L,

im im im im

Fig. E2.9a

Solution: We start by determining the reactions.

IM, =0 2 2(3)+4(6) +3(9)-R(12)=0 = R =475kN T

Re= 4.75kN

Fig. E2.9b

Then, we pass a vertical cutting plane through the panel between joints d and ¢ and consider the
left segment. Enforcing equilibrium leads to:

24m

|
[
I
I
V
4.25 kN 2kN 4 kN @

im im

-+

Fig. E2.9¢
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D Fy=0 Fey=1757
Therefore, Fyq = 2.1875 and Fgq = 2.8 kN (tension)
ZMmg =0 Fa(24)—2(3)+4.25(6)=0 Fq=—8.125
Therefore, F.q = 8.125 kN (compression)
D Fie=0 Fyu—8125+21875=0 Fy=+59375

Therefore, Fgp = 5.9375 kN (tension).

A

8.125 kN

28 kN

> 50375 kN

4.25 KN 2kN 4kN

Fig. E2.9d

Example 2.10 The Method of Sections Applied to a Roof Truss

Given: The structure shown in Fig. E2.10a.

Determine: The member forces Fy, Fye, and F.

2m

2m

4m 4m 4m i 4m

Fig. E2.10a

Solution: We determine the reactions first.
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14 kN

12 kN d¥ 10 kN

18.5 kN 17.5 kN

Fig. E2.10b

To determine the member forces F gy, Fpe, and F ., we use a vertical cutting plane. The appropriate
segment is shown in Fig. E2.10c. Various options are possible. We choose first to determine Fg;, by
summing moments about e. Then, summing moments about b leads to F.. Lastly, we can find F,. by
summing either X or Y forces.

4dm dm
1
T T

-

Fig. E2.10c

The calculations for this analysis procedure are listed below:

YM, =0 @ 4F, +(185)8-(12)4=0
F
=25 F, =-2X_2795kN (Compression)

bd T cosa

F

bd,x
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IM, =0 2 -2F_ +(18.5)4=0
F_. =37KkN (Tension)

STFy =01+ —Fpey—12—1254185=0

F be,y

Fhe,y = —6 = Fpe = = 13.41kN (compression)
sin @

Example 2.11 Analysis of K-Type Trusses with the Method of Sections

Given: The truss defined in Fig. E2.11a.

Determine: The member forces F, Fye, Fed, and Fq.

S5@4m=20m

Fig. E2.11a
Solution: We determine reactions first.

A vertical section such as O—@ cuts four unknown forces and does not lead to a solution. There
are no vertical cutting planes that involve only three unknown forces. Therefore, one has to be more
creative with the choice of planes. For this type of truss, plane @—@) is the appropriate choice.
Isolating the left segment and summing moments about joint ¢ results in F,:

>M, =0 24 F,-10(4)+88)=0—>F, =—6 .. F, =6kN (Compression)

Fig. E2.11b
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Fig. E2.11c

Then summing X forces,
ZFx =0 Feq=—Fp=+46 ..Fqq=06kN (tension)

The diagonal forces F, and F4 are found using section O—@. Summing moments about joint d
leads to Fp:

EM=0 2 4(F,+F, ) -108) +8(12)=0 4(6+F, )+16=0
_ . _ Feb,x o .
Feopy=+2 . Fop= = 2.24kN (tension)
cos a

Fig. E2.11d

We find F.4 by summing x forces, and noting that the horizontal components of the chord forces
must cancel.

ZFJ‘ =0 Feqx=—Feayx . .Fea=2.24kN (compression)

a -6 b

Fig. E2.11e
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If one wants all the member forces, one can apply multiple cutting planes or combinations of the
method of joints and method of sections. How one proceeds is a matter of personal preference.

Example 2.12: A Hybrid Analysis Strategy

Given: The truss defined in Fig. E2.12a

Determine: All the member forces using a combination of the method of joints and the method of
sections.

12 Kip

Fig. E2.12a

Solution: We note that the structure and loading are symmetrical with respect to a vertical axis
through points ¢ and g. It follows that the forces in symmetrically located members are equal, and
therefore we need to find the forces in only % of the structure. We start by determining the reactions.
The member forces Fi, Fpe, and F}, can be determined by passing vertical cutting plane 1-1 and
enforcing the equilibrium equations.

12 kip

9 kip

Fig. E2.12b
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Considering the left segment and enforcing equilibrium leads to:
Section 1-1:

ZMalh =0 (Fpccosy)(6)+15(8) =0 Fy. = 10v/5kip (compression)
ZFy =0  Fy = 4V2kip (tension)
ZFX =0 Fhe = 16kip (tension)

We then enforce equilibrium at joints a and h.

Equilibrium at joint a:

F:b =125

a Fy =20

ZFy =0 Fupy=15] . .Fy =25kip (compression)
ZF" =0 Fu = —Fup, = 20kip (tension)

Equilibrium at joint h:

Fin

ZFY =0 Fpn = —Fen,y = 4kip (compression)

The final member forces are listed below.
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Fig. E2.12¢

2.2.6 Complex Trusses

Complex trusses are defined as truss structures that cannot be classified as either simple or compound
trusses. In order to determine the member forces, one has to establish the complete set of nodal force
equilibrium equations expressed in terms of the member forces. If the truss is statically determinate,
the number of equations will be equal to the number of force unknowns, and theoretically one can
solve these equations for the force unknowns. However, if one cannot determine the member forces,
the statically determinate truss is said to be geometrically unstable. In what follows, we expand on
this point.

Consider the planar truss shown in Fig. 2.20a. There are nine members, three reactions, and six
nodes. Then,

2j=12
m+r=9+3=12

and the truss is statically determinate. It also has a sufficient number of reactions to prevent rigid body
motions.

We use 3 of the 12 equilibrium equations to determine the reactions, leaving 9 equations available
to solve for the 9 member forces.

SSFe=0 Ry=P«—

P
Y My =0 RSZET

P
2. Fy =0 Riy=71

2
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a b
a
& )
h h
h A
L h ' h I
c p d
F[2J 3 ®
P 2 ] a o ) 4 1
— o o
h
F F F, 5
Foy ® ® Fay @ L Fy A |
Jaint 2 Joint 3 Joint 4 .
Foy P 4
F T b
o] =
5 L 5 4
ol *
F,
2 (&) P
: 1o
cosa=489 sina=45
Joint & Joim 5
e f
F
@ o
2 -
i ﬂ\ 2y
L Fp =20kN
) F,
Fo Fay ® vy h=6m Foy =101k
Joint 2 Joint 3 Joint 4 Fp = 141N
E,
# = 15kN
Fn Fo Fe h=6m Fg = 224N
2 = Fg \IZ By " g Fg = 241N
""‘Al =1 E; Foy ==20kN
1 o ] o m .
1 ) 6 fiy 1 Lfisths Foy =-112KN
B H 2 =—224 KN
cosfh = sinfi= Tl cosa=3$9 sina= 45 Joint & Joim 5

Fig. 2.20 (a) Planar truss geometry. (b) Reactions. (c¢) Joint equilibrium. (d) Modified geometry. (e) Joint equilib-

rium. (f) Member forces

Enforcing equilibrium at joints 2—6 results in the following nine equations:

Toint 2 22Fr =0 (cos @)F g + (cos a)Fo) = —P
ZF =0  —Fu)+ (sina)Fp) —

> F,=0
2k =0

(
(
Joint 4{ Fe=0 (cos a)F
(sin
{ (

) cos a)F
Joint 3

Y F,=0 a)F 3
S F.=0

cos a)F

Joint 5
F 4) — ( sin a)

Joint 6{2& =0 (cosa)Fs —

—(cosa)F3 =0
sin a)F + (sin @)F(3) + F(7) =

( cos a)

(cos a)F

(cos a)F g =0

(sina)Fg) =0

2| v
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We express (2.6) in matrix form

BF =C (2.7)
where
Fa) -
Foa) 0
F) 0
Fa) 0
F={ Fs, C=¢ 0
Fie) 0
Fa) 0
Fes) —g
F) 0
[0 cos a 0 0 0 0 0 0 cos a |
-1 sina 0 0 0 0 0 0 —sina
0 —cosa cosa O 0 0 0 0 0
0 sina sina 0 0 0 1 0 0
B=|0 0 cosa O 0 0 0 cosa 0
0 0 sina  —1 0 0 0 —sina 0
0 0 0 0 cos a 0 0 0 cos a
0 0 0 1 —sina 0 0 0 sin a
1 0 0 0 0 cosa —cosa O 0 0

The coefficient matrix, B is singular (the determinate of B equals 0). Therefore, a unique solution
for the unknown forces does not exist for an arbitrary nodal load. The truss is said to be geometrically
unstable since the elements of B depend only on the geometric pattern.

In order to eliminate the instability, one needs to change the geometry. We modify the truss by
changing the vertical position of node 3 as shown in Fig. 2.20d. The individual nodal force systems
are defined in Fig. 2.20e and the corresponding nodal force equilibrium equations are listed in (2.8).
Note the change in the coefficients.
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Joint 5

>
D F=
> F
>,
> -
S,
D F
>,
Jmnt6{§:1§::0

=0

(

(cos p)F
—Fo+

(2) + (cos a)Fg) = —P
(sin B)F(2) —
— (cos B)F(3) + (cos B)F 3)
(sin f)F o) + (sin B)F 3y + F7
cos f)F 3) + (cos a)F gy = 0
sin B)F (3 — F4) —

)+ (cos a)F gy =0

=0

y=0

(
( (sina)Fg) =0
(cos a)F s

. . P
F(4) — (sin C{)F<5) + (sm a)F<9> = )

cos a)F sy — (cos a)Fg =0

89

(Sin (X)F(g) =0

(2.8)

In this case, the coefficient matrix B is nonsingular (det B # 0), and it follows that the structure is

geometrically stable:
[0
-1

cos f
sin
0 —cosp
0 sin
0 0

0

0

0

0

S o o O

0 0 0 0 0 0 cos a |

0 0 0 0 0 0 —sina
cosp 0 0 0 0 0 0
sinf 0 0 0 1 0 0
cosfp O 0 0 0 cosa 0
sinff  —1 0 0 0 —sina 0

0 0 cos o 0 0 0 cos o

0 I —sina 0 0 0 sin a

0 0 cosa —cosa O 0 0

Solving (2.8) using a computer software system [2] leads to the member forces listed below.

F=B'C=

2P Fy 2P
1.41P Fy) 1.41P
1.41P F(3) 1.41P
1.5P F 1.5P
2.24P = Fisy p = 2.24P
2.24P F ) 2.24P
—2P F(7) —2P
—1.12P F) —1.12P
—2.24P F 9 —2.24P

For P = 10 kN and & = 6 m, the member forces are listed in Fig. 2.20f.

Assembling the nodal force equilibrium equations usually is a tedious operation, especially for
three-dimensional space structures. The process can be automated by using matrix operations. We
will describe one approach later in Sect. 2.6.
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2.3 Computation of Deflections
2.3.1 Introduction

The deflections of the joints are due to the change in length of the members that make up the truss.
Each member is subjected to an axial force which produces, depending on the sense, either an
extension or a contraction along the member. We call these movements “axial deformation.” The
study of deflection involves two steps. Firstly, we determine the axial deformation due to the applied
loading. This step involves introducing the material properties for the members. Secondly, we need to
relate the deflections to the axial deformations. This step is purely geometric. In what follows, we
develop procedures for determining the axial deformation due to an axial force, and the joint
deflections resulting from a set of axial deformations. The latter procedure is carried out here using
a manual computation scheme. A computer-based scheme is described in the next section.

2.3.2 Force-Deformation Relationship

Consider the axially loaded member shown in Fig. 2.21. We suppose an axial force, F, is applied, and
the member extends an amount e. Assuming the material is linear elastic, e is a linear function of F.
We estimate the proportionality factor by first determining the stress, then the strain, and lastly the
extension. We discussed this approach in Chap. 1. The steps are briefly reviewed here.

1. Stress
F
c=—
A
where A is the cross-sectional area
2. Strain
o F
£ =—=—
E AE
where E is young’s modulus
3. Extension
FL
force = Le = IE

where L is the member length

Fig. 2.21 Axially loaded
member %
/o
A?/ +—0

force

-k - e

A 4
—

——
—+—
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The member may also experience an extension due to a temperature change or a fabrication error.
Introducing these additional terms, the total extension is expressed as

€ = €force 1 €temperature 1 Efabrication error (29)
where
FL
Cforce =
AE

€temperature — aATL
€fabrication error — €0

a is the coefficient of thermal expansion, AT is the temperature change, and e, represents the
fabrication error. The total extension, e, is the quantity that produces the displacement of the node.

2.3.3 Deformation-Displacement Relations

Consider the planar truss structure shown in Fig. 2.22. Suppose the members experience deformation
and one wants to determine the final position of node B. Our approach is based on first temporarily
disconnecting the members at B, allowing the member deformations to occur, and then rotating the
members such that they are reconnected. The movements of the nodes from the original configuration
to the new configuration are defined as the displacements. These quantities are usually referred to a
global reference frame having axes X and Y and corresponding displacement components # and v.

For structural materials such as steel, the extensions are small in comparison to the original length.
Then, the member rotations will also be small. Noting Fig. 2.22b, and the above assumptions, it
follows that the displacements are related to the deformations by

U= epp
(2.10)
V = €Bc

The simplicity of this results is due to the fact that the structure’s geometry is simple (the members
are orthogonal to the coordinate axes).

We consider the single member AB defined in Fig. 2.23. Our strategy is to track the motion of the
end B as it experiences an extension, e. The final length is (L + ¢) where e is the extension. We
assume A6 is small and project the final length onto the original direction. This step provides a first-
order estimate for the extension in terms of the nodal displacements.

Fig. 2.22 Initial and a
deformed geometries. (a) P, v
Initial geometry. (b)

Deformed configuration A P, ‘
‘ > X,.u A
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Fig. 2.23 Extension
displacement relationships

Fig. 2.24 Geometry— v
two-member truss T

\r

e~ ucos 0+ vsin (2.11)

We consider next a two-member planar truss shown in Fig. 2.24. Since the member orientations
are arbitrary, the deformation—displacement relations will involve all the displacement components.
Applying (2.11) to the above structure leads to
e1 = ucos 0y + v sin 6,
(2.12)
ey = —ucos &, +vsin 6,

Given the member forces, one computes the extensions e; and e, and finally determines the
displacements by solving (2.12).

sin 0, sin 64

17— : —ey— -
sin 8, cos 6, + cos 0 sin 0, sin 6, cos 6, + cos 0 sin 0,

cos 0, + cos 61
1 A €7 —; A
sin 6 cos 6, + cos 6 sin 6, sin @, cos 6, + cos & sin 0,
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2.3.4 Method of Virtual Forces

The formulation described in the previous section is not convenient for manual computation, even for
fairly simple trusses. However, there is an alternative procedure called the Virtual Force Method,
which avoids the need to solve simultaneous equations. Engineers prefer this approach since it is
based on executing a set of force equilibrium analyses, a task that they are more familiar with.

The Method of Virtual Forces is a procedure for determining the deflection at a particular point in a
structure given that the member forces are known. A general proof of the method can be found in
[3]. We apply the method here for truss type structures. Later in the following chapters, we apply the
procedure to beam and frame type structures. The method is restricted to static loading and geomet-
rically linear behavior, i.e., where the displacements are small. This is not a serious restriction for
civil structures such as building and bridges.

Consider a typical truss shown in Fig. 2.25a. Suppose the deflection, d,, in a specified direction at
point A is desired. One applies a virtual force, 6P, at A in the specified desired direction and
computes the corresponding member forces, 6F, and reactions, 6R, using only the static equilibrium
equations. Usually, one takes 6P 5 to be a unit load. Note that this virtual force system is “specialized”
for the particular displacement that one is seeking. The displacement is determined using the
following expression:

dpdPa= Y edF— Y  déR (2.13)

members reactions

where e is the total extension defined by (2.9), d is the support movement, and 5R the corresponding
reaction. When the supports are unyielding, d = 0, and the statement simplifies to

Fig. 2.25 (a) Desired a p]
deflection—actual force
system F. (b) Virtual P; | _» da
force system 6F > —
Y A
X B C
) P3
apP
b ot —V o A
A
Rpy ‘
> C

.



94 2 Statically Determinate Truss Structures

dpdPa = Y edF (2.14)

members

Given the actual forces, one evaluates e with (2.9), then determines the product, e 6F, and lastly
sums over the members. Applying (2.13) is equivalent to solving the set of simultaneous equations
relating the deformations and the displacements. The following example illustrates this point.

Example 2.13 Computation of Deflection—Virtual Force Method
Given: The plane truss shown in Fig. E2.13a. Assume A = 1300 mm? and E = 200 GPa for all

members.

Determine: The horizontal displacement at ¢ (u,).

10 kN 10 kN
40 kN
b C
I=3m

a d
4 4
I=3m
p————

Fig. E2.13a Geometry and loading

Solution: Applying (2.14), the horizontal displacement at node ¢ (i) is determined with

FL
uSP = Z forceOF, = Z (AE> S5F,

The actual and virtual forces are listed below.

10 10
0 4 -4
“|b c
@
-10| -50
a 0 d
30 50

Fig. E2.13b Actual forces, F
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a
T
1 1
Fig. E2.13c Virtual forces, 6F

Using this data, and assuming AF is constant, the computation proceeds as follows:

Member L F SF, Chorce = % e 6F,
ab ! -10 0 10 L 0
10
be I —40 0 _a0 L 0
AE
cd I —50 -1 _s09 L K
50— 50—
da I 0 0 0 0
ac ING) 40v/2 2 i i
V2 V2 V2 80 1= 80V2

!
te =Y etoreedFu = 4 (80\/5 + 50)

The plus sign indicates the deflection is in the direction of the unit load. For A = 1300 mm?,
E = 200 GPa, and I = 3 m, the displacement is

~3(10%)
~ 1300(200)

Uc

(80\/5 + 50) — 1.88mm —

We point out that the virtual force (6F) results identify which member deformations contribute to
the corresponding deflection. In this case, only two-member deformations contribute to the horizontal
displacement.

Example 2.14 Computation of Deflection— Virtual Force Method

Given: The plane truss shown in Fig. E2.14a. Assume £ = 200 GPa.
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Determine: The value of A required to limit the vertical displacement at e (v,) to be equal to 10 mm.
Assume AE is constant for all members.

10 kN

20 kN

[=3m
a
77 7 d
1=3m ]=3m

Fig. E2.14a Geometry and loading

Solution: Using (2.14) the vertical displacement at node e (v.) is determined with

FL
VeOP = Z CrorceOF ) =Z (E) SF,

The actual and virtual forces are listed below.

20 <+

1'30 = %40

Fig. E2.14b Actual forces, F

1

Fig. E2.14c Virtual forces, 6F
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Using this data, and assuming AF is constant, the following computations are carried out:

Member L F oF, Cforce = L& CtorceOF
ab l 0 0 0 0
bc 1 0 0 0 0
cd I -30 —1 —30.L4 30.L
da I -10 -1 —104 10
ac W2 30v2 V2 60 60v/24
ce I 30 1 30.% 304
ed V2 —10v2 V2 —204; 20v/2.1
> erorceOF = 1:(80v/2 + 70)

I
Ve = etonedF, = is (80\/5 ¥ 70)

The plus sign indicates the deflection is in the direction of the unit load. For E = 200 GPa, and
! = 3000 mm, the required area is

(3000)
10(200)

I
Arequirsa = — (80\/5 n 70) _ (80\/5 n 70) — 275 mm>

Example 2.15 Computation of Deflection—Virtual Force Method

Given: The plane truss shown in Fig. E2.15a. Assume A = 3000 mm” and E = 200 GPa for all
members.

Determine: The vertical displacement at ¢ (v.) due to the loading shown and a settlement of 10 mm at
support a.

30 kN
30 kN 1
b 30 kN L
1 1 e
b d
A%
Im
a L
10mm | rhr g f %
7.5m - 45m \ 4.5m 7.5m

Fig. E2.15a

Solution: Using (2.13), the vertical displacement at ¢ (v.) is determined with v,

Ve = Z edoF, — Z dSR

members reactions
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The actual and virtual forces are listed below.

im

B

Fig. E2.15b Actual forces, F

Fig. E2.15¢ Virtual forces, 6F

Using this data, and assuming AF is constant, the computation proceeds as follows:

Member L (mm) F oF, L F 6F,
ab 6708 —100.6 —1.12 756(10)°
be 6708 —87.2 —1.12 655(10)°
cd 6708 —87.2 —1.12 655(10)°
de 6708 —100.6 —1.12 756(10)°
ef 7500 90 1.0 675(10)°
fg 9000 60 1.0 540(10)°
ga 7500 90 1.0 675(10)°
bg 3354 —26.8 0 0

gc 7500 30 0 0

cf 7500 30 0 0

fd 3354 —26.8 0 0
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> LF&F, = 4712(10)°

1 1
c=—(STLF6F,) — 6Ru(va) = ——————(4,712,000) — (0.5)(—10) = +12.85

’ AE(Z ) (%) = 350002000 ) = (0.5)(=10) = +12.85mm

Sy =12.85mm |

Example 2.16 Computation of Deflection— Virtual Force Method

Given: The plane truss shown in Fig. E2.16a. Member bc and cf also have a fabrication error of
+0.5 in.

Determine: The vertical component of the displacement at joint g (v,). Take A = 2 in.? and

E = 29,000 ksi for all the members. -
& 'IP

l

C

611

I 81t 121 12t st

Fig. E2.16a

Solution: The actual and virtual forces are listed below.

12 kip

]

Fig. E2.16b Actual forces, F

15 kip
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Fig. E2.16¢c Virtual forces, 6F
Using this data, the following computations are carried out:

Member L (in.) L/A F oF, LF6F, ep in. eq OF,

ab 120 60 —25 —0.83 1245 0 0

bc 161 80.5 —22.36 —-0.75 1350 +0.5 —0.375

cd 161 80.5 —22.36 —0.75 1350 0 0

de 120 60 -25 —0.83 1245 0 0

ef 96 48 20 0.67 643 0 0

fg 144 72 16 0.83 960 0 0

gh 144 72 16 0.83 960 0 0

ha 96 48 20 0.67 643 0 0

bh 72 36 —4 0.166 —24 0 0

cg 144 72 0 1 0 0 0

df 72 36 —4 0.166 —24 0 0

ch 203.6 101.8 5.65 —0.235 —135.7 0 0

cf 203.6 101.8 5.65 —0.235 —135.7 +0.5 —0.1175
S LFSF, = 8077 >~ epdF, = —0.49

L 8077 . ,
Vews = D CloreeFy = <EF> OF, =35-000 — T0-278in. = v, 0.28in. |

Vg fabrication error — § eooF, = —0.49in. = Vg fabrication error = 0.49in. 7

Vg(load-+fabrication) = +0.278 — 0.49 = —0.21in. = Vg(load-+fabrication) = 0.21in. 7

Example 2.17 Deflection of a Gable Truss

Given: The plane truss shown in Fig. E2.17a. The truss has variable cross sections, such that
A = 6500 mm? for top chord members, A = 3900 mm? for bottom chord members, A = 1300 mm?
for diagonal members, and A = 650 mm? for vertical members, / =3 m, P =10 kN, and
E = 200 GPa.
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Determine: The vertical displacement of node j (v;) and the horizontal displacement of node g (u,).

P
, P [l ;i
oot f . of —F =l
02l g == }ﬁl“ﬁ::__g
7 k ] i h 32,
l [ l l l [

Fig. E2.17a Geometry and loading
Solution: The actual and virtual forces are listed below.

=275
125 T
25
—=2.55
S __
2.5
0.5

Fig. E2.17c Virtual forces 6F,

0 0
0 u < b 0

P— L ! : : - - 5P =1
+1 +1 +1 +1 +1 +1

Fig. E2.17d Virtual forces 6F,

The computations are organized using the spreadsheet format listed below. Note that the upper and
lower chords and only the central member contribute to the central vertical deflection. And only the
lower chord contributes to the horizontal support deflection. The plus sign indicates the deflection is
in the direction of the unit load.

Member L (mm) A (mm?) L/A F (kN) oF, oF, (L/A)F 6F, (L/A)F 6F,
ab 3059 6500 0.47 —127.5 0.0 —2.55 0 152.8
bc 3059 6500 0.47 —102.0 0.0 —2.55 0 122.2
cd 3059 6500 0.47 —76.5 0.0 —2.55 0 91.7
de 3059 6500 0.47 —76.5 0.0 —2.55 0 91.7
ef 3059 6500 0.47 —102.0 0.0 —2.55 0 122.2
fg 3059 6500 0.47 —127.5 0.0 —2.55 0 152.8
gh 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6
hi 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6
ij 3000 3900 0.77 100.0 1.0 2.5 77 192.5
jk 3000 3900 0.77 100.0 1.0 2.5 77 192.5
kl 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6
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Member L (mm) A (mm?) L/A F (kN) oF, oF, (L/A)F oOF, (L/A)F OF,
la 3000 3900 0.77 125.0 1.0 2.5 96.2 240.6
bl 600 650 0.92 0.0 0.0 0.0 0 0
ck 1200 650 1.85 5.0 0.0 0.0 0 0
dj 1800 650 2.71 20.0 0.0 1.0 0 55.4
ei 1200 650 1.85 5.0 0.0 0.0 0 0
th 600 650 0.92 0.0 0.0 0.0 0 0
bk 3059 1300 2.35 —25.5 0.0 0.0 0 0
cj 3231 1300 2.48 —26.9 0.0 0.0 0 0
ej 3231 1300 2.48 —26.9 0.0 0.0 0 0
fi 3059 1300 4.71 —25.5 0.0 0.0 0 0

The remaining computations involve dividing by E.

> (G)F 6Fu) = 538.8kN/mm

1 L
Sty = Sepre OF, = EZ s <<K)F5Fu) = 538.8/200 = 2.69mm —

> ((%)FéFv> = 2136.2kN/mm

1 L
S = Z Setoce  OF = EZ )3 <<Z)F5Fv> =2136.2/200 = 10.7mm |

We pointed out earlier that the distribution of member forces depends on the orientation of the
diagonal members. We illustrate this behavior by reversing the diagonal pattern for the truss defined
in Fig. E2.17a. The member forces corresponding to the same loading are listed in Fig. E2.17e.
Suppose the vertical deflection at mid-span is desired. The corresponding virtual force system is
shown in Fig. E2.17f.

797‘ +2.5 +2.5 +2.5 l +25 +2.5 +2.5
7 I4

sP=1

Fig. E2.17f Diagonal pattern reversed—virtual forces 6F,

Member L (mm) A (mm?) L/A F oF, (L/A)F 6F,
ab 3059 6500 0.47 —127.5 —2.55 153

be 3059 6500 0.47 —127.5 —2.55 153

cd 3059 6500 0.47 —102 —2.55 122.2
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Member L (mm) A (mm?) L/A F oF, (L/A)F 6F,
de 3059 6500 0.47 —102 —2.55 122.2
ef 3059 6500 0.47 —127.5 —2.55 153
fg 3059 6500 0.47 —127.5 —2.55 153
gh 3000 3900 0.77 125.0 2.5 240.6
hi 3000 3900 0.77 100 2.5 192.5
ij 3000 3900 0.77 75 2.5 144.4
jk 3000 3900 0.77 75 2.5 144.4
kl 3000 3900 0.77 100 2.5 192.5
la 3000 3900 0.77 125 2.5 240.6
bl 600 650 0.92 -10 0.0 0
ck 1200 650 1.85 —15 0.0 0
dj 1800 650 2.77 0 1.0 0
ei 1200 650 1.85 —15 0.0 0
fh 600 650 0.92 —10 0.0 0
bk 3059 1300 2.35 27 0.0 0
dk 3498 1300 2.69 29 0.0 0
di 3498 1300 2.69 29 0.0 0
fi 3059 1300 2.35 27 0.0 0

Using the data listed above, the mid-span deflection calculations are

> ((j)F&FV) = 2011kN/mm

1 L
L= Z S etorceOFy = EZ s <<Z)F5FV> =2011/200 = 10mm |

The examples presented to this point have been concerned with loads. Structures are also subjected
to seasonal (and daily) temperature changes and it is of interest to determine the corresponding nodal
displacements. A unique feature of statically determinate structures is their ability to accommodate
temperature changes without experiencing member forces. When subjected to a temperature change,
a statically determinate structure adjusts its geometry in such a way that there are no forces
introduced in the members. From a design perspective, this behavior is very desirable since member
forces, i.e., stresses, are due only to the loads. However, one may need to compute the deflected shape
due to temperature change from some initial state. The effect of temperature change is to produce an
additional extension in a truss member given by:

€temperature — aATL

where o is a material property, defined as the coefficient of thermal expansion, and AT is the
temperature change from the initial state. Then, the form of the Principle of Virtual force specialized
for only temperature and unyielding supports reduces to

dsP =) (etemperature) (6F) (2.15)

The computational procedure is similar to the approach discussed earlier. We evaluate (o AT L) for
the members. Then, given a desired deflection, we apply the appropriate virtual loading and compute 6F
for the members. Lastly, we evaluate the summation. The following example illustrates the details. This
discussion applies only for statically determinate trusses. A temperature change introduces internal forces
in statically indeterminate trusses. Analysis procedures for this case are discussed in Chaps. 9 and 10.


http://dx.doi.org/10.1007/978-3-319-24331-3_10
http://dx.doi.org/10.1007/978-3-319-24331-3_9
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Example 2.18 Computation of Deflection Due to Temperature

Given: The plane truss shown in Fig. E2.18a.

Determine: The vertical displacement at joint d due to temperature increase of AT = 65 °F for all
members. Assume A = 2 in.2, E = 29,000 ksi, and a = 6.5 (1076)/°F.

b

Fig. E2.18a

Solution: The corresponding virtual force system is listed below.

b

Fig. E2.18b Virtual forces 6F

Member L (in.) e = aATL oF, e OF,
ab 214.7 0.091 —1.12 —0.102
be 214.7 0.091 —1.12 —0.102
cd 135.7 0.057 0.707 0.04
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Member L (in.) le = aATL | OF, e OF,

da 1135.7 10.057 0707 10.04

bd 196 10.041 2 10082
|

Vo= Comperawre  OFy = (@ ATL)SF, = —0.042 = vy = 0.042in. |

| esF = —0.042

2.4 Influence Lines

Consider the plane bridge truss shown in Fig. 2.26a. To design a particular member, one needs to
know the maximum force in the member due to the design loading. The dead loading generally acts
over the entire structure, i.e., on all the nodes. For this loading component, one places all the dead
load on the structure and carries out a single analysis for the member forces. The live loading, by
definition, can act anywhere on the structure and therefore one needs to determine the location of the
live loading that produces the maximum force in the member that is being designed. A systematic
approach to locating the critical position of the live loading is based on first constructing an influence
line for the member force. This construction involves a series of analyses, one for each possible
location of live loading. The live load is usually taken as a single force, of unit magnitude, which is
moved from node to node across the structure. The resulting influence line is a plot of the member
force as a function of the location of the applied load. Figure 2.26b illustrates the possible nodal
positions of a vertical load applied to the bottom chord, and the corresponding member forces. Given
this data, one can construct an influence line for any of the member forces.

The process described above assumes the loading is a concentrated load applied at the nodes. For
bridge structures, the live loading is actually applied to the deck which transmits the load to the
transverse beams, and finally to the nodes. The deck is usually simply supported on the transverse
beams, so the complete deck-beam system is statically determinate and one can determine the
reactions at the nodes using only the equations of statics. We illustrate this computation using the
structure shown in Fig. 2.27a. We suppose a truck loading is passing over the span.

Consider the position shown in Fig. 2.27b. The wheel loads act on the deck segments gf and fe. The
live load vehicle analysis reduces to just applying loads to the nodes adjacent to the vehicle since the
deck segments (gf and fe) are simply supported. Noting Fig. 2.27c, the equivalent nodal loads are

&ZO—%H
(s (232

R (X4 1\p
3= l l 2

Note that the reactions are linear functions of x, the position coordinate for the truck.
We define F; as the force in member j. Applying separate unit loads at nodes g and f leads to Fj|,
and Fj|¢. Then, according to the equations listed above, the force due to a unit load at x is

A= (1= s
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Fig. 2.26 (a) Truss
geometry. (b) Load.

corresponding member
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The most convenient way to present these results is to construct a plot of F; vs. x, where Fj is the
force in member j due to a unit load at x, and x is taken to range over the nodes on the bottom chord.
We need to apply these loads only at the nodes since the plot is linear between adjacent nodes. Plots
of this type are called influence lines. Figure 2.28a shows the influence line for chord member ab. This
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Fig. 2.27 (a) Truss a
geometry. (b). Loaded p a b )
position. (¢) Free body 1 P, g
diagram-transverse beam \l/ ,l I
Py h d
a e 13
ey 777 g f e ,
1 1 I l
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visual representation is convenient since one can immediately identify the critical location of the
load. For the chord member, ab, the maximum magnitude occurs when the load is applied at
mid-span. Also, we note that the force is compression for all locations.

Given an actual loading distribution, one evaluates the contribution of each load, and then sums the
contributions. If the actual live load consisted of a uniform loading, then it follows that one would
load the entire span. The maximum force due to the truck loading is determined by positioning the
truck loads as indicated in Fig. 2.28b. In general, one positions the vehicle such that the maximum
vehicle load acts on node f.

The influence line for member fg is plotted in Fig. 2.28c. In this case, the member force is always
tension.

The function of the diagonal members is to transmit the vertical forces from node to node along the
span. This action is called “shear.” The influence line for a diagonal is different than the influence
lines for upper and lower chord members, in that it has both positive and negative values. Figure 2.28d
shows the result for diagonal af. A load applied at node g generates compression, whereas loads at
nodes f and e produce tension. Lastly, a symmetrically located diagonal with opposite orientation,
such as cf vs. af, has an influence line that is a rotated version of its corresponding member (see
Fig. 2.28d vs. Fig. 2.28e).
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Fig. 2.28 (a) Influence line for cord member ab. (b) Vehicle positioning for F. ab‘max. (¢) Influence line for chord
member fg. (d) Influence line for diagonal member af. (e) Influence line for diagonal member cf. (f) Uniform unit load

Because the influence lines for diagonals have both positive and negative values, one needs to
consider two patterns of live load in order to establish the peak value of the member force.

For member af, the extreme values are
Load at node f F = /2/2

Load at node g F = v/2/4
For member cf, the extreme values are

Loads at node e F = v/2/4

Loads at node f F = v/2/2
If a uniform load is applied (see Fig. 2.28f), the peak force values for both members will be:

Fnax = +\/§/2

As mentioned earlier, diagonal members function to transmit vertical loads to the end supports.
We showed above that the sense of the diagonal force depends on the orientation of the member. The
sense of the diagonal force is important since slender members behave differently under compression
vs. tension. A slender member subjected to compressive load will fail by buckling rather than by
yielding since the buckling load is considerably less than the yield force. Therefore, from a design
perspective one should avoid using slender compression members. For truss type structures, this
problem can be avoided by selecting an appropriate diagonal orientation pattern.
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Fig. 2.29 Force pattern
for various truss
geometries. (a) Pratt truss.
(b) Warren truss. (c) Pratt
truss. (d) Howe truss
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As an example, consider the two diagonal patterns shown in Fig. 2.29a, b. The sense of the member
forces due to a uniform live load is indicated by C (compression) and T (tension).

Pattern (a) is more desirable since all the interior diagonals are in tension. However, some of the
vertical members are in compression. Pattern (b) has alternating sense for the diagonals; the vertical
hangers are all in tension. In general, for both truss types the top chord forces are compression and the
bottom chord forces are tension. Figure 2.29c, d show similar results for inclined chord trusses. The
designators “Pratt,” “Warren,” and “Howe” refer to the individuals who invented these geometrical

forms.

Example 2.19
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Given: The structure and truck loading shown in Fig. E2.19a.

Sm a b

(Q h . % d 1

y
¥

Fig. E2.19a
Determine: The maximum force in members ab and fg due to the truck loading.

Solution: We first determine the influence lines for a unit vertical force applied along the bottom

nodes. "
Jh/\
1.0 3

0.5 1

Fig. E2.19b Influence line for member ab

1.0

v

Fig. E2.19¢ Influence line for member fg
Then, we position the truck loading as indicated in Figs. E2.19d and E2.19e
Fab,, = 16(—1) +8(—0.69) = —21.52 .".Fya,, = 21.52kN compression

Frg = 16(0.75) +8(0.59) = +16.72 .".F, = 16.72kN tension
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Example 2.20 Live Load Analysis for a Gable Roof Structure

Given: The gable roof structure shown in Fig. E2.20a.

/| c
Pl b ;I; Py 0.5]
i \L/ﬁu/ﬂ‘/>[\le 0.5]
A h g f &

. [ | I I ! :
| ’ |

Fig. E2.20a Structural geometry and nodal loads

Determine:

(i) Tabulate all the member forces due to the individual unit nodal forces applied to the top chord.
We refer to this type of table as a force influence table.
(i) Use the force influence table to draw the influence lines for member cd and fg.
(iii) Calculate the reactions and member forces for members cd and fg for P; = P5; = 7.5kN, and
P, =P3 =P4 = 15kN.
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Solution:
Part (i) the member forces due to the individual unit nodal loads are listed in Fig. E2.20b.

; -0.56 c -0.56
0 o |o
a 4 :
R =o,7sT
ay
a
.
R =0.5 T
ay
a + e
L 0.5 h oos & 15 f 1.5 %%
R =025 T T R, = 0.75
ay

Fig. E2.20b Force results for different unit load positions

The complete set of member force results are listed in the following Table. One uses this table in
two ways. Firstly, scanning down a column shows the member which is most highly stressed by the
loading acting at the position corresponding to the column. Scanning across a row identifies the
loading which has the maximum contribution to the member force.

Force influence table

Member P,=1 Py=1 P,=1
ab —1.68 —1.12 —0.56
be —0.56 —1.12 —0.56
cd —0.56 —1.12 —0.56
de —0.56 —1.12 —1.68
ef 0.5 1.0 1.5
fg 0.5 1.0 1.5
gh 1.5 1.0 0.5
ha 1.5 1.0 0.5
bh 0 0 0
cg 0.5 0 0.5
df 0 0 0
bg —1.12 0 0
ed 0 0 —1.12
Ry 0.25 0.5 0.75
R, 0.75 0.5 0.25
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Part (ii) One can interpret the force influence table as representing the complete set of influence lines
for the individual members. We use this data to draw influence line for member cd and fg.

ch

. ! | I I I
I 1
Fig. E2.20c Influence line for member cd
F{g
A
a ’ >
b c d e

. ! | I I !

Fig. E2.20d Influence line for member fg

Part (iii) By using the force influence table, the corresponding forces in members cd and fg and
reactions are determined as follows:

Feq = 15(—0.56) + 15(—1.12) + 15(—0.56) = —33.6 .".Fq = 33.6kN compression
Fgy = 15(0.5) + 15(1.0) + 15(1.5) =45 ..Fg, = 45kN tension

Ray = 7.5+ 15(0.25) + 15(0.5) + 15(0.75) =30 "Ry = 30kN |

)

Re. = 7.5+ 15(0.75) + 15(0.5) + 15(0.25) = 30 .".R. = 30kN |
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2.5 Analysis of Three-Dimensional Trusses
2.5.1 Introduction

Most structural systems such as highway bridges and roof systems can be considered to be composed
of a set of planar trusses. However, there are exceptions, such as towers and domed structures, which
cannot be decomposed into planar components and consequently one needs to deal with three-
dimensional combinations of members. These structural types are called space structures.

The basic unit for a 3-D space truss is the tetrahedron, a geometrical object composed of six
members that form four triangular faces. Figure 2.30 illustrates this object. We form a 3-D structure
by attaching members to existing nodes. Each new node requires three members. Provided that the
structure is suitably supported with respect to rigid body motion, the displacements that the structure
experiences when loaded are due only to deformation of the members.

Space truss structures are used for vertical structures such as towers and long-span horizontal
structures covering areas such as exhibition halls and covered stadiums. They usually are much more
complex than simple plane trusses, and therefore more difficult to analyze.

The equilibrium analysis for three-dimensional trusses is similar to that for planar structures
except that now there are three force equilibrium equations per node instead of two equations. One
can apply either the method of joints or the method of sections. Manual analysis techniques are
difficult to apply for large-scale space structures, and one usually resorts to computer-based analysis
procedures. Our immediate objectives in this section are to discuss how a space structure needs to be
restrained in order to prevent rigid body motion and to illustrate some manual calculations using the
methods of joints. We present a computer-based method in the next section.

2.5.2 Restraining Rigid Body Motion

A rigid three-dimensional body requires six motion constraints to be fully constrained; three with
respect to translation, and three with respect to rotation. We select an orthogonal reference frame
having directions X, Y, and Z. Preventing translation is achieved by constraining motion in the X, Y,
and Z directions as illustrated in Fig. 2.31. Even when suitably restrained against translation, the body

Fig. 2.30 Tetrahedron c
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Fig. 2.31 Restraints for a Y
3-D rigid object

Fig. 2.32 Types of supports for space trusses. (a) Hinge joint. (b) Slotted roller. (¢) Roller. (d) Rigid link

can rotate and we need to provide additional constraints which eliminate rotation about the X, Y, and
Z axes. To prevent rotation about an axis, say the X axis, one applies a translational constraint in a
direction which does not pass through X. This rule is used to select three additional constraint
directions, making a total of six restraints. If one introduces more than six restraints, the structure
is said to be statically indeterminate with respect to the reactions. Various examples illustrating the
selection of restraints are listed below (Fig. 2.32).
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Example 2.2]1 Various Restraint Schemes

Given: The 3-D truss shown in Fig. E2.21a, b.

Determine: Possible restraint schemes.

a d
Z
C
y
b
%X a
b c c
Y %
b
a
> X > X

Fig. E2.21 (a) 3-D truss. (b) x — y plan view. (¢) x — z plan view

Solution: The preferred way of displaying 3-D objects is to work with projections on the X — Y and
X — Z planes, referred to as the “plan” and “elevation” views. The projections corresponding to the
object defined in Fig. E2.21a are shown in Fig. E2.21b, c.

The choice of restraints is not unique. One can employ a 3-D hinge which provides full restraint
against translation, or roller type supports which provide restraint against motion in a particular
direction. Suppose we place a 3-D hinge at joint a. Then, a is “fixed” with respect to translation in the
X, Y, and Z directions.

Fig. E2.21d 3-D hinge at a

With these restraints, the body can still rotate about either line a-b or line a-c, or a line parallel to
the Z axis through a. The first two modes are controlled with Z restraints applied at b and c. The third
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mode is controlled with either an X or Y restraint applied at either b or c. Figure E2.21e shows the
complete set of displacement restraints chosen.

Y Z
N N N
d

A égs.b

X

—+—a Tn‘. a b

TAY ' Al Te, B
>X —>X

Fig. E2.21e Complete set of restraints

Other possible restraint schemes are shown in Figs. E2.21f, E2.21g, and E2.21h. Our strategy is to
first restrain translation and then deal with the rotation modes.

Y . 7
N —4  Cx
A, % b
+—a Tl!_\.
> X
Fig. E2.21f Alternative restraint scheme #1
Y Gy i
N 1- Z
cu—t— A d
J’f
x b /
x /c
+d a M b
AT To T8,
> X > X
Fig. E2.21g Alternative restraint scheme #2
.
h r . z
N [ _+_‘ L\ d
b
a Tu a b
d AT T, B,
> X > X

Fig. E2.21h Alternative restraint scheme #3
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2,5.3 Static Determinacy

The approach we followed in Sect. 2.2.2 for 2-D Plane trusses is also applicable for 3-D trusses. One
just has to include the additional variables associated with shifting from two to three dimensions.
Each member of a truss structure has a single force measure, the magnitude of the axial force.
However, for 3-D trusses, there are three equilibrium equations per node instead of two for a plane
truss. Defining m as the number of members, r as the number of reactions, and j as the number of
nodes, it follows that the number of force unknowns and the number of force equilibrium equations
available are

Forceunknowns = m+r
Forceequilibrium equations = 3j

The structure is statically determinate when m + r = 3j. If m + r > 3j, there are more force
unknowns than available equilibrium equations and the structure is designated as statically indeter-
minate. Lastly, if m + r < 3j, there are less force unknowns than required to withstand an arbitrary
nodal loading, and the structure is unstable, i.e., it is incapable of supporting an arbitrarily small
loading.

< 3J unstable
m+r<{ = 3J determinate

> 3J indeterminate

In addition to these criteria, the structure must be suitably restrained against rigid body motion.

Example 2.22 A Stable Determinate Truss

Given: The truss defined in Fig. E2.22a, b.
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a y
A
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b 7
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T,\, . Dz Tn; . C¥

v
-

Fig. E2.22 3-D truss. (a) x — y plan view. (b) x — z plan view

Determine: The stability

Solution: For the structure shown above, there are eight members, seven reactions, and five joints.
m=8 r=7 j=5
m-4r=3j

The structure is initially stable.

Example 2.23 An Unstable Structure

Given: The truss defined in Figs. E2.23a and E2.23b
Determine: The stability

Solution: The number of force unknowns is equal to the number of available force equilibrium
equations but the structure has a fundamental flaw. The translation restraints in the X — Y plane are
concurrent, i.e., they intersect at a common point, ¢/, shown in Fig. E2.23a. As a result, the structure
cannot resist rotation about a Z axis through ¢’.
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Fig. E2.23a x — y plan view

Fig. E2.23b x — z plan view

2.5.4 Method of Joints for 3-D Trusses

Each member of a space truss is assumed to be pinned at its ends to nodes in such a way that there is
no bending in the member, only an axial force whose direction coincides with the centroidal axis. The
direction of the force is determined by the geometry of the member, so one needs only to determine
the magnitude. We find these quantities using force equilibrium equations. Our overall strategy is to
first determine the reactions with the global equilibrium conditions. Once the reactions are known, we
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Fig. 2.33 Resolution of a zZT
force into its components
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range over the nodes and establish the nodal force equilibrium equations for each node. This process
is similar to the method of joints for Planar Trusses except that now there are three equilibrium
equations per node. The member forces are computed by solving the set of nodal force equilibrium
equations.

Consider the force vector shown in Fig. 2.33. Since the force vector orientation coincides with the
direction of the centroidal axis for member ab, the force components are related to the geometric
projections of the member length. We resolve the force vector into X, Y, and Z components, and label
the components as F, F, and F.. Noting the commonality of directions, the force components are
related to the force magnitude and geometric projections by

Fo /. B

F—7— COoS ax—ﬂx

F, 7,

Fy: /) = cos ay :ﬂy (216)
F., /.

F“ = = cos a; = f3,

The coefficients, f,, ,, and f3., are called direction cosines. .Given the coordinates of the nodes at
each end (a, b), one determines the projection and length using

l,=xp — Xa
ly=1Yp—Ya
L=z -2, (2.17)

I=\/E+E+E

We are assuming the positive sense of the member is from node a toward node b. These
relationships allow one to carry out the equilibrium analysis working initially with the components

and then evaluate the force magnitude.
— 2 2 2
F=\/F.+F +F; (2.18)
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We illustrate the analysis process with the following examples. There are many ways to carry out
the analysis. Our approach here is based primarily on trying to avoid solving sets of simultaneous
equations relating the force magnitudes. However, there are cases where this strategy is not possible.

Example 2.24 Analysis of a Tripod Structure
Given: The tripod structure shown in Fig. E2.24a, b. The supports at a, b, and ¢ are fully restrained

against translation with 3-D hinges.

Determine: The force in each member.

a
Tes
Cx
—— O e
8 fi
—> 20 kip 4
o
/// d \
/ Y
/// \
/ AN
//
Y Pe \ 16 ft
'y ,
S
L /// \
a \b B,
X — ./ — =+

18 ft 12 ft

26 ft

18 ft [ 12 ft

Fig. E2.24 Tripod geometry and supports. (a) x — y plan view. (b) x — z plan view
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Solution: There are three reactions per support, making a total of nine reaction unknowns. Adding the
three unknown member forces raises the total number of force unknowns to 12. Each joint has three

force equilibrium equations and there are four joints, so the structure is statically determinate.

The first step is to determine the direction cosines for the members. This data is listed in

Table E2.24.1 below.

Table E2.24.1
Member I, I L / P Py
ad 18 16 26 354 0.508 0.452
bd 12 16 26 32.8 0.366 0.488
cd 0 8 26 27.2 0.000 0.294

B-

0.734
0.793
0.956

We first determine the Z reaction at ¢ by enforcing moment equilibrium about an X axis

through a-b.
10(16) — C,(24) =0
C,=6.67kip T
The reaction force at c is equal to the z component of the force in member cd. Therefore,

6.67 .
Fyg.=—-C.=—-667 = Fyq4= 0956 6.98 (compression)

Then,
Cyr=Fqx=0
and
Cy = —F,y = —6.67(0.294) = 2.05kip |
We determine the Y reaction at b by summing moments about the Z axis through a.
20(16) 4 2.052(18) = 30B,
By, = 11.90kip T

Then,
Fra,y=—By=—11.90 = Fpq= LA 24.39 (compression)
0.488
Therefore,
B, = —Fpq. — 892
and

Fpa.- = 0.793(24.39) = 19.33
B.= —Fpq.=19331
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Lastly, we sum forces in the Z direction and determine the reaction at A.
B.+C.+A, =10
A, =10—-6.67—-19.33 =—16
A, = 16kip |

Then,

16

F 7:_A7:1 F = —_—
ad.z :=160 = Fu=g75

=21.8 (tension)

and
Ay = —Fa, = 0.508(21.8) = 11.07kip «—
Ay = —F,q,, = 0.452(21.8) = 9.85kip |

We were able to find the member forces working at any time with no more than a single unknown. A
more direct but also more computationally intensive approach would be to work with joint d and generate
the three force equilibrium equations expressed in terms of the magnitudes of the three-member forces. In
this approach, we use the direction cosine information listed in Table E2.24.1 and assume all the member
forces are tension. Noting (2.16), the corresponding force equilibrium equations are

> Fy=0 20+0.366Fp — 0.508F,4 =0
Faa = 21.81kip

Joint d ZF}, =0 0.294F,4 —0.452F,g —0.488Fpq =0 = Frg = —24.39kip

Feq = —6.97kip
ZFZ =0 104 0.734F,4 + 0.793F g + 0.956F 4 = 0

Fed z 10 klp

y l
, ‘ < d y—> 20 kip
d

F F F
Fad bd ad Fed bd

Fig. E2.24c Joint d

Table E2.24.2

Member ‘ Force ‘ Force, ‘ Force, ‘ Force. ‘

ad ‘ 21.81(tension) ‘ 11.07 ‘ 9.85 ‘ 16.00 ‘

bd ‘ 24.39 (compression) ‘ 8.93 ‘ 11.90 ‘ 19.33 ‘
|

cd ‘6.97(compression) ‘ 0.00 ‘ 2.05 ‘ 6.67
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Example 2.25 Analysis of a Tetrahedron

Given: The tetrahedron structure defined in Fig. E2.25a, b.

Determine: The member forces.

8 ft
v 16 ft
X -
18 ft 12 ft
10 kip
b
W
d —> 20kip T
26 ft
zZ
sy 2 c b +
Fa. te,  te
18 ft 12 fi

4 I 4

Fig. E2.25 Tetrahedron geometry and support. (a) x — y plan view. (b) x — z plan view

Solution: There are six reactions (three Z forces, two X forces, and one Y force), six members, and
four joints. The determinacy criteria,
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3j=m+r—34)=6+6

is satisfied, so the structure is statically determinate.
We first determine the direction cosines for the members listed in Table E2.25.1

Table E2.25.1

Member I Ly L. 1 Py By B

ac 18 24 0 30.0 0.600 0.800 0.000
ab 30 0 0 30.0 1.000 0.000 0.000
bc 12 24 0 26.8 0.447 0.895 0.000
ad 18 16 26 254 0.508 0.452 0.734
cd 0 8 26 27.2 0.000 0.290 0.960
bd 12 16 26 32.8 0.366 0.488 0.793

Next, we determine the Z reactions at a, b, and c.
ZMX at a=0
10(16) = 24C,
C,=6.677
ZMy at a=0
20(26) + 10(18) = 6.67(18) + 30B,
B, =19337

1933 4+ 6.67 + A, = 10
A =16 |

The Y component at a is determined with: ZF, = 0 .. A, = 0.
Then, we enforce XM, = 0 with respect to a Z axis through a.

24C, = 20(16)
Co=1334 —

Lastly, we evaluate B,

ZFF 0 C,+B, =20
B, = 6.66 —

With the reactions known, each of the joints involves only three unknowns, and we can start with
any joint. It is most convenient to start with joint b and enforce Z equilibrium.

> F.=0 Fy.=8.=19.33
Then,

Fpg = —24.4 (compression)
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We find F, by summing Y forces at b.
> Fy=0+Fey+ Foay =0
Fepy=11.91
Fe = +13.3 (tension)
Then, we find F, by summing X forces at b.
Fap + Fepx + By — Foax =0
Fap = —3.69 (compression)
We move on to joint c. Summing Z forces yields F 4
D F-=0 C:4Fe:=0
Fea,= —6.67
Feq= —6.95 (compression)
Summing X (or Y) forces leads to Fyy,
> Fy=0 Bi+Fu.——Fepx=0
Fapxy=—13.34+5.94 = -7.40
Fa, = —12.33 (compression)
The last step is to determine F,q by enforcing Z force equilibrium at a.
> F.=0 Fu:+A.=0
Fag-= 16
Faa = +21.8 (tension)

We could have solved this problem by establishing the three force equilibrium equations for joint
d, and finding F 4, F.q, Fq- Once the reactions are known, we could set up the equations for joints ¢
and b, and solve for the member forces F,., Fy., and F,,. We followed a different approach to
illustrate how one applies the method of joints in a selective manner to a 3-D space truss.

Example 2.26 Displacement Computation—3-D Truss
Given: The tripod structure defined in Fig. E2.26a, b.

Determine: The displacements at joint d due to loading shown and a temperature increase of
AT = 80 °F for all the members. Assume A = 2.0 in.>, E = 29 x 10’ ksi, and @ = 6.6 x 10 °/°F.
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a
e
Cx

——>C +
8 ft
A—> 20 kip i
/d
/
Y /// 16 ft
///
-
’ a/ b By
X > —_>
Ax ?A)- ?B’
18/ 12 f ’
t + t
10 kip
b
d Y——s 20kip T
26 ft
Z
b +
x: = c
TAZ ?CZ 1\82
18 ft | 12 ft

Fig. E2.26 Tripod geometry and supports. (a) x — y plan view. (b) x — z plan view

Solution: We apply the virtual loads 6P,, 6Py, and 6P, (see Fig. E2.26¢, d) at joint d and determine
the corresponding virtual member forces, 6F,, oF,, and OF,. The individual displacement
components due to loading are determined with:
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Fig. E2.26¢ Virtual forces
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For temperature change, we use
usP, = (aATL)F,
voPy = (aATL)SF,
woP. =Y (aATL)SF,

The relevant data needed to evaluate displacements is listed in Table E2.26.1. Note that we need to

shift length units over to inches when computing (/%) and (a AT L).
We use the member forces determined in Example 2.24.

D> Fe=0 20+ 0.366Fq — 0.508F, =0 Faa = 21.81kip

Joint dq > Fy =0 0.294Fcq — 0.452F,4 — 0.488Fpg = 0 = Fpa = —24.39Kip
S F.=0 10+0.734F 4 + 0.793Fpg + 0.956F g = 0 Feq = —6.97kip
For 6P, =1":
D> Fi=0 0.3666F,p — 0.5085F 00 = —1 5F g = 1.18
Joint d§ Y "Fy =0 0.2946F,cq — 0.4526F 0a — 0.4885F,0a =0 = SFupa = —1.09
> F.=0 0.7346F 04 + 0.7936F ypg + 0.9565F  ca = 0 6Fuca =0
For 6P, =1
> Fe=0 0.3665F,pq — 0.5085F, 49 =0 6F, o1 — 0.59
Joint dq > Fy =0 0.2946F, cq — 0.4526F 1 — 0.4886F g = =1 =  6F,pa = 0.82
D F.=0 0.7346F, a4 + 0.7936F ,pa + 0.9565F , cq = 0 0F,ca = —1.13
For 6P, =1:
D> Fe=0 0.3665F,n — 0.5085F, . =0 SF g = 0.18
Joint dq > Fy =0 0.2945F,cq — 0.4526F 00 — 0.4886F,pa = 0 = SFyba = 0.25
D F.=0 0.7346F 0 + 0.7936F pa + 0.9566F ca = —1.0 6Fyca = 0.70
The relevant data needed to evaluate displacements is listed in Table E2.26.1.
Table E2.26.1
|For 6P = 1.0 |
Member  [I(f)  |AGn? |F | 5F, OF, OF,, | i(in.) |aLAT (in)
ad 1354 |20 2181 | 118 | 059 018 | 0.160 | 0.224
bd 328 |20 |-2439  |-1.09 | 082 025 |-0.165  |0.208
cd 272 |20 | 697 | 000 |-113  [070 | —0039  |0.172



2.6 Matrix Formulation: Equilibrium Analysis of Statically Determinate 3-D Trusses 131
The displacements due to loads are

FL
Mo = <A—> 8F, = (0.160)(1.18) + (—0.165)(—1.09) = 0.3691n.

Vi = ) (%) 8F, = (0.160)(0.59) + (—0.165)(0.82) + (—0.039)(—1.13) = 0.003 in.

Wioad = (ig) SF,, = (0.160)(0.18) + (—0.165)(0.25) + (—0.039)(0.70) = —0.039in.

A 80 °F temperature increase produces the following displacements:
Uemp = Z (aATL)SF, = (0.224)(1.18) + (0.208)(—1.09) = 0.038in.
Viemp = Z (aATL)SF, = (0.224)(0.59) + (0.208)(0.82) + (0.172)(—1.13) = 0.108in.
Wiemp = Z (a ATL)6F,, = (0.224)(0.18) + (0.208)(0.25) + (0.172)(0.70) = 0.213 in.

The total displacements are
U(load+temp) = 0.369 + 0.038 = 0.407 in.
V(ioad-+temp) = 0.003 + 0.108 = 0.111in.
W(oad+temp) = —0.039 +0.213 = 0.174in.

2.6  Matrix Formulation: Equilibrium Analysis of Statically
Determinate 3-D Trusses

Manual techniques are easy to apply for simple geometries, but become more difficult with increasing
geometric complexity. The equilibrium analysis approaches described in the previous sections can be
formulated as a sequence of matrix operations which can be readily automated for computer-based
analysis. In what follows, we describe one approach for the equilibrium analysis of statically
determinate 3-D trusses. We present a more general matrix formulation later in Chap. 12.

2.6.1 Notation

A truss is an assembly of nodes that are interconnected with members. It is convenient to define the
geometry with respect to a global Cartesian coordinate system, XYZ, and number the nodes and
members sequentially. Figure 2.34 illustrates this scheme. The structure has four nodes and six
members.

We assume a positive sense for each member and define the direction cosines consistent with the
assumed sense. The positive and negative nodes for member 7 are denoted as n, and n_. Noting (2.16)
and (2.17), the direction cosines for member # are determined using
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Fig. 2.34 Numbering

scheme
Fig. 2.35 Geometry- Z &
member n
y n,
In
n_
In_
~ 7> Y
7’ Zn ry
,’ ,l'ﬂ‘ + //
—— — —I ————— 4 /
Nn_ ’
7 X
d
i s i i
X ¥n,
Xp, —Xn_
b
Yy = Yn_
e g (2.19)
L, Y
Zn+ — Zn_
o =h

It is convenient to introduce matrix notation at this point (Fig. 2.35). We define the nodal
coordinate matrix for node j as
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Xj
Xj =14 (2.20)
Zj
and the direction cosine matrix for member n as
ﬂ}’l}(
Bo = S By (2.21)
ﬂﬂl
With this notation, the matrix form of (2.19) is
1
B =7 (%0, =% ) (2.22)

where

L= (=X )' (xn, — %)

2.6.2 Member-Node Incidence

The computation of the direction cosines can be automated using the topological data for the
members and nodes. This data is represented in tabular form. One lists, for each member, the node
numbers for the positive and negative ends of the member. It is commonly referred to as the
member—node incidence table. The table corresponding to the structure defined in Fig. 2.34 is listed
below. One loops over the members, extracts the nodal coordinates from the global coordinate vector,
executes the operation defined by (2.22), and obtains the member direction cosine matrix, .

Member Negative node Positive node
(1) 1 4
2) 3 4
3) 1 3
4) 1 2
5) 2 3
(6) 2 4

2.6.3 Force Equilibrium Equations
The force vector for a member points in the positive direction of the member, i.e., from the negative

end toward the positive end. Noting (2.16), the set of Cartesian components for member 7 are listed in
the matrix, P, which is related to p,by

P,=(F, » =F,B, (2.23)

The force components acting on the nodes at the ends of the member are equal to +P,,. Figure 2.36
illustrates this distribution.
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Fig. 2.36 Member end node
forces
g
d = P =
P, = -P,_ =-F B, F,
member

node / Fy
n_

We generate the set of force equilibrium equations for a node by summing the force matrices
acting on the node. Consider node /. Let P, be the external force matrix for node /. The matrix
equation for node / involves the member force matrices for those members which are positive incident
and negative incident on node /.

P = Z (Fnﬁn) + Z (_Fnﬁn) (2~24)

ny

This step is carried out for each node. Equation (2.24) represents i scalar equations, where i = 2
for a plane truss and i = 3 for a space truss. We assemble the complete set of equations in partitioned
form, taking blocks of i rows. Assuming j nodes and m members, the equations are written as.

P =BF (2.25)
where the dimensions of the global matrices are
B = (i times j)xm, F=mx1, P =(i times j)x 1
The algorithms for generating P’ and B’ are
Formembern (n=1,2,...,m)
+Ba inpartitionedrown+,columnn} ,
of B
—B,, inpartitioned row n_, columnn (2.26)
Fornode! (I=1,2,...,j))

External load P, in partitioned row / of P

These operations can be easily implemented using spreadsheet software. The required size of the
spreadsheet is i times j rows and m + 1 columns, (m columns for the member forces and one column
for the external nodal loads). Applying (2.26) to the structure shown in Fig. 2.34 and noting the
incidence table leads to the following form of B'.
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Foo| B | Fs | Fs | B | Fg
Node 1| - By . 53 "B, Ii row
Node 2 +By| "Ps| Bs
Node 3 "By [P, +Bg
Node 4 | + Py +B, + B

Certain joint loads correspond to the r reactions which are not initially known. We separate out the
rows in B’ and P’ corresponding to the r reactions, resulting in (i times (j — r)) rows relating the
m force unknowns. The reduced set of equations is expressed as (we drop the prime superscript on
B and P to simplify the equation)

P = BF (2.27)

When the structure is statically determinate, m = i times (j — r), and since the coefficient matrix B is
now square, one can solve for F. We used a similar approach when discussing complex planar trusses
in Sect. 2.2.6.

2.6.4 Stability

A structure is said to be stable when a unique solution for the member forces exists for a given set of
external loads. The relationship between the loading and the resulting member forces is defined by the
linear matrix equation, (2.27). Noting Cramer’s rule [4], the stability requirement can be expressed as

determinant (B) # 0 (2.28)

which is equivalent to requiring B to be nonsingular. Singularity can be due to an insufficient number
or improper orientation of the restraints. It may also arise due to the geometrical pattern of the
members. Complex trusses, such as the example discussed in Sect. 2.2, may exhibit this deficiency
even though they appear to be stable.

2.6.5 Matrix Formulation: Computation of Displacements

The manual process described in the previous section for computing displacements is not suited for
large-scale structures. We faced a similar problem with the analysis of space trusses, and in that case,
we resorted to a computer-based scheme. We follow a similar strategy here. We utilize the matrix
notation introduced earlier, and just have to define some additional terms related to deformation and
nodal displacement.
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Noting (2.11), we see that e involves the direction cosines for the member, and the nodal
displacements. Using the notation for the direction cosine matrix defined by (2.15) and also defining
u as the nodal displacement matrix,

ﬁ_ {ﬁxaﬂyaﬂz} (229)
u={u,v,w}
we express the extension e as a matrix product.
e=p"u (2.30)

We generalize (2.30) for a member n connected to nodes 7, and n_

en = ﬂ; (umr - un,) (231)

Note that this matrix expression applies to both 2-D and 3-D structures.
Following the strategy used to assemble the matrix force equilibrium equations, we assemble the
complete set of deformation—displacement relations for the structure. They have the following form

e= (B’)TU’ (232)

where
U = {ul,uz,...,uj}, e={er,er,...,en}

and B’ is defined by (2.20). Note that B’ is the matrix associated with the matrix force equilibrium
equations (2.19). Some of the nodal displacements correspond to locations, where constraints are
applied and their magnitudes are known. When the structure is statically determinate, support
movement introduces no deformation, and we can delete these terms from U’. We also delete the
corresponding rows of B’. These operations lead to the modified equation

e=B"U (2.33)

Note that the corresponding modified equilibrium equations have the form P = BF.
The duality between these equations is called the “Static-Geometric” analogy.
Once F is known, one determines the extension of a member using

— (L4
e = AE e

where e; contains terms due to temperature and fabrication error. We express the set of deformations
in matrix form

e=fF +e (2.34)

where f is a diagonal matrix containing the flexibility coefficients for the members,

f= ()2 (2.35)
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Given P, one generates B and, solves for F,
F=B'P (2.36)
Then, we compute e with (2.34) and lastly solve for U using.
U=B")"e (237)

This approach can be represented as a series of computer operations. The major computational
effort is in assembling and inverting B. The deflection computation requires minimal additional effort
since one needs to compute B! in order to determine the member forces.

Using matrix notation, it is relatively straightforward to prove the validity of the Method of Virtual
Forces. We apply a virtual force SP’ and find the corresponding virtual forces using the matrix
equilibrium equations.

5P =B 6F (2.38)

Member forces which satisfy the force equilibrium equations are said to be statically permissible.
Note that SP’ includes both the external nodal loads and the reactions. The extensions are related to
the nodal displacements by (2.32)

e= (B’)TU’ (2.38a)

where U’ contains both the nodal displacements and support movements. We multiply (2.38a) by 5F*,

! T ’
5FTe = 6FT [(B ) U] (2.38b)
and note the identity,
AT . T AT
SFT (B ) = [B 5F} = (5P ) (2.39)
Then, (2.38b) takes the form
/ T /
5FTe = (5P) U (2.40)

Separating out the prescribed support displacements and reactions, and expanding the matrix
products leads to the scalar equation

S oF-e=Y 6P-u+y 6R-@ (2.41)

The final form follows when 6P is specialized as a single force.
Example 2.27 Planar Complex Truss

Given: The planar structure shown in Fig. E2.27. Assume equal cross-sectional areas.

Determine:

(a) The displacements at the nodes. Take A = 10 in.? and E = 29,000 ksi.
(b) The value of A required to limiting the horizontal displacement to 1.5 in.
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X, u

Fig. E2.27
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30Kip —> 4
40 kip 2
_ 4
1 5
6
22 ft i 22 ft
1

Solution: This truss is a complex truss similar to example discussed in Sect. 2.2.5. One needs to solve
the complete set of force equilibrium equations to find the member forces. Therefore, applying the
Method of Virtual Forces is not computationally advantageous in this case, so we use a computer-
based scheme. The computer method presented above is applicable for both planar and 3-D trusses.
We just need to take i = 2 for the planar case. The results for the nodal displacements are listed

below.

Lt]ZO
V1:0

4.88in.
{vz =0.13in.
uz = 2.341n.
{v; =4.15in.
= —0.27in.
{V4 = 0.09in.
4.42in.
{VS =0

Uug = 2.21n.
ve = 4.431n.

The area required to limit the horizontal displacement to 1.5 in. is

Arequired

4.88

(10) s = 32.53in.?
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The revised nodal displacements for A = 32.53 in.” will be

u = 1.5in
{ v, = 0.04in
uz = 0.72in
{V3 =1.27in
us = —0.081in
{ v4 = 0.03in
us = 1.36in
{ vs =0
ug = 0.681in
{v6 = 1.36in

Example 2.28 Space Truss

Given: The space structure shown in Fig. E2.28. Assume equal cross-sectional areas. Take A
= 1300 mm” and E = 200 GPa.

Determine: The member forces, the reactions, and the nodal displacements. Use computer-based
scheme.
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Fig. E2.28 3-D Truss. (a) x — y plan view. (b) x — z plan view. (¢) Isometric view

Solution: The joint displacements, the member forces, and the reactions are listed below.
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Joint displacements:

uy =

141

Joint 1< v =4.9mm

wp =

u2:0

Joint 2¢ v, = 3.5mm

Joint 3¢ vz =0

W2:O

W3:O

uz = —1.3mm

us = 4.5mm

Joint 4< v4 = 8.9mm

wy = —2.2mm
Member forces and reactions:

Fy = —37.47kN Ry = 26.67kN
F(3) = 76.94kN Ry; = —50.37kN
F(3) = —38.66kN Ryy = —66.67TkN
F4) = 68.26kN Ry, = 123.33kN
F(s5) = —128.27kN R3, = —60.00kN
F = —9.05kN R3. = 7.04kN

2,7 Summary

2.7.1 Objectives of the Chapter

» To develop a criteria for assessing the initial stability of truss type structures
» To present methods for determining the axial forces in the members of statically determinate

trusses

» To present a matrix-based formulation for the analyses of arbitrary statically determinate trusses
» To present methods for computing the displaced configuration of a truss
» To introduce the concept of an influence line and illustrate its application to trusses



142 2 Statically Determinate Truss Structures

2.7.2 Key Facts and Concepts

» The statical determinacy .of a plane truss is determined by comparing the number of unknown
forces vs. the number of available force equilibrium equations.

e The forces in the members of a statically determinate truss are independent of the member
properties such as area and material modulus and support movements.

» The two force analysis procedures are the method of joints and the method of sections. The method
of joints strategy proceeds from joint to joint, always working with a joint having a statically
determinate force system. This approach generates all the member forces. The method of sections
is designed to allow one to determine the force in a particular member. One passes a cutting plane
through the structure, selects either segment, and applies the equilibrium conditions. This method
requires less computation and generally is easier to apply.

» Given the external loads, one can determine the internal member forces using force equilibrium
equations when the truss is statically determinate. The displacements due to the loading can be
computed manually using the method of virtual forces. To determine the displacement at a point A
in a particular direction, d,, one applies a virtual force 6P, at point A in the same direction as the
desired displacement and computes, using static equilibrium equations, the internal forces 6F, and
reactions, 6R, due to 6P,. The displacement is given by

d,6P, = Z eSF— Z dSR

members reactions

where d is the prescribed support movement and e is the elongation of the member due to force,
temperature change, and initial fabrication error.

FL

e= (E) + (aATL) + ¢
This method is restricted to static loading and small displacements. It is also applicable for
statically indeterminate trusses when the member forces are known.

» The concept of influence lines is very useful for dealing with the live loading which can act
anywhere on the structure. Given a particular member force and a particular type of live loading,
usually a unit vertical loading, the influence line displays graphically the magnitude of the force
for various locations of the load. By viewing the plot, one can immediately determine the position
of the load that produces the peak magnitude of the member force.

2.8 Problems

Classify each of the following plane trusses defined in Problems 2.1-2.4 as initially stable or unstable.
If stable, then classify them as statically determinate or indeterminate. For indeterminate trusses,
determine the degree of static indeterminacy.
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Problem 2.1

/AN, /RN, * AN
Problem 2.2

a b c :

FELE
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Problem 2.3

a b

he, 3 ks 3 5
Problem 2.4

a b

\;

Determine all the member forces for the plane trusses defined in Problems 2.5-2.12 using the
method of joints.

Problem 2.5
b c d c
im
) 1 h E f
P e
W L ~
12 kN 10 kN 10 kN 12kN

.
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Problem 2.6

a b C d

8

o

el

10 kip 12 kip 6 kip

6 ft 6 6 ft 6 ft
t 1 - } ;

|

b

pran

10 kip 12 kip 6 kip

6 fl 4 6 1 6 fl 6 fl
1

e A
-4
——
——

Problem 2.7

6 fit

S ft

20 ft , 8f Sft | 20 ft i
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Problem 2.8
4 ft
6 ft
5
S
12l |
Problem 2.9
T 40 kN
2m
| d,
2m
i e
e
| 3m : 4m | 4m . im :
T 1 I | T
Problem 2.10

6 kip
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Problem 2.11
12m
6m
i 12m 16m 1 6m A 12m L
| ¥ | T T
10 m
6m
: 12m [6m | 6m | 12m I
| u I T T
Problem 2.12
.43 kip  2.15 kip
2.86 ki 4.30 ki
8 fi 'P E
1.43 kip 2.15 kip
8 ft

¢

20 ft 12 ft l 12 ft ‘ 20 f
|

Determine all the member forces for the plane trusses defined in Problems 2.13-2.18 using a
combination of the method of joints and the method of sections.



148 2 Statically Determinate Truss Structures
Problem 2.13
b c d
im
58 i 4
Im g
h
4 a
40 kN 25 kN
L | L 1
L4 T T T Ll
im im im 3m
Problem 2.14
12 ft
—
10 kip
- | d'l . 5 6kip
12n
. c s 4 ki
12n
4 b > Ski
T > P
12
— a
4
241
| 4
Problem 2.15
C
Im
im

4m 4m

4m

-
—
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Problem 2.16
c d ¢ f g
6N b
b q r s b L
6N
. P \Jo ! k j i
S 1 ] ml j o
4kip 6kip 8 kip 10 kip 8 kip 6 kip 4kip
L L i L L i 4 L
T t t } + +
6t 6N 12 ft 12 ft 12f I 12N ]fafllbﬂ
Problem 2.17

60 kN

40 kN

Problem 2.18
30 kN 40 kN
K Ja
im
B
Im
o !
L 9m
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Problem 2.19 Use the principle of virtual forces to determine the horizontal and vertical displace-
ment at joint b due to loading shown and temperature increase of AT = 40°F for members ab and
be. Assume A = 1.4 in.”, E = 29,000 ksi, and @ = 6.5 (10" ®)/°F

15 ft 15 ft

Problem 2.20 For the plane truss shown, use the principle of virtual forces to determine the vertical
displacement at joint b and the horizontal displacement at joint c. E = 200 GPa. The areas of the
members are as follow:

Aup = Ape = Ape = 1290mm?
Aps = Apqg = 645 mm?

Acd = Age = 1935 mm?

Aur = Age = 2580mm?

—> 25 kN

3m 45 kN

pd

im Im
| |
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Problem 2.21 For the plane truss shown, use the principle of virtual forces to determine the vertical
displacement at joint C due to the loading shown and a settlement of 0.5 inch at support a. Assume
A =2in?and E = 29,000 ksi.

20 f 12 fi " 12 ft 20 f

e Y 4
- T ™~ -

-

Problem 2.22 For the plane truss shown, use the principle of virtual forces to determine the vertical
and horizontal displacement at joint d.

S | J

c ‘d
im
a [

4m |

A = 1300 mm?
E = 200 GPa

Problem 2.23 Use the principle of virtual forces to determine the horizontal and vertical displace-
ment at joint b due to:

(a) Loading shown.
(b) Temperature increase of AT = 16 °C for members ab and bc.

A = 900 mm?
E =200GPa
a=12x10"%/°C
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30 kN

- - b =—-> 20kN

| S5m 5m

Problem 2.24 Use the principle of virtual force method to determine the horizontal component of
the displacement at joint d. Assume A = 0.5 in?and E = 29,000 ksi.

(i) For the loading shown
(i1) For a fabrication error of —0.25 in. for members ac and df
(iii) For the summation of Case (i) and Case (ii) loadings.

7 ki
5 kip i

10 kip b .L ld

91

-+

—_
—_—

Problem 2.25 Use the principle of virtual forces method to determine the horizontal component of
the displacement at joint b. Assume A = 0.5 in2, E = 30,000 ksi, « = 6.5 x 10"%°F

(1) For the loading shown
(i) For a temperature increase of AT = 60 °F for all members
(iii) For the summation of Case (i) and Case (ii) loadings.
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b
-t — 10 kip
2n
" a d c
8 kip
12 ft 9f

Problem 2.26 For the plane truss shown below, use the principle of virtual forces to determine the
vertical displacement at joint f.

A=2in?
E = 29,000 ksi

10 ft 10 ft

Problem 2.27 For the plane truss shown below, determine the required cross-sectional area for the
truss members to limit the vertical deflection at d to 0.56 in. Assume equal cross-sectional areas.
E = 29,000 ksi.

L ! Il

F 20 ft 36 1t | 36 fu 20 fu ,

-
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Problem 2.28 For the plane truss shown in Problem 2.12, use the principle of virtual forces to
determine the vertical displacement at joint g. The areas are 4 in.? for top chord members, 3 in.? for
bottom chord members, and 2 in.? for other members. E = 29,000 ksi.

Problem 2.29

ift
in

u

3 I‘li '“““\-M___‘.

15t 15 ft 15t 15 ft 15 ft 151t

Suppose the top chord members in the truss defined above experience a temperature decrease of
60 °F. Determine the resulting displacements, u and v. A = 2 in.z, E = 29,000 ksi and a = 6.5
x 107°/°F.

Problem 2.30 Solve Problem 2.15 using computer software. Assume the cross-sectional areas are
equal to A.

(a) Demonstrate that the member forces are independent of A by generating solutions for different
values of A.
(b) Determine the value of A required to limit the vertical displacement to 50 mm.

Problem 2.31 Consider the complex truss defined below in Figure (a). Use computer software to
determine the member forces for the loading shown in Figure (a).

(a) Assume equal areas

(b) Take an arbitrary set of areas

(c) Determine the member forces corresponding to the loading shown in Figure (b). Are the forces
similar to the results of part (a). Discuss.
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(a) 20 kip
20 ft
40kip 2
e —_—
2010
10 f1
(b) 20 kip
b E
201
20kip 2 .
1 > 20 kip
20 ft
1 1
10 f1

20

Problem 2.32 Solve Problem 2.11(a) using computer software. Assuming the cross-sectional areas
are equal to A. Demonstrate that the member forces are independent of A by generating solution of
different values of A.

Problem 2.33 Consider the complex truss defined below. Assume equal areas. Use computer
software to determine the member forces and joint displacements. Determine the area for which
the maximum displacement equals 30 mm. £ = 200 GPa.
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20 kN

40kN 7

6m 6m |

Problem 2.34 For the truss and the loading shown:

(a) Tabulate all the member forces due to the individual unit vertical nodal forces applied to the top
chord (force influence table). Use computer software.
(b) Use the force influence table in part (a) to

(i) Draw influence lines for members 15, 4, and 20.
(i) Calculate the member forces in members 3, 19, 10, and 14 for the following loading:
P>, = 10kN, P, = 6 kN, and Ps = 8 kN.

Problem 2.35 For the truss and the loading shown:

a b C d (S f g
6 fi
. m ¢ k i i é
I ] 1
P1l 4 P 'lPJ lp-l

"tonn 0 10ft  10ft 0 10ft 10 ft 10 ft
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(a) Tabulate all the member forces due to the individual unit vertical nodal forces applied to the
bottom chord (force influence table). Use computer software.
(b) Use the force influence table in part (a) to
(i) Draw influence lines for members bc, cm, and ji.
(i) Calculate the member forces in members ke, de, kl, and ei for the loading P, = 8 kip,
P53 = 10 kip, and P, = 4 kip.

Problem 2.36 The roof structure shown below consists of trusses spaced uniformly, 20 ft (6 m) on
center, along the length of the building and tied together by purlins and x-bracing. The roofing
materials are supported by the purlins which span between trusses at the truss joints.

20 fu (6 m)

20 ft (6 m)

20 ft (6 m)

80 i (24 m)

(a) Roof structural make-up

(b) Elevation-typical truss

(5%

10 ft (3 m)

! s |1on@Em)

.. 8 7 6 &

20ft(6m) 20ft(6m) | 20ft(6m), 20ft(6m)

80 ft (24 m)

(c) Truss geometry
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Consider the following loadings:

Dead load: roof material, purlins, truss members, estimated at 15 psf (720 Pa) of roof surface
Snow load: 20 psf (960 Pa) of horizontal projection of the roof surface
Wind load: windward face 12 psf (575 Pa), leeward face 8 psf (385 Pa) normal to roof surface

Pp

| | Po

80 ft (24 m)

(d) Dead load

80 ft (24 m)

(e) Snow load

-
Y

80 ft {24 m) wind dircction

(f) Wind load
Determine the following quantities for the typical interior truss:
(a) Compute the truss nodal loads associated with gravity, snow, and wind.

(b) Use computer software to determine the member forces due to dead load, snow load, and wind.
Tabulate the member force results.
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Problem 2.37 Determine the member forces for the space truss shown.

10 kip b
Y +a —
T 6 fl
d
X 12 fi
-l-c N
. 12 ft % 2 ft | 8 '
X-Y Plan
20 kip
1 ;
z /\ I8 i
X b e ° "
t t ot
| 1411 | 8ft ‘
T | |
X-Z Plan

Problem 2.38 Determine the member forces for the space truss shown.

Y — b
d I m
‘ 4m
X ¢ ——

4m . 2m
] T T

—

X-Y Plan

159
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20 kN
d T—) 30 kN .
z
6m
av b T
X c
t i,
| Sm | 2m ;
] T L
X-Z Plan
Problem 2.39 Determine the member forces for the space truss shown.
‘I_ 10 kip I‘
a b
v T
d 6 fi
12 ft
X C _|_
| 12 ft i 2R sn
I | ¥ T
X-Y Plan
20 kip
J ;
£ 18 ft

14 ft 8 f

-
——
——

X-Z Plan
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Problem 2.40 Determine the member forces for the space truss shown.

Y —b ¢ ik
40 kip
> 60 kip 32 Mt
C
. = 3 14 T
: 20 ft | 20 f
L T i
X-Y Plan
’ e
Z — 60 kip T
24 1
X a,b d,c ™
| 40 ft .
X-Z Plan

Problem 2.41 For the space truss shown in Problem 2.37, use the principle of virtual forces to
determine the displacements u, v, and w at joint d. E = 29,000 ksi and A = 3.0 in.?
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Abstract

Our focus in this chapter is on describing how beams behave under
transverse loading, i.e., when the loading acts normal to the longitudinal
axes. This problem is called the “beam bending” problem. The first step in
the analysis of a statically determinate beam is the determination of the
reactions. Given the reactions, one can establish the internal forces using
equilibrium-based procedures. These forces generate deformations that
cause the beam to displace. We discuss in detail the relationship between
the internal forces and the corresponding displacements and describe two
quantitative analysis procedures for establishing the displacements due to
a particular loading. The last section of the chapter presents some basic
analysis strategies employed in the design of beams such as influence lines
and global envelopes.

3.1 Definition of a Prismatic Beam

Beams are used extensively in structures, primarily in flooring systems for buildings and bridges.
They belong to the line element category, i.e., their longitudinal dimension is large in comparison to
their cross-sectional dimensions. Whereas truss members are loaded axially, beams are loaded normal
to the longitudinal direction, and carry the loading by bending and twisting action. This mode is
illustrated in Fig. 3.1. The transverse loading produces transverse deflection, which results in a
nonuniform distribution of stress throughout the body.

Most of the applications of beams in building structures involve straight beams with constant
cross-section. We refer to this subgroup as prismatic beams. Figure 3.2 defines the geometrical
parameters and notation used for prismatic beams. The longitudinal axis-X passes through the
centroid of the cross-section, and the Y, Z axes are taken as the principal inertia directions.
The relevant definition equations are

© Springer International Publishing Switzerland 2016 163
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Fig. 3.1 Beam cross- a A
sections and bending W

mode. (a) Simply

supported beam. l ‘
(b) Section A-A—cross-
section examples.
Rectangular, T shape, —
I shape. (c¢) Bending mode A

. L .

JA

I =|y%dA (3.1)
A

I, = Z2dA
A

These conditions ensure that when the applied loads are in the X — Y plane, points on the
longitudinal axis will not displace in the Z direction. Figure 3.3 illustrates this mode of behavior,
the longitudinal axis-X becomes a curve v(x) contained in the X — Y plane. This type of behavior is
Stabilitycalled planar bending.

There are cases where the line of action of the loading does not pass through the X-axis, such as
illustrated in Fig. 3.4. The eccentricity produces a torsional moment about the X-axis, and the cross-
section will rotate as well as deflect. This behavior is called “combined bending and torsion.” A
prismatic member acted upon by just a torsional moment will experience only torsional behavior, i.e.,
the cross-section will just twist.

Mechanics of Solids texts deal with stresses and strains in beams. Our objective here is not to
redevelop this material but rather to utilize it and formulate a structural theory for beams that will
provide the basis for analyzing the behavior of structures composed of beam elements. Since
structural theory is founded on Engineering Mechanics Theory, at least one subject dealing with
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Fig. 3.2 Notations for a Y
prismatic beam—
symmetrical cross-section

Cross section

Engineering Mechanics is usually required before studying Structural Theory. We assume that the
reader has this level of exposure to Engineering Mechanics.

3.2  Stability and Determinacy of Beams: Planar Bending

We presented the general concept of stability of a rigid body in Chap. 1 and used the general concept
to develop stability criteria for truss-type structures in Chap. 2. In what follows, we examine the
stability question for beam-type structures and develop similar criteria. For completeness, we first
briefly review the basis for stability discussed in Chap. 1.

Consider the rigid body shown in Fig. 3.5. Assume the body can move only in the X — Y plane.
There are three types of planar motion for a rigid body: translation in the x direction, u, translation in
the y direction, v,, and rotation about an axis normal to the X — Y plane, w,. A body is said to be
stable when rigid body motion is prevented. Therefore, it follows that one must provide three motion
constraints to restrain motion in the X — Y plane.


http://dx.doi.org/10.1007/978-3-319-24331-3_1
http://dx.doi.org/10.1007/978-3-319-24331-3_2
http://dx.doi.org/10.1007/978-3-319-24331-3_1
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Fig. 3.3 Planar Y
bending mode

Fig. 3.4 Combined bending and torsion

One needs to be careful in selecting the orientation of the three translation constraints. Consider
Fig. 3.6. We first choose two directions, “a” and “b” in the X — Y plane. They intersect at point o.
With these two constraints, the only possible rigid body motion is rotation about point o. If we take
the third direction as “c,” this rotation is not prevented. Therefore, it follows that the three directions
must be nonconcurrent as well as coplanar, i.e., they cannot intersect at a common point. This implies
that they must not be parallel. Any other direction, such as “d’” is permissible.
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=

[y

Fig. 3.5 Planar rigid body
motions

Fig. 3.6 Concurrent
displacement constraints

When the loading is arbitrary, the body needs to be constrained against motion in any plane. This
requires six constraints, three with respect to translation and three with respect to rotation about the
X, Y, and Z direction. The strategy for selecting restraints is similar to the treatment of 3-D truss
structures. We point out that for pure rotational loading only one rotational restraint is required.

Z
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Motion constraints produce reaction forces when the body is loaded. The nature of the reaction

forces depends on the constraints. Various types of supports for beams subjected to planar bending are
illustrated below.

3.2.1 Fixed Support: Planar Loading

The beam is embedded at point A in such a way that the end is prevented from translating or rotating.
We say the member is “fixed” at A. The reactions consist of two forces and one moment.

WELEI] A |
T {

T

k=l

.

A |

-
v

3.2.2 Hinged Support: Planar Loading

Suppose A is to be fully restrained against translation. This can be achieved by pinning the member.
Horizontal and vertical reactions are produced.

A
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3.2.3 Roller Support: Planar Loading

Suppose A is to be restrained against motion perpendicular to the surface of contact. We add a
restraint to A by inserting a device that allows motion parallel to the surface of contact but fully
restrains motion in the direction perpendicular to the surface. We refer to this device as a roller. This
restraint produces a reaction force perpendicular to the surface of contact.

A
A
> \_k
A T
.‘é\
A
A
7

When the loading is three dimensional, additional restraints are required. The supports described
above needs to be modified to deal with these additional restraints. Typical schemes are shown below.
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3.2.4 3-D Fixed Support

F,

’ My Fy t Fz |
- —P i
Z /N
l?/ Fx

My

3.2.5 3-D Hinged Support

. 1 |
o

3.2.6 3-D Roller Support: Z Direction
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3.2.7 Static Determinacy: Planar Beam Systems

In general, a body restrained with three nonconcurrent coplanar displacement constraints is stable for
planar loading. When loading is applied, the only motion that occurs is due to deformation of the body
resulting from the stresses introduced in the body by the loading. The motion restraints introduce
reaction forces. Since there are three equations of force equilibrium for a body, and only three
unknown forces, one can determine these force unknowns using only the force equilibrium equations.
In this case, we say that the structure is stable and statically determinate. If a body is over restrained,
i.e., if there are more than three nonconcurrent displacement restraints, we say that the structure is
statically indeterminate. This terminology follows from the fact that now there are more than three
force unknowns and consequently one cannot uniquely determine these unknowns with only the three
available force equilibrium equations. Statically indeterminate structures require a more rigorous
structural theory and therefore we postpone their treatment to part II of the text. In what follows, we
present some examples of statically determinate and statically indeterminate planar beams.

3.2.8 Unstable Support Arrangements

A B &

. = -

The beam shown above has the proper number of constraints, but they are all vertical. There is no
constraint against horizontal motion, and therefore the beam is unstable.

A B ‘

A *

The beam shown above is unstable. The roller support at B constrains motion in the horizontal
direction but does not prevent rigid body motion about point A.

3.2.9 Beam with Multiple Supports

There are three vertical restraints and one horizontal restraint. These restraints produce the four
reaction forces shown below.

A B C
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Fig. 3.7 Two-span beam

Fig. 3.8 Beam with
moment release

Fig. 3.9 Free body
diagram for beam with
moment release

A B

A B D C

T S & - *
L==AU =1 hinge =1l
Ray A B D D c
— ', —»—

AR S A S
Ray Rp Vb Vo Re

One of the vertical restraints is redundant, i.e., is not needed for stability and therefore can be
deleted. Deleting the support at B results in the structure shown below.

A C
Ray
—p | ]
Ra ¥y R¢
A beam supported only at its ends in a minimal way is referred to as a simple supported beam.
A C
A -

The beam depicted in Fig. 3.7 is called a two-span continuous beam. This beam is statically
indeterminate to the first degree. We will show later that multi-span continuous beams are more
structurally efficient than simply supported beams in the sense that they deflect less for a given design

loading.

3.2.10 Beam with a Moment Release

Suppose we cut the beam shown in Fig. 3.8 at point D and insert a frictionless hinge. We refer to the
hinge as a moment release since the moment is zero. The hinge does not restrain rotation at D, and
member DC is free to rotate about D. The beam is now statically determinate. The corresponding
reaction forces are listed below on the free body diagrams (Fig. 3.9).
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Fig. 3.10 Three- A B
span beam [

Fig. 3.11 Statically a
determinate versions of A B C D
three-span beam with - . : w )
moment releases _..‘.. N ; ,..... . ..,.
ElE FLE k =TJ: F (L
b
A B ( D
4 £ ' |
=11 1=TI=0 - LT =11 = ==
Cc
A E B C I D
L) K
U=lli= ULl =Ll

Member DC is statically determinate since there are only three reaction forces. Once the forces at
D are known, the remaining reactions for member ABD can be determined. Therefore, it follows that
inserting a hinge at D reduces the static indeterminacy by 1°.

We consider next the three-span continuous beam shown in Fig. 3.10. This structure is indetermi-
nate to the second degree since there are two extra vertical supports. One can reduce the structure to a
statically determinate structure by inserting two moment releases. Various possibilities are listed in
Fig. 3.11. The optimal location of moment releases is illustrated in Examples 3.33 and 3.34.

3.3  Reactions: Planar Loading

When a structure is subjected to external loads, the displacement restraints develop reaction forces to
resist the tendency for motion. If the structure is statically determinate, we can determine these forces
using the three global force equilibrium equations for planar loading applied to a body. One selects a
set of directions n—n and s—s, where s—s is not parallel to n—n. The steps are

(i) Summationof forcesindirection n —n =0
(ii) Summation of forcesindirection s —s =0
where direction s — sisnotparalleltodirectionn — n
(iii) Summation of moments aboutan arbitrary point, A = 0
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One constructs a free body diagram of the structure and applies these equations in such a way as to
obtain a set of uncoupled equations, which can be easily solved.

When a statically indeterminate structure has a sufficient number of releases such that it is reduced
to being statically determinate, we proceed in a similar way except that now we need to consider more
than one free body. The following series of examples illustrate the strategy for computing the
reactions.

Example 3.1 Beam with Two Over Hangs

Given: The beam shown in Fig. E3.1a.
Determine: The reactions.

1.2 kip/ft 10 kip ft e
N B/L/ r

EN C )

8 fi 10 ft 10 ft | 8 ft

—f
—
—
-

Fig. E3.1a
Solution: Summing moments about B leads to the vertical reaction at A.

> Mg =0
RA(20) + 10 + %(1.2)(8)%(8) -12 @) (20 + %8) =0
CRa=431

Summing the vertical forces,
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> Fy=0 Rg+43- 1.2(%)(2) =0
~Rg =531

The reactions are listed below.

1.2kip/ft

1.2kip/ft 10 kip ft )
j\[\ 3

C

13

R = 5.3 kip

R, = 4.3 kip

Example 3.2 Simply Supported Beam

Given: The beam shown in Fig. E3.2a.
Determine: The reactions.

S

Fig. E3.2a

Solution: As a first step, we construct the free body diagram for the beam. The reaction at B is normal
to the inclined surface. We resolve it into horizontal and vertical components using (Fig. E3.2b)

Ry, A 1 B A LI I11 *B/ R, = Rgsin a
s s o -
? “Ta Far * 41
RH

R"\.\ R"" - R“ Cos O

Fig. E3.2b
Rpy, = Rgcosa Rp, =Rpsina

Summing moments about A leads to the vertical reaction at B.
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ZMA:O

L
wL (5> — LRy, =0

wL
. RBy ZTT

Given Rg,, we find the reaction Ry

RBy o wL

Rg = =
cosa 2cosa

The corresponding horizontal component is
. wL
Rp, = Rpsina = - tan o «—
We determine the reactions at A using force summations.

L
Y F.=0 Rsz—RBx:w?tanaH
wL

> Fy=01" Ray+Rpy,—wL=0 R, =1

Suppose w = 30 kN/m, @ = 30° and L = 10 m. The reactions are listed below.

30 kN/m
AfT T T r ot
86.6 kN ’ﬁ 2
30
150 kN 173.2 kN

10m

—
-

Example 3.3 Two-Span Beam with a Moment Release

Given: The beam shown in Fig. E3.3a. There is a moment release at D.
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Determine: The reactions.

w

6iiiiiiiiiiiliiii

A $ ! C
BL% D w
il i hinge ll”
2 5
| L 1 L2 . L2 \
| ¥ T T

Fig. E3.3a
Solution: The most direct way of analyzing this structure is to first work with a free body diagram of
beam segment DC.

Applying the equilibrium conditions to this segment results in
L
Y Mp=0 Re="1
4
L
SFy=0 Vvp="21
4
E F,=0 Hp=0

With the internal forces at D known, we can now proceed with the analysis of segment ABD.

W

PSR JIE J0E K 2K T 2 2 2 2 N X PN
+> A = &« Hp=0
Ry, tR" v wl

¥ Vl) g

R

——
e
—
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Summing moments about A leads to Ry

> Ma=0 (0.75L)(1.5wL) + (1.5L)(0.25wL) — LRg = 0
Rg = 1.5wL |

Summing the vertical and horizontal forces,
> Fy=0 Ray=175wL—Rp=025wL |
> Fe=0 Ra=0

The reactions are listed below.

“L{G{}&&{'l{i(fl&ii

4 ¥ ° 4

0.25 wl. 1.5 wl 0.25 wl

C

If the hinge was placed at point B, the structure would act as two simply supported beams, and the
reactions would be as shown below.

w w
SR ST ST S S T T

A B c

L. t .

2 wl. 5

Example 3 .4
Given: The beam shown in Fig. E3.4a.
Determine: The reactions.
el 18kNm 15 kN/m

T VN gon

Al e C F?E E
B D

3m 3m : 3m 3m :

L L '
T T T T 1

Fig. E3.4a
Solution: Summing moments about B leads to the vertical reaction at D.
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ZMB:0

Rp(6) + 20 (%) (2) +18 — 15(3)(7.5) =0 ..Rp =43.251

Summing the vertical forces,

3
D> Fy=0 Rg+43.25-1503) - 2o(§> =0
~Rg=31.751

The reactions are listed below.

20 kN/m 18 kN 15 KN/m

DE:L‘;\B "2 NN o S S
’ I g

Ry = 31.75kN Rp =43.25kN

Example 3.5 Three-Span Beam with Two Moment Releases

Given: The beam shown in Fig. E3.5a.
Determine: The reactions.

P
A B E l F C D
r 1 L ] — ]
= - hinge hinge e "i"
i L L L2 , L2, L L

—

Fig. E3.5a
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Solution: We first work with a free body diagram of beam segment EF. Then, with the internal forces
at E and F known, we precede with the analysis of segment ABE and FCD.

m
‘_"'ﬂ

» r
P2 PQT
A B E ‘I C D
P P
P2 P/2 P/2 P/2

The reactions are listed below.

P
A B & ¢ F C D

[ - B
=)l 2 hinge hinge ""

Example 3.6 Horizontal Beam Supporting a Vertical Sign

Given: The structure defined in Fig. E3.6a. Member BED is rigidly attached to the beam, ABC.
Member FG is simply supported on member BED. Assume member FG has some self-weight, W and
is acted upon by a uniform horizontal wind load p. This structure is an idealization of a highway sign

supported on a beam.
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Determine: The reactions.

F
T Dr
h”2 P
4 E
G
2h
A B &
: - | N
= L2 : L2 o

Fig. E3.6a

Solution: We work with two free body diagrams, one for member FG and the other for the remaining
part of the structure.

, 1 8
Vi '
‘ HF ?]-
p

‘—“(3 —
Hg ¢(;
w

A _I B
Rax =91

—+>
L —+pHn

Consider first member FG. Enforcing equilibrium leads to:

V=W
h
Hyp=Hg = ’)Z
Next, we apply these forces to the structure composed of member ABC and member BED. The
free body diagram is shown below.
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W
l ph
T D e T
h/2 @
—f E||e— 4
2h
Rax A
X : | | B (]
Ra, ? f R¢
L2 | L2

Summing moments about A leads to R¢

ZMAzo

L ph ph
—=—(2h) +—(2.5h) + RcL
~=n) +Bl2.5h) + Re

W h
S Rc=——ph| 1.125—
C ) P( L)

The horizontal and vertical reactions at A are

_ph
2

14 h
Ray=" +ph<1.125L>

Rax

Note that the vertical reaction at C may become negative if p/ is large with respect to W and 4 is of
the order of L.

3.4 Internal Forces: Planar Loading

We have shown that external loads produce reaction forces. The next question we need to address is:
What is the effect of this combination of external loads and reaction forces on the body? We answer
this question by examining the equilibrium of an arbitrary segment of the body.

Consider the uniformly loaded, simply supported beam shown in Fig. 3.12a. We pass a cutting
plane a distance x from the left end and consider either the left or right segment.

The external loads create a force unbalance. To maintain equilibrium, a vertical force, V(x), and a
moment, M(x), are required at the section. We refer to these quantities as the internal shear force and
bending moment. The magnitudes of V(x) and M(x) for this section are
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Fig. 3.12 Internal shear a
and moment. (a) beam. [

(b) Segmented beam Y W
H,=0 = it 11
X —+» 4‘11' B
wL ¢ ? wl
3 F—x— 2
} L I
b
W Mkx) M@K w
N====) s
V(x Jl ? wlL
wL% g 17 ® —x 2
2 +——+ et
Fig. 3.13 Sign convention Y
for internal forces A
M A% M
F F
| LN
v positive face
negative face
V(x)=— W—ZL + wx
5 (3.3)
M(x) = W—Lx e
2 2

We need to first define a sign convention for the positive directions of the internal force quantities.
This notation is shown in Fig. 3.13 for a positive face, i.e., a face whose outward normal points in the
+ X direction. The shear force is positive when it points in the + Y direction, and the positive sense for
moment is from X to Y. Depending on the external loading, there may also be an axial force.
The positive sense for the axial force is taken as the + X direction. These directions are reversed
for a negative face.

This sign convention is also used in the matrix formulation of the beam bending problem which is
the basis for computer-based analysis software. Historically, some authors use a sign convention for
shear which is opposite to this choice. We prefer to employ the above convention since it is consistent
with the output of structural software systems and therefore allows the reader to transition easily from
analytical to digital computation schemes.
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Fig. 3.14 Shear and w
moment diagrams Crt ittt 11

Figure 3.14 shows the variation of these quantities for the beam defined in Fig. 3.12. The shear
varies linearly, with maximum values at the supports. The moment varies parabolically, and the
maximum value occurs at mid-span. These plots are called “shear” and “moment” diagrams. Positive
moment is plotted on the top face in the USA. In the UK, positive moment is plotted on the bottom
face. Again, it is a question of what convention one is most comfortable with.

The maximum bending moment and shear force are used to determine the dimensions of the cross-
section. The specific design procedure depends on the material selected, such as wood, steel, or
concrete, and the design code adopted.

One constructs the internal force distributions by selecting various cutting planes, evaluating the
corresponding values, and then extrapolating between the sections. With some experience, one can
become very proficient at this operation. We illustrate the process with the following examples.

Example 3.7 Cantilever Beam with Multiple Concentrated Loads

Given: The cantilever beam with two concentrated loads shown in Fig. E3.7a.
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Determine: The shear and moment diagrams.

20 kN 40 kN

L

=7y B S

.'*—Sm —t—3m —

Fig. E3.7a

Solution: We first determine the reactions at A by enforcing the equilibrium equations.

> Fy=0 Ra—20-40=0=> Ry = 60kN

D> Ma=0 Ma—20(3)—40(6) =0 = Ma = 300kNm

20 kN 40 kN

= 300 kN-m ‘ ¢
)

? B ¢

Ry = 60 kN

Then, we pass a cutting plane between points A and B

0<x<3 V(x)=-60
M(x) = —300 + 60x

300 kN-m

[ | M (x)

60 kN V(x)

\

185
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Lastly, we cut between B and C.

3<x<6 V(x)=-40
M(x) = =300 4+ 60x — 20(x — 3) = 40x — 240

20kN
300 kKN-m
vy
( IT 3 M (x)
B

? 60 kN

i Im 1 Vi(x)

! > X

The distributions are plotted below.

=TT ¢ ¢

=11 J
"'l-ﬁ, A B C
.l_, | —
“ F—3m —t+—3m i
\Y%
A
" 3m 6m
fteal — > X
J
SO 40kN
M
n
M
(=) > X
300 kN m




3.4 Internal Forces: Planar Loading 187

There are some features that we want to point out. Firstly, a concentrated load produces a
discontinuity in the form of a “jump” in the shear force, such as at points B and C. Secondly, when
the loading consists only of concentrated loads, the shear diagram consists of segments having
constant values, and the moment diagram is composed of a set of straight-line segments. We have
demonstrated these features here. Later in the next section, we will establish a proof based on
equilibrium considerations. A thought question: When would the moment diagram have a jump in
the moment value? Hint: Consider Example 3.15.

Example 3.8 Cantilever Beam with Uniform Loading

Given: The uniformly loaded cantilever beam shown in Fig. E3.8a.
Determine: The shear and moment distributions.

_J@lﬁl:L“lLliiiLliL

Fig. E3.8a

Solution: We pass a cutting plane between points A and B. Then, we can consider either segment
shown below.

w

"y - M) MO T
%(AE) CI 1

..: i V(x) ¢ Vi(x) -
L — i t

B

The shear and moment required for equilibrium are

0<x<L V() =-wl-x)
M) = —3(L -}

These functions are plotted below. Note that the maximum moment varies as L.
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v

. I —— L . 1
M

wpl [ — L . %)

e |

Example 3.9 Beam with an Eccentric Lateral Load

Given: The structure defined in Fig. E3.9a. Member BC is rigidly attached to member AB at B.
Determine: The axial, shear, and moment diagrams.

C ‘_PT
h
" . 4

Y

Fig. E3.9a

Solution: Member BC is rigidly attached to the beam, AB, and has a horizontal load applied at its
end. The effect of this force is to apply a bending moment at B, which causes beam AB to bend.
Figure E3.9b illustrates the deflected shape.

\ deflected shape

Fig. E3.9b
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We determine the reactions first. The free body diagram is shown below.

Moment summation about A leads to

ZMA:O
h

h
RgL+Ph=0 = Rp :_ZP = Rp :Zpl
The reactions at A required for equilibrium are

h h
> Fy,=0 Ray=-Ve=7P = Ry=7P]

ZFX:O = Ra=P—

Next, we pass a cutting plane at D, isolate the left segment, and enforce equilibrium.

B 1
P —p | > ] 4— P
\
Ph P
L L
—x—
VIX)  M(X)

d —'—PA I—(JT 3-’ F (x)

? D
Ph

b

189
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The results are

V(x)=—Ph/L
M(x) = (Ph/L)x
F(x)=—-P

The beam is subjected to combined compression and bending: The maximum moment is equal to
Ph and occurs at B. This is the critical section for design. Plots of F, V, and M for member AB are
shown below.

£
A
L.
F et ->F Sy
-P
Vi
v {&3t L
a X
Ph _
I
M
Ph
M TS
/:/-|
) 5 X
L

3.5 Differential Equations of Equilibrium: Planar Loading

The strategy described in the previous section was based on working with a free body diagram of a
large segment of the beam and determining the shear and moment by applying the equilibrium
equations. We generate the distributions of these quantities by selecting various free body diagrams.
This approach is convenient when the loading is fairly simple, i.e., it consists of a combination of
concentrated forces and uniformly distributed loadings. For complex distributed loadings expressed
as analytic functions, one needs a more systematic approach for enforcing the equilibrium conditions.
In what follows, we describe an approach based on applying the equilibrium conditions to a
differential element of the beam, resulting in a set of differential equations relating the shear force
and moment to the applied distributed loading.
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Consider the beam and the differential element shown in Fig. 3.15. We use the same sign
convention for V and M as defined in Sect. 3.4. We take the positive sense of the distributed loading
to be “downward” since these loadings are generally associated with gravity. Considering V and M to
be functions of x, expanding these variables in terms of their differentials, and retaining up to first-
order terms results in the forces shown in Fig. 3.15b.

Summing forces in the Y direction,

dV dx dV dx
V—‘ra?— (V-a;) —wdx—O

and combining terms leads to

Lastly, since this equation must be satisfied for arbitrary dx, it follows that

dv
In words, “the rate of change of the shear force is equal to the applied distributed loading.”

Repeating this analysis for moment summation about point o, the steps are

Fig. 3.15 Beam with a w(x)
arbitrary distributed -
loading. (a) Beam. (b)
Differential beam element l W

I - > ‘ X : - -

% ({] I "
| X dx
. ~+—tp
w dx
b dV dx dVv dx
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U (3.5)

an _

-V
dx

Equation (3.5) states that “the rate of change of the bending moment is equal to minus the shear
force.”

These two relations are very useful for checking the consistency of the shear and moment diagrams.
One can reason qualitatively about the shape of these diagrams using only information about the loading
on a segment of the beam. For example, if w = 0, the shear is constant and the moment varies linearly.
If w = constant, the shear varies linearly and the moment varies quadratically.

One can establish a set of integral equations by integrating the derivative terms. Consider two
points, x; and x,, on the longitudinal X-axis. Integrating (3.4) and (3.5) between these points leads to

X3

V2 - Vl = J wdx (36)

X1

X2
My — M, = —J V dx (3.7)

X1

Equation (3.6) can be interpreted as: “The difference in shear between two points is equal to the
area under the distributed loading diagram included between these points.” Equation (3.7) relates the
change in moment to the area under the shear diagram between these points. Figure 3.16 illustrates
these interpretations.

The integral forms are useful if one wants to either compute values at discrete points or determine
analytical solutions. The differential forms are more convenient for qualitatively reasoning about the
shape of the diagrams. We generally use both approaches to construct shear and moment diagrams.

Another useful property that can be established from (3.5) relates to the maximum values of the
moment. We know from calculus that extreme values of a continuous function are located at points
where the first derivative is zero. Applying this theorem to the moment function, M(x), the location
x*, of an extreme value (either maximum or minimum) of moment is found by solving:

e (3.8)

Noting (3.5), it follows that extreme values of moment occur at points where the shear force is
zero. One first generates the shear diagrams from the applied loading. This process identifies the
points of zero shear. If only peak values of moment are of interest, one selects free body diagrams by
passing cutting planes through these locations and applies the equilibrium conditions. This approach
is the most direct procedure.
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Fig. 3.16 Interpretation of ¥
shear and moment in terms

of segmental loadings
distributed load

A%
Vi ] Vy= Vl o+ IX: w dx
n

§1 \:‘ 'X
v
M; shear M2 "
CE D i
X
*‘C| \* x

When the loading consists of concentrated forces, the shear diagram has a discontinuity at the
point of application of each concentrated force. By considering the equilibrium of a differential
element at the point (see Fig. 3.17), one can establish that the “jump” in shear is equal to the applied
load. Similarly, the jump in moment is equal to the applied external moment, M.

V+face - V7face =P (39)
M+face - M—face =-M (310)

One applies (3.6) and (3.7) to generate solutions for the segments adjacent to the discontinuities and
uses (3.9) and (3.10) to connect the solutions.

In what follows, we illustrate the application of the differential/integral equation representation to
generate shear and moment diagrams. This material overlaps slightly with the material presented in
the previous section. Some repetition is useful for reinforcing basic concepts.

Example 3.10 Cantilever Beam—Triangular Loading

Given: A cantilever beam with a triangular distributed loading (Fig. E3.10a).
Determine: V(x) and M(x).

Fig. E3.10a
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Fig. 3.17 Jump a P b M

conditions. (a) Shear. (b)
| N
Viface M_face M
V-face\l/ ET +iace

Moment
Solution: First, we determine the reactions at A (Fig. E3.10b)

wgL
ZFYZO RA:%T
L2
S Ma=0 My="%
‘I'B
ml?
MA" 3
A
L
B
Ra-2t]

+—> X

Fig. E3.10b Reactions

y X
W —TT)
B w(x)=wn —

M, = ;C L
A ‘TDM(x)

I V(x)

| - x

Fig. E3.10c Internal shear and moment
Next, we determine the shear, V(x), with (3.6) (Fig. E3.10c). Integrating between points A and x

x x 2% 2
WX WBX WBX
V(x) =V = dvx=| —dx= =
(9~ Va = [ e =] ac="pE =0
. wpL .
Noting that VA = —Ra = — ——, the solution for V(x) reduces to

2
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Vi) =2 <—L + x;)

We determine the moment, M(x), with (3.7)

195

2

. wgL .
Noting that Mp = — , one obtains

¥ Lx L?
M(x) = -t ———
(x) =wsp ( 6L + ) 3 )
The shear and moment distribution are plotted below. Note that the peak values of shear and

moment occur at x = (. Also note that the boundary conditions at B are Vg = My = 0 since this
cross-section is free, i.e., unrestrained and unloaded.

y |L . 14
e JEIERNnnEEE:

Example 3.11 Distributed and Concentrated Loads

Given: The beam and loading defined in Fig. E3.11a.
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Determine: V(x) and M(x).

| ¢——
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+ e

Fig. E3.11a

Solution: This example illustrates how to deal with a combination of distributed and concentrated
loads. We separate the distributed and the concentrated loads and then superimpose the results

(Fig. E3.11b).

|

w . C
A'L | S T S T S T LIC + A# - &*;
$‘\'L “_LdﬁE 1P(L_ 2 Es I
17 71 L a . _— L .

P

SO S S T N

S B 2
wp  P(L-a) wr  Pa
g i } i . pa .} R 7

Fig. E3.11b Reactions

We consider first the segment AB. Applying (3.6) and (3.7), and noting the boundary conditions at
x = 0, the distributions for 0 < x < g are

L (L—a)P
V(x) = _w2 _{ La) + wx
L P(L - 1
M(x):%x+ ( 7 a)xffwx2

The values of V and M just to the left of point B are

L P(L —
VB,:_WT“FWH—%
y _wL 1 2_’_P(Lfa)

B_ = 2a 2wa 7 a

Applying (3.9) and (3.10) for the jump conditions at B, and noting signs, the quantities just to the
right of B are
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wL Pa
VB+:P+VB_:—7+W(1—T
wL 1 P(L—a)
Mg, =Mp_ =—a—-wa*+—— "/
B+ B 261 2W(l + 2 a

Note that there is no jump in moment for this example.
Applying (3.6) and (3.7), these expressions for a < x < L expand to

Vi) =T =5+

Pax wLx wx?
M(x)=Pa—— 4+
() =Pa——=+—-—=

The approach we followed here is general and applies for all loadings. It is fairly straightforward to
establish the expressions for the regions 0 < x < aanda < x < L. An easier way to obtain the shear
and moment diagrams for this example would be to generate separate diagrams for the two types of
loadings and then superimpose the results. The individual shear and moment diagrams are plotted
below (Figs. E3.11c and E3.11d).

AL »
;:]_;: L =
wL " P(L—a) { } LL ¥ ..P_E'..
2 L x 2 L
; L/2 J L2 .
T Ll V
+
+ 1_1
+ |Ea
P(L-a) _ L
L

L 4 Il L-2a

Fig. E3.11c Shear diagrams
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Fig. E3.11d Moment diagrams ~ Suppose P = 15 kip, a = 12 ft, L = 36 ft, and w = 1.2 kip/ft. The
combined shear and moment diagrams are plotted below.
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12 ft 24 fi

[ =1 T 2178
31.6 kip 17.2 4

Example 3.12  Uniform Loading Combined with End Moments

M

13y

Given: A simply supported beam subjected to a uniform loading and bending moments at the ends.
This is a typical case for a floor beam in a rigid building frame, i.e., where the beam-column

connections apply moment to the ends of the beam (Fig. E3.12a).
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Mj

w
@ ===wwww BD

—>X

I L

Fig. E3.12a

Determine: The location and magnitude of the maximum moment.
Solution: We consider separate loadings and then superimpose the results. The solution due to the

end moment is (Fig. E3.12b)

* *
MA MB
CA L IBD
L L
M* +M7 ‘
L A"
+ 1<t
*x
M
A +
M
— 4Ry
*
Mg

Fig. E3.12b
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The uniform loading provides the following distribution (Fig. E3.12c):

w
A+ Y Y Y VY v v v -

wL] ‘ﬁ
2 2

2z w L2
8

Fig. E3.12c

Combining these solutions leads to the analytical solution

wL M, + M;
Vi) = 2= ATV
(x) 7 twrt——
. M+ M wL wa?
M) =My = =5 =Pt e =

wL
2 v
| Jeal

M
QR Y|
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These functions are plotted below (Figs. E3.12d and E3.12e).

V(x)

1=t

(-= L : :
<
(L M +M, )
2 w L
Fig. E3.12d
M (x)
M
ey
/7\
M *
A Mmax | +
J L
0 v . X
+—t %
Mg
(L_M,+tM,;,
2 w L
Fig. E3.12e

The peak moment occurs where the shear is zero. Noting the plot of V(x), the shear is zero at x,x.

V=0
L M, + My
T T T WL

The form of the solution suggests that we express the sum of the end moments as

M, + M, = ngZ
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where a is a dimensionless parameter. Substituting for this term, the equation simplifies to
L
Xmax = 5 (1 - (1)

Lastly, we determine M, using this value for x.

% wlL?
Moy = M, +T(1 —a)’

Given w and the end moments, one evaluates «,

. M, + My
WiZ
2
and then M,,,.. When o = +1, the peak moment occurs at an end point and equals the applied end
moment.

The case where the end moments are equal in magnitude but opposite in sense is of considerable
interest. One sets M, = —My = —M", and it follows that @ = 0. The moment diagram is symmetri-
cal with respect to the centerline. The peak negative values of moment occur at the end points; the
peak positive moment occurs at the center point of the span (Fig. E3.12f).
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M M
-
PR BD
4 4
wL Lt
2 -
. LB, LB
I | |
wL

(]

a7

M
fERY

+ wL?
M max = (= -M)

Fig. E3.12f

When there is no end restraint, M* = 0. Then, MI;aX = wl? /8. The effect of end restraint is to
reduce the positive moment and introduce a negative moment at the ends. This behavior is typical for
rigid frames such as building frames subjected to gravity loading. We examine this behavior in more
detail in Chap. 15.

Example 3.13


http://dx.doi.org/10.1007/978-3-319-24331-3_15
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Given: The beam shown in Fig. E3.13a

2kp/ft . 2kip/f

> hinge

Fig. E3.13a

Determine: The reactions, shear, and bending moment distributions.

Solution: We draw the free body diagram of beam segment AB. Applying the equilibrium conditions
to this segment results in (Fig. E3.13b)

STFy =0 RA—(z)@w:o Ra = 16kip
2kip/ft
A%; ’ I 7—-_-17-_—_-'7-"‘-7--_ B
Y \” - Lz
RA=161de T R

24 ft

Fig. E3.13b Segment AB
With the internal force at B known, one can now proceed with the analysis of segment BC
(Fig. E3.13c).

ZFYzOf(Z)@78+RC:O = Rc=32kip |
ZMC =0—Mc+8(24)+(2) @@ =0 = M =384kipftclockwise
2 kip/ft
S ]
| LN
Vg = 8 ki J, I :
B P R =32ki

24 ft ¢ d

il l
I T

Fig. E3.13c Segment BC
The peak moment occurs where the shear is zero.
Segment AB:
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xg.
‘M max 12
Cl y— B
Vx1=0‘l 1VB=81dp
X, ¢ }

N F=0 8—%()(—1))(1:0 — X = 13851t

12
. 13.85\1/13.85 .
S Mmax = 8(13.85) — (13.85) (T)E(T) = +73.9kipft
Segment BC:
2 3
X
12 u, =—8x2——( 2)
72
B —T | D
t g7

1/x
S F=0 v, =8+5(é)xﬁéo

Therefore, there is no peak moment between B and C.
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The shear and bending moment diagrams are listed below (Fig. E3.13d).

2 kip/ft 2 kip/ft
B % .
A Jm' e D 384 kip ft
16 1de e I 32 kip
. 24 ft k 24 ft J
T T T
M o !
: -4
) LAL-L_'W
16 kip | 13.85 ft ,
M
73.9 kip ft .
e T T T T T T T T T T e W —
384 kip ft
Fig. E3.13d

Example 3.14

Given: The beam shown in Fig. E3.14a



208 3 Statically Determinate Beams

Determine: The reactions, and the shear and bending moment distributions.

10 kip
2kip/t 8kip ft
A B
ffﬁxfffffji . v .
L e D E &

12 ft 10ft |, 10ft 2f

Fig. E3.14a

Solution: We first determine the reaction at B using ) M4 = 0. We then compute the reaction at A by
summing forces in the Y direction (Fig. E3.14b).

> MaA=0 —RB(44)+(2)(E)§(12)+8+10(32):0 Rg =9.64 1

2
12
> Fy=0 Ra-2 o) —10+9.64=0 Ra=12.361
10 kip
2kip/t 8 kip ft
f 5 B
% ki v :
R 4 =12.36kip o o - ¥RB = 9.64 kip
121t . 0 10ﬁ+ 12 ft |

Fig. E3.14b

We determine the shear, V(x), with (3.6) (Fig. E3.14c). Integrating between points A and x

X X 2% 2
X X X
— = dx=| —dvr=—| =— <x<12
V(x) = Va Jow(x) ,[06 2, "1 0<x<
Noting that V4 = —12.36, the solution for V(x) reduces to
2
X
V(x) =—=-—12.36

We determine the moment M(x), with (3.7) (Fig. E3.14c). Integrating between points A and x

3

T X X
V(x)dx = — — — 1236 |dx=——+41236x 0<x <12
(%) Jo (12 ) 36+ x 0<x<

X

M(x) —Ma = —JO

Noting that M s = 0, one obtains
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3
M(x) = ——+12.36x

36
X
A e My
==L 9
RA=12.36kjp¥ T,
t X
Fig. E3.14¢
Note that there is a jump in the shear at E.
10 kip

l

VE_ face l?T VE+face =9.64

D> Fy=0 Vi e =9.64+10=0 Vg e =036 Vi face = 0.36 T kip

Applying (3.7) to the different segments results in:
Segment EB

Mg — Mg = —J Vdx = —9.64(12) = —115.68
E—B
Mg =0 . .Mg=115.68kipft

Segment DE

Mg — Mp = _J Vdr = —(~0.36)(10) = 3.6

E—B
Mg = 115.68 . .Mp = 112kipft

Note that there is a jump in the bending moment at D.

8 kip ft

- N
D-face C ? >MD+face =112
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> M=0 Mp e +8—112=0 Mp_gue = 104kipft

Segment CD

Mp — Mc = ,J Vdr = —(~036)(10) = 3.6

E—B
Mp=104. . .Mc = 100.4kipft

The reactions, shear, and bending moment distributions are listed below (Fig. E3.14d).

10 kip
2kip/ft 8 kip ft -
A [ B
AT I Ny
D E T s
RA=12.36kip1 ¢ | Ry = 9.64 kip
| 12 ft | 10ft |, 10ft 12 ft !
¥ I v T T
9.64 v
- |1
12.36 kip
112 115.68
100.4
104 |
I = | |

L )

Fig. E3.14d

3.6 Displacement and Deformation of Slender Beams: Planar Loading

Fig. 3.18 Slender beam.

(a) Initial. (b) Deformed " b (T,_m
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Fig. 3.19 Definition of Y
displacement components A

Figure 3.18 shows how a slender beam responds to a transverse planar loading. The geometric
quantities that define the movement of the beam from its unloaded position due to an applied loading
are defined as the displacements. Displacements are also referred to as deflections. Consider the
segment of a homogeneous beam shown in Fig. 3.19. We take the X-axis to coincide with the initial
position of the centroidal axis and the Y-axis to be 90° counterclockwise from the X-axis. When the
loading is applied in the X — Y plane, points on the centroidal axis move horizontally and vertically.
We assume the cross-section, which is initially normal to the centroidal axis, remains normal to the
curve connecting the displaced points. This is a standard assumption for beams known as
“Kirchoff’s” hypothesis and implies that the cross-section rotates through the same angle as the
tangent to the centroidal axis. Kirchoff’s hypothesis is valid for slender beams, i.e., beams having a
depth to span ratio less than about 0.1. With this assumption, the independent geometric measures are
the two displacement components, u(x) and v(x), which are functions of x for static loading. Given
v(x), we find the cross-sectional rotation, 8(x), with the geometric relation.

The next assumption that we introduce concerns the magnitude of 8. We assume here that 6> is small
in comparison to unity, which implies that the tangent is essentially equal to the angle in radians:

tan 6 ~ 6 (3.11)
Then, the expression for € reduces to
dv
0~ +— 3.12
+< (3.12)
Fig. 3.20 Differential
beam elements. (a) Initial. a b
(b) Deformed
c d
-]‘
af-—-—-- b
dx
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Deformations are dimensionless strain measures resulting from displacements. Consider the
differential elements shown in Fig. 3.20. The initial rectangular shape is transformed to a quadrilat-
eral shape with curved upper and lower edges. Adjacent cross-sections experience a relative rotation
equal to (df/dx)dx, which causes line elements parallel to the centroidal axis to either elongate or
contract. These changes in length produce extensional strains. A line element located y units above
the centroidal axis experiences a strain £(y) equal to

€)= vy (313)

According to this model, the strain varies linearly over the cross-section and the peak strain values
occur at the upper and lower surfaces; the centroidal axis is not strained.

At this point, we introduce some standard notation for the derivative of the cross-section rotation
angle, 6.

d%v

de
¥ = curvature= e (units of radians /length)
(3.14)

1
p = radius of curvature = —(units of length)
V4

We prefer to work with the curvature and express the extensional strain as

e=—yy (3.15)

Given y, one can establish qualitatively the shape of the curve defining the displaced centroidal axis.
An analytical solution for the displacement, v, can also be determined by integrating (3.14). We will
illustrate both procedures in later sections.

3.6.1 Moment: Curvature Relationship

We have demonstrated how to establish the bending moment distribution corresponding to a given
loading. We have also showed how the displacement field can be generated once the curvature is
known. To find the displacements due to a given loading, we need to relate the moment and the
corresponding curvature along the centroidal axis. Given this relationship, it is a fairly straightfor-
ward process to move from prescribed loading to the resulting displacement.

The positive sense of the bending moment on a positive cross-section is defined as counterclock-
wise. Then noting Fig. 3.21, the moment and normal stress are related by

Fig. 3.21 Definition of Y

normal stress and moment
c M
.‘-
— —— - —— X
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M= L ~ yodA (3.16)

We determine the stress using the stress—strain relation. In what follows, we assume the material
behavior is linear elastic. The stress is a linear function of the strain in this case.

0 =FEe=—yEy (3.17)
where E is Young’s modulus for the material. Substituting for ¢ in (3.16) leads to
M = Ely (3.18)

where [ = J y*dA. Given M and EI, one finds the curvature () with

M

=— 3.19
X =g (3.19)
and then the displacement v by integrating
d*v M
= 3.20
il s (3.20)
The complete solution of (3.20) consists of a homogeneous term and a particular term,
v=co+tcx+v (3.21)

where v}, is the particular solution corresponding to the function, M/EI, and c, ¢, are constants. Two
boundary conditions on v are required to determine ¢, and c;.

3.6.2 Qualitative Reasoning About Deflected Shapes

Noting (3.18) and the fact that EI is always positive, it follows that the sense of curvature y is the same
as the sense of M. The deflected shapes corresponding to positive and negative curvature are shown in
Fig. 3.22. It is more convenient to interpret these deflected shapes as the result of applying positive
and negative moments. Figure 3.23 illustrates this interpretation.

We divide the moment diagrams into positive and negative moment zones and identify, using
Fig. 3.23, the appropriate shape for each zone. Points where the moment changes sign are called
inflection points. The curvature is zero at an inflection point, which implies that the curve is locally
straight. We deal with inflection points by adjusting the orientation of adjoint shapes such that their
tangents coincide at the inflection point. Figure 3.24 illustrates this process.

Fig. 3.22 Deflected Y
shapes for positive and a b X

negative curvature \x/ /—\

X

positive curvature negative curvature
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Fig. 3.23 Deflected shape
for positive and negative

L 0 v 9 ( N

pO\l.lI\ ¢ moment ncg;ni\c moment

Fig. 3.24 Shape transition
at an inflection point

(-x)

N

(+%)

The last step involves enforcing the displacement boundary conditions associated with end
conditions. Figure 3.25 shows four types of end conditions (full fixity, hinge, roller, and free) with
their corresponding displacement measures that are constrained by these conditions.

d‘
I Fied u=0v=0 8=gv =0 f———="

o

2. Hinge u=0,v=0

3. Roller v=20

4. Free ux0,v=20,0=0 . \

Fig. 3.25 Types of end conditions—displacement measures
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The deflected shape must pass through a support. If an end is fixed, the cross-section cannot rotate
at that point. We need to orient the deflected shape such that the tangent coincides with the initial
centroidal axis. In what follows, we present a series of examples which illustrate the process of
developing qualitative estimates of deflected shapes given the bending moment distribution.

Example 3.15 Deflected Shape—Uniformly Loaded, Simply Supported Beam

Given: The uniformly loaded, simply supported beam shown in Fig. E3.15a.
Determine: The deflected shape.

w

W W W W
E »°

—

—

Fig. E3.15a

Solution: The moment is positive throughout the span so Fig. 3.23a applies. The displacement
boundary conditions require

One starts at the left end, sketches a curve with increasing positive curvature up to mid-span and
then reverses the process. The deflected shape is symmetrical with respect to mid-span since the
moment diagrams and support locations are symmetrical (Figs. E3.15b and E3.15¢).

wl.?
8
A B g4 )
L/2 L/2

e

Fig. E3.15b Moment diagram

—
—
-

Fig. E3.15¢ Deflected shape
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Example 3.16 Deflected Shape—Cantilever Beam

Given: The cantilever beam defined in Fig. E3.16a.
Determine: The deflected shape.

—— T

Fig. E3.16a

Solution: We note that the moment is negative throughout the span. Point A is fixed and therefore the
tangent must be horizontal at this point. The displacement boundary conditions require

v(0) = 0(0) =0

We start at point A and sketch a curve with decreasing negative curvature up to x =L
(Figs. E3.16b and E3.16c¢).

A M

/ e

PL™

Fig. E3.16b Moment diagram

¥

.\T B
—“%\\\\\J

Fig. E3.16c Deflected shape

Example 3.17 Deflected Shape of a Beam with an Overhang

Given: The beam with overhang shown in Fig. E3.17a.
Determine: The deflected shape.
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t_+ 4 ¥ ¥ + ¥ 4 ¥ v + ¥
A= B8 C
i

B
L : /2
1 1

Fig. E3.17a
Solution: We note that Fig. E3.17b shows that the moment diagram has both positive and negative
regions with an inflection point at x = 0.75L. Therefore, it follows that the left segment has positive
curvature and the right segment has negative curvature. We need to join these shapes such that the
tangent is continuous at point D and the deflections are zero at points A and B (Fig. E3.17c).

’ ]
wlL-
56 —
8 M
D B c
" by " P !

w2
8

Fig. E3.17b Moment diagram

1

T D B C
A i |
5L \l

L i
Ll 1

Fig. E3.17c Deflected shape

Example 3.18 Deflected Shape—Beam with a Moment Release

Given: The beam shown in Fig. E3.18a.
Determine: The deflected shape.

P
25L
: L¢3,
l#l' ﬂ?i’ hinge o
| L ;L { AL,

| |

Fig. E3.18a
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Solution: Member CD is connected to member ABC with a hinge at point C. A hinge is a physical
artifact that allows the members connected to it to rotate freely, i.e., no moment is introduced. A hinge
point is different from an inflection point. Although the moment is zero for both hinge and inflection
points, the cross-sectional rotation is discontinuous at a hinge, whereas it is continuous at an inflection
point. This feature is illustrated in the displacement sketch shown below. The left segment (ABC) has
negative curvature. The right segment (CD) has positive curvature (Figs. E3.18b and E3.18c).

125 PL M

B
Awmmmﬂ:m'mﬂw‘mﬂmmmn C+D
— (‘

25 PL

Fig. E3.18b Moment diagram

v

A e

Fig. E3.18c Deflected shape

3.6.3 Moment Area Theorems

The starting point for quantitative analysis is the set of differential equations relating the moment, the
cross-sectional rotation, and the deflection.

0 M(x)
3’( El (3.22)
a = G(X)

Given M(x)/EI, we integrate df/dx between two points x; and x, on the x-axis and write the
result as

0(x2) — O(x1) = J ME(;C)

X1

dx (3.23)

We interpret (3.23) as “The difference in rotation between 2 points is equal to the area of the M/EI
diagram included between these points.” This statement is referred to as the “First Moment Area”
theorem. Taking x, as x in (3.23), we can express 6(x) as

0(x) = O(x1) + J Agf) dx (3.24)
Given 6(x), we solve for v(x,).
v(6) = v(x1) + J 0(x)dx (3.25)

Evaluating (3.24) first, and then substituting for 8(x) in (3.25) leads to
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V() = v() = (2 — x0)0(x1) + J {J M (x)dx}dx (3.26)

X1 X1 E[

The double integral in (3.26) can be evaluated using integration by parts. First, we note the
following identity,

d(uv) = udv + vdu (3.27)
Integrating between x; and x5,
X2 X2
J d(uv) :J (udv + vdu) (3.28)
and rearranging terms leads to
X2 X2
J udv = uv[}? — J vdu (3.29)
X1 M X1
We take
M
=] —dx
“ J El (3.30)
dv=dx

in (3.26). Using (3.29), the double integral can be expressed as

[t ][

o EIM( : w M (3.31)
X2 X
= — dx
L (e =) =5
Finally, an alternate form of (3.26) is
2 M (x
v(x) —v(x)) = (x —x1)0(x1) + J (2 — x) E(I)dx (3.32)
X1

This form is referred to as the “Second Moment Area Theorem.” Figure 3.26 shows that the last term
can be interpreted as the moment of the M/EI diagram with respect to x,. It represents the deflection
from the tangent at point 1, as indicated in Fig. 3.27.
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Fig. 3.26 Area and M
moment of area T A
I M dx
El
y
A
- >
X dx 5
x (x: o X)
! o >
M
Area = [ —dv= A0
JEI
r M
Moment of Arca = I(xl - x)ad.\' = Av
l|
Fig. 3.27 Graphic Vix)
interpolation of (3.26) L 3
Vi)
[ (x2- x) M 4
i, El
B(x Nx2 - x1)
I" ,\'J-}
» X
Using the Moment Area theorems, one has to evaluate only two integrals,
t M(x)
= dx
J(x) Ll i
C M) (3.33)
X
H(x)= dx
0= 5
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When [ is a complicated function of x, these integrals can be evaluated using a symbolic integration
scheme or the numerical integration scheme described in Sect. 3.6.5. The final expressions for v(x)
and 6(x) in terms of v(x), 8(x;) and these integrals are (we take x, = x in (3.23) and (3.32))

0(x) = 0(xy) +J(x)

(3.34)
v(x) = v(xy) + (x —x1)0(xy) + xJ (x) — H(x)

Example 3.19 Deflected Shape—Cantilever Beam

Given: The cantilever beam shown in Fig. E3.19a. Consider EI is constant.

Va

5

A . B

—
——

Fig. E3.19a

Determine: The deflected shapes for various loadings: concentrated moment, concentrated force, and
uniform load.

Solution: We measure x from the left support. The displacement boundary conditions are
va=v(0)=0
0r=06(0)=0

Taking x; = 0 and noting the boundary conditions at x = 0, (3.34) reduces to

0<x<L
X M(X)
0(x) = dx
0= %5
"M(x) t M)
= ——=dx — ——=dx
v(x) xJO I Jox I
Solutions for various loadings are listed below.
1. Concentrated moment (Fig. E3.19b)
M*

5

M B

Fig. E3.19b
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The expressions for M(x), 8(x), and v(x) for a concentrated moment are as follows:

M* M’

(s D

ey X B

i(——-:

B

El), El
x [* 1(* M'x* M'¥? M ¥?
— 2 M)de— —| xM(x)dx = . -
V() EIJO () EIJO M () B 2E ' 2E

Specific values are

ML
Op — ——
BT

 ML?
VBT HEr

2. Concentrated Force (Fig. E3.19¢)

i(——-g

B

—— Th&
~

Fig. E3.19¢

The expressions for M(x), 8(x), and v(x) for a concentrated load are as follows:

ST
hi

—x
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1 P /2
® EIL () El\2
* 1(* P 3 L 2
e N Tt G
El}, El), EI\6 2
Specific values are
PL?
O — -
BT T 2E
pL?
VBT T3

3. Uniform Loading (Fig. E3.19d)

i B

Fig. E3.19d

The expressions for M(x), 8(x), and v(x) for a uniform load are as follows:

F— x
2 L2
M(x)= —%—FWLX—WT 0<x<L
0(x) = iJxM(x)dx = (o 3L — 3L%)
Ei), GEI

X 1 X
v(x) = ij M(x)dx — EL XM (x)dx = 2 (=t 4 4Lx" — 6177

Specific values are

wL3
Og = ——
B T 6El
wL*

VB =

- 8EI
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Example 3.20 Deflected Shape—Simply Supported Beam

Given: The simply supported beam shown in Fig. E3.20a. Consider EI is constant.

\f‘\

f\ \x

Fig. E3.20a

Determine: The deflected shape under different load conditions.
Solution: We measure x from the left support. The displacement boundary conditions are

v(0) =
V(L) =
(0) #
(L) #

0
o(L

Noting the boundary conditions at x = 0, the general solution (3.34) for constant £/ is given by

0<x<L
0(x) = 0(0) + J:%dx
v(x) = x6(0) +xjj%dx - J:xA%dx

We determine €(0) using the remaining boundary condition, (L) = 0. Evaluating v(x) at x = L
and equating the result to 0 leads to

L m(x) IJLde.X

0(0) = —| —Zdrx+-
©0) L i CTL), E

Various loading cases are considered below. We omit the integral details and just present the final
solutions.
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1. Concentrated Moment (Fig. E3.20b)

M*
B

£ ;

——
—4—

Fig. E3.20b

The expressions for M(x), 6(x), and v(x) for a concentrated moment are as follows:

)

-

M M
L X v
M*
M(X)ZTX 0<x<L
Epm(x) 1 M(x) “M(x)
9(x)——JO il dx—l—ZJOx & dx+J0 o

v(x) = XJLM(X) der{JLxmdx +xrﬂ@dx - JXxM(x) dx

o EI L), EI o EI o EI
ML (P x
6EI \L* L
Specific values are
ML
Op = — ——
’ o M'L? L
0 = 1L at x = ~0.58L
3El _ EI 3
V3
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2. Concentrated Force (Fig. E3.20c)

-

1 a 1 I.-i! 1

Fig. E3.20c

The expressions for M(x), (x), and v(x) for a concentrated load are as follows:

P

A B
e -

P( L-a ) T Pa
L L

Segment ACO < x < a

(M) 15 M(x) * M(x)
9()6) = —JO Fdx—f'zjo XFdX-‘r Jo Fdx

A CHIE ORI
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v(x) = —xj:%dx—l—%ﬁx%dx—kxﬁﬂ%dx— J:xA%dx

_%3 (1-9) [—é(%f +i2(2 ‘%ﬂ

Segment CBa < x <L

Specific values are

Pa(2L* — 3aL + a*)

O = —
A 6EIL
_ Pa 2 2
bs =L — )
_ Pd(L-— a)?
ve= 3EIL

The maximum deflection occurs at the point, where 8(x) = 0. This location depends on a. When

a < L/2 the peak displacement occurs in segment CB. The location reverses when a > L/2.
Special case: a = L/2

X
L L
| 2 A - [
I T ¥
pL?
emax - QB - _HA - @
Oc=0
PL? L
Vmax at
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3. Uniform Loading (Fig. E3.20d)

[T I T T T 113

- =

L |
|

— X

Fig. E3.20d

The expressions for M(x), (x), and v(x) for a uniform load are as follows:

L
“_ f wlL
2 2
L x
wx?  wL
M(X):—T+7X OSXSL

(M) 1[5 M(x) *M(x)
6(x)——JOﬁdx+ZLx?dx+L T

L3 3 2
ia (—4x r6l 1)

TuEl\ T2
Lpm(x) x[F M(x) “M(x) * M(x)
= dr+= dx —dx— dx
V) XJO El +LL “TEI +xj0 El L “TEI
- wL* x* n 3 ox
C24EI\ L* TP L

Specific values are
wL?
Op=—-0g=———
A 8 T 24E]
SwL* . L

Vmax = Taeapr 4 YT

Note that the rotation is zero at mid-span since the loading and the structure are symmetrical.
For future reference, the end displacements corresponding to typical loading condition are
summarized in Table 3.1. We utilize these results in formulating the Force method to be presented

in Chap. 9.


http://dx.doi.org/10.1007/978-3-319-24331-3_9
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3.6.4 Computing Displacements with the Method of Virtual Forces

The procedures described in the previous section are intended to generate analytical solutions for the
displacement and rotation. In many cases, one is interested only in the motion measures for a
particular point. Rather than generate the complete analytical solution and then evaluate it at the
point of interest, one can apply the Method of Virtual Forces. The Method of Virtual Forces
specialized for bending of slender beams is defined in [1]. We express the principle as

d-5P = J (bending deformation) (6M (x))dx (3.35)
L
where d is the desired displacement measure, 6P is the virtual force in the direction of d, and SM(x) is
the virtual moment due to §P. The deformation due to transverse shear is not included since it is
negligible for slender beams. When the behavior is linear elastic, the bending deformation is related
to the moment by

. . do  M(x)
bending def tion=— =
ending deformation ™ I
and (3.35) takes the form
M
d.5P = J M) a1 (1) (3.36)
. EI

The steps involved in applying the principle are as follows. We use as an example, the beam shown
in Fig. 3.28. To determine a desired vertical displacement or rotation such as v, or fg, one applies the
corresponding virtual force or virtual moment in the direction of the desired displacement or rotation,
determines the virtual moment 6M,(x) or 6My(x), and then evaluates the following integrals.

VA = L ME(;() M, (x)dx

Fig. 3.28 Actual and a W b

virtual loads moments. (a)

Actual load M(x). (b) m

Deflected shape. (c) Virtual ¢ m .A.B = !_\\,Ll_\_ - " _A_
load 6M, for v4. (d) Virtual ~“"'* O

load 6My(x) for Oy

-
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Just as we did for truss structures in Chap. 2, one takes 6P to be a unit value. We illustrate the
application of this procedure with the following examples.

Example 3.21 Deflection Computation—Method of Virtual Forces

Given: A uniformly loaded cantilever beam shown in Fig. E3.21a.

B e B

—
4

Fig. E3.21a

Determine: The vertical displacement and rotation at B. Take EI as constant.

Solution: We start by evaluating the moment distribution corresponding to the applied loading. This
is defined in Fig. E3.21b. The virtual moment distributions corresponding to vg, fg are defined in
Figs. E3.21c and E3.21d. Note that we take 6P to be either a unit force (for displacement) or a unit
moment (for rotation).

wl.?
2 d

T T T T T T1
G B

Fig. E3.21b M(x)

The actual moment M(x) is

2 L2
0<x<L M(x):wfow%fWT:fg(fo)z

Vertical deflection at B: We apply the virtual vertical force, 5P = 1 at point B and compute the
corresponding virtual moment.

0<x<L &M, (x)=x—L


http://dx.doi.org/10.1007/978-3-319-24331-3_2
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oP=1

B

Fig. E3.21c oM, (x)
Then, noting (3.36)

T T A R tart
L

El “El), 2
1 w 3
=—| ——=(x-L)dx
EIL b
Integrating leads to

wL*
Vg = ——
B 8EI

Rotation at B: We apply the virtual moment, 5P = 1 at point B and determine SM(x).
This loading produces a constant bending moment,

0<x<L 6&My,(x)=—-1

Fig. E3.21d M, (x)

Then, noting (3.36)

O — LAZ(;‘) Mo, (x)dx — —J e L (1)

Finally, one obtains

3

O = %clockwise
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Ll 1 1 1 1 1 1l 1 IR

=
|

]
93
Fig. E3.21e Deflected shape

Example 3.22 Deflection Computation—Method of Virtual Forces

Given: The simply supported beam shown in Fig. E3.22a.

VS S P P S A A
AE = 1.8
L

Fig. E3.22a

Determine: The vertical deflection and rotation at point C located at mid-span. Take EI is constant.
Solution: We start by evaluating the moment distribution corresponding to the applied loading. This
is defined in Fig. E3.22b. The virtual moment distributions corresponding to v, f¢ are defined in
Figs. E3.22¢ and E3.22d. Note that we take 6P to be either a unit force (for displacement) or a unit
moment (for rotation).

A = C

wlL wL
—_— | )
2 ol Xpe— ~
|

n L2
. 2 2
}

4
.

Fig. E3.22b M(x)

The actual moment is

L 2
0<x <L M(xl)zw—)n—m
2 2
L 2
0<x <L M(xz):w—b—@

2 2
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Vertical displacement at C: We apply a unit virtual load at point C and determine dM(x).

-

[ 1R
Ade C £
n? T
— 1 X
L2 L2
: : |
Fig. E3.22c &M, c(x)
L 1
0<x <§ 5MVC(X1) :le
L 1
0<x <§ 5MVC(X2) :EXZ

Then, evaluating the integral in (3.36), we obtain

e+ (4o

EI

1
T El

_ SwL?
T 384FE]

!

Rotation at C: We apply a unit virtual moment at point C and determine 6M(x).

oP=1
[ 1 B
Adn C ok
1 i |
Tt 2
- x, | 2
L2 L2
Fig. E3.22d SMyc(x)
L
0 < x <§ 6M9C(x1):%1
L
0<x< E 5M9C(X2) = —%

r/z L) (o mwety g +JL/2 L) (e _ws
o 2\ 2 2 ), \2)\ 2 2

)
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Then, evaluating the integral in (3.36), we obtain

e (oo | (o

:i JL/Z (x_1> wlLx; _w_x% ax, +JL/2 (__xZ) wLXz_W_x% dn b =0
El'l )o L 2 2 0 L 2 2

SO R Y AP "N " P R A

Ve
Fig. E3.22e Deflected shape

Example 3.23 Deflection Computation—Method of Virtual Forces

Given: The beam shown in Fig. E3.23a.

10 kip

0n : 10 ft

1 -
Ar x .

Fig. E3.23a

Determine: Use the virtual force method to determine the vertical deflection and rotation at C. E
= 29,000 ksi and / = 300 in.*

Solution: We start by evaluating the moment distribution corresponding to the applied loading. We
divide up the structure into two segments AB and CB.

10 kip

lkipfl B l
A % | M LJlJ.sL\it :

11.67 kip L) X 2833 kip 1 ]

Fig. E3.23b M(x)

fe

2
0<x <30 M(x)=1167x —%

0<x <10 M(XZ) = —10x,
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Vertical deflection at C: We apply a unit virtual load at point C and determine SM(x).

& =1

1—’ X S

Fig. E3.23¢c 6M,c(x)

1
3

X1

0<x <30 5MVC()C1) = —?

0<x <10 5MVC()C2) = —X7

Then, noting (3.36), we divide up the structure into two segments AB and CB and integrate over
each segment. The total integral is given by

e (o ] ()

El
1 (20 02\ x L
——| (11.67x -2 (——)dx 71 A
EIJO ( o 2) 3 1+EIJ0( e
2073.33kipft’  2073.33(12)°
_ [ 207333kipfe  2073.33(12)° o

B El ~29,000(300)
The positive sign indicates that the vertical displacement is in the direction of the unit load.

Jve=041in. |

Rotation at C: We apply a unit virtual moment at point C and determine M (x).

SP =1

5 )
P n e

xX)

| 1
E 30

Fig. E3.23d sM,c(x)
X1

0<x <30 5M9C(x) = —%

0<x2<10 Mg (x)=—1
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Then, noting (3.36)

e (o (o

1 30 .X2 X 1 10
—— | (11676 =) (2L | (=10m)(=1
EIJO ( 67x 2)( 30)dxl+EIL (=10x)(~1)dx,

 374kipf®  374(12)°
- EI 29,000(300)

= 40.0063 rad

The positive sign indicates that the rotation is in the direction of the unit moment.

..Oc = 0.0063 rad clockwise

10 kip
1 kip/ft L

A { A i B A L C

Fig. E3.23e Deflected shape

Example 3.24 Deflection Computation—Method of Virtual Forces

Given: The beam shown in Fig. E3.24a.

2 kN 16 kN

l 30 kN/m l
i S 1 1 1 2 1 1 J

L

I
A '# F *J D

2m 4m 4m Im

t
Fig. E3.24a

Determine: Use the virtual force method to determine the vertical deflection at F, rotation at B, and
rotation at D. Assume £ = 200 GPaand [ = 120(10)6 mm®*.
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Solution: We start by evaluating the moment distribution corresponding to the applied loading.

20 kN 16 kN
l 30 kN/m C l
. PR R P N R S A y

! E. D

A

;

Rp= 139 kN Re= 137kN
im

2m 4m 4m

I
1 1

Fig. E3.24b M(x)
0<x; <8 M(x;) =—15x3 + 139x; —20(x; +2) =

0<x, <8 M(xy) =—152 + 137x, — 16(xs 4+ 3) = —1522 + 121x, — 48

0<x3<3 M(X3) = —16x3

—15x7 + 119x; — 40

Vertical deflection at F: We apply a unit virtual load at point F and determine 6M.
P =1

}.'

B @
e &H

c-

o | —
19 | -

m 4m 3m l

t
Fig. E3.24c oM, (x)

1
O0<x <4 5MVF()C1) :Exl

1
O<x<4 5MVF(X2) = EXQ

Then, noting (3.36)
_ (x1) M(x2)
VE = JBF< I M, (x )) dx; + JCF< I §M‘,F(xz)>dxz

4
L{J (—15x3 4+ 119x; — 40)( )dx1+J( 15x§+121x2_48)<%2>dx2}

T E

_ 1248kNm’ 1248(10)°
¢ = 52mm
El 200(120)(10)
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The positive sign indicates that the vertical displacement is in the direction of the unit load.

Vg =52mm |

Rotation at B: We apply a unit moment at point B and determine 6M(x).

oP =1

¢

Al

)
o

2m

i i

4m

Fig. E3.24d My, (x)

Then, noting (3.36)

0<x <8 5M93(X2)

=0

M(x2) 1® 2 X2
Op = oM doy = —| (=152 + 121xy — 48) (22)dx
B LB g OMnlw)de EIL( o+ el )(8) 2
469.3kNm?  469.3(10)°
_ 469.3kNm® _ _ 469.3(10) == +0.0195rad
EI 200(120)(10)

The positive sign indicates that the rotation is in the direction of the unit moment.

..0g = 0.0195rad clockwise

Rotation at D: We apply a unit moment at point D and determine 6M(x).

oP =1
B C
L J
A nﬁﬁ F ‘* D
Xa
l ?—) X . J 1 X Q—I
ry 8
2m 4m 4m Im

Fig. E3.24e My, (x)

1
0<x <8 5M5D()C]) = gxl

0<x3<3 8Mpy(x3)=1



3.6 Displacement and Deformation of Slender Beams: Planar Loading 241
Then, noting (3.36)

5M.9D ()C3 )dX3

M(xy) J M(x3)
Op = Mg (x1)dx; +
v JBC EI oo ( ! ) ! DC El

18 X1 10
= | (=152 + 119x, — 40 (—)dx *J —16x3)(1)dx
EIJO( Xy + 119x ) 3 1+E1 0( x3) (1)dx;

386.7kNm?  386.7(10)°
+ = -
El 200(120)(10)

=0.016rad

The positive sign indicates that the rotation is in the direction of the unit moment.

.".0p = 0.016rad counterclockwise

20kN 16 kN
30 kN/m l
Op _z=
‘I\JJAJ.LJ‘.LJ,\LJ.Ji—F"#,
W

Vg

Fig. E3.24f Deflected shape

3.6.5 Computing Displacements for Non-prismatic Members

When the member is non-prismatic, / is a function of x and it may be difficult to obtain a closed form

solution for the integral involving 1/I. In this case, one can employ a numerical integration scheme. In

what follows, we describe a numerical integration procedure which can be easily programmed.
Consider the problem of evaluating the following integral

XB
J :J f(x)dx (3.37)
XA
We divide the total interval into n equal segments of length 4
p="2""A (3.38)
n

and denote the values of x and f at the equally spaced points as

X1, X2, X3, « .5 Xpt1

Fvfafss o ofum

This notation is illustrated in Fig. 3.29.
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Fig. 3.29 Piecewise flx)

function approximation
}\""‘“—H

|
(.
. I
II'-_. Iﬁ_ rﬁ rﬂ!l
" |
[
| I

|
|
|
(i
|
A l 1 { B
X1 X3 x3 ! N Xa  Xnsl
h l
Fig. 3.30 Notation f(x)
—
~ B
rlhl frloz
fa
X
Xn Xnel Xn+2
h h
+—

The simplest approach is based on approximating the actual curve of f(x) with a set of straight lines
connecting (fy,, fu+1)> (fus1, fns2), €tc. as shown in Fig. 3.30.
The incremental area between x,, and x,,, is approximated as

X1

AJn,rH—l = J

Xn

h
flodes 3 (fu+Fui1) (3.39)
Also, the area between x; and x,, is expressed as

Iy = J F(x)dx (3.40)

X1
Starting with J; = 0, one generates successive areas with

Jo=J1+AJ12=AJ1,
J3 :J2+A]2,3

: (3.41)
Jn :Jn—l +AJn—1,n
Jn+1 :Jn +Mn,n+l
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1
Ar/r/—T\‘B A‘ \l, *B

:_’ = Db by
} L L

l_/—\/*-"\—‘ﬁ—" /\ N

Fig. 3.31 Moment distribution

The total integral, J,.,; expands to

Xnt1
Ty = j f(x)dx h{%(fl OEDY f—zf,} (342)
X1

Equation (3.42) is known as the “Trapezoidal” Rule. One uses (3.41) to evaluate the intermediate
integrals when applying the Moment Area Theorems such as (3.33) and (3.34). Equation (3.42) is also
used with the Virtual Force Method.

We illustrate the application of this approach defined by (3.36) to the beam defined in Fig. 3.31.
Suppose the vertical displacement at point Q is desired. Given M(x) and /(x), we subdivide the X-axis
into n equal intervals and evaluate M/I and SM(x) at each point.

h==
n

x=k-1Dh k=12,...,n+1

SM(xy) = (1 —%)xk X < xq

SM(xy) = (L — xk)xL—Q X > xq
Lastly, we take f = (%) O6M in (3.42) and evaluate the summation. The choice of / depends on the
“smoothness” of the function M/I; a typical value is L/20. One can assess the accuracy by refining the

initial choice for # and comparing the corresponding values of the integral.
Suppose the deflection at x = L/2 is desired. The virtual moment for this case is

1 1 L
5M(x)<12>xk2xk for xk<§

1 L
6M(x) = (L —x¢)= for x> —.
2 2
We also suppose the loading is uniform and the variation of / is given by

1—10{1+4t— (2)2”

where I is constant.
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The corresponding moment is

oWl e L [T (&)’
R R T N AV

Substituting for M, 6M, and I, the virtual force expression for the displacement takes the form

V<X_L>_WL4J1 4[%_(%)2_% de)_Lﬁa
- 2)  B8ElLy), 1+4{%_®2} ~ 8EI,

where « is a dimensionless coefficient that depends on the interval size.
We subdivide the interval 0—1 into n such intervals. Applying Equation (3.42) and taking a range
of values for n leads to

n=10 a=0.065
n=20 a=0.0559
n=30 a=0.0559

We note that taking n = 20 is sufficiently accurate. We used MATLAB [2] to program the computa-
tion associated with Equation (3.42).

3.7 Deformation-Displacement Relations for Deep Beams: Planar Loading

When the depth to span ratio is greater than 0.1, the theory presented in Sect. 3.6, which is based on
Kirchhoff’s hypothesis, needs to be modified to include the transverse shear deformation. Figure 3.32
illustrates this case: the cross-section remains a plane but is no longer normal to the centroidal axis.
Defining f as the rotation of the cross-section, and y as the transverse shear strain, it follows that

dv
=0—-pr~—— 343
v pr b (3.43)
The extensional strain now involves f rather than 0.

dp
= —y— 3.44
e(y) y i ( )
Expressions for the internal force variables, V and M, in terms of the deformation measures are

derived in a similar way as followed in Sect. 3.6.1. We express them as:
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Fig. 3.32 Deformation
with transverse shear

deformation Y
Co
y
HI Y ® X
b
Fig.3.33 Cantilever beam w
| I R
A 5.&_4 +
/ B I,Ag constant
—sX
M L |
L 1
dp
M= EI (3.45)
V =GAyy

where G is the material shear modulus and A, is the effective shear area, i.e., the cross-sectional area
over which the shear stress is essentially uniformly distributed. For an I shape steel section, Ay is taken
as the web area.

Given M and V, one first determines f by integrating between two points, x5 and x

JCM

pla) = plxs) = | e (3.46)

If A is a fixed support, f(x4) = 0. Once f is known, we find v by integrating

9—‘54_ V
dxe GA,

This leads to

V(x) — v(xa) = J (ﬂ + G‘;) d (3.47)

In general, two boundary conditions are required to specify the two integration constants.
For example, consider the structure and loading defined in Fig. 3.33.
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The transverse shear force and moment expressions are

p= J YL - ) dx
o 2EI
=2 _li P R
~ 6EI 6EI

Substituting for £ in (3.47) leads to

X

v(x) = [ =27

w 2 9 w 1 4 .3 L
- Lo —12) + 2 (2 — s &
2GAS(( 0= 1) +6E1< L=~ L 4>

w 4 w 3 .
+ [_24EI(L —x) - @Lgx] 0
(3.48)

Specializing for x = L, the end displacement is equal to

wL* 4EI
+ T V(L) = —@ (1 —‘rm)

The effect of shear deformation is to “increase” the displacement by a dimensionless factor which
is proportioned to the ratio EI/GA(L?. This factor is usually small with respect to 1 for a homogeneous
cross-section. It may be large for composite beams that have a “soft” core, i.e., where G < E.

Rather than work with the deformation—displacement results, one can apply an extended form of
the Principle of Virtual Forces. We add the shear deformation term to the integral and also introduce
the virtual shear force V. Then, (3.36) expands to

d-5P:J

(M SM(x) + @(W(x)) dx (3.49)
L

El GA;

The steps involved are the same as for slender beams. One now has to determine oV as well as oM
for a given 6P. Revisiting the previous example defined in Fig. 3.33, we compute v(L). The details are
as follows.

—

—sX L

-
——

§V(x) = —1
SM(x) = —(L — x)
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Ly, 5 L
+ | v(L) :JO ﬁ(L—x) (L—x)dx+J0 GA. (L —x)(—1)dx
L L
= [ae -0+ e -7,
_ W4 Ly
_8EIL +2GAS

Applying the Principle of Virtual Forces for this example involves less algebra than required for
integration.

3.8 Torsion of Prismatic Members

Consider the prismatic member shown in Fig. 3.34. Up to this point, we have assumed the line of
action of the external loading passes through the centroidal axis, and consequently the member just
bends in the X — Y plane. This assumption is not always true, and there are cases where the loading
may have some eccentricity with respect to the X-axis. When this occurs, the member twists about the
X-axis as well as bends in the X — Y plane.

We deal with an eccentric load by translating its line of action to pass through the X-axis. This
process produces a torsional moment about X as illustrated in Fig. 3.34.

The torsional moment is resisted by shearing stresses acting in the plane of the cross-section,
resulting in shear strain and ultimately rotation of the cross-section about the X-axis. Mechanics of
Solids texts such as [1] present a detailed theory of torsion of prismatic members so we just list the
resultant equations here. First, we introduce the following notation listed in Fig. 3.35

Fig. 3.34 Prismatic Y
member—eccentric load

P
__l_____ Kcentroidalaxis

-
-

P

4 T\\ T
Y
A
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Fig. 3.35 Notation Y

M, = moment vector about the X-axis (positive sense from Y toward Z)
p; = rotational vector about the X-axis

m, = distributed external torsional moment loading

J = torsional cross-sectional property (similar to / for plane bending)

The differential equation of equilibrium for torsion has the form

M.
Et +m =0 (3.50)

One needs to restrain the member at one point for stability. A free end has M, = 0. Given M,, one
determines the rotation with

d
M, = GJ% (3.51)

Note the similarity between the expression for bending and twisting. We find S, by integrating (3.51).

xMt

B~ Blon) = | G (3.52)

A boundary condition on f, is required to determine j3,(x). Typical boundary conditions are illustrated below.

/

7 ]
7

B=0 p=0
My #0 M =0

The principle of Virtual Forces can be extended to deal with combined bending and twisting by
adding the twist deformation term to the integration. The general expression which includes all
deformation terms is

M 1% M,
Pa=| (=om —L5M, ) dx .
d5Py L(Ela TR ,) (3.53)

where 0M, is the virtual torsional moment.
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Fig. 3.36 Eccentrically loaded member

When bending and twisting are coupled because of eccentric loading, it is convenient to solve the
bending and twisting problems separately, and then combine the solutions.

In what follows, we illustrate this approach.

The eccentric load shown in Fig. 3.36 produces the distributed torsional loading equal to we, and
the planar loading w. Noting (3.50), the torsional moment is

M, = we(L — x)

We determine the twist with (3.52). The left end is fixed, so #,(0) = 0. Then,

1 we
Pl = || gwelt =01 = 5L -7
B.(x) = %(ZLX — %)

The solution for plane bending is generated with (3.22)

d9_ w
dx  2FEI

N N 3'r:1 _ 3=
0x) = [6E1(L X) }0 eEl L Y ~ 6

w 4 wL3x X w 1 4 3 L
W) = [ x| = @{—Z(L —x) —L*x+z}

(L —x)?

The solution for a cantilever beam subjected to a concentrated torsional moment at the free end is

needed later when we deal with plane grids.
Noting Fig. 3.37, the torsional moment is constant,

M, =M

and the twist angle varies linearly with x

B, =—x (3.54)
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Fig. 3.37 Pure torsion
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3.9 Symmetry and Anti-symmetry
3.9.1 Symmetry and Anti-symmetry: Shear and Moment Diagrams

This section discusses the relationship between certain properties of the shear and moment diagrams
and the nature of the loading distribution and support locations. We first introduce some background
material on symmetrical and anti-symmetrical functions.

Consider the function f{x) shown in Fig. 3.38. We say the function is symmetrical with respect to
x = 0 when f{(—x) = f(x) and anti-symmetrical when f(—x) = —f(x). Symmetrical functions have
dffdx = 0 at x = 0. Anti-symmetrical functions have f = 0 at x = 0. One can establish that the
derivative of a symmetrical function is an anti-symmetrical function. Similarly, the derivative of an
anti-symmetrical function is a symmetrical function. If we know that a function is either symmetrical
or anti-symmetrical, then we have to generate only one-half the distribution. The shape of the other
half follows by definition of the symmetry properties.

a f(x)
N
——
f(-x) f{x)
0 ke
An arbitrary function
f(x)
b fix) “
1\ Ant-Symmetrical lunction
Symmetrical function
}- X =X
0 0
Symmetrical function anti-Symmetrical function

Fig. 3.38 Symmetry and anti-symmetry properties
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Starting with the basic differential equations relating the shear, moment, and applied distributed
loadings:

w_,
v _

dM
el v
dx

dm

& tm=0

we can deduce the following properties for V, M, and M,, given the nature of the loading

1. wisasymmetrical function
e Visanti-symmetrical
e  Missymmetrical

2. wisananti-symmetrical function
e Vissymmetrical
e Misanti-symmetrical

3. m,isasymmetrical function
e M,isanti-symmetrical

4.  myisananti-symmetrical function
e M,issymmetrical

(3.55)

The following cases illustrate these rules.

Symmetrical—planar loading:

Case (a) (Fig. 3.39):

Case (b) (Fig. 3.40):

Note that the center section is in pure bending, i.e., the shear force is zero. This loading scheme is
used to test beams in bending

Anti-symmetry—planar loading:

Case (a) (Fig. 3.41):

Case (b) (Fig. 3.42):

We use the concept of symmetry to represent an arbitrary loading as a superposition of symmetri-
cal and anti-symmetrical loadings. Then, we generate the individual shear and moment diagrams and
combine them. As an illustration, consider a simply supported beam with a single concentrated force
shown in Fig. 3.43a. We replace it with two sets of forces, one symmetrical and the other anti-
symmetrical, as shown in Fig. 3.43b. Then, we use the results shown in Figs. 3.40 and 3.42 to
construct the shear and moment diagrams.
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Fig. 3.39 Symmetrical
uniform loading

Fig. 3.40 Symmetrical
2-point loading p p

M
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Fig. 3.43 Representation a P
of an arbitrary loading by
superposition. (a) Single

concentrated load. (b) Set
of symmetrical loads. (c)
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3.9.2 Symmetry and Anti-symmetry: Deflected Shapes

A structure is said to be geometrically symmetrical with respect to a particular axis when, if one
rotates the portion either to the right or to the left of the axis through 180°, it coincides identically with
the other portion. Figure 3.44 illustrates this definition. If we rotate A-B about axis 1-1, it ends up
exactly on A-C. A mathematical definition of geometric symmetry can be stated as follows: for every
point having coordinates X, Y, there exists a corresponding point with coordinates —X, Y.

In addition to geometric symmetry, we also introduce the concept of support symmetry. The
supports must be located symmetrically with respect to the axis of geometric symmetry and be of the
same nature, e.g., vertical, horizontal, and rotational constraints. Consider Fig. 3.45. There are four
vertical restraints at points A, B, C, and D. The geometric symmetry axis, 1-1, passes through
mid-span. For complete symmetry, the pin support at point D needs to be shifted to the end of the
span. Another example is shown in Fig. 3.46.
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We say a structure is symmetrical when it has both geometric and support symmetry. The
symmetry property is very useful since it leads to the following conclusions:

When a symmetrical structure is loaded symmetrically, the resulting deflected shape is also
symmetrical. Similarly, a symmetrical structure loaded anti-symmetrically has an anti-symmetric
deflected shape.

These conclusions follow from the differential equations listed below and the properties of
symmetrical and anti-symmetrical functions:

av_
dx—W

dM v

5}"‘4_

o =0

i M (3.56)
dx  EI

d_v—ﬁ_;’_L

dx GJ

dp, _ M:

dx ~ GJ

If f(x) is symmetrical, df/dx is anti-symmetrical; if f(x) is anti-symmetrical, df/dx is symmetrical.
Using these properties, we construct the following table relating the response variables to the
loading for a symmetrical structure (Table 3.2).

Table 3.2 Loading response relationships—

- Loading Response variables
symmetrical structure

w symmetrical V anti-symmetrical
M symmetrical

f anti-symmetrical

v symmetrical

w anti-symmetrical V symmetric

M anti-symmetrical
f symmetrical

v anti-symmetrical

m, symmetrical M, anti-symmetrical
P, symmetrical
m, anti-symmetrical M, symmetrical

P, anti-symmetrical

We have placed a lot of emphasis here on symmetry because it is useful for qualitative reasoning.
It also allows us to work with only one-half the structure provided that we introduce appropriate
boundary conditions on the axis of symmetry. The boundary conditions for the symmetrical case
follow from the fact that V, 3, and M, are anti-symmetric functions and therefore vanish at the

Fig. 3.47 Symmetrical

boundary conditions on a J__AXlS of Symmeh'y

symmetry axis
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Fig. 3.48 Boundary conditions on symmetry axis—symmetrical planar loading. (a) Symmetrical load. (b) Left
segment. (c¢) Right segment

symmetry axis. We introduce a new support symbol shown in Fig. 3.47, which represents these
conditions. The roller support releases V and M,; the rigid end plate eliminates /.

For example, consider the symmetrically loaded simply supported beam shown in Fig. 3.48a. We
can work with either the left or right segment. We choose to work with the left segment, with an
appropriate support at ¢ on the axis of symmetry. The displacement boundary conditions for this
segment are

va=0, 0,#£0
Ve £0, 0.=0

The solution generated with this segment also applies for the other segment (the right portion).

When the loading is anti-symmetrical, the bending moment and displacement are also anti-
symmetric functions which vanish at the symmetry axis. For this case, the appropriate support on
the axis of symmetry is a roller support. We replace the full beam with the segments shown in
Fig. 3.49b, c. We analyze the left segment, and then reverse the sense of the response variables for the
other segment.
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Fig. 3.49 Bending conditions on symmetry axis—anti-symmetrical planar loading. (a) Anti-symmetrical planar load.
(b) Left segment. (c) Right segment

3.10 Influence Lines and Force Envelopes for Statically Determinate Beams
3.10.1 The Engineering Process

The Force envelopesInfluence linesobjective of the engineering process is to define the physical
makeup of the beam, i.e., the material, the shape of the cross-section, and special cross-section
features such as steel reinforcement in the case of a reinforced concrete beam. Cross-sectional
properties are governed by the strength of the material and constraints associated with the specific
design codes recommended for the different structural materials such as concrete, steel, and wood.
Given the maximum values of shear and moment at a particular location, the choice of material, and
the general shape of the cross-section, the determination of the specific cross-sectional dimensions at
that location involves applying numerical procedures specific to the associated design code. This
computational aspect of the engineering process is called design detailing. There are an extensive set
of computer-aided design tools available for design detailing. Therefore, we focus here mainly on that
aspect of the engineering process associated with the determination of the “maximum” values of
shear and moment for statically determinate beams. Parts II and III extend the discussion to statically
indeterminate structures.

Shear and bending moment result when an external loading is applied to a beam. We described in
Sect. 3.4 how one can establish the shear and moment distributions corresponding to a given loading.
For statically determinate beams, the internal forces depend only on the external loading and
geometry; they are independent of the cross-sectional properties. Now, the loading consists of two
contributions: dead and live. The dead loading is fixed, i.e., its magnitude and spatial distribution are
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constant over time. Live loading is, by definition, time varying over the life of the structure. This
variability creates a problem when one is trying to establish the maximum values of shear and
moment needed to dimension the cross-section. If the cross-section is allowed to vary, one needs the
absolute maximum positive and negative values at discrete points along the axis. This information is
essential for reinforced concrete beams in order to specify the steel reinforcement.

3.10.2 Influence Lines and Force Envelopes

In what follows, we describe two approaches for treating live loadings. In the first approach, we select
a particular location on the longitudinal axis, and determine analytically how the internal forces
(shear and moment) vary as the live load is positioned at different points along the span. The analysis
is usually carried out for a single concentrated load, and the force magnitude is plotted vs. the load
location along the span. This plot is referred to as an influence line, and allows one to easily identify
the position of the live load which produces the maximum value of the force quantity at the particular
section on the span. By scanning the influence line plot, one can establish the absolute maximum and
minimum value for this particular section. This information is sufficient for detailed design of the
cross-section at that location.

However, in order to dimension the complete beam, one also needs similar information at other
locations along the beam. This data is generated by repeating the influence line process at discrete
points along the span, and determining the absolute max/min values from the corresponding influence
lines. The results (positive and negative values) are plotted at each discrete point. Plots of this type are
called force envelopes. Given the force envelope, one can readily establish the design force require-
ment at an arbitrary discrete point.

It is important to distinguish between influence lines and force envelopes. An influence line
provides information about forces at a particular section due to live loading passing along the span.
A force envelope presents information about the extreme force values at discrete points along the
span due to live loading passing along the span. Constructing a force envelope based on n discrete
points along the span requires n separate analyses. Most commercial civil structural software has the
ability to generate force envelope for various live load configurations.

Consider the simply supported beam shown in Fig. 3.50a. Suppose the influence line for the
positive moment at A is desired. We apply force P at location x, and evaluate the moment at A. This
quantity is a function of x.

My :PL(I J%)% for x < xa

X\ X
MA:PL(l—Z)fA for x> xa

(3.57)
Letting x range from O to L leads to the plot shown in Fig. 3.50c. The maximum value of M s occurs
when the load is acting at point A.
- (-2
B L)L

max
This value provides input for the moment envelope. We repeat the computation taking different
points such as xa, x5, and x.. The conventional way of representing this data is to show the discrete
points along the span and list the corresponding absolute values at each point. Figure 3.50d illustrates
this approach.

M
PL
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Fig. 3.50 (a) Beam. (b) Loading patterns — Concentrated load P at x < x4 and x > x4. (¢) Moment diagram.
(d) Different load patterns. (¢) Moment diagram. (f) Shear diagrams for concentrated load P at x < x4 and x > x,.
(g) Influence line for shear at location x,4. (h) Maximum and minimum shear. (i) Shear force envelope
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One selects a sufficient number of points so that the local extremities are identified. The limiting

form of the force envelope based on many points is a parabola.
We proceed in a similar manner to establish the influence line and force envelope for the shear

force. The shear diagram for a single concentrated force applied at x is shown in Fig. 3.50f.
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Suppose we want the influence line for the shear at location x . Noting Fig. 3.50f, the shear force at
x4 for the different positions of the load is

Px
X < Xa V|A = +f
(3.58)

by
x>xpn Via=-P (1 — —)
A |A I
These functions are plotted in Fig. 3.50g. At point x,, there is a discontinuity in the magnitude of
V equal to P and a reversal in the sense. This behavior is characteristic of concentrated forces.

To construct the force envelope, we note that maximum and minimum values of shear at
point A are

These values are plotted on the span at point A (Fig. 3.50h).
Repeating the process for different points, one obtains the force envelope shown in Fig. 3.50i.

Example 3.25 Construction of Influence Lines

Given: The beam shown in Fig. E3.25a.

1 2
B . ! & D
’\r t t 1
T |
St . 3N
I 6t , 16 1t . 81t

—te

Fig. E3.25a

Determine: The influence lines for the vertical reactions at B and C, moment at section 2-2, and the
moment and shear forces at section 1-1. Suppose a uniformly distributed live load of w;, = 1.2 kip/ft
and uniformly distributed dead load of wp = 0.75 kip/ft are placed on the beam. Using these results,
determine the maximum value of the vertical reaction at B and the maximum and minimum values of
moment at section 2-2.

Solution: Note that the influence lines are linear because the equilibrium equations are linear in the
position variable (see Fig. E3.25b).
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The influence lines corresponding to the force quantities of interest are plotted in Fig. E3.25c.
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Fig. E3.25¢ Influence lines for Rg, Rc, V.1, M5, and M
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Then, the peak value of Ry is determined using data shown in Fig. E3.25d.

WD

H'l

N F=c b

"D

A 2= B %!L‘;,C D

@)

I.L for RB

Fig. E3.25d Maximum and minimum values of Ry

Rp,.. = 1.2(15.125) + 0.75(15.125 — 2) = 28kip

Similarly, the peak values of moment at section 2-2 are generated using the data shown in
Fig. E3.25¢.
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Mpmax at 2-2 =1.2(32) +0.75(32 — 9 — 16) = 43.65kipft
Mpin at 2-2 =1.2(-9 — 16) + 0.75(32 — 9 — 16) = —24.75kipft
Example 3.26

Given: The two-span beam shown in Fig. E3.26a. There is a hinge (moment release) at the midpoint
of the second span.

A E B e D
[ X ]
lh d‘ hmnge (b
L L L L
B ] 2 E ] =3

Fig. E3.26a

Determine: The influence line for the bending moment at E and the moment force envelope.
Solution: We consider a unit vertical load moving across the span and use the free body diagrams to
determine the moment diagrams. Figure E3.26b shows that the reaction at D equals zero when the
load is acting on member ABC.

Rg =
for 0 <x<1.5L

— =

Ra =

o~ =
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Fig. E3.26b

The behavior changes when the loading passes to member CD. Now there is a reaction at D which
releases some of the load on member ABC.

X
Rp = 2(—1.5 +Z>

RB:3(2—£) for 1.5L < x<2L

03
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The moment distribution corresponding to these loading cases are plotted in Fig. E3.26c.
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We note that the moment at E is positive when the load is on span AB, and switches to a negative
value when the load moves on to span BCD. The influence line for the bending moment at E is plotted

in Fig. E3.26d.

A E B C D
[ X |
(- ) ofn hinge wE
PL
Y

Fig. E3.26d

The moment force envelope is constructed using Fig. E3.26c. Span AB has both positive and
negative components; span BC has a negative component; and span CD has a positive component.
These segments are plotted in Fig. E3.26e.
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Example 3.27 Cantilever Construction-Concentrated Loading

Given: The three-span symmetrical scheme shown in Fig. E3.27a. There are two moment releases
located symmetrically with respect to the centerline of the center span. This structure is statically
determinate: Member cd functions as a simply supported member; segments bc and de act as
cantilevers in providing support for member cd. The structural arrangement is called cantilever
construction and is used for spanning distances which are too large for a single span or a combination
of two spans.

Determine: A method for selecting L; and the location of the moment releases corresponding to a
concentrated live loading P for a given length, given Lr.

Solution: The optimal geometric arrangement is determined by equating the maximum moments in
the different spans. Given the total crossing length, Ly, one generates a conceptual design by selecting
L,, and o which defines the location of the hinges. The remaining steps are straightforward. One
applies the design loading, determines the maximum moments for each beam segment, and designs
the corresponding cross-sections. The local topography may control where the interior supports may
be located. We assume here that we are not constrained in choosing L, and describe below how one
can utilize moment diagrams to arrive at an optimal choice for L, and a.

We consider the design load to be a single concentrated force that can act on any span. The
approach that we follow is to move the load across the total span and generate a sequence of moment
diagrams. This calculation provides information on the location of the load that generates the
maximum moment for each span.
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When the load is on ab, member ab functions as a simply supported beam, and we know from the
previous example that the critical location is at mid-span. As the load moves from b to c, bc acts like a
cantilever, and the critical location is point c. Lastly, applying the load at the midpoint of c, d
produces the maximum moment for cd. Since the structure is symmetrical, we need to move the load
over only one-half the span. Moment diagrams for these cases are shown in Figs. E3.327b, E3.327c,

and E3.327d.
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Fig. E3.27b Moment diagram—Iload on member AB
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Fig. E3.27d Moment diagram—Iload on member CD  Based on these analyses, the design moments for the

individual spans are
PL,
Ml =~

]W|bc:PaL2 Mled:M|bC

PL2(1 — 261)
Ml =220

M|fe = M|ab

P
Mb = EaLz Me = Mb

From a constructability perspective, a constant cross-section throughout the total span is desirable.
This goal is achieved by equating the design moments and leads to values for L, and a. Starting with

Ml = Ml.4, one obtains
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PL,(1 -2

(8 lla:g
a_(l—Za)
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Next, we equate Ml,, and Mk, resulting in

PL, Pol.
= — Pa
1 2
I
2
L] = §L2
The “optimal” center span is
2L+ Ly =Ly
¢

3
L, = §LT =0.429Ly

If the interior supports can be located such that these span lengths can be realized, the design is
optimal for this particular design loading. We want to emphasize here that analysis is useful for
gaining insight about behavior, which provides the basis for rational design. One could have solved
this problem by iterating through various geometries, i.e., assuming values for o and L, but the
strategy described above is a better structural engineering approach.

Example 3.28 Cantilever Construction—Uniform Design Loading

Given: The three-span symmetrical structure shown in Fig. E3.28a.

a b hinge hinge ¢ f
[ (0] (0] ]
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Fig. E3.28a

Determine: The optimal values of L; and a corresponding to a uniform live loading w.

Solution: Using the results of the previous example, first, we establish the influence lines for the
moment at mid-span of ab (M/_;), at point b (M), and at mid-span of member cd (M,.,). They are
plotted in Fig. E3.28b.
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Fig. E3.28b Influence lines

We suppose that the uniformly distributed loading can be applied on an arbitrary segment of a
span. We start with the side span, ab. Based on the influence line, we load span ab (Fig. E3.28c¢).

Next, we load the center span. Loading the segment bed produces the maximum values for My, and
M4 (Fig. E3.28d). The third option is to load the center span (Fig. E3.28e).

The peak values for these loading schemes are

wL?
Mo =g
wL?
Mg = ?2 (1-2a)*
L

My, = = [a2 +a(l — 205)]



274 3 Statically Determinate Beams

y
d f
SEETTITTTY g - ¢ .
o ; | E2) e
| ] al, al, |
| L ! Ly | Lo
Mjp +
a L, = c d g h
2
Fig. E3.28c Moment diagram
w
a 'R lé EEXE Jca
| |
£ o ; P e
b c

+ M cd .
w
- T EEEERL
I 1] = ]
A & n g = '
b Cc
a

5
w(1-20) al’, -
2

Fig. E3.28e Moment diagram

The remaining steps are the same as for the previous example. We want to use a constant cross-
section for the total span and therefore equate the design moments. This step results in values for a
and L;.
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Setting My, = M4 results in

1

8

Setting M, = M4 leads to

WL% B WL% B wL% (\/5)2
2) L,=0707L,

22 21— 0g)? =
g g T2 =7

o5

oLy =

Lastly, L, is related to the total span by
2L+ Ly, =Ly
I
(1 + \/E)Lz =Ly
I
Ly, =0.414Ly

These results are close to the values based on using a single concentrated load.

(1-2a)* = [a2+a(1—2a)}8a2—8a+1=0l}a:;(1—\f> — 0.147
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Examples 3.27 and 3.28 illustrate an extremely important feature of statically determinate
structures. The reactions and internal forces produced by a specific loading depend only on the
geometry of the structure. They are independent of the properties of the components that comprise
the structure. This fact allows one to obtain a more favorable internal force distribution by adjusting

the geometry as we did here.

These examples also illustrate the use of cantilever construction combined with internal
moment releases. In Part II of the text, we rework those problems using beams which are continuous
over all three spans, i.e., we remove the moment releases. The resulting structures are statically

indeterminate.

3.10.2.1 Multiple Concentrated Loads

We consider next the case where there are two concentrated forces. This loading can simulate the load

corresponding to a two axle vehicle. The notation is defined in Fig. 3.51.

Fig. 3.51 Two
concentrated forces
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The resultant force R = P, + P, is located e units from the line of action of P5.

P, | P
¢ d| -C
t t t
where P,
e = 1
P+ P

The moment diagram for a set of concentrated forces is piecewise linear with peak values at the
points of application of the forces. Figure 3.52 shows the result for this loading case. Analytical
expressions for the reactions and the moments at points @ and @) are

1 d
Ra = (Py+Pa); (L~ ) - Plfl
X d
Rp = (Pl +P2)Z+P1ZI
J (3.59)
X
M, = (P, +P2)Z(L—x—d1) —‘y—Plzl(L—X—dl)
X d
M, = (P, +P2)Z(L —Xx) — P]flx

Fig. 3.52 Moment P, Py
diagram—arbitrary =

position of loading l l




3.10 Influence Lines and Force Envelopes for Statically Determinate Beams 277

These moments are quadratic functions of x. One can compute M; and M, for a range of x values
and determine the values of x corresponding to the peak values. Alternatively, one can determine the
value of x corresponding to a maximum value of a particular moment by differentiating the
corresponding moment expression with respect to x and setting the result equal to zero.

Maximum value of M,

oM,
72 _ o
0x
(P, +P )(1—25)—P h_y (3.60)
1+ P2 7 7= .
LA Py L e
Meme =3 "2 \P +P,) 2 2
Maximum value of M,
oM,
o0
0x
(Py+Py)(L—2x—dy)—Pid; =0 (3.61)
L dl e

We can interpret the critical location for the maximum value of M, from the sketch shown in
Fig. 3.53a. The force P, is located e/2 units to the left of mid-span and the line of action of the
resultant is e/2 units to the right of mid-span. A similar result applies for M. P is positioned such that
P and R are equidistant from mid-span as shown in Fig. 3.53b.

The absolute maximum live load moment is found by evaluating M; and M, using the
corresponding values of x|y, and x‘ My, - 1IN Most cases, the absolute maximum moment occurs
at the point of application of the largest force positioned according to (3.60) and (3.61).

Example 3.29 Illustration of Computation of Maximum Moments for Two-Force Loading

Given: The beam shown in Fig. E3.29a and the following data

R=W P, =02W P, =08W d,=14ft L =40ft

@‘_‘If_ _"O

Fig. E3.29a

Determine: The maximum possible moment in the beam as the two-force loading system moves
across the span.



278 3 Statically Determinate Beams

Fig. 3.53 Critical location i
. . a

of loading for maximum

bending moments. (a)

X|M2max . (b) 'lelmax

A B
A 2 - &
] X |f€l?‘-~.d]'c|
| L2 . L»2 |
M,
M,
|
' (+9
: ;
f’~l
P, 1 1P
| il
v
A B
&£ o o LE
| X |e | L1
T T Ty
d,-e
’ L/2 2 L2 ]
M,
M, |
| 1] M
T +9
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Using (3.60)

=20- 1.4 =18.6ft

X Momax =

|~
NSRS

Using (3.59) and the above value for x, the reactions and bending moments are

Ra = 0.465W
Rp = 0.535W
M, =3.96W
M, = 8.69W

The critical loading position for M, is shown in Fig. E3.29b.

P, = .8W = 2W

®
g %B

18.6 i1,4 : 1.4 112 74

Fig. E3.29b

We compute M, in a similar way. The critical location is found using (3.61).

XMy =I§—C;—1—§= 20—7—1.4=11.6ft
Next, we apply (3.59).
Ra = 0.64W
Ry = 0.36W
M, =5.184W

M, = 7.424W
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The critical loading position for M, is shown in Fig. E3.29c.

11.6 28 : 56 5.6 I 14.4
1

Fig. E3.29¢

It follows that the absolute maximum live load moment occurs when P; is positioned 18.6 ft from
the left support. This point is close to mid-span (Fig. E3.29d).

P, = 8W
- pl =.2W

l

) ®

18.6 ft 14 ft 74 ft

+ ]
I I I 1

Fig. E3.29d

The analysis for the case of three concentrated loads proceeds in a similar way. Figure 3.54 shows
the notation used to define the loading and the location of the resultant force. The moment diagram is
piecewise linear with peaks at the point of application of the concentrated loads.

We generate expressions for the bending moments at points @, @, and D for an arbitrary position
of the loading defined by x and then determine the locations of maximum moment by differentiating
these expressions. First, we locate the resultant force

R=Pi+P,+P;
it s (dy 4 d2)P, (3.62)
B R
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Fig. 3.54 Notation and P P, P
moment diagram—three d d
|

concentrated loads 2 I
v v
@

8 »°

X

| |
' v
A
A 0O
|

& ES

M

ey

The moments at locations 1, 2, and 3 are functions of x.

R
M; :Z(L—x—e)x
R
M, ZZ(L—X—e)(X+d2) — P3d, (363)

R
M1 ZZ(L—x—dz—dl)(X+€)

Differentiating each expression with respect to x and equating the result to zero leads to the
equations for the critical values of x that correspond to relative maximum values of the moments.

For Mi|mex x= %(L —e)
For Mj|max x= %(L —e—dy) (3.64)
For M]}max X = %(L— dy —d, —e)

The positions of the loading corresponding to these three values of x are plotted in Fig. 3.55. Note

that the results are similar to the two concentrated load case. We need to evaluate (3.63) for each
value of x in order to establish the absolute maximum value of the bending moment.
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Fig. 3.55 Possible
locations of loading for a
maximum moment

° ¥
R
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Example 3.30

Given: The beam shown in Fig. E3.30a.

32 kip 32 kip {ikip
‘O—Ob w= 2.4 kip/ft
Al T T 1B
> .

60 ft

Fig. E3.30a
Determine: The maximum possible moment in the beam caused by

1. A truck moving across the span (Fig. E3.30b).
R= 72 kip
I

|
V¥ 32kip 8 kip

32 kip
467t
+—t

Jlan, 14n

1
T T

Fig. E3.30b

2. A uniformly distributed dead load of w = 2.4 kip/ft in addition to the truck loading.

Solution:

Part (1): The critical truck loading position is defined by Fig. E3.30c. The corresponding bending
moment diagram is plotted below; the maximum moment occurs 2.3 ft from the center of the span.
M .x = 806.7 kip ft.

Part (2): The bending moment diagram for uniform loading is parabolic, with a maximum value at
mid-span.

Mgeaa(x) = 72x — 1.2¢* 0 < x < 60

We estimate the peak moment due to the combined loading by adding corresponding moment
values from Figs. E3.30c and E3.30d.
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Mcombined = (Mdead + M[ruck)au:32.33 ft — 1073.5 + 806.7 ~ 1880 kip ft

. Minax = 1880kipft
Mcombined = (Mdead +Mll'uCk)atx:30ft = 1080 + 791 = 1871klpft

32 kip 8 kip

38.8 kip? 1834 933233233 14 | 13.67 ?333 kip
I T LI | T T

Fig. E3.30c Moment distribution for moving truck load

w= 2.4 kip/ft

A§ I T 1 B
- o
Zkp ; 72 kip
= X 60 ft

1080 kip ft 1073.5 kip ft
E+ : M
L T ‘+5

30 3

=

Fig. E3.30d Moment distribution for dead load =~ When there are multiple loadings, it is more convenient
to generate discrete moment envelope using a computer-based analysis system. The discrete moment
envelope for the combined (dead + truck) loading is plotted below (Fig. E3.30e). Scanning the
envelope shows that the maximum moment occurs at x = 30.9 ft and M,,,,x = 1882.6 kip ft. This
result shows that it was reasonable to superimpose the moment diagrams in this example.
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32 kip 32 kip 8 kip

l

24 kip/ft
AJ I I T I I I 1B
-
— X
i 60 fi .
1 1
1882.6 kip

g .

Fig. E3.30e Discrete moment envelope for the combined (dead + truck) loading

3.11 Summary
3.11.1 Objectives of the Chapter

» To develop analytical and computational methods for quantifying the behavior of beams subjected
to transverse loading. Of particular interest are the reactions, the internal forces (shear, bending,
and twisting moments), and the displacements.

» To introduce the concepts of influence lines and force envelopes which are needed to establish
design values for beam cross-sections.

3.11.2 Key Facts and Concepts

» A stable statically determinate beam requires three nonconcurrent displacement restraints. There
are three reaction forces which are determined using the static equilibrium equations.

» External loads are resisted by internal forces acting on a cross-section. For planar loading, these
quantities consist of an axial force, F, a transverse shear force, V, and a bending moment, M. One
can establish the magnitude of these variables using the static equilibrium equations. Alterna-
tively, one can start with the following differential equilibrium equations,

v_,
v
dM
i v
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Integrating between points 1 and 2 leads to

%)
Vz —V1 :J wdx

Xp
X2

M, —M, = —J Vdx
X1
The first equation states that the difference in shear is equal to the area under the loading diagram.
The second equation states that the change in moment is equal to minus the area under the shear
diagram.
* Planar bending results in a transverse displacement, v(x). When the beam is slender, these
variables are related by

& _M
dx2  EI

where [ is the second moment of area for the section. Given M(x), one determines v(x) by integrating

this expression and noting the two boundary conditions on v.

» The transverse displacement at a particular point can also be determined using the Principle of
Virtual Forces specialized for planar bending of slender beams.

d5P:J
L

id oM dx

El
Here, d is the desired displacement, oP is a virtual force in the direction of d, and M is the virtual
moment corresponding to 6P. One usually employs numerical integration when the integral is
complex.

* An influence line is a plot of the magnitude of a particular internal force quantity, say the bending
moment at a specific location, vs. the position of a unit concentrated load as it moves across the
span. It is useful for establishing the peak magnitude of the force quantity at that location.

» A force envelope is a plot of the maximum positive and negative values of a force quantity, say the
bending moment, at different sections along the beam. This data is used to determine cross-
sectional properties.

3.12 Problems

For the beams defined in Problems 3.1-3.20, compute the reactions and draw the shear and moment
diagrams.

Problem 3.1

10 kip

2 kip/ft l
A s I " | D

2011 10 fi : 10 fit

?4—
»
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Problem 3.2
4 kip/ft 10 kip
\ »I, D
A - ]
wﬁ! B C LEEE
201t 10 ft 10 ft
l 1 1 1
1 1 | '
Problem 3.3
75 kN
30 kN/m
£ N | ¥ T 3L ¥ Jr
AL |
e E N C
B
10m 2m
1 1 1
I | I
Problem 3.4
2 kip/ft
¥ ske ol o m 7 sk o N
A L |
An kS .
B
30 fit 6 f
1 1 1
T I I
Problem 3.5
40 kN
30 kN/m J/
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Problem 3.6
60 kN/m
40 kN
D
A L J
dﬂﬂ! B C lEﬂE
6m Im 3m
l L I |
T | | v
Problem 3.7

}')
A B D & C

@ 1 L2 L2
| | 2 .
T | I 1 T
Problem 3.8
1.8 kip/ft
l .6 kip/ft
B

2011
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Problem 3.9
60 KN/m
14 kKN-m
i /A D
‘i G
C
B @ﬁg
l 6m : Iim > Iim |
T 1 | !
Problem 3.10

1.2 kip/fh 10 kip ft I kip/ft
O " o

R 8N . 10 1 : 10 1 l g1 L
L T || L L
Problem 3.11
27 kN/m
9 kN/m 9 kN/m
e
1 bm , 6m l
T 1 '
Problem 3.12
25 kip 10 kip

2kip/nt 3 J’
| p— o o ' 3

10 fi 10 fi 10 fi | 10 ft |
1 1 +
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Problem 3.13
30 kN/m
. 15 kN/m
hinge
A j.\f\r\. £ r 2 I 3 "
B ‘
C
: 6m | Im . 9m |
L] L} T T
Problem 3.14
1.8 kip/ft

20 fi 20 fi
| | |
1 ] T
Problem 3.15
70 kN
30 kN/m l B
A £ I X 1 1
L hinge ‘ D *
B C
5m 5m im im
: ! : : !
Problem 3.16
10 kip
1.4 kip/ft l _ 1.4 kip/fi
E F
r 1 E
A B C D
| 18 ft | 18 fi 6 1t 6 1t 181 I8 1
T T t 1 } }
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Problem 3.17
40 kN
30 kN/m
hinge ‘
b ' X - 't
& R a . o 2
A B F
8Sm 4m 2m 2m
| } + } t
Problem 3.18
10 kip
1.4 kip/ft ‘ 5 1.4 kip/ft
 — ——— S A A |
[ r 3 1
_‘1_ _.__ hinge hinge |!';.lf' U"J‘r
A B C D
| 18 1t | 18 11 | 6 fi A 6 I8 1t ! 18 1
T 1 T T t t
Problem 3.19
J0kN 30 kN
\ 20 kKN/m
‘ £ I I 3 5
[ ) X )|
Ftr" hinge J%g WUE  hinge i
B C
im 2m 2m 6m 2m 2m  3m
; —t—t ——t—|
Problem 3.20 Member BD is rigidly attached to the beam at B.
D« 10kip
_
10 f 1.2 kip/ft e
N R \I’
I 1 C
A
P B #
| 25 ) 20 1 | 2011 |
1 ]
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Problem 3.21 Determine the maximum bending moment. Assume EI is constant.

60 kN
30 kN/m l
n i o I 1 L I
( . 1 D
'ér lﬁl hinge 'ﬁ
B C
9m Sm 5m

Problem 3.22 Determine the maximum bending moment. Does the bending moment distribution
depend on either E or I? Justify your response.

2.4 kip/ft 12 kip

AB | ‘
B I AB 'A’ 8N I'nc ’&’(

|
T

8f 241

-

For the beams defined in Problems 3.23-3.26, use the Table 3.1 to determine the vertical deflection
and rotation measures indicated. Assume EI is constant.

Problem 3.23
g, vsl = 200in.*, E = 29,000kip/in>

9 kip ft
/A

A C B
10 ft : 81

-+~

-
——
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Problem 3.24
Og,vgl = 200in.*, E = 29,000ksi
10 kip
y |
A7 ]
A C B
10 f in
1 [ 1
. + 1
Problem 3.25 p s
On,vcl = 80(10 )mm , E =200GPa
30kN 20 kN
A l l B
A c K.
2m 4m 2m
Il L L 2
T T T T
Problem 3.26

Op,vel = 200in.*, E = 29,000ksi

6 kip

8 10 1t §n

For the beams defined in Problems 3.27-3.35, use the virtual force method to determine the
vertical deflection and rotation measures indicated.
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Problem 3.27 .
Op,vel = 80(10°)mm*, E =200GPa
20 kN 10 kN
12 kN-m
A |
A b B
D
3
. Jm : 4m : Im . 2m A
T 1 1 ] ]
Problem 3.28
0s,vpl = 120(10°)mm*, E =200GPa
80 kN
35kN
A 1
A B & D
C
Im
| 6m | Sm I i
| T T T
Problem 3.29
Oa,vel =300in.*, E = 29,000ksi
8 kip
0.5 kip/t JI
! S T— I T N Y
) |

A ¢ _
3 (¢

3on 10 Mt
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Problem 3.30 .
Oc,vpl = 120(10°)mm*, E =200GPa
90 kN
30 kN/m
4
e L N N 3L ¥ 3
A v ) J
i) D E A c
B
5m Sm Im
1 L 1 i
I T T |
Problem 3.31 .
Oc,vel =200in.%, E =29,000ksi
8 kip ft
0.8 kip/t
+ sle | o 1 i -
A [
o 21 B ; 1 €
30ft 10 ft
L | 1
L] ] bl
Problem 3.32
Oc,vcl = 100(10°)mm*, E = 200GPa
12 kN-m
18 KN/m j 18 KN/m
L 1T T1 S S A .
A I 1, 21 C 21 ,g I E
B D

2m Im Im 2m
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Problem 3.33
Op,vel = 300in.*, E = 29,000ksi
4 kip 4 kip
l 2kip/ft
BL—I— T % T x Y C l
Al I D
. E A
: 6 fnt | 12 fi ! 12 ft | 6t !
Problem 3.34
Oc, 0k, and vgl = 160(10°)mm*, E =200GPa
50 kN
18 kN/m l 18 kN/m
111 111
A L ; |
An s +H E
B D
2m Im im 2m
I I 1 1
Problem 3.35
O, vl = 120in.*, E = 29,000ksi
1 ,2kipr"‘l

=
ol =11 =18
LI:L;“IF A B

UK

S
} 201 |

Determine the analytical solutions for the deflected shape for the beams defined in Problems
3.36-3.39. Assume FEI is constant.
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Problem 3.36

Problem 3.37

Problem 3.38

Problem 3.39

Wo

W

Sin 2=
W SIN =——
il ?
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Problem 3.40 Determine the value of [ require to limit the vertical deflection at B to 1/2 in.
E = 29,000 ksi.

1.2kip/ft

SSUSAS

-
-

Problem 3.41

(a) Solve Problem 3.39 using computer software. Consider different sets of values for EI. Show that
the magnitude of the deflection varies as 1/El. Assume P = 100 kN, and L = 8 m.
(b) Suppose the peak deflection is specified. How would you determine the appropriate value of I?

Problem 3.42 Utilize symmetry to sketch the deflected shape. EI is constant. Assume £ = 200 GPa
and I = 160(10)® mm*.

40 kN
20 kN 20 kN
l l;l2 kN/m
: E 111 L I v
A m c »
B D
3m 5m S5m 3m

Problem 3.43 Determine the vertical deflection of point A. Sketch the deflected shape of the beam.
EI is constant.

3/4L

L ML, L2, » ML
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Problem 3.44 Determine the vertical deflection of point A. Sketch the deflected shape of the beam.
EI is constant.

L2 L2 3/4L

3/4L

Problem 3.45 Determine the vertical deflection of point A. Sketch the deflected shape. EI is
constant.

l B l C l
A
f ; D
; 34L | L2 . L2 ’ 3/4L I

Problem 3.46 Consider the cantilever beam shown below. Determine the displacement at B due to
the loading. Use the principle of Virtual Forces and evaluate the corresponding integral with the
trapezoidal rule.

Take wo = 10kip/ft, L =20ft, I, = 1000in.*, E = 29,000ksi, [ = 10(1 + cos%).

/“'ﬂ
/] ¥
A 7
7 I B
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Problem 3.47 Assume AB is a “deep” beam. / and A are constant. Determine the analytical solution
for S (the rotation of the cross-section) and v.

R—. 1
/VI/NI]L
B

5 — .

Problem 3.48

Y GJ constant

1. Determine S, (the rotation of the cross-section about the longitudinal axis) at B due to the
concentrated torque at C.

2. Suppose a distribution torque, n1,, is applied along A-B. Determine. M,(x). Take m, = sin 37

3. Determine f, at B due to the distributed torsional loading.

Problem 3.49 Draw the influence lines for:
(a) Reaction at A

(b) Moment at E
(c) Shear at D

Sh S5fi 10 fi 10 fit
! ! f f | f

.
e
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Problem 3.50
Draw the influence lines for the moment and shear at E.
A B E C D
L3 E S
l 2m | 2m | 6m ' Im |
T 1 T + .
Problem 3.51

For the beams shown, determine the moment envelope corresponding to a single concentrated load
moving across the span.

& X
| 20ft | 0ft

Problem 3.52
(a) Draw the influence lines for moment at F and moment at B.
(b) Draw the moment envelope.

A F B C D E
I I 1]
Iﬁl * hinge #w
S5m 5m 4m 4m 3m

Suppose a uniformly distributed dead load of 18 kN/m and uniformly distributed live load of
30 kN/m are placed on the beam. Use the above results for influence lines to determine the maximum
values for the moment at point F and point B. Also show the position of the live load on the beam for
these limiting cases.

Problem 3.53 Suppose a uniformly distributed live load of 1.2 kip/ft and uniformly distributed dead
load of 0.8 kip/ft are placed on the beam. Determine the critical loading pattern that results in the
maximum and minimum values of moment at E.

A #m B E & C D

6 fit 16 ft 4 ft 6 ft

-+
e
-
-
—
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Problem 3.54 For the beams shown, determine the moment envelope corresponding to a single
concentrated load moving across the span.

2m 6m im |

Problem 3.55 Determine the maximum possible moment in the 40 ft span beam as the loading
system shown moves across the span. Use either the analytical approach or the moment envelope
corresponding to the loading.

25 kip 5 kip 25 kip
+— I
- Ar P
6 o6n 40 1

Problem 3.56 Determine the location of the maximum possible moment in the 20 m span beam as
the loading system shown moves across the span.

80 kN 40 kN
|

l 2m e #

1 20 m
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Problem 3.57 Determine the maximum possible moment in a 80 ft span beam as the loading system

shown moves across the span. Assume a uniform load of 2 kip/ft also acts on the span. Use computer
software.

15 kip 10kip 25 kip 15 kip
y 4 4 4

L6ft 40, SNy P -
X ' . . L 80 fit

Problem 3.58 For the beam shown:

(a) Draw the influence lines for the vertical reaction at support D, and the moment at point F.

(b) For a uniformly distributed live load of 20 kN/m, use the above results to determine the
maximum values of the reaction at D, and the moment at F. Also show the position of the live
load on the beam.

(c) Establish the moment envelope corresponding to a single concentrated vertical load.

: 2m | Im | 4m | Im I 3m

Problem 3.59 For the beam shown below

B D
L (.,
A . .,
g
1l L
| ||
8N 26 ft

—

Determine the influence line for:

(a) The vertical reaction at C
(b) The moment at D
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If a uniformly distributed live load of 1.8 kip/ft and uniformly distributed dead load of 1.4 kip/ft
are placed on the beam, use the above results to determine the maximum and minimum values of

(a) The vertical reaction at C
(b) The moment at D

Problem 3.60 Using computer software, determine the influence line for the vertical displacement at
x = 5 m. Assume EI is constant.

P=1kN

| 10 m | Im |
| I |

Hint: Apply a unit load at x = 5 m and determine the deflected shape. This is a scaled version of
the influence line. Verify by moving the load and recomputing the displacement at x = 5 m.
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Abstract

Plane frame structures are composed of structural members which lie in a
single plane. When loaded in this plane, they are subjected to both
bending and axial action. Of particular interest are the shear and moment
distributions for the members due to gravity and lateral loadings. We
describe in this chapter analysis strategies for typical statically determi-
nate single-story frames. Numerous examples illustrating the response are
presented to provide the reader with insight as to the behavior of these
structural types. We also describe how the Method of Virtual Forces can
be applied to compute displacements of frames. The theory for frame
structures is based on the theory of beams presented in Chap. 3. Later in
Chaps. 9, 10, and 15, we extend the discussion to deal with statically
indeterminate frames and space frames.

4.1 Definition of Plane Frames

The two dominant planar structural systems are plane trusses and plane frames. Plane trusses were
discussed in detail in Chap. 2. Both structural systems are formed by connecting structural members
at their ends such that they are in a single plane. The systems differ in the way the individual members
are connected and loaded. Loads are applied at nodes (joints) for truss structures. Consequently, the
member forces are purely axial. Frame structures behave in a completely different way. The loading
is applied directly to the members, resulting in internal shear and moment as well as axial force in the
members. Depending on the geometric configuration, a set of members may experience predomi-
nately bending action; these members are called “beams.” Another set may experience predominately
axial action. They are called “columns.” The typical building frame is composed of a combination of
beams and columns.

Frames are categorized partly by their geometry and partly by the nature of the member/member
connection, i.e., pinned vs. rigid connection. Figure 4.1 illustrates some typical rigid plane frames
used mainly for light manufacturing factories, warehouses, and office buildings. We generate three-
dimensional frames by suitably combining plane frames.
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Multistory braced frame
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Fig. 4.2 A-frame l
b

1
:
A

C
‘/l_‘_‘_‘_\

Figure 4.2 shows an A-frame, named obviously for its geometry. This frame has three members ab,
bc, and de that are pinned together at points d, b, and e. Loads may be applied at the connection points,
such as b, or on a member, such as de. A-frames are typically supported at the base of their legs, such
as at a and c. Because of the nature of the loading and restraints, the members in an A-frame generally
experience bending as well as axial force.

To provide more vertical clearance in the interior of the portal frame, and also to improve the
aesthetics, a more open interior space is created by pitching the top member as illustrated in Fig. 4.3.
Pitched roof frames are also referred to as gable frames. Architects tend to prefer them for churches,
gymnasia, and exhibition halls.

4.2  Statical Determinacy: Planar Loading

All the plane frames that we have discussed so far can be regarded as rigid bodies in the sense that if
they are adequately supported, the only motion they will experience when a planar load is applied will
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Fig. 4.3 Gable (pitched
roof) frames

A
Fig. 4.4 Statically a b c
determinate support
schemes for planar frames
s

Fig. 4.5 Statically a b c
indeterminate support
schemes—planar frames %’-

s i P7P77 .. ..

be due to deformation of the members. Therefore, we need to support them with only three
nonconcurrent displacement restraints. One can use a single, fully fixed support scheme, or a
combination of hinge and roller supports. Examples of “adequate” support schemes are shown in
Fig. 4.4. All these schemes are statically determinate. In this case, one first determines the reactions
and then analyzes the individual members.

If more than three displacement restraints are used, the plane frames are statically indeterminate.
In many cases, two hinge supports are used for portal and gable frames (see Fig. 4.5). We cannot
determine the reaction forces in these frame structures using only the three available equilibrium
equations since there are now four unknown reaction forces. They are reduced to statically determi-
nate structures by inserting a hinge which acts as a moment release. We refer to these modified
structures as 3-hinge frames (see Fig. 4.6).

Statical determinacy is evaluated by comparing the number of unknown forces with the number of
equilibrium equations available. For a planar member subjected to planar loading, there are three internal
forces: axial, shear, and moment. Once these force quantities are known at a point, the force quantities at
any other point in the member can be determined using the equilibrium equations. Figure 4.7 illustrates
the use of equilibrium equations for the member segment AB. Therefore, it follows that there are only
three force unknowns for each member of a rigid planar frame subjected to planar loading.

We define a node (joint) as the intersection of two or more members, or the end of a member
connected to a support. A node is acted upon by member forces associated with the members’
incident on the node. Figure 4.8 illustrates the forces acting on node B.
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Fig. 4.6 3-Hinge plane a b hinge
frames hinge
&

Fig. 4.7 Free body A M
diagram—member forces A

Fig. 4.8 Free body L

diagram—node B B C B ET_FD (_4(-“ C

By
A D
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These nodal forces comprise a general planar force system for which there are three equilibrium
equations available; summation of forces in two nonparallel directions and summation of moments.
Summing up force unknowns, we have three for each member plus the number of displacement
restraints. Summing up equations, there are three for each node plus the number of force releases
(e.g., moment releases) introduced. Letting m denote the number of members, » the number of
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Fig. 4.9 Indeterminate l
portal and A-frames a 1 b

T
o

hinge
v

displacement restraints, j the number of nodes, and » the number of releases, the criterion for statical
determinacy of rigid plane frames can be expressed as

3m+r—n=3j 4.1)

We apply this criterion to the portal frames shown in Figs. 4.4a, 4.5a, and 4.6b. For the portal
frame in Fig. 4.4a

For the corresponding frame in Fig. 4.5a
m=3, r=4, j=4
This structure is indeterminate to the first degree. The 3-hinge frame in Fig. 4.6a has
m=4, r=4, n=1, j=5

Inserting the moment release reduces the number of unknowns and now the resulting structure is
statically determinate.

Consider the plane frames shown in Fig. 4.9. The frame in Fig. 4.9a is indeterminate to the third
degree.

The frame in Fig. 4.9b is indeterminate to the second degree.
m=4, r=6, j=5 n=1

Equation (4.1) applies to rigid plane frames, i.e., where the members are rigidly connected to each
other at nodes. The members of an A-frame are connected with pins that allow relative rotation and
therefore A-frames are not rigid frames. We establish a criterion for A-frame type structures
following the same approach described above. Each member has three equilibrium equations.
Therefore, the total number of equilibrium equations is equal to 3m. Each pin introduces two force
unknowns. Letting n, denote the number of pins, the total number of force unknowns is equal to 2n,
plus the number of displacement restraints. It follows that

2ny, +7 =3m (4.2)
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for static determinacy of A-frame type structures. Applying this criterion to the structure shown in
Fig. 4.2, one has n, = 3, r = 3, m = 3, and the structure is statically determinate. If we add another
member at the base, as shown in Fig. 4.9c, n, = 5, = 3, m = 4, and the structure becomes statically
indeterminate to the first degree.

4.3  Analysis of Statically Determinate Frames

In this section, we illustrate with numerous examples the analysis process for statically determinate
frames such as shown in Fig. 4.10a. In these examples, our primary focus is on the generation of the
internal force distributions. Of particular interest are the location and magnitude of the peak values of
moment, shear, and axial force since these quantities are needed for the design of the member cross
sections.

The analysis strategy for these structures is as follows. We first find the reactions by enforcing the
global equilibrium equations. Once the reactions are known, we draw free body diagrams for the
members and determine the force distributions in the members. We define the positive sense of
bending moment according to whether it produces compression on the exterior face. The sign
conventions for bending moment, transverse shear, and axial force are defined in Fig. 4.10b.

The following examples illustrate this analysis strategy. Later, we present analytical solutions
which are useful for developing an understanding of the behavior.

Fig. 4.10 (a) Typical
frame. (b) Sign convention

for the bending moment, IM,= 0= Ry

transverse shear, and axial

force YF,= 0= Ry,
E}-'_\. 0= R ay

Axial, F Moment, M Shear, V
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Example 4.1 UnsymmetricalCantilever Frame

Given: The structure defined in Fig. E4.1a.

31

15 kKN/m

6m

1 ls

Fig. E4.1a

Determine: The reactions and draw the shear and

moment diagrams.

Solution: We first determine the reactions at A, and then the shear and moment at B. These results are
listed in Figs. E4.1b and E4.1c. Once these values are known, the shear and moment diagrams for
members CB and BA can be constructed. The final results are plotted in Fig. E4.1d.

Ray =30kN 1
M s = 30kNm counterclockwise

15KN/m

.

A

\.J“T'R“V:SO kN

> F, 0 Rar=0
S Fy =0 Ra—(15)(2)=0
> Ma =0 Ma—(15)(2)(1)=0
E
Rax=0
—+>
Ma=30 kN-m

Fig. E4.1b Reactions
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30 kN 15KN/m
30 kN-m 30 kN-m

| T

J P
B

30 kN
30 kN-m |A
-g T30kN

Fig. E4.1c End actions

+
+—1 =
30 kN 30 kN-m V|
A~
+ |
-
130 kN-m
Shear, V Moment, M
Fig. E4.1d Shear and moment diagrams
Example 4.2 Symmetrical Cantilever Frame
Given: The structure defined in Fig. E4.2a.
15 kN/m
1 + 1 J
T D B C
ém
A
" T

Fig. E4.2a
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Determine: The reactions and draw the shear and moment diagrams.

Solution: We determine the reactions at A and shear and moment at B. The results are shown in
Figs. E4.2b and E4.2c.

> Fe =0 Ra=0
D Fy, =0 Ray—(15)(4)=0 Ray = 60kN 1
> Ma=0 Ma—(15)(2)(1)+ (15)(2)(1) =0 Ms=0

1SkN/m
D B C
—+>
T Ruy=60kN
Fig. E4.2b Reactions
60 kN
15KN/m 30 KN-m l 30kN-m 15KN/m
D B B () B c
T
30 kN 30 kN
A

Fig. E4.2c End actions
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Finally, the shear and moment diagrams for the structures are plotted in Fig. E4.2d. Note that member
AB now has no bending moment, just axial compression of 60 kN.

=t R

e
+

Shear, V Moment, M

Fig. E4.2d Shear and moment diagrams

Example 4.3 Angle-Type Frame Segment

Given: The frame defined in Fig. E4.3a.

2 kipt
L B P —— gc
101t
6 kip
= —3AD
10ft
l 201t |

Fig. E4.3a

Determine: The reactions and draw the shear and moment diagrams.

Solution: We determine the vertical reaction at C by summing moments about A. The reactions at A
follow from force equilibrium considerations (Fig. E4.3b).
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> Ma =0 2(20)(10) +6(10) — Rc(20) =0 Rc = 23kip |
ZFX = 0 Ra, = 6kip —

D> Fy =0 Ra—2(20)+23=0 Ray = 17kip 1
2 kip/t
B o 4 K * ¥C
$9c=23kip
6kip— D
Rax=6 kip ¢<— ! A
Ray=17 kip

Fig. E4.3b Reactions

Next, we determine the end moments and end shears for segments CB and BA using the
equilibrium equations for the members. Figure E4.3c contains these results.

60 kip ft 2 kip/M
60 kip ft (’B:x:x%zm

17 kip 5
lB T 17 kip TZSklp
6 kip D

kip 44— A
fwkp

Fig. E4.3c End actions

Lastly, we generate the shear and bending moment diagrams (Fig. E4.3d). The maximum moment
occurs in member BC. We determine its location by noting that the moment is maximum when the
shear is zero.

Mx 2 kip/t
lz:: c
=0

| 23 kip
X
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23 — (2)x; =0 — x; = 11.5ft

2(11.5)
Then, M. = 23(11.5) — ( 5 ) = 132.25kipft
+
it &=
23kip 132.25 kip ft
/‘ 60 kip ft /\
= 11.51t [
il 40 - EE
+]
+T v +
— 60 kip ft
I
6kip
Shear, V Moment, M
Fig. E4.3d Shear and moment diagrams
Example 4.4 Simply Supported Portal Frame
Given: The portal frame defined in Fig. E4.4a.
Determine: The shear and moment distributions.
1.0 kip/ft
&1 1 1 1 Il ]
2 kip—> - C
20 ft
A D
32 ft

Fig. E4.4a

Solution: The reaction at D is found by summing moments about A. We then determine the reactions
at A using force equilibrium considerations. Figure E4.4b shows the result.
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> MaA=0 1(32)(16) +2(20) ~Rp(32) =0 Rp=17257

Zszo Ray =2 «—

D> Fy=0 Ray—1(32)+17.25=0 Ray = 14751
1.0 kip/ft
2 R)p _’1; i 1 I 1] IC
2¢+ 1A D
14.75 17.25

Fig. E4.4b Reactions
Isolating the individual members and enforcing equilibrium leads to the end forces and moments
shown in Fig. E4.4c.
40 Kip ft

40 kip ft 1.0 kip/t
2—>Bl(> CBLJ.J.J..LJ.I.JC

2 [ 1478 T1a7s 1T

Q T 17.25
14.75

40 kph 40 kip ft
14.75 (> 1?.251
l c
2— g
" D
2% 17.25?
11475

Fig. E4.4c End actions

We locate the maximum moment in member BC. Suppose the moment is a maximum at x = x;.
Setting the shear at this point equal to zero leads to

1.0 kip/ft
" @
C | c
V,=0 (‘—T

1725
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17.25 — x;(1) = 0 — x; = 17.251t

1)(17.25)*
Then, My = 17.25(17.25) — M = 148.78kipft

The shear and moment diagrams are plotted in Fig. E4.4d.

i =
—t 148.78 kip ft
17.25 kip !
s wkpn (1
+ M
il ——m Sx=tronn |
14.25 kip X =17251 i b X, =17.25 ft
= +
+| *
—
2 kip

Shear, V Moment, M

Fig. E4.4d Shear and moment diagrams
Example 4.5 3-Hinge Portal Frame
Given: The 3-hinge frame defined in Fig. E4.5a.
Determine: The shear and moment distributions.
1.0 kip/ft
et & & 1 F 3 3
2 kip — 5 g c
Hinge
20 ft
A D
16 ft 16 ft

Fig. E4.5a

Solution: Results for the various analysis steps are listed in Figs. E4.5b, E4.5¢, E4.5d, E4.5e, E4.5f,
and E4.5g.

Step 1: Reactions at D and A
The vertical reaction at D is found by summing moments about A.
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> MaA=0 Rpy(32) - (1)(32)(16) —2(20) =0 Rp, = 17.25kip |

1kip/ft
2 kip >¢'B w g SN 70
Ra—t—> A D le—+4—Rpy
$ M
R.Ay Hoy

Fig. E4.5b

Next, we work with the free body diagram of segment ECD. Applying the equilibrium conditions
to this segment results in

> Mg =0 1725(16) — (1)(16)(8) — Rpx(20) =0 Rpx = 7.4kip—
ZFx =0 Fg=—Rpx =7.4kip —

> Fy=0 —Ve+1725—(1)(16) =0 Vg = 1.25kip |
1kip/ft
Fe—E (¢
Ve
D )¢+ Rpx
Rp,=17.25

Fig. E4.5¢

With the internal forces at E known, we can now proceed with the analysis of segment ABE.
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320
Zszo Rax+2—-74=0 Rar = 5.4kip —
> Fy =0 Ray+17.25—(1)(32) =0 R, = 14.75kip |
B___ 1kipft
2 kip >F I ¥ JE¢ 7.4 kip
T1.25 kip
Rx—> [A
M
__HAy
Fig. E4.5d
Reactions are listed below
1kip/ft
2kp—> 1 ~ é‘ -~ c
5.4kip—— A Ol ¢4— 7.4kip
14.75 kip $ 17.25 kip
Fig. E4.5e Reactions
Step 2: End actions at B and C
108 kip ft 108 kip ft _ 148 kip ft 148 kip ft
B 74, 9 . ( c .
2— l_c_l (._, ¥ & 74 7—4>l—|74153k|pﬂ
14.75 74 C . —
8= T'4‘75 17.25‘[ 17.25 ‘['
17.25

14.75 jma kip ft

17'25J, j1-1»8 kip ft

14.75
108 kip ft Th— s
54—
54— |A Dr_._ 23
14.75 17.25

Fig. E4.5f End actions

Step 3: Shear and moment diagrams
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First, we locate the maximum moment in member BC.

108 kip ft L. M,

—> «—— 74 kip

14 kip | 14.75 kip el
=

i

14.75 — (1)x; = 0 — x; = 14.75ft

1(14.75)

Then, Mpax = 14.75(14.75) — — 108 = 0.78kipft

The corresponding shear and moment diagrams are listed in Fig. E4.5g.

=y

=t
17.25 kip 14.75 ft
E—C | y 0.78 kip ft_

0 %{J“J‘%Lﬁﬁjh B 108 kip ft f‘j:k—“tbui#d =TI L I
{14.75 kip C - 2 Yﬁ# i
H H i
H H — :
i 0. — j—
T B g
i - ] 4
i H i y
syl 7.4kip U '

Shear, V Moment, M

Fig. E4.5g Shear and moment diagrams
Example 4.6  Portal Frame with Overhang

Given: The portal frame defined in Fig. E4.6a.

Determine: The shear and moment diagrams.

15kN/m
«d 1 1 1 1 11 1 J
BkN — 5 C E
6m
A D
1 10m 3m|

Fig. E4.6a

Solution: Results for the various analysis steps are listed in Figs. E4.6b, E4.6c, and E4.6d.

148 kip ft

-
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> My =0 Rp(10) —8(6) — (15)(13)(6.5) =0 Rp = 131.55kN T
ZFx =0 Ra =8kN«

D Fy =0 Ray+131.55 - (15)(13) = 0 Ray = 63.45kN |
15 kN/m
| B T P S S
B kKN —» E
B C
Ray=8 kN —— |4 D
Ry =63.45 kN Rp=131.55 kN
Fig. E4.6b Reactions
48N m o5 N m . 15 KN/m
8KN B ) 48 KNm 15 KN/m : 67.5 kNm 675 kNm
:’ lm_um CBJ,J. c e x < ( J_Cl_l;) w'sh\lm(‘c EDE
g [ D 481N m 955 kN T 45N 45 kN I
AN 63.45 kN 86.55 KN B
63.45 kN
sm]. }49 KNm l:;"“m
|8
s Lo °
f&usm -

Fig. E4.6c End actions

First, we locate the maximum moment in member BC.

48 kN-m
15 kN/m M,
G vl D)
V=0
x|
63.45 kN

63.45— (15)x; =0 — x; =4.23m

(15)(4.23)

Then, My = 63.45(4.23) — + 48 = 182kNm
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The corresponding shear and moment diagrams are listed in Fig. E4.6d.

+
x;=423m =

+
=t 86.55 kN 182 kN-m
xy=4.23m +
—t * 48 kN-m
= = % =
45 kN / B =,
63.45 kN ‘l‘ M +| 67.5kN-m +
+T -+ st -
e 8 kN
Shear, V Moment, M

Fig. E4.6d Shear and moment diagrams

4.3.1 Behavior of Portal Frames: Analytical Solution

The previous examples illustrated numerical aspects of the analysis process for single-story statically
determinate portal frames. For future reference, we list below the corresponding analytical solutions
(Figs. 4.11, 4.12, 4.13, and 4.14). We consider both gravity and lateral loading. These solutions are
useful for reasoning about the behavior of this type of frame when the geometric parameters are varied.

Portal frame—Gravity loading: Shown in Fig. 4.11

Portal frame—Lateral loading: Shown in Fig. 4.12

3-hinge portal frame—gravity loading: Shown in Fig. 4.13

3-hinge portal frame—lateral loading: Shown in Fig. 4.14

Fig. 4.11 Statically a b
determinate portal frame
under gravity loading. (a) i il BF
Geometry and loading. (b)
Reactions. (¢) Shear

diagram. (d) Moment h —
diagram

e e Tt »L

1 I Reactions

wl

Shear, V Moment, M
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Fig. 4.12 Statically
determinate portal frame
under lateral loading. (a)
Geometry and loading. (b)
Reactions. (¢) Shear
diagram. (d) Moment
diagram

Fig. 4.13 Statically
determinate 3-hinge portal
frame under gravity
loading. (a) Geometry and
loading. (b) Reactions. (c)
Shear diagram. (d) Moment
diagram
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Fig. 4.14 Statically a b p
determinate 3-hinge portal P B E . — e
frame under lateral loading. > Yt C hinge
(a) Geometry and loading. 2
(b) Reactions. (c¢) Shear h =
diagram. (d) Moment
diagram P/2 P/2
A D i <r
Im ]
, LiI2 | L2 k 5 .
1 i 1 Reactions
c d _
Ph + Ph +
L +—t Ph w2 O

= . Al = P
hinge
Ph
2

hinge . 2
4 -
+ a7 A 3
— T + 'S
= v S~
P

Shear, V Moment, M

(]

Fig. 4.15 Variable cross- —— ==,
section 3-hinge frame [ -

These results show that the magnitude of the peak moment due to the uniform gravity load is the
same for both structures but of opposite sense (Figs. 4.11 and 4.13). The peak moment occurs at the
corner points for the 3-hinge frame and at mid-span for the simply supported frame which behaves as
a simply supported beam. The response under lateral loading is quite different (Figs. 4.12 and 4.14).
There is a 50 % reduction in peak moment for the 3-hinge case due to the inclusion of an additional
horizontal restraint at support D.

For the 3-hinge frame, we note that the bending moment diagram due to gravity loading is
symmetrical. In general, a symmetrical structure responds symmetrically when the loading is
symmetrical. We also note that the bending moment diagram for lateral loading applied to the
3-hinge frame is anti-symmetrical.

Both loadings produce moment distributions having peaks at the corner points. In strength-based
design, the cross-sectional dimensions depend on the design moment; the deepest section is required
by the peak moment. Applying this design approach to the 3-hinge frame, we can use variable depth
members with the depth increased at the corner points and decreased at the supports and mid-span.
Figure 4.15 illustrates a typical geometry. Variable depth 3-hinge frames are quite popular. We point
out again here that the internal force distribution in statically determinate structures depends only on
the loading and geometry and is independent of the cross-sectional properties of the members.
Therefore, provided we keep the same geometry (centerline dimensions), we can vary the cross-

section properties for a 3-hinge frame without changing the moment distributions.
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4.4 Pitched Roof Frames

In this section, we deal with a different type of portal frame structure: the roof members are sloped
upward to create a pitched roof. This design creates a more open interior space and avoids the
problem of rain water pounding or snow accumulating on flat roofs. Figure 4.16 shows the structures
under consideration. The first structure is a rigid frame with a combination of pin and roller supports;
the second structure is a 3-hinge frame. Both structures are analyzed by first finding the reactions and

then isolating individual members to determine the member end forces, and the internal force
distributions.

a b hinge

L L/2 Li2 4 L/2 L/2

. - | 2 g L12

Rigid frame-simply supported 3 hinge frame

-

Fig. 4.16 Pitched roof frames

4.4.1 Member Loads

Typical loads that may be applied to an inclined member are illustrated in Fig. 4.17. They may act
either in the vertical direction or normal to the member. In the vertical direction, they may be defined

either in terms of the horizontal projection of the length of the member or in terms of the length of the
member.
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Fig. 4.17 Loading on an a W)y
inclined member. (a) T - Wy dx
. . Tk X L
Vertical load per horizontal L L}
projection. (b) Vertical |
load per length. (¢) Normal l
load per length v
w
) 1
ds
0
| |
| dx |
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When computing the reactions, it is convenient to work with loads referred to horizontal and
vertical directions and expressed in terms of the horizontal projection. The w, loading is already in
this form. For the w, load, we note that

dx =ds cos 8

Then,
dx
WzdS—W2 0
08 (4.3)
Wy = 22
2V Cos 0

The w3 load is normal to the member. We project it onto the vertical and horizontal directions and
then substitute for ds.

(w3 ds)cos 8 = w3, dx

ws ds sin 6 = w3, dx

sin @ = w3 j dx
os 6

The final result is

W3y = w3

w3 p = w3 tan 0 (44)

It follows that the equivalent vertical loading per horizontal projection is equal to the normal load per
unit length. These results are summarized in Fig. 4.18.
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Fig. 4.18 Equivalent a wy dx .o
vertical member loadings. Wy X
(a) Per horizontal
projection. (b) Per length.
(¢) Normal load
Wy “’II.V
28 JH R 20— —1
== “.I,\-': “'l
ds ds
7] 0
| dx l | dx |
b wy ds Wy, dx
Way
b TR -
===
Way= 2
[T cosb

=T

w3 dx

\ " Wiy

8 —_—> Wih=w; tanf

“‘3.]1 'I!'_;‘h dK
| dx | _[—]_
d

X

Wiy= w3

When computing the axial force, shear, and moment distribution along a member, it is more
convenient to work with loads referred to the normal and tangential directions of the member and
expressed in terms of the member arc length. The approach is similar to the strategy followed above.
The results, as summarized, below are (Fig. 4.19):

Vertical-horizontal projection loading:

Wi,n = Wi COS 0>

(4.5)
Wi, = wjcos @sin 8
Member loading:
Wa,n = wacos 6
Wt = Wa sin @
(4.6)

W3 n= W3

w3 =0
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Fig. 4.19 Equivalent a wy dx
normal and tangential
member loadings. (a)
Vertical per projected
length. (b) Vertical per

length. (¢) Normal
W

Wy, =W cos@sin @

.
i =wu;cosé

Wy, =uycosé
Wy, =w,sind

4.4.2 Analytical Solutions for Pitched Roof Frames

Analytical solutions for the bending moment distribution are tabulated in this section. They are used
for assessing the sensitivity of the response to changes in the geometric parameters.

Gravity loading per unit horizontal projection: Results are listed in Figs. 4.20 and 4.21.

Lateral Loading: Results are listed in Figs. 4.22 and 4.23.



Fig. 4.20 Simply a
supported gable rigid

frame. (a) Structure and -
loading. (b) Moment
diagram
h
b
Fig. 4.21 3-Hinge frame a Weg
under gravity loading. (a) TT 1T 1T 1T 1T 11
Structure and loading. (b) C
Moment diagram i &
hinge
T [ "
h
h,
| L/2 | L/2 \
I i I
b
Xpaax Xpsax
M Ve L?
T8
h, M‘E
M.T’: h v =L 4 he
“max h h
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Fig. 4.22 Simply
supported rigid frame—
lateral loading. (a)
Structure and loading.
(b) Moment diagram

Fig. 4.23 3-Hinge
frame—Tlateral loading.
(a) Structure and loading.
(b) Moment diagram
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Example 4.7 Simply Supported Gable Frame—Lateral Load

Given: The gable frame with the lateral load defined in Fig. E4.7a.
Determine: The shear, moment, and axial force diagrams.

C

20 kN
—

| 12m I

Fig. E4.7a

Solution: Moment summation about A leads to the vertical reaction at E. The reactions at A follow
from force equilibrium considerations. Next, we determine the end forces and moments for the
individual members. Lastly, we generate the shear and moment diagrams. Results for the various
analysis steps are listed in Figs. E4.7b, E4.7¢c, E4.7d, and E4.7e.

Step 1: Reactions

C
20 kKN—» 8 D
20 kN —— A £
10 kN 10 kN

Fig. E4.7b Reactions
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Step 2: End forces

60 kN-m 60 kN-m

‘25“"/ RS
Bl 10 kN

TD
10 kN 10 kN
10N 520 - 10KN
BI — 20kN D
20 kN — A E
10 kN 10 kN
Fig. E4.7c End forces—global frame
Step 3: Member forces—member frames
60 kN-m 60 kN-m
4.47 kN C 447 kN
) T
\ o
B 9.02 kN RO “~
12okm ~ - / 4.47KN
447KN ‘900N 9.02kN

Fig. E4.7d End forces in local member frame



44  Pitched Roof Frames 335

Step 4: Internal force diagrams

x/'\ L )
X oo2in sz PN 2 Vv comem eokNm @,
~9
: + 120 kN-m
9.02 kN .02
- _ A
’_’ +
20 kN b
Shear, V Moment, M

10kN 10 kN
Axial force, F

Fig. E4.7e Force distributions

Example 4.8 3-Hinge Gable Frame—Lateral Loading

Given: The 3-hinge gable frame shown in Fig. E4.8a.

Determine: The shear, moment, and axial force diagrams.

| 12m 1

Fig. E4.8a
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Solution:

Step I: Reactions
The reactions (Fig. E4.8b) are determined by summing moments about A and C and applying the
force equilibrium conditions.

hinge
c
20kN— g D
13.33 kN —— A el «+—667kN
10 kN 10 kN
Fig. E4.8b Reactions
Step 2: End forces—global frame (Fig. E4.8c)
O 682 6.67—>C
80 / T l\ 40
6.67
D
C —15 10 0 e (_T )

10 10
10

10 )80 40

i)
w 3

B, —> 13.33 D] —> 667
13.33 kN
A YA

)

N

10 kKN 10 kN

Fig. E4.8c End forces

Step 3: End forces—local member frame
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Figure E4.8d shows the end forces and moments resolved into components referred to the local

member frame.

10.44 kN
c / 1.5k \} c
\ 5.96 kN D
80kN-m B 11.92 kN ® 0.4 kN
1.5kN ¥11.92kN 5.96 kN
40 kN-m
Fig. E4.8d End actions in local member frame
Step 4: Internal force distribution (Fig. E4.8e)
11.02 kN 80 kN-m
.06 kN 40 kKN-m
‘- ‘—‘_ e v
1 ~ : &
.-
13.33 kN 6.67 kN
Shear, V Moment, M
1.5kN 10.44 kN

Axial force, F

Fig. E4.8e Force distributions

Note that the 3-hinge gable structure has a lower value of peak moment.

Example 4.9 Simply Supported Gable Frame—Unsymmetrical Loading

Given: The frame defined in Fig. E4.9a. The loading consists of a vertical load per horizontal

projection applied to member BC.
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Determine: The member force diagrams.

w=1.0 kip/ft

201t 20 ft

Fig. E4.9a

Solution: The reactions at E and A are determined by summing moments about A and by enforcing
vertical equilibrium. Figure E4.9b shows the results.

1.0 kip/ft
I I T JIC
B /\ D
A/\ /'\E
T 15 kip T 15kip

Fig. E4.9b Reactions

Next, we determine the end forces and moments for the individual members. Then, we need to
resolve the loading and the end forces for members BC and CD into normal and tangential
components. The transformed quantities are listed in Figs. E4.9c and E4.9d.

1.0kip/ft_ 100kiptt 190 KiPft
———3 (’ c
/l 5 kip D
B 15 kip T
15 kipI e
15 kipl l 5 kip
B D
A E
15 kip T T Skip

Fig. E4.9c End actions—global frame
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“ 4kip/ft " 4.47 kip

P o X
g67kip B ‘\/'

13.42 kip

Fig. E4.9d End actions—local frame

339
100 kip ft
223 kip
\ c
4.47 kip D
/\\2.23 kip
4.47 kip

The maximum moment in member BC occurs at x;. We determine the location by setting the shear

equal to zero.

13.42 - 0.8x; = 0 = x; = 16.775

Then, My = 13.42(16.775) — 0.8(16.775)2(%) = 112.56kipft
Figure E4.9¢ contains the shear, moment, and axial force diagrams.

100 kip ft .
i j 2.23 ki
4.47kip 112.56 kip ft D s Kip
Xq
/\ 4.47kip
6.7
13.42 kip
15 kip 5 kip
Shear, V Moment, M Axial force, F

Fig. E4.9e Internal force diagrams

Example 4.10 3-Hinge Gable Frame

Given: The 3-hinge gable frame shown in Fig. E4.10a.

Determine: The shear and moment diagrams.

w=1.0 kip/ft

20 1t

—_—

Fig. E4.10a
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Solution: We analyzed a similar loading condition in Example 4.9. The results for the different
analysis phases are listed in Figs. E4.10b, E4.10c, and E4.10d. Comparing Fig. E4.10e with Fig. E4.9¢
shows that there is a substantial reduction in the magnitude of the maximum moment when the
3-hinged gable frame is used.

1.0 kip/ft

333 kip

Fig. E4.10b Reactions

1.0 kip/ft .
m(‘(i.?&kip 333 Kp ¢
T S kip l 66.6 kip
3.33 ki . _
% 4 5 kip 333 kip ¢
66.6 kip ft C T ,
15 kip 5 kip
v 66.6 kip ft
.6 kip ft m
/Yy _ 5 kip
o Liskip Dy — 333 kip
3.33 kip ¢— B
333 kip | Elet+—333kip
—i
Ls kip 5 kip

Fig. E4.10c End forces
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66.6 kip Nt
298 k
22.19 kip ft
2.98 kip 66.6 kip ft 66.6 kip It
3.33 kip
Shear, V Moment, M

745 kip , 3-22 kip

9.69 kip 5.22 kip

I5 kip S kip

Axial force, F

Fig. E4.10e Shear and moment diagrams

4.5 A-Frames

A-frames are obviously named for their geometry. Loads may be applied at the connection points or
on the members. A-frames are typically supported at the base of their legs. Because of the nature of
the loading and restraints, the members in an A-frame generally experience bending as well as axial
force.

We consider first the triangular frame shown in Fig. 4.24. The inclined members are subjected to a
uniform distributed loading per unit length w, which represents the self-weight of the members and
the weight of the roof that is supported by the member.

We convert w, to an equivalent vertical loading per horizontal projection w using (4.3). We start
the analysis process by first finding the reactions at A and C.
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Fig. 4.24 (a) Geometry
and loading. (b) A-frame
loading and reactions. (c)
Free body diagrams. (d)
Moment diagram

a
h
, L2 L2 :
1 I 1
b _w
“cosB
—t - b b b £ 4 &+ -+ 3
B
h
A
ol i} 8
wL % wl
2 2
: L 5 L/2 ;
1] I ]
Cc
W w

=33 "'v Y =3
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Next, we isolate member BC (see Fig. 4.24c).

w(L\*> wL (L
ZMa‘B:_E<§> "!‘7(5) —hFAC:O

U
wl?

Fac=-—
AC sh

The horizontal internal force at B must equilibrate Fac. Lastly, we determine the moment
distribution in members AB and BC. Noting Fig. 4.24c, the bending moment at location x is given by

The maximum moment occurs at x = L/4 and is equal to

wL?
Mm X — “~A
‘ 32
Replacing w with w,, we express M, as
v ( We ) L?
" Ncos 0/ 32

As 6 increases, the moment increases even though the projected length of the member remains
constant.

We discuss next the frame shown in Fig. 4.25a. There are two loadings: a concentrated force at B
and a uniform distributed loading applied to DE.

We first determine the reactions and then isolate member BC.

Summing moments about A leads to

PL+WLL —RLR—P+WL
2 2 \2) " TeT Ty

The results are listed below. Noting Fig. 4.25d, we sum moments about B to determine the horizontal
component of the force in member DE.

L/P L LL h
)t

207 7) T g
PL  wL?

Foo=— 4 —

=55 g

The bending moment distribution is plotted in Fig. 4.25e. Note that there is bending in the legs even
though P is applied at node A. This is due to the location of member DE. If we move member DE
down to the supports A and C, the moment in the legs would vanish.
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Fig. 4.25 (a) A-frame geometry and loading. (b—d) Free body diagrams. (e) Bending moment distribution

4.6 Deflection of Frames Using the Principle of Virtual Forces

The Principle of Virtual Forces specialized for a planar frame structure subjected to planar loading is
derived in [1]. The general form is

M F 1%
doP = = 5M + —F
> L{m taE” T Ga,

5V}ds (4.7)

members
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Frames carry loading primarily by bending action. Axial and shear forces are developed as a result of
the bending action, but the contribution to the displacement produced by shear deformation is generally
small in comparison to the displacement associated with bending deformation and axial deformation.
Therefore, we neglect this term and work with a reduced form of the principle of Virtual Forces.

M F
dsP = Zb ‘L{EéMJrE&F}ds (4.8)

where P is either a unit force (for displacement) or a unit moment (for rotation) in the direction of the
desired displacement d; dM, and SF are the virtual moment and axial force due to 6P. The integration
is carried out over the length of each member and then summed up.

For low-rise frames, i.e., where the ratio of height to width is on the order of unity, the axial
deformation term is also small. In this case, one neglects the axial deformation term in (4.8) and
works with the following form

dsP = m%; J (g) (6M)ds (4.9)

Axial deformation is significant for tall buildings, and (4.8) is used for this case. In what follows,
we illustrate the application of the Principle of Virtual Forces to some typical low-rise structures. We
revisit this topic later in Chap. 9, which deals with statically indeterminate frames.

Example 4.11 Computation of Deflections—Cantilever-Type Structure

Given: The structure shown in Fig. E4.11a. Assume EI is constant.

E =29,000ksi, [ =300in.*

1.2 kip/ft
VI o TR Y T |

EI ¢

10 ft EI

6 M

——

Fig. E4.11a
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Determine: The horizontal and vertical deflections and the rotation at point C, the tip of the cantilever
segment.

Solution: We start by evaluating the moment distribution corresponding to the applied loading. This
is defined in Fig. E4.11b. The virtual moment distributions corresponding to u., v, and 6. are defined
in Figs. E4.11c, E4.11d, and E4.11e, respectively. Note that we take 6P to be either a unit force (for
displacement) or a unit moment (for rotation).

1.2 kip/fi
| A S
B C
X ¢—
0<x; <10 M(x)=-216
0<x3<6 Mixp)=-1.2%2
X
21 6kipl'l‘<l A l
*A|>?.2kip
Fig. E4.11b M(x)
B € =1
X —
0<x; <10 &M(x))=-10+x)
D<xy<6 &M(xy)=0
X}
w1
N0
Fig. E4.11c SM(x) for u,
l 8P=1
B C
x; ¢—

0<x, <10 8M(x))=-6

0<x;<6 dM(xy)=-x,

Fig. E4.11d S6M(x) for v,



4.6 Deflection of Frames Using the Principle of Virtual Forces 347

0<x; <10 dM(x))=-1
0<x;<6 B8M(xy)=-1

1
‘g A
Fig. E4.11e 6M(x) for 6.

We divide up the structure into two segments AB and CB and integrate over each segment. The
total integral is given by

2 L)oo s ] (o eo

members

The expressions for u., v., and 6. are generated using the moment distributions listed above.

10
Eluc = J (—=21.6)(—10 + x;)dx; = 1080kipft’
0

1080(12)° .
=~ _—(.2145in.
"€ = 29,000(300) =
10 6 1.2
Elve = J (—216)(—6)(1)(1 +J (-7)(%) (-Xz)dXz = 1490klpft3
0 0
1490(12)° .
=~ —0.29in.
Ye = 39,0000300) 2000 |
10 6 1.2
Elfc = J (—=21.6)(—1)dx, +J (—2x§> (—1)dx, = 259kip ft*
0 0
2
Oc = % = 0.0043 rad clockwise

~ 29,000(300)

Example 4.12 Computation of Deflections

Given: The structure shown in Fig. E4.12a. E = 29,000 ksi, I = 900 in#
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Determine: The horizontal displacements at points C and D and the rotation at B.

Ef 2 kip/t .
L. r — ro—ram— rmmr o,
B By
10 ft
6kip D
= — —
10 ft
A
%
20 ft
} 1

Fig. E4.12a

Solution: We start by evaluating the moment distribution corresponding to the applied loading.
This is defined in Fig. E4.12b.

2 kip/t

I

6 kip D I“ fl‘

D<x; <10 M(x))=bx,
Iil 0<x3<10  M(x;)=60
A 0< X320 M(xy)=23x3-x3°

6 ——

Fig. E4.12b M(x)

The virtual moment distributions corresponding to u. and up, are listed in Figs. E4.12c and E4.12d.

B C o ysp=1
36—
1 f

D

0<x; <10 8M (x))=x,

X, 0<xy, <10 M (xy)=xy+ 10

A I 0<x3<20 M (x3)=xy

| &—

Fig. E4.12c &M for uc



4.6 Deflection of Frames Using the Principle of Virtual Forces 349

X1

w. |5
—>»D

D<x; <10 &M (x))=x,

0<x;<10 &M (x5)=10

1
-

x|
A T
16— 0<x3<20  §M (x3)

a2

Fig. E4.12d M for up

sP=1
< B c
x3 6—
iuzo
I"
D
D<xp<10 &M (x))=0
x) D<xy <10 &M (x3)=0
A _T_ 0<x3 <20 5M (xy)=-3

Fig. E4.12e M for O

We express the total integral as the sum of three integrals.

M M M
me%l;ers JS <EI > ’ JAD <EI > ' JDB (EI ) ?

M
+J (— oM ) dxs
cB \EI
The corresponding form for u, is
10 10 20
Eluc = J 6x1 (x1)dx +J (x2 + 10)(60)dx, +J (23x3 — x3) (x3)
0 0 0

23x§ x;‘ 2

0
dxs = 207y + |30 + 600, + |5~ 5| = 32.333kipfP

32,333 x (12)°

_ — 2.14in.
"€ =729, 000)(900) -
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Following a similar procedure, we determine up

10 10 20 X
60(10)dx; + J (2313 — 22) <§)dX3

EIMD = J
0

6X1(X1)dX1 + J
0

0

3 20
= 223y + 1600, " + |22 — gxg‘o = 18,667kipft’

18,667(12)° .
= SV o3,
“D = 129,000)(900) -

Lastly, we determine 0 (Fig. E4.12¢)

Elfy = J (2353 = 3) (=55 ) dxs
0 N 20
5 420
= |-%+5 . = —106,667kipf’

106,667(12)*

b5 =~ (29,000)(900)

= —0.0059

The minus sign indicates the sense of the rotation is opposite to the initial assumed sense.

O = 0.0059rad clockwise

Example 4.13 Computation of Deflection

Given: The steel structure shown in Figs. E4.13a, E4.13b, and E4.13c. Take I, = 4, hc = 4m,
Ly, =3 m, P =40 kN, and £ = 200 GPa.

Determine: The value of I required to limit the horizontal displacement at C to be equal to 40 mm.

P C

=T

he I

C

Fig. E4.13a
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Solution: We divide up the structure into two segments and express the moments in terms of the local

coordinates x; and x,.
h

G

-

O0<x;<h, M(x))=Px,

U‘ \:- l'?‘ \“‘:] p.ls X»
.

Fig. E4.13b M(x)

O<xy < hc 53{{.‘.’][“-.\';

h.
0<xy<ly  8M(xy)= I—k x3
b

Fig. E4.13c &M for uc
We express the total integral as the sum of two integrals.

2 L)oo+ ] o)

members

The corresponding expression for uc is

et s ] () (B
McfEIc X1)(X1 1 ElL), bez bez 2

0
(2
P P [\ [™
e EIJO () ‘+E1b(Lb) Jo () dxz
(8

2
v Ph}  PLy (h:\" _Ph; he | Ly
3El. * 3El, \Ly 3E\L Iy
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Then, for I, = ¥, the I required is determined with

2 2
i (h Lb> 40(4000) <4ooo 3000 ) 20

“3e\L. ") T 30000 1 Tan
I = 167(10)°mm*

Example 4.14 Computation of Deflection—Non-prismatic Member

Given: The non-prismatic concrete frame shown in Figs. E4.14a and E4.14b.

| Ly |
B
—_ p—b [ s o s C
| lcs
|
h | 1
. | AB
|
|
A

Fig. E4.14a Non-prismatic frame

Assume hc = 12 ft, L, = 10 ft, P = 10kip, and £ = 4000 ksi. Consider the member depths (d) to
vary linearly and the member widths (b) to be constant. Assume the following geometric ratios:

dap,1 = 2dag,0
deg,1 = 1.5dcs,0
d
p_ 9aB.0

2
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——

- d(-mI ———— — (‘Idc‘a.u

Fig. E4.14b Cross section depths
Determine:

(a) A general expression for the horizontal displacement at C (uc).
(b) Use numerical integration to evaluate uc as a function of dag .

(c) The value of dag for which uc = 1.86 in.

Solution:
Part (a): The member depth varies linearly. For member AB,

d
d(x;) = dAB,0<1 —Z—l) +daB,1 (;Cl—1> = dAB,O{l +);1—1(di:’; - 1)}
c c . ’

X
= dAB,084B <h_l)
C

Then,

Ing = ]AB,O(gAB)3

Similarly, for member BC

Xy (d X
d(x) = dCB,O{l JrL—zb(dEE’; — 1> } = dcB,08cB <L—i>

Icg = ICB,0<gCB)3
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We express the moments in terms of the local coordinates x; and x,.

M(XI>ZPX1 0<x <he
he
M(xz) =P—x, O0<x <L
Ly,
6M(x1):x1 0<x; < he
h
5M()C2) = 70)(2 0<x <Ly
Ly
The moment distributions are listed below.
L Ly !
B
P ]
- | r—————-¢€
| !1—__* %7
I ?P%
[ Xpe—y ®
he | / M (x,) = P x,
I = M (x,) = P—=x,
| || J_ b
4 —— -t
p
A
? phe
Ly
Fig. E4.14c M(x)
Ly
} }
B
- - ———— C —»sp=1
I _;:F L, M () =x;

h
SM (%)) = = x,
x be-.

Fig. E4.14d 6M for uc

h

0<x,<h,

0<x,<L,

O<x <h

O<cx, <L,

[ nean 1 (o) (Ko
uc _E o IAB X1) X 1 E 0 ICB be2 be2 2

Substituting for /g and Icp and expressing the integral in terms of the dimensionless values x; /A

= X and x» /Ly, = X3, the expression for uc reduces to
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v _ PR Jl ()dx1 | Plhe/Ly)*(Ly)’ Jl (%) d%2

 Elasolo (g4p)° Elcso  Jo (gcp)’
Taking gap = gcg = 1 leads to the values for the integrals obtained in Example 3.13, i.e., 1/3.

Part (b): Using the specified sections, the g functions take the form

X
gAB:1+Z1:1+)_q

Then, the problem reduces to evaluating the following integrals:

P ®m (@
= Jo (1+7%) and S = Jo (14 (1/2)%,)°

We compute these values using the trapezoidal rule. Results for different interval sizes are listed
below.

N i I

10 0.0682 0.1329
20 0.0682 0.1329
25 10,0682 10.1329
30 | 0.0682 10.1329

Next, we specify the inertia terms

/ _ b(dAB,0)3
AB,0 12
- bldcso)’
BC,0 12

For Iago = (3/4)IcB o, the expression for uc reduces to

e = {hza (1) () (Jz)}

Part(c): Setting uc = 1.86 and solving for /5 o leads to

P he\’ 3 ,
IaB,0 = Euc {hi’J] + (L:,) (Ly)® <4> (Jz)} = 607in.

dap.o = {241x8.0}"* = 10.98in.

Finally,

1/3 .
dceo= {%} / dap,o = 12.11in.
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4.7 Deflection Profiles: Plane Frame Structures

Applying the principle of Virtual Forces leads to specific displacement measures. If one is more
interested in the overall displacement response, then it is necessary to generate the displacement
profile for the frame. We dealt with a similar problem in Chap. 3, where we showed how to sketch the
deflected shapes of beams given the bending moment distributions. We follow essentially the same
approach in this section. Once the bending moment is known, one can determine the curvature, as
shown in Fig. 4.26.

In order to establish the deflection profile for the entire frame, one needs to construct the profile for
each member, and then join up the individual shapes such as that the displacement restraints are
satisfied. We followed a similar strategy for planar beam-type structures; however, the process is
somewhat more involved for plane frames.

Consider the portal frame shown in Fig. 4.27. Bending does not occur in AB and CD since the
moment is zero. Therefore, these members must remain straight. However, BC bends into a concave
shape. The profile consistent with these constraints is plotted below. Note that B, C, and D move
laterally under the vertical loading.

Suppose we convert the structure into the 3-hinge frame defined in (Fig. 4.28). Now, the moment
diagram is negative for all members. In this case, the profile is symmetrical. There is a discontinuity
in the slope at E because of the moment release.

Fig. 4.26 Moment- )M M M
curvature relationship ( ™ X El
\ / j \___‘__ _—_'_/
I X
a b s I{Pftmbol:ic [
B = 5 __.-r‘I"'[M” ” [| | HH ‘H“”"I " B _ c
‘-';A . v AR Dgs _,f ax, 141

Fig. 4.27 Portal frame. (a) Loading. (b) Bending moment. (¢) Deflection profile

Fig. 4.28 3-Hinge frame. (a) Loading. (b) Bending moment. (¢) Deflection profile


http://dx.doi.org/10.1007/978-3-319-24331-3_3

4.7  Deflection Profiles: Plane Frame Structures 357

Gable frames are treated in a similar manner. The deflection profiles for simply supported and
3-hinge gable frames acted upon by gravity loading are plotted below (Figs. 4.29 and 4.30).

Fig. 4.30 3-Hinge gable frame. (a) Loading. (b) Bending moment. (¢) Deflection profile

The examples presented so far have involved gravity loading. Lateral loading is treated in a similar
way. One first determines the moment diagrams, and then establishes the curvature patterns for each
member. Lateral loading generally produces lateral displacements as well as vertical displacements.
Typical examples are listed below (Figs. 4.31, 4.32, and 4.33).

a b c
P + - i
B c B c
| I \
....A . w5, __ﬁA Dm, ._.A Du;u. -:::u
Fig. 4.31 Portal frame. (a) Loading. (b) Bending moment. (¢) Deflection profile
a b c
P 3 B ~ c K‘ - 5 - ] E_ 3 _(‘
E B E s
gL
.G D_;',; 4 A D oA D s

e S e AN

Fig. 4.32 3-Hinge frame. (a) Loading. (b) Bending moment. (¢) Deflection profile
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o

o]
o
i

e
| @

E A E

b d

Fig. 4.33 3-Hinge frame. (a) Loading. (b) Bending moment. (¢) Deflection profile

4.8 Computer-Based Analysis: Plane Frames

When there are multiple loading conditions, constructing the internal force diagrams and displace-
ment profiles is difficult to execute manually. One generally resorts to computer-based analysis
methods specialized for frame structures. The topic is discussed in Chap. 12. The discussion here is
intended to be just an introduction.

Consider the gable plane frame shown in Fig. 4.34. One starts by numbering the nodes and
members, and defines the nodal coordinates and member incidences. Next, one specifies the nodal
constraints. For plane frames, there are two coordinates and three displacement variables for each node
(two translations and one rotation). Therefore, there are three possible displacement restraints at a
node. For this structure, there are two support nodes, nodes 1 and 5. Atnode 1, the X and Y translations
are fully restrained, i.e., they are set to zero. At node 5, the Y translation is fully restrained.

Fig. 4.34 Geometry and Y 12 kin/ft
loading 1 1T 8 kip/ft =
4 ki ' 3 :
p @ 6 kip
81t l I, Ay l
| i\ & L. Az , ©®
61545 |2 4 1A, L
L, Ay I, A
16 ft 10) R (©)
5
. L};}_—» X
 lofme 20 ft 1 20 fi , loft

Next, information related to the members, such as the cross-sectional properties (A, I), loading
applied to the member, and releases such as internal moment releases are specified. Finally, one
specifies the desired output. Usually, one is interested in shear and moment diagrams, nodal reactions
and displacements, and the deflected shape. Graphical output is most convenient for visualizing the
structural response. Typical output plots for the following cross-sectional properties /; = 100 in.”,
I, = 1000 in.*,I; = 300 in.*, E = 29,000 ksi, A; = 14in.?, A, = 88in.?, and A5 = 22 in.” are listed
in Fig. 4.35.
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Fig. 4.35 Graphical
output for structure defined
in Fig. 4.34. (a)
Displacement profile. (b)
Bending moment, M. (c¢)
Shear, V. (d) Axial force, F.
(e) Reactions

165.4 kip fl L

+

40 kip L 60 kip fi

22.9 kip 302 kip
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49 Plane Frames: Out of Plane Loading

Plane frames are generally used to construct three-dimensional building systems. One arranges the
frames in orthogonal patterns to form a stable system. Figure 4.36 illustrates this scheme. Gravity
load is applied to the floor slabs. They transfer the load to the individual frames resulting in each
frame being subjected to a planar loading. This mechanism is discussed in detail in Chap. 15.

Our interest here is the case where the loading acts normal to the plane frame. One example is the
typical highway signpost shown in Fig. 4.37. The sign and the supporting member lie in a single
plane. Gravity load acts in this plane. However, the wind load is normal to the plane and produces a
combination of bending and twisting for the vertical support. One deals separately with the bending
and torsion responses and then superimposes the results.

The typical signpost shown in Fig. 4.37 is statically determinate. We consider the free body
diagram shown in Fig. 4.38. The wind load acting on the sign produces bending and twisting moment
in the column. We use a double-headed arrow to denote the torsional moment.

Suppose the Y displacement at C is desired. This motion results from the following actions:

Member BC bends in the X — Y plane

3El,
Member AB bends in the Y — Z plane and twists about the Z axis

P p _Pw(g)h
T3EL, T Gr

VB

where GJ is the torsional rigidity for the cross section.

Fig. 4.36 A typical 3-D
system of plane frames

A A

e
AVAVA

e
VN NN\

3;—
e
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Fig. 4.37 Signpost
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Fig. 4.38 Free body diagrams
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Fig. 4.39 Plane grid z
structure s

Node C displaces due to the rotation at B

= (=) ()

Summing the individual contributions leads to

b IS b2h>

Py 27
Vetotl (241512 *3En TGy

Another example of out-of-plane bending is the transversely loaded grid structure shown in
Fig. 4.39. The members are rigidly connected at their ends and experience, depending on their
orientation, bending in either the X — Z plane or the ¥ — Z plane, as well as twist deformation.
Plane grids are usually supported at their corners. Sometimes, they are cantilevered out from one
edge. Their role is to function as plate-type structures under transverse loading.

Plane grids are statically indeterminate systems. Manual calculations are not easily carried out for
typical grids so one uses a computer analysis program. This approach is illustrated in Chap. 10.

4.10 Summary
4.10.1 Objectives

» To develop criteria for static determinacy of planar rigid frame structures.

» To develop criteria for static determinacy of planar A-frame structures.

» To present an analysis procedure for statically determinate portal and pitched roof plane frame
structures subjected to vertical and lateral loads.

» To compare the bending moment distributions for simple vs. 3-hinged portal frames under vertical
and lateral loading.

» To describe how the Principle of Virtual Forces is applied to compute the displacements of frame
structures.

» To illustrate a computer-based analysis procedure for plane frames.

» To introduce the analysis procedure for out-of-plane loading applied to plane frames.
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4.10.2 Key Concepts

* A planar rigid frame is statically determinate when 3 m + r — n = 3j, where m is the number
of members, r is the number of displacement restraints, j is the number of nodes, and n the
number of releases.

* A planar A-frame is statically determinate when 3 m = r + 2n,, where n, is the number of pins,
m is the number of members, and r is the number of displacement restraints.

» The Principle of Virtual Forces specialized for frame structures has the general form

M F
dsP = Z L{E(SM—kEéF}ds

members

For low-rise frames, the axial deformation term is negligible.
» The peak bending moments in 3-hinged frames generated by lateral loading are generally less than
for simple portal frames.

4.11 Problems

For the plane frames defined in Problems 4.1-4.18, determine the reactions, and shear and moment
distributions.

Problem 4.1
30 kN/m
£+ 1 1 1 4 1 131
€ 2 !
B C SkN
4m
A D

1 6m 1
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Problem 4.2
2 kip/ft
4 4 L1 34 4L )
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0kip =
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Problem 4.3
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Problem 4.4
10 kip
2 kip/ft
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F
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201
Problem 4.5
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4m
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Problem 4.6
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Problem 4.7
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6m
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Problem 4.8
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Problem 4.10
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Problem 4.13
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Problem 4.14
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Problem 4.16
10 kN/m
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Problem 4.17
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Problem 4.18
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For the gable frames defined in Problems 4.19-4.26, determine the bending moment distributions.
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Problem 4.19
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Problem 4.22
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Problem 4.25
I kip/fit I kip/ft
101t
15 o |'kip/ft 1 kip/ft
a 20 it . 20 it F
I T 1
Problem 4.26
15 kN/m
Im
§ |15 KN/ 15 kN/m

For the A-frames defined in Problems 4.27—4.29, determine the reactions and bending moment
distribution.

Problem 4.27

self weight=8 kip/ft
self weight=_8 kip/ft

lén

i 1211 ’ 121 |
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Problem 4.28
9t
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Problem 4.29
6m

10 kip




374 4 Statically Determinate Plane Frames

Problem 4.30 Determine the horizontal deflection at D and the clockwise rotation at joint B. Take
E = 29,000 ksi. Determine the [ required to limit the horizontal displacement at D to 2 in. Use the
Virtual Force method.

2 kip/ft
N N PR P A P A
4 B 1C
1 E ;
20 fr
I
10 kip
-+ —||D
10 ft
— A

77@77 20 fi

Problem 4.31 Determine the value of / to limit the vertical deflection at C to 30 mm. Take
E = 200 GPa. Use the Virtual Force method.

S &

2m l
40 kN
-T- B
|
4m
A
— 7777

6m |
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Problem 4.32 Determine the value of I required limiting the horizontal deflection at D to %2 in. Take
E = 29,000 ksi. Use the Virtual Force method.

D;é— 10 kip
4n I

16 1t

Problem 4.33 Determine the vertical deflection at D and the rotation at joint B. Take £ = 200 GPa
and I = 60(10)° mm®. Use the Virtual Force method.

40 kN

30 kN/m
GJIITITITITT]C

6m
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Problem 4.34 Determine the horizontal displacement at joint B. Take £ = 29,000 ksi and / = 200
in.* Use the Virtual Force method.

2 kip/ft
N S PR " P
B i C
I | 12 ft
A D
| 12 ft | 12 ft

Problem 4.35 Determine the displacement at the roller support C. Take E = 29,000 ksi and
I = 100 in.* Use the Virtual Force method.

Kip/ft
8 kip J 1T 1T 1T TTICA
T “IB | .
12 fit |
+ A
1 16 1t |

Problem 4.36 Determine the horizontal deflection at C and the rotation at joint B. Take £ = 200 GPa
and I = 60(10)° mm®. Use the Virtual Force method.

B 20 kN/m

10 kN —»  ——— S
21

6m

10m

1
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Problem 4.37 Determine the horizontal deflection at C and the vertical deflection at E. Take
E = 29,000 ksi and I = 160 in.* Use the Virtual Force method.

10 kip

C
B E 1

10 ft 16 ft

e
e
o

Problem 4.38 Determine the horizontal deflection at C. 7 = 100(10)° mm* and E = 200 GPa.
Sketch the deflected shape. Use the Virtual Force method.

18 kN/m
BL [ [ i+ 1 Jc
[ e

: 4m L 6m
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Problem 4.39 Sketch the deflected shapes. Determine the vertical deflection at A. Take I = 240 in.4,
E = 29,000 ksi, and & = 2b = 10 ft.

a
P p
1 1 A 13
| h
wroaoa -
1 b 1 b |
] ] ]
b =
I i) i) I J L
| | A
| h
s "
b b

Problem 4.40 Determine the deflection profile for member DBC. Estimate the peak deflection. Use
computer software. Note that the deflection is proportional to 1/EI.

1.2 kip/ft

21 B 21

,  8m 20 ft
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Problem 4.41 Consider the pitched roof frame shown below and the loadings defined in cases
(a)—(f). Determine the displacement profiles and shear and moment diagrams. EI is constant. Use a
computer software system. Take / = 10,000 in.* (4160(10)° mm*), E = 30,000 ksi (200 GPa).

101 (3 m)

Y

| 151 (4.5m)
X -

25N (7.5m) 25N (7.5m)

a 1 kip/f (15 kN/m)
o o o - 1 kip/ft (15 kN/m)
i1 1 { 11 1 1 J 1 11 )}

I kip/t (15 kN/m) d
c h ! kip‘y Q:I;:;-:-z:;mfm}
I8 kip (80 kN)
§ K (13 k) 1 kip/ft (15 kN/m) l
9 kip (40 kN)
—_—

1 kip/ft (15 kN/m) 1 kip/ft (15 kN/m)
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Problem 4.42 Consider the frame shown below. Determine the required minimum / for the frame to
limit the horizontal deflection at C to 0.5 in. The material is steel. Use computer software.

W kip B C
4 3l

(=]
-

A D

i 30 ft i

Problem 4.43 Consider the frame shown below. Determine the required minimum / for the frame to
limit the vertical deflection at E to 15 mm. The material is steel. Use computer software.

40 kN

J/ 30 kN/m

N
B — »

eall

1/3 4m

Problem 4.44 Consider the triangular rigid frame shown below. Assume the member properties are
constant. [ = 240 in.4, A =24in*andE = 29,000 ksi. Use computer software to determine the axial
forces and end moments for the following range of values of tan § = 2 /L = 0.1, 0.2, 0.3, 0.4, 0.5

P =20 kip

|

0 0
A R

L=30N

Compare this solution with the solution based on assuming the structure is an ideal truss.
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Problem 4.45 Consider the structure consisting of two members rigidly connected at B. The load

P is applied perpendicular to the plane ABC. Assume the members are prismatic. Determine 6, at
point C (labeled as 6. on the figure).

Problem 4.46 Members AB, BC, and CD lie in the X — Y plane. Force P acts in the Z direction.
Consider the cross-sectional properties to be constant. Determine the z displacement at B and D. Take
Lag = L,Lpc =% Lep = LV2.

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.



Abstract

Historically, cables have been used as structural components in bridge
structures. In this chapter, we first examine how the geometry of a cable is
related to the loading that is applied to it. We treat concentrated loadings
first and then incorporate distributed loadings leading up to a theory for
continuously loaded inclined cables. We also analyze the effect of tem-
perature on the cable geometry. Lastly, we develop an approximate
formula for estimating the stiffness of a cable modeled as an equivalent
straight member. This modeling strategy is used when analyzing cable-
stayed structures.

5.1 Introduction

A cable is a flexible structural component that offers no resistance when compressed or bent into a
curved shape. Technically, we say a cable has zero bending rigidity. It can support only tensile
loading. The first cables were made by twisting vines to form a rope-like member. There are many
examples of early cable suspension bridges dating back several thousand years. With the introduction
of iron as a structural material, cables were fabricated by connecting wrought iron links. Figure 5.1
shows an example of an iron link suspension bridge, the Clifton Suspension Bridge near Bristol,
England built in 1836-1864 and designed by Isambard Brunel.

When high-strength steel wires became available, steel replaced wrought iron as the material of
choice for cables. Modern cables are composed of multiple wires (up to 150 wires) clustered in a
circular cross-section and arranged in a parallel pattern, as illustrated in Fig. 5.2. This arrangement is
used for cable-stayed bridges and suspension bridges. The cable is normally coated with a protective
substance such as grease and wrapped or inserted in a plastic sheathing.

One of the most notable early applications of steel cables was the Brooklyn Bridge built in
1870-1883 and designed by John Roebling and Wilhelm Hildebrandt. John Roebling also invented
and perfected the manufacture of steel wire cable which was used for the bridge. At the time of
completion, the total length of the Brooklyn Bridge was 50 % greater than any existing suspension
bridge, an extraordinary advancement in bridge engineering (Fig. 5.3).

© Springer International Publishing Switzerland 2016 383
J.J. Connor, S. Faraji, Fundamentals of Structural Engineering,
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Fig. 5.1 Clifton Suspension Bridge, England

Fig. 5.2 Cable-strand
arrangements

Cable nets are also used as the primary structural elements for long-span horizontal roof structures.
Figure 5.4 shows a single-layer cable net structure with a double-curved saddle-shaped surface
designed by Schlaich Bergermann and partners for a stadium in Kuwait.

Cable-stayed structures employ cables fabricated from ultra high-strength steel to allow for the
high level of tension required for stiffness. The cable-stayed bridge concept has emerged as the
predominant choice for main spans up to about 1000 m, replacing the conventional truss structural
system. Figure 5.5 shows the Normandy Bridge, with a main span of 856 m. Built in 1995, it held the
record for the largest main span until 1999, when it was exceeded by the Tatara Bridge in Japan.
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Fig. 5.3 Brooklyn Bridge, USA

Fig. 5.4 Doubly curved single-layer cable net, Kuwait
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Fig. 5.5 Normandy Bridge, France

5.2 Cables Subjected to Concentrated Loads
5.2.1 Horizontal Cables

Suppose we conduct the following experiment shown in Fig. 5.6. We start with a horizontally aligned
cable that is pin connected at A, supported with a roller support at B, and tensioned with a force H. We
then apply a concentrated load, P, at mid-span. The cable adopts the triangular shape shown under
the action of P. Two questions are of interest. Firstly, why a triangular shape? Secondly, how is the
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Fig. 5.6 Transverse a A B
loading on pretensioned A _B- > H
cable. (a) Axial load. (b) =11
Transverse load added. (c) L 1

Free body diagram. (d)
Free body diagram of cable
segment

downward vertical displacement at mid-span related to P and H? Historically, the term “sag” is used
to describe the vertical motion of a cable.

We answer these questions by noting that the magnitude of the moment at any section along
the length of the cable must be zero since a cable has no resistance to bending. Summing moments
about B

L P
D M=R\L-PZ=0 = Ry=>1
, 2 2
atB

Next, we consider the free body diagram for the arbitrary segment shown in Fig. 5.6d. Setting the
moment at x equal to zero leads to an expression for the sag, v(x).

P

E Matxzax—Hv(x) =0 (5.1)
P

= 5.2

v(x) T (52)

Finally, evaluating v(x) at x = L/2 results in an equation relating vc and P.

PL

= 5.3

T (5:3)

The relationship between vc and H is plotted below in Fig. 5.7. Usually, one specifies H and
determines vc. However, there are cases where one specifies v and determines the required value of
H. In general for cable systems, one needs to specify either a force or a sag in order to define the
solution.
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Fig. 5.7 Relationship Ve
between v, and H AN

>H
The tension in the cable is given by
P\’ P\’
T=H*+ (=) =H{/1+[— 5.4
e (5) =+ () 5
A
H &— w\ I
Vv
t c__, &
P H
RA = 3 l
' P2
L/2
f i
Noting that the angle of inclination of the cable is related to the sag by
Ve P/2
tanf = — =—— 5.5
MOTL2 T H (5:3)
leads to an alternative expression for the tension,
P2

T=H\/1+|=—=) =HV1+ tan?0 = (5.6)

2H cos 0

i H
“““““““ T

P2

When 6 is small, T is approximately equal to H.
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Fig. 5.8 Moment
distribution for simply
supported beam M(x)

k— o

Equation (5.1) combines two moment distributions, one due to the transverse loading P and the
other due to H. The moment due to P can be interpreted as the moment in a simply supported beam
spanning between points A and B, the support points for the cable. Figure 5.8 shows this distribution.

We express (5.1) as

Moy(x) —v(x)H =10 (5.7)

where Mj(x) is the moment due to the transverse loading acting on the simply supported beam
spanning between A and B. Then, the expression for the sag can be written as

(5.8)

We interpret this result as follows. The shape of the vertical sag of the cable from the horizontal chord
is a scaled version of the moment diagram for the transverse loading acting on a simply supported
beam spanning between the cable supports.

We extend this reasoning to a cable subjected to multiple concentrated loads. Figure 5.9a
illustrates this case. The moment diagram for a set of concentrated loads is piecewise linear, with
peak values at the points of application of the concentrated loads. It follows from (5.8) that the shape
of the cable is also piecewise linear. One generates My(x), the corresponding shear Vj(x), the
displacement v, and the tension 7. Details are listed in Fig. 5.9b—d. Note that one has to specify
either H or one of the vertical coordinates (vc or vp) in order to compute the shape.

2 2 H

Example 5.1 Cable with Multiple Concentrated Loads

Given: The cable and loading shown in Fig. ES5.1a.
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1 i 2 f. 5
A ! B R,=a,P+(1-a P,

Rg= alP1 +{\l—asz2

N

Hv—t—-—v
VO.CD
1‘_ cC H H

Ry l C\D_ L D
Voac l l
Voco Vops

Fig. 5.9 Cable with two concentrated loads. (a) Loading. (b) Vi(x), Mo(x) diagrams. (c¢) Cable sag profile. (d) Cable
tension computation
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Determine: The shape corresponding to this loading. Assume (a) vp = 6 ft (b) vp = 12 ft.

Fig. E5.1a Cable geometry and loading

Solution: First, we find the vertical reactions and generate the shear diagram V(x) and moment
diagram, My(x), treating chord AB as a simply supported beam acted upon by the three vertical forces

(Fig. E5.1b).

10 kip Ukp 12 kip
a4 ! l s
R‘=18.2k'p; - D E } r,=178%p
208 e R 2ft
17.8 kip

s —+—l + =t
18.2kip f e

=)

Fig. E5.1b Simply supported beam results
The downward vertical sag from the chord AB is determined with (5.8).

+1 v(x):MOT(x)

In order to compute v(x), we need the horizontal force, H.

(a) Taking vp = 6 ft results in

6= 61%0 = H=101.67kip
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The remaining sags are

364

Ve = 0167 — 3.58ft
391.6

VE = 0167 — 3.85ft

The final results for the shape are plotted below (Fig. E5.1c).

101.67 kip «—+

—+— 101.67 kip

Fig. E5.1c Sag profile for vp = 6 ft

Once the shape is known, one can find the tension in the various segments using (Fig. ES.1d)

Fig. E5.1d Force decomposition

Tac = V18.2% + 101.672 = 103.3kip
Tep = /8.22 + 101.67% = 102kip
Tpg = V/5.8% + 101.67% = 101.8kip
Tea = V/17.8% + 101.672 = 103.2kip

(b) Taking vp = 12 ft results in

610

H = 50.83kip

2
364
50.83
3916

~50.83

% =17.16f1t

=771t

VE
and
TAC = 54klp
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The sag profile is plotted below (Fig. E5.1e)

B
50.83 kip €~ —+—> 50.83 kip

17.8 kip

Fig. E5.1e Sag profile for vp = 12 ft

Note that increasing the prescribed value of vy decreases the cable forces.

5.2.2 Inclined Cables

Fig. 5.10 Inclined cable
with concentrated loads

¥B

a Ly a3 Ly

When the cable is inclined, we follow the same approach except that now we measure the cable sag
with respect to the inclined chord. Consider the cable defined in Fig. 5.10. This example differs from
the previous examples only with respect to the inclination of the chord AB.

The reactions and corresponding bending moment distribution generated by the vertical loads are
shown in Fig. 5.11. Note that these moment results are identical to the results for the case of a horizontal
chord orientation. The reactions generated by the horizontal cable force, H are defined in Fig. 5.12.

Setting the total moment equal to zero leads to

Mo(x) — Hﬁx +Hy(x)=0

Note that the solution for v(x) is identical to the results for the horizontal cable except that now one
measures the sag from the inclined chord.
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Fig. 5.11 Simply a P P
supported beam results. (a) 1 2
Vertical loading. (b) V() l l ) ;
diagram. (c¢) Mo(x) diagram A B R A =a 2P, +| 1- al JIPI
€ D g S E
S :FRB R.=aP +(1-a, |P
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. al, . L, (1-a, a,) a,L . B 117 "2)72
] ] 1 1
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Vi(x)
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Fig. 5.12 Reactions due B
to horizontal force, H x ——>H
¥B Y H YB
Ly
Pne i ’
Hyg &
Ly
a) Lh as Lh

Example 5.2 Analysis of an Inclined Cable

Given: The inclined cable and loading shown in Fig. E5.2a.
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Determine: The sag of the cable. Assume vp = 6 ft.

| 20f ot R | 2n

Fig. E5.2a Inclined geometry

Solution: According to the theory presented above, the sag with respect to the inclined chord is
given by

+1 o) =

where M(x) is the simply supported beam moment (Fig. E5.2b).

10 kip 14 kip 12 kip
- J, l l B
C D E f
18.2 kip 17.8 kip
, Mt 301t " N 210 :

18.2 kip I &2 kip

1=y Mo(x)

Fig. E5.2b Simply supported beam results

Then,
e 364 610 ~391.6
‘T H H
For vp = 6 ft, the value of H follows from
_ Mo 610

H —— =101.67kip
VD 6
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Finally, the values of sag at C and E are

364

Ve = Toie — 3.58ft
391.6

VE = 10167 — 3.85ft

To determine the tension, we need to compute the vertical shear in each panel
The vertical reactions due to H (Fig. ES.2c) are

Hys 101.67(4)

. = 110 = 3.7kip

101.67 kip ¢—— 2

3.7 kip

B
c —+—> 101.67 kip
i 37 ki
D E 5

Fig. E5.2c Vertical reactions due to H

The net results for vertical shear are shown in Fig. E5.2d.

101.67 kip €+

ldkip  12kip

Net reactions

14.1 kip 5
2.1 kip + ea),

119 kip

21.9 kip

Net vertical shear

Fig. E5.2d Vertical shear

Lastly, the tension in each segment is computed using these values for V and H. The maximum
tension is in segment AC.
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Tac = V/21.9% + 101.67% = 104kip
Tep = V11.92 + 101.67% = 102.4kip
Tpe = V/2.1% + 101.67% = 101.7kip
Tea = V'14.097 + 101.672 = 102.6kip

5.3  Cables Subjected to Distributed Loading
5.3.1 Horizontal Cable: Uniform Loading per Horizontal Projection

Fig. 5.13 Cable with
a uniformly distributed
loading

We consider next the cable system shown in Fig. 5.13. The cable supports a horizontal platform,
which in turn, supports a uniform vertical loading. We represent the action of the closely spaced
vertical hangers on the cable as a uniform downward loading per unit horizontal projection. The self
weight of the cable, which is usually small in comparison to the applied loading, is neglected.
Following the procedure described in the previous section, we determine the moment diagram for a
simply supported beam spanning between the end supports. The sag of the cable with respect to the
horizontal chord AB is an inverted scaled version of the moment diagram. The details are shown in
Fig. 5.14.
The sag, tan 8, and T are given by

Mo(x)  (WL/2)x — (wx*/2) w

= = = —(Lx — 2
v(x) i 7 2H(X x)
_dv 1TdMo(x)  w 59
tan9—dx—H ™ —2H(L 2x) (5.9)
T H
" cos @

It follows that the shape due to a uniform load is parabolic and the maximum sag occurs at
mid-span, point c.
wL?

(L*/2—L%/4) = < (5.10)

w

ve=h=5g
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Fig. 5.14 Horizontal

w
cable. (a) Simply supported a Ed L L & kol 3l Lk =
beam results. (b) A &
Cable sag rg'r %
=W
RA - TT TRB= wl
2
| L |
I |
X
—
/_:\
. =
M= "L, wx
2 2
b
—x

Example 5.3

Given: The cable shown in Fig. E5.3a. The loading and desired cable geometry is specified.

Determine: The value of the horizontal tension force, H and the peak value of cable tension, which
produces this geometry under the given loading.

wp=15 kN/m

%ﬂ/m\h\

Fig. E5.3a
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Solution: We note that the maximum value of v occurs at x = L/2. Then, specializing (5.9) for this
value of x leads to the value of H:

Wo

W()L wWo 3 L
=y <x<=
Mol =7-x =30 0=x=3
1 dMo(x) 1 W()L wWo o
tan 6 = — =—|——-—
WOTH e TH\ 4 L
Mo(x=L/2) wol*1 (15)(30)*
H= = — = = 375kN
vc 12 vc 12(3)
The tension is related to H by:
H
T =
cos 0

The peak values of @ occur at x = 0 and x = L.

1 (woL (15)(30)
tan Oy ,—0=—(—) = —-%-=023
an Yaa=o H( 4 ) (375)(4)
Oai—0 = 16.7°
It follows that
Omax = £16.7°

Toax = L = 391.5kN
cos 6

5.3.2 Inclined Cables

Suppose the cable is inclined and subjected to an arbitrary loading. We define the shape by the
function y(x). Figure 5.15 defines this notation.

Since the cable has no bending rigidity, the shape of the cable must adjust itself so that the resultant
moment due to the vertical load and H vanishes at all points along the cable. Then, setting the total
moment at x equal to zero leads to

ZMW = My(x) + Hy(x) _Hys

\ (5.11)

ye_ Mo(x)
y(x) = fhx - OT
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Fig. 5.15 Inclined cable a R
geometry—arbitrary & | I |—1 ™
loading. (a) Geometry- B

arbitrary loading. (b)
Simply supported beam
results. (¢) Reactions due to

horizontal force, H .
L
: - {
b R
AII_ 1 l X l B . ‘\1 B
of 4
A X
- R
Ly TR
t :
M(x) —~
ol N T el ™~
._/
r) + ‘\\

We note from Fig. 5.15 that

x Ly
U (5.12)
(1) = Px = ()

Finally, equating (5.11) and (5.12) leads to the expression for the sag,

v(x) = % (5.13)

We observe that the solution for the sag is identical to the result that we obtained for the horizontal
chord orientation except now one measures the sag from the inclined chord. The solution is also

similar to the case of a set of concentrated loads.
The lowest point on the cable (point C in Fig. 5.16) is determined by setting the slope equal to zero.

dy
dx

Xc

=0 (5.14)
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Fig. 5.16 Cable Y
geometry—lowest point

L

" > X
.‘.{
X c
—y
Noting (5.11),
yg 1 dMy(x)
=————2=0 5.15
L, H dx ( )
For the case where the distributed load is uniform, M(x) is parabolic, and (5.15) expands to
g 1 wLy
B~ ) =0 5.16
. ( wxe + 2 ) (5.16)
Solving for x leads to
Lh VB H
=——-=— 5.17
T T Lw (5.17)

For an arbitrary loading, we need to use (5.15).

Example 5.4

Given: The inclined cable is defined in Fig. E5.4a. Point C is the lowest point of the cable.
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402

Determine: The coordinates of point C and the peak values of cable tension.

15 kN/m
N P T T A R R T
B H=360 kN

—

‘r

yg=3m

Ly=30m |

Fig. E5.4a
Solution: Noting (5.17),
L H
_Lth_ B :30 3 (%) =12.6m

Applying (5.11) for point C,

Yo = xc2B — K{thc - (xc)z} =126 (33—0) __ b (30(12.6) - (12.6)2)

L, 2H 2(360)
= —33m
Given H, we can find the cable tension at any point with:
_H
~ cos @

where
dy ygp wly  wx

tan 0 = = Wy
M= T L, 2H H

The critical locationsare at the support points A and B.

3 15(30)
fan O = — — — 0525 0n=-27.7°
MEAZ30 7 2(360) A
3 15(30)  15(30)
= —— — _— = . 2 == . °
n s =35~ 530+ agp- = TOT5 0= 4359
—H_ 4066kN
cos B
- — 444.6kN

Trax = Tg =
ma B cos Og
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5.4  Advanced Topics

This section deals with the calculation of arch length, the axial stiffness, and the effect of temperature.
We also discuss a modeling strategy for cable-stayed structures such as guyed towers and cable-
stayed bridges.

5.4.1 ArclLength

We consider first the uniformly loaded horizontal cable shown in Fig. 5.17. We have shown that the
sag profile due to a uniform load is parabolic,

) wL wx?
v(x) = -
2H 2H
and the maximum sag occurs at mid-span,
wlL?
max = h=——
Yma 8H

Given H and L, of interest is the total arc length of the cable. We need this quantity in order to
determine the effect on the cable geometry of a temperature increase in the cable. Figure 5.17 shows
the initial and loaded shapes of the cable. Note that the deformed length is greater than L. We denote
this quantity as L + A.

The differential arc length, ds, is related to its horizontal and vertical projections by

2
ds = /d@ +dy? = dxy [ 1+ (%) (5.18)

Fig. 5.17 Cable a
geometry. (a) Initial A B
unloaded. (b) Loaded
shape
| A
+ +——
k S J
Ly "
b
w
ok P ' N & & L 1
X
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Integrating between 0 and L leads to an expression for the total arc length

=l (@) 59

Given y(x), one evaluates the integral using either symbolic or numerical integration. When the
cable is horizontal, y(x) = —v(x).

()_WL +x2 _4h +x2
Y =g\ ) T T\ L

When the maximum sag / is small with respect to L, we can assume that dy/dx is small with respect
to 1 and simplify the integral in (5.19) using the following binominal series expression,

bl o
(A+fP=1+f—of + (5.20)
il <1

Taking f = (dy/dx)2 and retaining only the first three terms, we obtain the following approximation for S:

SRR

L 2
d
Noting Fig. 5.17a, we see that A ~ %J ((&) dx for a small sag ratio.
0

Lastly, we evaluate S for the case when the loading is uniform. Retaining the first three terms in

(5.21) leads to
8/n\* 32/h\*

We refer to 4/L as the sag ratio. Equation (5.22) shows that the effect of decreasing the sag ratio is
to transform the “curved” cable to essentially a straight segment connecting the two end points. The
cables used for guyed towers and cable-stayed bridges have small sag ratios and are approximated as
equivalent straight axial elements. We will discuss this topic in a later section.

Example 5.5

Given: The cable defined in Fig. ES.5a.

Determine: The length of the cable corresponding to this geometry. Also determine the change in
geometry due to a temperature increase of 150 °F. Take a = 6.6 x 10~ /°F.
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2kip/ft
« 4 4 4 L & $ L L F 4 L 4

J\aw

100 ft

t
200 ft

1
I
|
I

Fig. E5.5a

Solution: The horizontal reaction due to the loading shown is

wi?
We evaluate S using (5.22),
S =200 1+8 40\ _32(40)* =200{1+ 0.107 — 0.01}
B 3\200 5 \200 N ’ ’

S=1219.4f1t
The change in cable length due to a temperature increase is

AS = S(aAT) ~219.4(6.6 x 107%)(150) ~ 0.217ft

This length change produces a change in the sag. We differentiate (5.22) with respect to 7,

ds _16h %(h>3

—_ —

dn 3L S5 \L

and solve for dh.
ds

dh ~ 5
(16/3)(h/L){1 — 4.8(h/L) }

Substituting for dS leads to

dh = 0.217 =0.25ft

(16/3)(40/200){1 - 4.8(40/200)2}

Finally, we update H using the new values for 7 = 40 + 0.25 = 40.25 ft

Cwl? 2(200)

=W S 9485k
8h  8(40.25) P

The effect of temperature increase on H is small for this geometry.

405
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Example 5.6

Given: The uniformly loaded inclined cable is shown in Fig. E5.6a.
Determine: The sag profile and total arc length.

w= Ikip/ft

A PR T R T N R P T

L, = 100 ft

Fig. E5.6a

Solution: The profile defined in terms of y(x) is given by (5.11). For the given dimensions, it

expands to

o) = 32— o)

15 2\ 1
= - (500 -2 )
100" ( N 2)80

Then, the sag profile is given by

We determine the total arc length using (5.19).
L 4\ 2 1/2
Yy
S= 1 — dx
[ @)

Substituting for y(x), S expands to

100 2} 1/2

15 1
S = 1+ |———==(50— dx
L { * [100 50 x)] }

We evaluate the integral using numerical integration. The result is

S =107.16ft
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5.4.2 Equivalent Axial Stiffness

In what follows, we establish a procedure for modeling a shallow horizontal cable as an equivalent
straight axial member. Consider the cable shown in Fig. 5.18. Suppose the horizontal force, H, is
increased by a small amount, say AH. This action causes the support at B to displace horizontally, an
amount Au. The ratio AH/Au is a measure of the axial stiffness for the cable. We interpret it as the
tangent stiffness since we perturbed the system from a “loaded” state.

Fig. 5.18 Actual and a W
perturbed configurations E 3 & & & &£ &£ & L L I T )

> H + AH

We generate an expression for the tangent stiffness in the following way. We start with the straight
unloaded cable shown in Fig. 5.19 and apply a horizontal force. The cable stretches an amount u;.
Next, we apply the uniform downward load, holding H constant. Point B moves to the left, an amount
u,. We estimate u, using (5.21) specified for a parabolic shape and small sag ratio,

L 2 273
1/d L

uzmj——y =2
o 2 \dx 24H?

The net motion of B is ug.

HL w2L?

— 5.23
AE  24H? (5:23)

Ug = Uy — Up =
Equation (5.23) is plotted in Fig. 5.20. For large H, the first term dominates and the behavior

approaches the behavior of an axial member. We want to determine dH/du. Since ug is a nonlinear
function of H, we first find the derivative du/dH, and then invert.

dug L w3 L 1 AE /wL\>
dH ~ AE " 12H3  AE 12H \H

! (5.24)

aH ! AL
dug '\ 1+ (1/12)(AE/H)(WL/H)? ) L
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Fig. 5.19 Deflection A B
patterns e ad
A -
1 l' |
1 |
A B
Y - - )‘ H
A | Y
u,
—2y
w
A + L 4 1 X I 5 & L 1 1 1 H
B
+
g
Fig. 5.20 ug vs. ug

H relationship

AE

/ H
Note that AE/L is the axial stiffness of a straight member. Equation (5.24) shows that the tangent
stiffness for the horizontal cable approaches AE/L as the tension H is increased.

The tangent stiffness k; can also be expressed in terms of a modified elastic modulus E.,.
We write (5.24) as k, = (A/L)E.. Then, the definition equation for E.q follows:

E
Eeq = 5 (5.25)
1+ (1/12)(AE/H)(wL/H)
In general, E.q < E. Substituting the terms,
A 1
H ¢
wL h
Z_g(=
i ==(0)
transforms (5.25) to
E
Eeq == (526)

1+ (16/3)(E/o)(h/L)’
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where o is the stress in the cable. It follows that the equivalent modulus depends on the initial stress in
the cable and the sag ratio. A typical value of initial stress is on the order of 50-100 ksi
(344,700-1,034,100 kN/m?). Values of sag ratio range from 0.005 to 0.02. The corresponding
variation in Eq for a steel cable with 6 = 50 ksi (344,700 kN/mz) is tabulated below.

Elo hiL Eei/E
580 10.005 10.928
0.01 0.764
0.02 0.447

Note that a typical sag ratio of 0.01 results in a 25 % reduction in E. One uses high-strength steel
strands, on the order of 150 ksi (1,034,100 kN/mz) yield stress, for cable-stayed structures in order to
minimize their loss of stiffness due to cable sag.

5.4.3 Equivalent Axial Stiffness for an Inclined Cable

In this section, we extend the modeling strategy to deal with shallow inclined cables. Inclined cables
with small sag ratios are used in cable-stayed bridges and also as supports for guyed towers.
Figure 5.21 shows the Millau Viaduct Bridge in France. Figure 5.22 illustrates a two-cable scheme
for a guyed tower subjected to wind loading.

We model each cable as a straight axial member with a modulus of elasticity, E., which
depends on the initial tension and geometry of the cable. This approach is reasonable when the
changes in geometry and tension due to the applied load are small in comparison to the initial
properties.

Equilibrium of the tower requires

2AT cos @ = P (5.27)
P.u
—_— T
8

The corresponding extension of the “equivalent” straight member due to AT is:

_ATL

= 5.28
=L (5.28)
Lastly, we relate Ae to the horizontal displacement u.
Ae =ucos 0
Combining these equations leads to an expression relating P and u.
2AE
P= {Teq(cos 9)2] u (5.29)

The bracketed term represents the lateral stiffness of the tower for a lateral load applied at the top

of the tower. Given Eq, one can evaluate the lateral response of the tower with (5.29).
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Fig. 5.21 Millau Viaduct Bridge in France

Fig. 5.22 Guyed tower a b F=u
modeling scheme.
(a) Initial position.
(b) Loaded position

We develop an expression for E.q by modifying (5.25). Figure 5.23 shows a typical inclined cable
and the notation introduced here. The loading acting on the cable is assumed to be the self weight, w.
Also when the cable is rotated from the horizontal position up to the inclined position, H is now the
cable tension, T; the normal distributed load w becomes w, cos 6; and the loading term becomes

wL = (wg cos )L = wgly, (5.30)

Substituting for these terms in (5.25) leads to

E
Eeq =~ 5 (5.31)
1+ (1/12)(AE/T) (weLn/T)
Lastly, we introduce the following definitions involving the initial stress and weight density,
A 1
T (5.32)

-
Wg = ygA
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/
90°-0
ds W =W, cosd
ds
dx

The final form of (5.31) for an individual cable is

Fig. 5.23 Inclined cable a
geometry. (a) Vertical
versus normal loading.
(b) Loading components

E
1+ (1/12)(E/0) (yoln /o)’

Equation (5.33) is known as Ernst’s Formula. This expression is used when modeling the cables in a
cable-stayed scheme with equivalent axial member properties.

Eeq = (533)

Example 5.7

Given: The steel cable shown in Fig. E5.7a. Take the initial stress as 700 MPa.

Determine: The equivalent modulus, E..

steel cable
AE

120 m

Fig. E5.7a

Solution: The properties of steel are £ = 200 GPa and y, = 77 kN/m®. Substituting these values in
(5.33) leads to

Eeq 1

=0
E 1+ (1/12)(200(10%)/700)(77(120)/700,000)

996
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One uses E.q when specifying the properties of the “equivalent” straight axial member.

AE

120 m

5.4.4 Cable Shape Under Self Weight: Catenary

There are cases where the loading on a cable is due only to self weight. Electrical transmission lines
are one example. The previous analyses have assumed the loading is defined in terms of the horizontal
projection (dx). This assumption is reasonable when the slope of the cable is small. In order to
investigate the case when the slope is not small, we need to work with the exact equilibrium equation.

Consider the segment shown in Fig. 5.24b. Enforcing equilibrium and noting that the loading is
vertical leads to following equations:

d
> Fy=0 (T sin 0)dx = weds

) (5.34)
ZFX =0 a(T cos #) =0 = T cos @ = Constant = H

Substituting for T

. dy
=T 0=Htan 0 = H—
Sin an dx

T =
COoS

in the first equation in (5.34) leads to

d*y ds dy 2

The general solution of (5.35) is

y :Ecosh(&x—kcl) +c (5.36)
Wg H
where ¢ and ¢, are integration constants which are determined using the coordinates of the support
points. For the unsymmetrical case, we locate the origin at the left support (Fig. 5.24a). When the
cable is symmetrical, it is more convenient to locate the origin at the lowest point.
We consider the symmetrical case shown in Fig. 5.25. We locate the origin at the lowest point.
Then for this choice,

C1:0

)= ——
We
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Fig. 5.24 (a) Cable shape
under self weight—
catenary. (b) Differential

segment
b dT
T+—dx
wW_ds dx
g
0
5 dx
—
Fig. 5.25 Catenary— Y
symmetrical
H —>H
h
X
, L2 . L2
1 t t
and

H
y=— {cosh<&x> — 1}
Wq H
The force H is determined from the condition y(L/2) = h

h— W% {cosh (Z—if) - 1} (5.37)
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We need to solve (5.37) using iteration since it is a transcendental equation.
Expanding the cosh term,

b1+ S
coshx = — — P —
2 24 n! 538
. 2 . 2 2x(i172) ( : )
- +2{ AR }
and noticing that when x” is small with respect to 1, the expression can be approximated as
x? x>
hx~14+—q1+—=
coshx + > { + 12}
and taking x = g—ﬁf leads to
woL? 1 (wel\’
hm 201+ — (2 5.3
8H { Jr12(2H> } (5.39)

When the loading is assumed to be per unit projected length, the corresponding expression for /4 is
h = wL?/8H. For a given H, h is larger for the self weight case. Also for a given A, H is larger for the
self weight case. The difference increases with the sag ratio, 4/L.

We find the arc length using (5.35).

d’y
H@dx = ngs
Integrating,
SO, & 2 dyff
S = 2J < >H§dx e
0 \Wg/ Ay dilg (5.40)
2H L
S = —sinh (wi>
W 2H

The maximum tension, which occurs at x = =+ (L/2), is determined using

Wol.
Trmax = Hcosh| =£= 5.41
cos (2H> (5.41)

Example 5.8

Given: The cable shown in Fig. E5.8a has a self weight of 1.2 kip/ft.

Determine: The arc length, 4 the maximum tension in the cable using the catenary equations, and the
percent of error in the maximum tension value when using parabolic equations. Consider the
following values for H: H = 75, 100, and 250 kip.
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H «—

Fig. E5.8a

L=200 i
T
— H
h
T — —
I
we= 1.2 kip/fl

Solution: The relevant equations are listed below.

Wel
Tmax = H cosh (i)

415

These equations are evaluated using a digital computer. The results are summarized in the table
below. Note that when /4/L is large, the error introduced by the parabolic approximation is significant.

‘ Catenary
H S h
75 296.9 98.6
100 251.6 67.5
250 1207.7 |24.5

5.5 Summary

5.5.1 Objectives

| Parabola
hap, Tinax h Trmax
97 193 80 141.5
67.2 181 60 156.2
24.5 279 24 277.3

% difference T
27 %

14 %

1%

» Todescribe how a cable adjusts its geometry when subjected to a single vertical concentrated load.

» To extend the analysis to a cable subjected to multi-concentrated vertical loads.

» To derive an expression for the deflected shape of the cable when subjected to an arbitrary vertical

loading.

» To present a series of examples which illustrate the computational procedure for finding the

deflected shape of a cable.

» To derive an approximate expression for the equivalent axial stiffness of a cable modeled as a

straight member.
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5.5.2 Key Concepts

» Given a cable supported at two points, A and B, and subjected to a vertical loading. The vertical
deflection from the chord connecting points A and B is proportional to the bending moment M in a
simply supported beam spanning between A and B. One finds the bending moment diagram using
a simple equilibrium analysis. The deflection of the cable with respect to the chord AB is an
inverted scaled version of the moment diagram.

» Under vertical loading, the horizontal component of the cable force is constant.

» The length of the cable is determined by integrating

L L dy 2
S=| as=| {1+ (2) &
=Ly (@)

_ (%) YB
Y=oy Lt

where

One usually approximates the integrand with ds ~ 1 + (1/2) (dy/dx)*> when (dy/dx)* is small in
comparison to 1.

5.6 Problems
For Problems 5.1-5.8, determine the reactions at the supports, and the tension in each segment of the cable.

Problem 5.1

10 kip l IS kip

16 Nt 20 ft L 301

Problem 5.2

A g

Im

Sm 6m 10 m
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Problem 5.3

Problem 5.4

6 ft

Problem 5.5

y >

8 f

gl I
D

10 kip l 12 kip

14 kip

18f  , ISR, ISf 10t

|
1
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Problem 5.6
6 ft
10 kip J, 20 kip
14 kip
| I I | I
Problem 5.7
I m
j 4m 6 m L 4dm , 6m
T T T T T
Problem 5.8
v E L4511
B 14.5 ft
l n P
0ft  30f ,  25ft 15fy

1
I T T T T

For Problems 5.9-5.14, determine the maximum tension.
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Problem 5.9
1.2 kip/ft
£ L L I 1 11 I 1 1 331 1
A B
N 4 ﬂ
i 30t :
T 1
. 80 ft I
T T
Problem 5.10
20 kN/m
g 2m ﬁj’ﬂ
8m
+—t
I 24m i
I I
Problem 5.11

Assume w = 1.7 kip/ft and H = 40 kip.

&

+ & + + J+ I I

He— A

-

00 ft

Problem 5.12

1.45

kip/ft

4 4+ 4 L L 1 4

+ L4 4

Ay

2 B
M

7;;\4

40 ft

80 ft
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Problem 5.13

30m

-
-

4m

H=200 kN

20 kN/m

Problem 5.14
Assume w = 1.4 kip/ft, yg = 10 ft, H = 100 kip, and L;, = 40 ft.

I T—T I T In

¥ E , YR
- A A X
L

| |
Ly

)
—

Problem 5.15
Assume wy = 1.8 kip/ft, va » — 20 ¢ = 2 ft and L = 80 ft. Determine the deflected shape.

Wo

—_
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Problem 5.16
Determine the coordinates of the lowest point on the cable for H = 650 kN

w=30 kN/m
« & $ ¥ 3 J I I J

B —5H

Problem 5.17
Determine the peak values of cable tension.

1 kip/ft
T I T T I3 T I 3L T 1

Y a

10 f

A

10 1t

Problem 5.18

Consider the case where the loading is defined in terms of per unit arc length. Derive the expression
for the deflected shape, v(x).

w ds B

wx) Ly
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Problem 5.19
(a) Determine the total arc length for this geometry.
(b) Determine the effect of a temperature increase of 100 °F. Assume the cable material is steel.

2 kip/ft
P! P A N * P A

500 kip

30 ft

| 100 ft

Problem 5.20

Consider the guyed tower scheme shown in the sketch below. Assume the guys are steel cables that
are stressed initially to 520 MPa. Determine the cable cross-sectional area required to limit the lateral
motion at the top of the tower to 10 mm.

450 kN ——>

45 m

Problem 5.21

The cable shown below carries its own weight. Determine the arc length and yg. Point C is the lowest
point. Assume w = 0.8 kip per foot of cable, L; = 60 ft, L, = 80 ft, and H = 150 kip.

Y




Abstract

Chapter 3 dealt with beams, which are straight members subjected to
transverse loading. We showed there that transversely loaded beams
respond by bending, i.e., they equilibrate the loading by developing
internal shear and moment quantities. When the centroidal axis is curved,
the behavior of a curved member subjected to transverse loading can
undergo a dramatic change from predominately bending action to pre-
dominately axial action depending on how the ends are restrained. This
characteristic of curved members makes them more efficient than straight
members for spanning moderate to large scale openings. A typical appli-
cation is an arch structure, which is composed of curved members
restrained at their ends.

In this chapter, we first develop the general solution for the internal
forces existing in a planar curved member and apply it to members having
parabolic and circular shapes. Next, we introduce the method of virtual
forces specialized for planar curved members and illustrate its application
to compute displacements for various geometries. The last section of the
chapter deals with the optimal shape for an arch and the analysis of three-
hinged arches, a popular form of arch structure. The material presented
here also provides the basis for the analysis of statically indeterminate
arches treated in Chap. 9.

6.1 A Brief History of Arch-Type Structures

We define an arch as a curved member that spans an opening and is restrained against movement at its
ends by abutments. Figure 6.1 illustrates this definition. Arches are designed to carry a vertical
loading which, because of the curved nature of the member, is partially resisted by horizontal forces
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J.J. Connor, S. Faraji, Fundamentals of Structural Engineering,
DOI 10.1007/978-3-319-24331-3_6


http://dx.doi.org/10.1007/978-3-319-24331-3_9
http://dx.doi.org/10.1007/978-3-319-24331-3_3

424 6 Statically Determinate Curved Members
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provided by the abutments. Arches generally are more efficient than straight beam-type structures for
spanning an opening since their geometry can be modified so that they carry the transverse loading
almost completely by axial action, i.e., by compression. However, abutments are required to develop
the compression-type behavior, and this requirement sometimes limits the applicability of the arch for
a particular site.

In what follows, we briefly discuss the historical development of arch structures and then present
the underlying theory for statically determinate curved members. This theory is similar to the theory
for gable roof structures presented in Chap. 4. Later, in Chap. 9, we discuss the theory of statically
indeterminate curved members.

Arches have many applications. They are used for openings in walls, for crossing gorges and
rivers, and as monumental structures such as the Arc de Triomphe. The first application of arch-type
construction in buildings occurred around 4000 BC in Egypt and Greece. Openings in walls were
spanned using the scheme shown in Fig. 6.2. Large flat stones were stacked in layers of increasing
width until they met at the top layer. Each layer was stabilized by the weight applied above the layer.
The concept is called a Corbel arch. No formwork is required to construct the structure. Also, no
horizontal thrust and therefore no abutments are needed. The term “false arch” is sometimes used to
describe this type of structure. False arches were used almost exclusively in ancient Greece where the
techniques of masonry construction were perfected.

The type of arch construction shown in Fig. 6.3 for carrying vertical loading across an opening was
introduced by the Egyptians around 3000 BC. It employs tapered stones, called voussoirs, which are
arranged around a curved opening in such a manner that each brick is restrained by compressive and
frictional forces. The system is unstable until the last stone, called the “keystone,” is placed.
Consequently, temporary framework is required during construction.

Starting around 300 BC, the Romans perfected masonry arch construction and built some unique
structures, many of which are still functioning after 2000 years. They preferred circular arches and
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Fig. 6.4 Pont du Gard
crossing

included them in buildings, bridges, and aqueducts. One of the most famous examples is the Pont du
Gard, shown in Fig. 6.4; a bridge/aqueduct over the river Gard built in 19 BC. Some of the stones
weigh up to 6 ton.

Another example of a second-century multiple span Roman arch masonry bridge is shown in
Fig. 6.5. The typical span length is 98 ft. This bridge crosses the Tagus River in Spain and was a key
element in the transportation network connecting the outer Roman Provinces with Rome.

Masonry materials are ideal for arch construction since they are strong under compression and also
very durable. However, it is difficult to construct long span masonry arch bridges. With the develop-
ment of alternate structural materials such as cast iron and steel at the end of the eighteenth century,
there was a shift toward arches formed with metal members. Figure 6.6 shows the Iron Bridge built in
1781. The main span is 100 ft and crosses the Severn Gorge in the UK. Each of the members was
formed using cast iron technology which was evolving at the time. Since cast iron is weak in tension
and tends to fail in a brittle manner, it was shortly replaced as the material of choice by steel.

The development of railroads created a demand for bridges with more load capacity and longer
spans. During this time period, there were many arch bridges constructed. Figure 6.7 shows the Eads
Bridge built in 1874 across the Mississippi River in St. Louis, Missouri. This bridge has ribbed steel
arch spans of 520 ft, fabricated with tubular structural alloy steel members; the first use of steel in a
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Fig. 6.5 Alcantara Toledo bridge

Fig. 6.6 Iron Bridge,
England

major bridge project. Today, the bridge is still carrying pedestrian, vehicular, and light rail traffic
across the Mississippi.

At the end of the nineteenth century, reinforced concrete emerged as a major competitor to steel as
a structural material. Reinforced concrete allowed one to form arch geometries that were aesthetically
more pleasing than conventional steel arch geometries, and therefore became the preferred material.
Most of this surge in popularity was due to the work of Robert Maillart, a Swiss Engineer
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Fig. 6.7 Eads Bridge, USA

Fig. 6.8 Salginatobel Bridge, Switzerland
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(1872—-1940), who developed arch concepts that revolutionized the design practice for reinforced
concrete arches. An example is the Salginatobel Bridge, shown in Fig. 6.8. This bridge, built in 1930,
crosses the Salgina Valley Ravine in Switzerland with a span of 270 ft. It is the ideal solution for this
picturesque site and has been recognized by ASCE as a landmark project.

A unique arch bridge in the USA is the New Gorge Steel Arch Bridge located in West Virginia.
Opened in 1977, it has the longest main span (1700 ft) and highest height (876 ft) of all arch bridges in
North and South America. It held the world record for span and height until 2003 when the Lupu Arch
Bridge in Shanghai (1800 ft span) was opened. A type of weathering steel called Corten was used in
the New Gorge Arch structure in order to avoid the need for periodic painting.

Another unique arch bridge in the USA is the Hoover Dam Bypass Bridge. Segmented concrete
construction was used to fabricate the concrete box elements in situ. The construction process
employed a complex tieback scheme, as illustrated in Fig. 6.9b—d. The bridge was completed in 2010.

Fig. 6.9 Modern Arch Bridges in the USA. (a) New Gorge Arch, West Virginia. (b) Hoover Dam Bypass—under
construction. (¢) Hoover Dam Bypass—under construction. (d) Hoover Dam Bypass—under construction. (e) Hoover
Dam Bypass—completed
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6.2 Modeling of Arch Structures

We idealize an arch structure as a curved member restrained at its ends with a combination of fixed,
hinged, and roller supports. Figure 6.10 illustrates various types of end conditions. Case
(a) corresponds to full end fixity, a condition that is difficult to achieve. The more common case is
(b) where the abutments can prevent translation but not rotation. We refer to this structure as a two-
hinged arch. The third case, (c), corresponds to a “tied arch structure” where the ends are
interconnected with a tension member. This scheme is used when the abutments are not capable of
resisting the horizontal thrust action of the arch.

If the arch is a bridge, the roadway may be connected above the structure as in Fig. 6.11a, or below
the structure as in Fig. 6.11b. When placed above, the deck weight is transmitted by compression
members to the arch. Decks placed below the arch are supported by cables. Both loading cases are
idealized as a uniform loading per horizontal projection as shown in Fig. 6.11c. In some cases, soil
backfill is placed between the roadway and the arch. The soil loading is represented as a nonuniform
loading whose shape is defined by the arch geometry. Figures 6.11d, e illustrate this case.

The structures in Fig. 6.10 are statically indeterminate. We can reduce the two-hinge arch to a
statically determinate structure by converting it to a three-hinge arch. The additional hinge is usually
placed at mid-span as shown in Fig. 6.12.

In this chapter, we first present a general theory of statically determinate curved members and then
specialize the general theory for three-hinge arches. We treat statically indeterminate arches later in
Chap. 9.

Fig. 6.10 Indeterminate a
Arch structures with

various end fixity

conditions. (a) Fully fixed

Arch—3° indeterminate.

(b) Two-hinged arch—1°

indeterminate. (¢) Tied

arch—1° indeterminate
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a
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¥ 1
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X

Fig. 6.11 Different roadway arrangements—idealized loading. (a) Roadway above the arch. (b) Roadway below the
arch. (c) Idealized uniform dead loading. (d) Soil backfill above the arch. (e) Idealized soil loading
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Fig. 6.12 Three- hingc
hinge arch -

L2 L2

6.3 Internal Forces in Curved Members

We consider the statically determinate curved member shown in Fig. 6.13a. We work with a Cartesian
reference frame having axes X and Y and define the centroidal axis of the member by the function,
¥y = y(x). The vertical loading is assumed to be expressed in terms of the horizontal projected length.
These choices are appropriate for the arch structures described in the previous section. We determine
the reactions using the global equilibrium equations.

The applied load is equilibrated by internal forces, similar to the behavior of a straight beam under
transverse load. To determine these internal forces, we isolate an arbitrary segment such as AC
defined in Fig. 6.13b. We work initially with the internal forces referred to the X — Y frame and then
transform them over to the local tangential/normal frame. Note that now there may be a longitudinal
force component as well as a transverse force component, whereas straight beams subjected to
transverse loading have no longitudinal component.

Enforcing equilibrium leads to the general solution for the internal forces.

Fy= —Ra

Fy= —Ra, + L w(x)dé (6.1)

M = xRay — YRAx — JX w(x)Edé
0

Lastly, we transform the Cartesian force components (F, F,) over to the tangential/normal frame
(F, V). Noting Fig. 6.14, the transformation law is

F =F,sin @+ F,cos 0

V =F,cos 6 — F,sin 0 (6.2)

dy
tan 6 = —
an

In order to evaluate the axial (F) and shear forces (V'), we need to specify the angle 0 between the
tangent and the horizontal axis. This quantity depends on y(x), the function that defines the shape of
the centroidal axis.



Fig. 6.13 (a) Notation for w(x)
statically determinate a
curved member. (b) Free
body diagram—curved
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Fig. 6.15 Curved a w
member—uniform vertical l L l l l
loading. (a) Reactions. =

(b) Internal forces— Ya

Cartesian frame.
(¢) Internal forces—Ilocal

frame

Wx)

A A 5 X

1
7 T+

RA_\':

-
h)|r_.
LY

wL 2
2

433

We specialize the above set of equations for a symmetrical curved member where the loading
consists of

(a)
(b)

(a)

A uniform vertical loading per projected length defined in Fig. 6.15.

A concentrated load at the crown defined in Fig. 6.16.

Uniformly distributed load (Fig. 6.15):
Enforcing equilibrium and symmetry leads to

wL
Rax=0 RAy:RBy:7
L
Fi=0 Fy:—w?erx
M wL wx?
= —X — —
2 2

Note that these results are the same as for a simply supported straight beam subjected to
transverse loading. Substituting for F, and F, in (6.2) results in the internal forces (F, V, M)

due to a uniform vertical loading,
L
F= (—%erx) sin 0

wL
V= (—7+wx> cos 6

(6.3)



434

6 Statically Determinate Curved Members

Fig. 6.16 Curved
member—concentrated
load. (a) Reactions. (b)
Internal forces—Cartesian
frame. (c¢) Internal forces—
local frame. (d) Segment
ACO < x < L/2.(e)
Segment CBL/2 < x <L

1x)

A

(b) Concentrated load (Fig. 6.16):

The internal forces referred to the Cartesian frame are

SegmentAC 0 <x<L/2

F.=0
o P
)
M:Ex

2

SegmentCB L/2 <x <L

F,=0
P _P
)
P
==(L —x)
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Substituting for F, and F, in (6.2) results in the internal forces (F, V, M) in the local frame,

For 0<x<L/2 For L/2<x<L

F:fgsine F:+§sin9

V= —gcos 0 V= +§cos€ (64)
M:%)x Mzg(fo)

6.4 Parabolic Geometry

We will show later that a parabolic arch is the optimal shape for a uniform vertical loading, in the
sense that there is essentially no bending, only axial force, introduced by this loading. Using the
notation defined in Fig. 6.17, the parabolic curve is expressed in terms of 4, the height at mid-span,
and the dimensionless coordinate, x/L.

X X\ 2
y(x) = 4h {Z - (Z) } (6.5)
Differentiating y(x) leads to
dy h X
=—=4-(1-2-
tan 6 p 7 ( L) (6.6)

The maximum value of §is at x = 0, L

h
Omax = =+ tan ! (4)
L

Values of 0,,,x vs. h/L are tabulated in the table below.

Fig. 6.17 Notation for Ya
parabolic shape function

y(x) h

- -
W
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% Omax(®) tan 6,ax COS Omax Sin Gpax
0 0 0 1 0
0.01 2.3 0.04 0.999 0.04
0.025 5.7 0.1 0.995 0.099
0.05 11.3 0.2 0.98 0.196
0.1 21.8 0.4 0.93 0.37
0.15 30.9 0.6 0.86 0.51
0.2 38.6 0.8 0.78 0.62
0.25 45 1 0.7 0.7
0.3 50.2 1.2 0.64 0.77
0.35 54.4 1.4 0.58 81
0.4 58 1.6 0.53 0.85
0.45 60.9 1.8 0.48 0.87
0.5 63.4 2 0.45 0.89

The parameter 4/L is a measure of the steepness of the curved member. Deep curved members
have h/L > ~0.25. A curved member is said to be shallow when A/L is small with respect to unity, on
the order of 0.1. The trigonometric measures for a shallow curved member are approximated by

d
tan 6 = ay R~ f(rad)
: cosf=—~1
shallow parabolic curve T+ tan © an 0 (6.7)
tan 0
sin @ = LU tan 6 ~ O(rad)

Vv 1+ tan 0?

Example 6.1 Shallow vs. Deep Parabolic Curved Members

Given: The parabolic curved beam defined in Fig. E6.1a.

Determine: The axial, shear, and moment distributions for (a) #/L = 0.1, (b) h/L = 0.5.

VIRV 2R /B 2R /I /I A

Y

Fig. E6.1a Parabolic geometry



6.4 Parabolic Geometry

437

Solution: Enforcing equilibrium and symmetry leads to the reactions listed in Fig. E6.1b.

Fig. E6.1b Reactions

Applying (6.3) and (6.5), the internal forces in the local frame are

where

w

VIR

P 2N /2N 2 /2 I

F:

wL+
—— +wx
2

sin @

L
V= (—w?+wx) cos 6
2

M= %Lx —%
cos 0= ! 5
\/1+ (4%(1 —2%))
h X
sin 6 = 42(1 _ 2Z> 5
\/1+ (4%(1 —2%))

The internal forces are listed in the table below and plotted in Figs. E6.1c, E6.1d, and E6.1e for

h/L = 0.1 and h/L = 0.5. Note that the moment is independent of //L.

% =0.1 % =05
X M Vv F 14 F
L wi? wL wL wL wL
0 0 —0.464 —0.186 —0.224 —0.447
0.1 0.045 —0.381 —0.122 —0.212 —0.339
0.2 0.08 —0.292 —0.07 —0.192 —0.125
0.3 0.105 —0.197 —0.032 —0.156 —0.125
0.4 0.12 —0.1 —0.008 —0.093 —0.037
0.5 0.125 0 0 0 0
0.6 0.12 0.1 —0.008 0.093 —0.037
0.7 0.105 0.197 —0.032 0.156 —0.125
0.8 0.08 0.292 —0.07 0.192 —0.23
0.9 0.045 0.381 —0.122 0.212 —0.339
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h h
—=0.1 —=0.5
L L
X M \%4 F %4 F
L wL? wL wL wiL wL
1 0 0.464 —0.186 0.224 —0.447
F ML=0] -«----
—
wL WL =05
5 X
L
Fig. E6.1c Axial force, F
M +H
wL?
0.15 T T T T
0.125 —
0.1
0.05F
0 1 L 1 1 S i
0 02 04 06 08 | L

Fig. E6.1d Moment, M
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04"

-0.6

Fig. E6.1e Shear, V

——— WL =0l
WL =05

=

L

The axial force is compressive and the maximum value occurs at the supports. The maximum
shear force also occurs at the supports. The maximum moment occurs at the mid-span. These

maximum values are listed below.

Fmax

Vmax

0.186wL for
0.447wL  for
0.464wL for
0.224wL  for

Mpax = 0.125wL?

Y
h
2:0.5
h
EzO.l
Z:0.5

Example 6.2 Shallow vs. Deep Parabolic Curved Members

Given: The parabolic curved beam defined in Fig. E6.2a

Determine: The axial, shear, and moment distributions for (a) #/L = 0.1, (b) #/L = 0.5.
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Fig. E6.2a

Solution: Enforcing equilibrium and symmetry leads to the reactions listed in Fig. E6.2b.

y(x)

o ¥ {Lm

Fig. E6.2b Reactions
Applying (6.4) and (6.5), the internal forces in the local frame are

For 0<x<L/2 For L/2<x<L

F = P 0 F——i—P’ 0
= 2s1n = 2sm
P P
V:fzcose V:+§cos6
m="r M=oy
-2 P

where
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cos § = !
h n\?
\/1 + <4Z(1 - 22))
I )

\/1+ <4%(1—2%)>2

The internal forces are plotted in Figs. E6.1c, E6.1d, and E6.1e and listed in the table which
follows for 4/L = 0.1 and h/L = 0.5.

X,

P WL = 0.1

hWL=05 ——

02 04 06 08 1

==

-0.1
=02
=03

-04
-0.447

Fig. E6.2c Axial force, F

0.25—

0.2

0.1F

I 1 1 1
0 02 04 06 08 1

N
ol B

Fig. E6.2d Moment, M
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0.6+

0.4+ \ '

0.2+

=
=
wn
=

0.2+
041 N\
0.6

Fig. E6.2e Shear, V

The axial force is compressive and the maximum value occurs at the supports. The maximum
shear force and maximum moment occur at the mid-span.

L=0.1 1=05

s M v E v E

L PL P P P P

0 0 —0.464 —0.186 —0.224 —0.447
0.1 0.05 —0.476 —0.152 —0.265 —0.424
0.2 0.1 —0.486 —0.117 —0.32 —0.384
0.3 0.15 —0.494 —0.079 —0.39 —0.312
0.4 0.2 —0.498 —0.04 0.464 —0.186
0.5 0.25 0.5 0 0.5 0

0.6 0.2 0.498 0.04 0.464 0.186
0.7 0.15 0.494 0.079 0.39 0.312
0.8 0.1 0.486 0.177 0.32 0.384
0.9 0.05 0.476 0.152 0.265 0.424
1 0 0.464 0.186 0.244 0.447

6.5 Method of Virtual Forces for Curved Members

Displacements are determined using the form of the method of virtual forces specialized for curved
members [1]:

ase = |

s

F 14 M
{EéF + GAsév + E&M}ds (6.9)
where d is the desired displacement, 6P, 6F, 8V, 6M denote the virtual force system, and the various
terms represent the contribution of axial, shear, and bending deformation. As discussed in Chaps. 3
and 4, the contributions of axial and shear deformation are usually small and only the bending
deformation term is retained for slender straight beams and frames composed of slender straight
members. For curved members, we distinguish between “non-shallow” and “shallow” members.
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6.5.1 Non-shallow Slender Curved Members

For non-shallow slender curved members subjected to transverse loading, the contributions of axial
and shear deformation are usually small and only the bending deformation term is retained. In this
case, we approximate (6.9) with

d6P ~ J (6.10)

§

Mo _J MM
E1°C T ) Elcos 0

6.5.2 Shallow Slender Curved Members

For shallow slender curved members subjected to transverse loading, the axial deformation may be as
significant as the bending deformation and therefore must be retained. In this case, we use

F M F M dx
{E(SF—FEéM}ds = JX{E5F+E‘5M} o d (6.11)

d5PzJ

s

Example 6.3 Deflection of Parabolic Curved Beam—Shallow vs. Deep

Given: The parabolic curved beam defined in Fig. E6.3a. Consider EI is constant.
Determine: The horizontal displacement at B for (a) non-shallow beam and (b) shallow beam.

w

S I I PR I A R A

Y A

ylx)

N
wlh L1 wlL

| !—) ug

Fig. E6.3a



444 6 Statically Determinate Curved Members

The internal forces for this loading are
wL .
0 F:(—T—&—wx)sma

F,=
F=-" L
) 2 o Vz(—%—f—wx)cose

M wL wx?
=5
.
v
£ 1 1 1 [TT Il M
A M J; ‘)
I‘j' () i
) (— Cil
Fx
¥(x) y(x)
A A ¥
WL X wL X
i 3 2

Fig. E6.3b

In order to determine the horizontal displacement at support B, we apply the virtual force system
shown in Fig. E6.3c.

j 4
yix)
1 (—{—A .
.~ > X B 8P =1
Fig. E6.3c Virtual force system for ug
The internal virtual forces are
oF, =1 N OF = 0F, sin 0 + 6F, cos 6 = cos 0
oF, =0 0V = 6F) cos 8 — 6Fsin § = —sin 0
M = y(x)
dy
tan 0 = —
an P



6.5 Method of Virtual Forces for Curved Members 445

oF

L

y M v M

8!
—_ () - SF

oF,

)’(I } )(I }

| ¢4—
A X !

A

A x
Fig. E6.3d

(a) Non-shallow curved member:
We use the approximate form defined by (6.10) for a non-shallow curved member.

JL MM
up = | ———
B o El cos 0

Substituting for M, 6M, and cos 0, this expression expands to

o[ (55 )l @)

where

h X
¢ 9:4—(1—2—)
an 17 I

For EI constant, the solution is expressed as

-~ wL?*

—ﬁ(a)

up

where « is a function of 4/L. We evaluate a using numerical integration. The result is plotted
below.
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(b) Shallow curved member:

When the parabola is shallow (cos € = 1), we need to include the axial deformation term as well
as the bending deformation term. Starting with the form specified for a shallow member, (6.11),

F

M

= | (6F + —6M ) dx
“e J <AE T )

and noting that

L d
F= <—w7+wx)ay
M wL wx?
= — X — —
2 2
oF, =1
leads to
2 wLh
Ugp = —— ——
BT T3 AE

= O6F =6F,cos =~ 1

;- ()}

1 whiL3
15 EI

Note that the axial deformation causes the ends to move together, whereas the bending

deformation causes the ends to move apart.
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Fig. 6.18 Geometry— B
circular arch ds

6.5.3 Circular Curved Member

When the arch geometry is a circular segment, it is more convenient to work with polar coordinates.
We consider the segment shown in Fig. 6.18. In this case, R is constant and @ is the independent

variable. The differential arc length ds is equal to R df.
We assume the member is slender and retain only the bending deformation term. Equation (6.10)

takes the following form:

O M SM
dsP = J ———RdY (6.12)
o EI

When EI is constant, the equation simplifies to

R (%
déPz—J M 5M do (6.13)
El ),

Example 6.4 Deflection of a Light Pole

Given: Thelightpole structure defined in Figs. E6.4a, E6.4b, E6.4c, and E6.4d. Consider EI to be constant.

Determine: The horizontal and vertical displacements at C.

Fig. E6.4a
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Solution: Member AB is straight and BC is a circular arc. We take the polar angle from C toward
B. The bending moment distribution due to P is

Segment B—C M =—-PRsinf 0<6<nx/2
Segment A— B M = —PR O<x<h

Fig. E6.4b M(x)

The vertical displacement at C is determined with the following virtual force system

SP =1
C
R sin® v
R\ 6|
BF-——=—==
x
A l
77T
1
A R

Fig. E6.4c SM(x) for v,
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Segment B—C 6M =—Rsinf 0<6<n/2
Segment A—B 6M = —R 0<x<h
Considering only bending deformation terms, the displacement is given by

Ve = Ve|ap + Velcn

: Jh (—PR)(—R)dx + ir/z (=PR sin 6)(R sin O)Rd0

" El), El),
PR2h 1 (*/?
=——+—| PR(sin6)*do
El ' EIJ,
PR? n
= (n fR)
El ( ta

Following a similar approach, the virtual force system corresponding to the horizontal displace-
ment at C is evaluated

— U,
C
—> 3P =1
(1- cosB)
Rsinﬁl
R \© |
BFp-——=——
X
A i
| €«4— 7777
Ny A (R+h)

Fig. E6.4d 5M(x) for u,.

Segment B—C 6M =—-R(1—cos8) 0<0<ux/2
Segment A—B M =—(R+h)+x O0<x<h
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Then

Ue = Ue|pp + Ue|pc

1 h 1 /2
= —J (=PR)(—R — h + x)dx + —J (—PR sin O)R(—1 + cos 8)Rd0
ElJ, El},

PRW PR*h 1 ("
= J PR*(1 — cos ) sin #d@

2EI + EIl +EI

P (R® KR
=—|—+—R%
EI(Z T )

0

6.6  Analysis of Three-Hinged Arches

An arch is a particular type of curved member that is restrained against movement at its ends. Since
these restraints produce longitudinal forces which counteract the action of vertical loads, arch
structures are generally more efficient than straight members. In this section, we examine three-
hinged arches, which are a popular form of arch structure. These structures are statically determinate.
A more detailed study of statically indeterminate arches is presented in Chap. 9.

Consider the arch shown in Fig. 6.19. This structure is statically determinate since there is a
moment release at C. The overall analysis strategy is as follows:

Step 1: Moment summation about A
Step 2: Moment summation about C for segment CB of the arch

Fig. 6.19 Geometry and a

reactions—three-hinged w(x)

arch. (a) Geometry. (b) \]\‘\lﬁ_

Reactions. (c) Right ! r]'
segment >
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These steps result in two equations relating Rg, and Ry, which can be solved.

Step 3: X force summation — R,
Step 4: Y force summation — Ra,

Once the reactions are known, one can work in from either end and determine the internal forces

and moment using the equations derived in the previous section. The following examples illustrate
the approach.

Example 6.5 Three-Hinged Parabolic Arch

Given: The three-hinged arch shown in Fig. E6.5a.

Determine: The reactions. Assume L; = 30 m, w = 15 kN/m.

I3 Tl

25 L

Fig. E6.5a

Solution: Summing moments about A and C leads to (Figs. E6.5b and E6.5¢)
_ (L1)? B
D Mua=0 —w S+ B(025L) +By(Li) =0

0.25L,)°
ZMatC =0 - W% —BX(O.OSLI) +B},(0.25L1) =0

The solution of the above equations leads to
5
B, = ngl = 375kN«
B ! L 131.25kN 7
,=—wL; = .
Yo

Lastly, the reactions at A are determined using force equilibrium:

17
D Fy =0 A =B, +wLi =L =3I18.T5kN |
S Fi=0 A =-B,=375kN —



452 6 Statically Determinate Curved Members

15 kN/m
F >
T g B=378
T —

Fy

F,=1315

7.5m
Fig. E6.5b
15 kN/m
| W W A A
= B
hinge €+ B, =375
Y
? B,=131.25
:\133?5
> A X
Ay= 3]8.75$
, 22.5m . 75m |
1 1 1
Fig. E6.5¢

Example 6.6 Three-Hinged Parabolic Arch—Uniform Vertical Loading

Given: The parabolic arch shown in Fig. E6.6a.

wix)
« 4 ¢+ 3 ¥ 3 3
C
hinge
h
A B
L2 | L2

-

Fig. E6.6a
Determine: The internal forces and the vertical displacement at C (v,).

Solution: The loading and arch geometry are symmetrical with respect to mid-span. It follows that
the vertical reactions are equal to wL/2. Setting the moment at C equal to zero, we obtain an

expression for Rg, (Fig. E6.6b).
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wix)

R]lx C
B R,
% wlL
2
Fig. E6.6b
S MD-0
2 2
K £ +hRBX:w_L£ Rszﬂ
2 8h

Then, summing X forces,

Fig. E6.6¢
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Cutting the member at D, isolating the segment AD, and applying the equilibrium conditions lead to:

F,
T 9™

wL?
8h A X
—
w L
2
Fig. E6.6d
o wil?
X 8h L
w
Fy = wy— 2
) wx 5
M:W_L wL? - owx?

Substituting for y, the expression for M reduces to

wL wl? X X\ 2 w2
M=—x——<4h|—— (= = =
2" Sh{h{L (L)]} 2 =0

It follows that there is no bending moment in a three-hinged parabolic arch subjected to uniform
loading per horizontal projection.

We could have deduced this result from the theory of cables presented in Chap. 5. We showed
there that a cable subjected to a uniform vertical loading per horizontal projection adopts a parabolic
shape. A cable, by definition, has no moment. Therefore, if one views a parabolic arch as an inverted
cable, it follows that the moment in the arch will be zero. This result applies only for uniform vertical
loading; there will be bending for other types of loading applied to a parabolic arch.

The axial force and transverse shear are determined with (6.2).

L? L
F:FXCOSH+F,Sin9:—Mé7COSH+ (wx—W2> sin @

L? L
V:—Fxsin¢9+chost9:—Mé—h sin 6 + <wx—w7> cos 0

where

tan@:ﬁ(l—zf)

L L
1
cos = ————
V' 1+ tan *
tan 6
sin 6 = an

V' 1+ tan *
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Expanding theexpression for V and substituting for tan 6, one finds

2

L L
V= tanﬁmé—h—}—wx—w? cos =0

The shear must be zero since the moment is zero. Only axial force exists for this loading.
The axial force distribution is plotted below. The maximum value is also tabulated as a function of /L.

hiL Finax

0.1 —1.35wL
0.2 —0.8wL
0.3 —0.65wL
0.4 —0.59wL
0.5 —0.56wL

The solution, M = V = 0, is valid for a uniformly loaded three-hinged parabolic arch, i.e., it

applies for both deep and shallow arches.
If we use the approximate form of the method of virtual forces specialized for a “deep” arch,

JMéMd
Ve = A
¢ Js EI

it follows that the arch does not displace due to bending deformation. However, there will be
displacement due to the axial deformation. We need to start with the exact expression,

) _J MoM _ FoFy
“ )\ EI  EA

JF(SF
s

and thenset M = 0

Ve &

TA ds

Suppose the vertical displacement at mid-span is desired. The virtual force system for 6P = 1 is
L

OF, = ——
L 1
41h = oOF = <_E> cos 6 + <—§> sin 6

5Fy = —5
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Substituting for the forces and assuming AE is constant result in the following integral

1 (t L2 L L 1
Ve :EL {(—Mé—h> + (—W?—&-wx) tan 9} (—E—Etan 6> cos fdx

We express the solution as

wL?
Ye = g

where a is a function of //L. The following plot shows the variation of . Note that v, approaches 0 for
a deep arch.

30

Example 6.7 Three-Hinged Parabolic Arch—Concentrated Load Applied at Mid-Span

Given: The parabolic arch defined in Fig. E6.7a

Determine: The internal forces and vertical displacement at C (v,.).

P
e 4
Yo hinge
h
PL PL
En A 4h
—> > X By ¢<— e
i g i T
2 2
| | |
T L2 T L T

Fig. E6.7a
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Solution: Enforcing equilibrium leads to the following expressions for the internal forces

(Fig. E6.7Db):
Segment AC 0<x<L/p2
PL
Fo=——
’ 4h
P P
Y2
P PL
M=—x——
PR
Segment CB L2 <x<L
P PL
* 4h
Fo— P
Y2
v P PL L PL
2 w2

Fig. E6.7b

The corresponding transformed internal forces are
Segment ACO < x < L/2

P PL

F= —Esine—ECOSQ
P PL

V= —Ecos 9+Esin9

m=Lrpr|” CY Y
- RV 2L 12

Segment CBL/2 < x <L

)
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The values of F, V, and M are listed below.

P . PL
F-—smH—EcosH

2

P PL
V=—cos @ +—sin @

2

M:PL<

4h

3x K2 1

——+

TN

h/L = 0.5 h/L = 0.1

X/L M/PL F/P V/P F/P VIP

0 0 —0.67 0.22 —2.51 0.46
0.1 —0.04 —0.69 0.16 —2.53 0.3
0.2 —0.06 -0.7 0.06 —2.55 0.1
0.3 —0.06 -0.7 —0.08 —2.55 —0.1
0.4 —0.04 —0.65 0.28 —2.53 -0.3
0.5 0 —0.5 0.5 —2.5 F0.5
0.6 —0.04 —0.65 0.28 —2.53 0.3
0.7 —0.06 —0.7 0.08 —2.55 0.1
0.8 —0.06 -0.7 0.06 —2.55 —0.1
0.9 —0.04 —0.69 —0.16 -2.53 -0.3
1 0 —0.67 —0.22 —2.51 —0.46

The maximum moment occurs at the location where dM/dx = 0. Note that M,,,, = +PL/4 for a

straight member.

dm
- _0
d =

{7

4

L
=== Mpx=

PL
16

The distribution of F, V, and M is plotted below. The reversal in sense of M is due to the influence

of the horizontal thrust force on the bending moment (Figs. E6.7c, E6.7d, and E6.7¢).

Fig. E6.7¢

M

PL

02 03 04

05 06 0.7 08

X T T T

>
>

2
L
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F
P

A WL = 0.1
WL =05
0.2 0.5 08 1 y 4
“. T T T T T T T T T L
'0.6.!‘
=1 F
=8
25l Pevccnnunenne o P 4
Fig. E6.7d
N
P
WL =01 ===
WL = 0.5
0.46 |- (.
022 | [
o, 025 [ 075 !
i = — XL
\\\ 1 R
Fig. E6.7e
The virtual forces for the computation of v, are (Fig. E6.7f)
P=1
SF. = _L
x 4h
¥,=-3
L
M=1,_~,
(=3*—a’

Fig. E6.7f

We consider only bending deformation. The displacement at C is given by

vzr/sz LN, L dx
=), 2\ 272\ T 20 ) Ercos 0

When [/ is a function of x, we use either symbolic or numerical integration. However, when [ is
taken as Iy/cos 6, the integral simplifies and one can obtain an analytical solution. The analytical
solution corresponding to this assumption is

_PL (1
Y= F1, \30
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Example 6.8 Three-Hinged Parabolic Arch with Horizontal and Vertical Loads

Given: The parabolic arch and loading defined in Fig. E6.8a.

Determine: (a) Determine the analytical expressions for the axial force, shear force, and bending
moment. (b) Using computer software, determine the vertical and horizontal displacements at C due
to the loading. Take E = 29,000 ksi, I = 5000 in.4, and A = 500 in.? Discretize the arch using
segments of length Ax = 1 ft. Also determine profiles for displacement, moment, and axial force.

100 kip

50 Nt
y 50 fl " 50 f "
I 1 1
Fig. E6.8a
Solution: (a) The reactions are listed on Fig. E6.8b.
100 kip
B 2
50 kip C
y
18.75 kip A 68.75 kip
> D' «—
1: 31.25 kip 68.75 kip

Fig. E6.8b

Noting that y = 2(x — x*/100) and isolating different segments along the centroidal axis lead to
the following expressions for moment (M), axial force (F), and shear (V).
Segment AB 0 < x < 25
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F.=—-18.75 F=—-18.75c0os § —31.25sin 0
Fy=-31.25 = V=-18.755sin 0 —31.25 cos @
M = 31.25x — 18.75y M = 31.25x — 18.75y

Segment BC 25 < x < 50

F,=—-68.75 F = —68.75cos § —31.25 sin 6
Fy=-3125 = V=-68.75sin 6 — 31.25 cos ¢
M = 31.25x — 18.75y — 50(y — 37.5) M = 31.25x — 18.75y — 50(y — 37.5)

Segment CD 50 < x < 100

F,=—-68.75 F = —68.75 cos 8 + 68.75 sin 0
Fy, = 68.75 = V =68.75sin 0 4 68.75 cos 0
M = 68.75(100 — x) — 68.75y M = 68.75(100 — x) — 68.75

(b) The computer generated moment, axial force, and deflection profiles are listed below
(Figs. E6.8c, E6.8d, and E6.8e). Hand computation is not feasible for this task.

Fig. E6.8c Moment, M

Fig. E6.8d Axial, F

eemmnans
e e,

Y

L./

Fig. E6.8e Deflection profile
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Example 6.9 Optimal Shape for a Statically Determinate Arch

Given: The loading defined in Fig. E6.9a and support locations A and B. Assume H is a variable.

80 kN
40 kN l 40 kN

l |

yix) H
AA? B y €—
— x
| 6 m Im | 3m , 6 m |

Fig. E6.9a

Determine: The optimal shape of the arch passing through A and B. Consider H to vary from 80 to
200 kN. Note that the optimum shape corresponds to zero bending moment.

Solution: We first generate the bending moment distribution in a simply supported beam spanning
between A and B (Fig. E6.9b).

40kN S80KN  40kN

| | 1l .,

A
‘Tr 1 2 3 ?
80 kN 80 kN

600
480
\ )
Q¥2Y)

L ——
/ .

Requiring the bending moment to vanish at points 1, 2, 3 leads to the following y coordinates of
points 1, 2, and 3:

Fig. E6.9b

480 600450
)’1—H )’z—H )’3—H
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This piecewise solution is the general solution for the optimal shape (Fig. E6.9¢). One specifies

H and then determines the coordinates. The value of H selected depends on the capacity of the
supports to resist lateral loading.

Fig. E6.9c Optimal shape

Configurations corresponding to various values of H are listed below. Note that as H increases, the

shape becomes shallower.

H (kN) 1 (m) [ y2 (m) [ y3 (m)
80 6 7.5 6

120 4 5 4

160 |2 1375 3

200 |14 3 |24

6.7 Summary

6.7.1 Objectives

To develop the equilibrium equations for planar curved members and illustrate their application to
parabolic and circular arches.

To introduce and apply the Principle of Virtual Forces for planar curved members.

To describe the analysis process for three-hinged arches.

To illustrate the behavior of statically determinate parabolic arches subjected to vertical and lateral
loading.

6.7.2 Key Factors and Concepts

Depending upon the loading distribution, the geometry of the member, and the support conditions,
a curved member may support transverse loading mainly by axial action. This feature makes
curved members very attractive for long span structures.

Curved members are classified as either shallow or non-shallow, depending upon the ratio of
height to span length. For shallow members, bending and axial actions are coupled. In the limit, a
shallow curved member reduces to a beam.

When applying the principle of virtual forces to compute displacements of a slender non-shallow
(deep) curved member, the contributions due to axial and shear deformation are usually negligible
compared to the contribution from bending deformation.
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+ In general, three-hinged arches carry load through both bending and axial action. However, when
the arch shape is parabolic and the vertical loading is uniform, there is no bending moment in the
three-hinged arch.

» Two-hinged curved members are statically indeterminate. A general theory for these structures is
presented in Chap. 9. One can show that, based on this theory, a moment free state can be obtained
for an arbitrary loading by adjusting the shape of the curved member. In this case, two-hinged
curved members behave similar to cables.

6.8 Problems

Problem 6.1 Consider the parabolic member shown below. Find the reactions and member forces
(F,V,and M).

(a) Assume w = 1.2 kip/ft, h = 24 ft, L = 120 ft
(b) Assumew = 18 kN/m, 2~ =7 m,L = 36 m

A

Problem 6.2 Consider the parabolic member shown below. Find the reactions and member forces at
x = 20 and 80 ft.
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6.8 Problems 465

1.2 kip/ft

ed b b J

161

Problem 6.3 Consider the parabolic member shown below. Find the reactions and member forces
(F,V,and M).

10 kip —> +
41t
v C
A4n
A % B: L

Problem 6.4 Determine the reactions, the axial and shear forces, and the moments at x = 30 ft for
the three-hinged parabolic arch shown below.

16 I
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Problem 6.5 Consider the three-hinged circular arch shown below

(a) Find the reactions.
(b) Determine the axial and shear forces and the moments at x = 20 ft and x = 40 ft.

41

Problem 6.6 Consider the three-hinged parabolic arches shown below. Determine analytical expres-
sion for the axial force, shear force, and bending moment. Using computer software, determine
displacement profiles. Take # = 9m, L = 30m, P = 450 kN, w = 30 kN/m, £ = 200 GPa, I = 160
(10%mm*, and A = 25,800 mm?



6.8 Problems 467

T TIIIITOTT

hinge

Problem 6.7 Consider the simply supported curved member shown below. Assume the shape is
defined by an arbitrary function, y = y(x). Suppose the member experiences a uniform temperature
increase, AT, over its entire length. Determine the horizontal displacement of B.

-t

Problem 6.8 Consider the parabolic member shown below. Determine the horizontal displacement
at B.

(a) Assume w = 1.2 kip/ft, h = 24 ft, L = 120 ft, E = 29,000 ksi
(b) Assumew = 18 kN/m, 2 = 7m, L = 36 m, E = 200 GPa
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Problem 6.9 Consider the parabolic member shown below. Determine the vertical displacement at
C. Take I = 400 in.*, A = 40 in.%, E = 29,000 kip/in.?

(@) h=101t
(b) h=30ft
1.2 kipft
C
Y
h
A
X B 1
30 ft 30 1t 301 30N
| i i —

Problem 6.10

(a) Determine analytical expressions for the member forces for the circular curved member shown
below. Take R = 40 ft, P = 10 kip, and 6 = 30°.

(b) Repeat part (a) using a computer software package. Discretize the arc length into 3° segments.
Assume the following values for the member properties: £ = 29,000 ksi, / = 400 in.*, and
A = 40 in.? Compare the analytical and computer generated values for moment and axial force.
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Problem 6.11 Consider the three-hinged arch shown below. Discuss how the arch behaves when:

(a) There is a uniform temperature increase.
(b) The support at B settles.

Problem 6.12 Consider the semicircular three-hinged arch shown below. Determine the vertical and
horizontal displacements at C due to the loading.

(a) Assume E = 29,000 ksi, I = 400 in.*, A = 40 in.2, R = 50 ft, and w = 2 kip/ft
(b) Assume E = 200 GPa, I = 160(10°) mm*, A = 25,800 mm?, R = 15 m, and w = 30 kN/m
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w

edd L L b .I.(‘

hinge

Problem 6.13 Consider the parabolic three-hinged arch shown below. Using computer software,
determine the vertical and horizontal displacements at C due to the loading. Discretize the arch using

segments of length Ax = L/10, L/20, and L/40. Compare the convergence rate for these segment
sizes.

(a) Take E = 29,000 ksi, / = 400 in.*, A = 40 in.%, L = 120 ft, h = 60 ft, and w = 2 kip/ft
(b) Take E = 200 GPa,/ = 160(10° mm*, A = 2500 mm?, L = 36 m, # = 18 m, and w = 30 kN/m

Problem 6.14 Consider the semicircular curved member shown below. Member CD is rigidly

attached to the curved member at C. Determine an expression for the horizontal displacement at D
due to P.
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Problem 6.15

(a) Determine analytical solutions for the axial, shear, and moment distribution for the three-hinged
semicircular arch shown. Consider the loading to be due to self-weight w. Take w = 0.6 kip/ft
and R = 40 ft.

(b) Apply computer software using the following discretization: A8 = 9°,4.5°, 2.25°. Compare the
convergence rate of the solution. Take £ = 29,000 ksi, / = 400 in.4, and A = 40 in.?

Problem 6.16 Determine the member forces for the three-hinged circular arch shown. Use computer
software.

(a) Take E = 29,000 ksi, R = 40 ft, P = 4 kip, I = 400 in.*, and A = 40 in.?
(b) Take E = 200 GPa, R = 12 m, P = 18 kN, I = 160(10°) mm*, and A = 25,800 mm”
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Problem 6.17 Determine the optimal shape of the arch passing through A and B for given value of
H. Note that optimum shape corresponds to zero moment. Assume L = 120 ft and P = 25 kip.

Problem 6.18 Determine the optimal shape of the arch for a given value of H. Assume L = 30 m and
wp = 15 kN/m.
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Problem 6.19 Consider the three-hinged arch shown below. Determine the reactions and the

internal forces.

20 kap

274
24ft

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.



Abstract

Civil structures such as bridges and buildings are placed on the ground.
The particular segment of the structure which interfaces with the ground is
called the foundation. In this chapter, we focus on a particular type of
foundation called a shallow foundation. Shallow foundations are com-
posed of footings which are plate-type elements placed on the ground.
Their function is to transmit the loads in the columns and walls to the
ground. In this chapter, we describe the various types of shallow footings
and identify the conditions under which each type is deployed. Then, we
develop an analytical procedure for establishing the soil pressure distribu-
tion under a footing due to an arbitrary column loading. Given the soil
pressure distribution, one can generate the shear and moment distribution
in the footing and establish the peak values required for design. Lastly, we
describe how to determine these design values and also present various
strategies for dimensioning shallow footings.

7.1 Introduction
7.1.1 Types of Foundations

Civil structures are viewed as having two parts. That part of the structure which is above ground is
called the superstructure; the remaining part in contact with the ground is referred to as either the
substructure or the foundation. Up to this point, we have focused on the superstructure. Structural
Engineers are responsible for the foundation design as well as the superstructure design. They are
aided by Geotechnical Engineers who provide information on the soil properties such as the allowable
soil bearing pressure at the site.

Figure 7.1 illustrates the different types of foundations. Shallow foundations are located near
ground level. The structural loads are transferred directly to the soil through plate-type elements
placed under the columns. These plate elements are called footings. This scheme is feasible only
when the soil strength is adequate to resist the applied loading. If the soil near the surface is weak, it is

© Springer International Publishing Switzerland 2016 475
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Fig. 7.1 Types a b
of foundations. (a) Shallow
foundation. (b) Deep
foundation

Bascment / Basement
= A »wv TRERT N

_—— 1 - ; =
Footing Filocap

Pile

Fig. 7.2 Single footing— g b
axial loading. (a) Plan. X lP Column load

(b) Elevation

1| ' Ij_t

necessary to transfer the loads to a deeper soil layer having adequate strength. Piles or caissons are
typically used to transmit loads through weak soil media. Basements which serve as underground
parking facilities may also be incorporated in foundations.

7.1.2 Types of Shallow Foundations

A spread footing is a reinforced concrete plate-type structural component that rests directly on the
ground and supports one or more columns or walls. Different geometrical arrangements of footings
are used, depending on the column spacing and soil strength. The simplest scheme is a single footing
per column, shown in Fig. 7.2. One usually works with a square area. However, there sometimes are
constraints such as proximity to a boundary line which necessitate shifting to a rectangular geometry.
We describe later a procedure for determining the “dimensions” of the footing given certain
geometric constraints. In what follows, we consider the column load to be an axial force. Later, we
extend the analysis to deal with both axial force and bending moment.

When adjacent columns are located too close to each other such that their footings would overlap,
or when one of the adjacent columns is located close to a property line, the adjacent footings are
combined into a single “mega” footing which is designed to support the multiple column loads.
Figure 7.3 illustrates this footing layout which is called a “combined footing.”

A different strategy is employed when the spacing between columns is large and one of the
columns is located too close to a property line to support the entire column load with a single footing.
It is necessary to shift some of the column loads over to an adjacent footing by connecting the footings
with a strap beam. This scheme is called a “strap footing” (see Fig. 7.4).
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footing layout.

Fig. 7.3 Combined a l P, l P
(a) Elevation. (b) Plan view

b
property lin¢Y
Fig. 7.4 Strap footing a P l =]
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layout. (a) Elevation. l

(b) Plan view
rStrap beam
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7.1.3 Soil Pressure Distribution

A vertical loading applied to the footing is resisted by soil pressure acting on the lower surface of the
footing. The distribution of pressure depends on the type of soil at the site. Typical distributions for
sand and clay type soils are shown in Fig. 7.5. In practice, we approximate the actual pressure
distribution due to a concentric load with an “average uniform” distribution.

a »L b ‘L c L

Fig. 7.5 Soil pressure distributions—concentric load. (a) Sandy soil. (b) Clayey soil. (¢) Average soil pressure
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Fig. 7.6 Idealized
pressure distributions. (a)
Uniform. (b) Trapezoidal.
(c) Triangular
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Depending on the column loading and the location of the column with respect to the centroid of the
footing area, one of the distributions shown in Fig. 7.6 is normally assumed in order to establish the
dimensions of the footing. A uniform distribution is the most desirable distribution. Since soil cannot
resist tensile stress, one wants to avoid the case illustrated in Fig. 7.6c. We will describe a strategy for
selecting the footing dimensions so as to avoid this situation in the following section.

The allowable pressure varies with the type of soil. Soil is a natural material in contrast to steel,
which is manufactured with close quality control. Consequently, there is considerable variability
in soil properties. Typical allowable soil pressures for various types of soils are listed in Table 7.1.
These values are useful for estimating initial footing dimensions.

Table 7.1 Allowable soil
pressures—Reference
Terzaghi and Peck [1]

Soil type

Compact coarse sand

Hard clay

Medium stiff clay

Compact inorganic sand

Loose sand

Soft sand/clay

Loose inorganic sand—silt mixture

Allowable bearing pressure [kip/ft2 (kN/m?)]

8 (383)
8 (383)
6 (287)
4 (191)
3 (144)
2 (96)

1 (48)
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7.2  An Analytical Method for Evaluating the Soil Pressure
Distribution Under a Footing

We consider the single footing shown in Fig. 7.7. The force P represents the resultant of the column
loading. We suppose it has an eccentricity e with respect to the centroid of the footing area. We also
suppose the footing area is symmetrical with respect to the x-axis and locate the area such that the
column load is on the axis of symmetry. It follows that the pressure loading is symmetrical with
respect to this axis. Taking the origin for x at the centroid of the footing area, we express the pressure
distribution as a linear function,

q(x) =b+ax (7.1)

where a and b are unknown parameters. We determine these parameters by enforcing the equilibrium
conditions for the footing.

-
- 3

centroid of arca

X ¢ axis of symmetry
footing arca, A
b p
[~
3 Ty Centroid of the footing arca
- ] Jt
X —
| T
i
q(x)
L L,

1
L}

Fig. 7.7 Notation—pressure distribution—single footing. (a) Plan. (b) Elevation
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Since x is measured from the centroid, the first moment of area vanishes. Then, deA =0.

Requiring force and moment equilibrium to be satisfied, and noting that the column axial loading
has an eccentricity, e, with respect to the centroid of the footing area, leads to the following
expressions for b and a.

Vertical force equilibrium:

P= Jq(x)dA = J(b+ax)dA :deA+adeA =bA+0

v P
b=—
A
Moment equilibrium:
Pe = Jq(x)di
4
Pe = | (b+ ax)xdA = bedA + aszdA =0+adl,
I
Pe
a=—
1,

where /, is the second moment of the footing area with respect to the Y-axis, [, = sz dA. Substituting

for a and b, (7.1) takes the form

q(x) :K+—x (7.2)

-2

One uses (7.3) to determine the pressure when the footing area is defined.
When the resultant acts at the centroid, e = 0 and the pressure distribution reduces to a uniform
distribution.

= p— = -— 7.4
G=q=4q=7 (7.4)

When e # 0, the distribution is trapezoidal. As e increases, ¢, decreases. The critical state occurs
when g, = 0. This case is shown in Fig. 7.8.
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Fig. 7.8 Pressure a P P
distributions e ,%
for e < ecritical- ﬁf centroid centroid
(a) € < Eritical- l ¢ or ¢
(b) e = ecritical > w
G 7
b P

3 l or

e o P
centroid centroid \
l 3
/ﬁ

P (Pe)ls _
A I,
\ (7.5)
I, 1
€critical = Zy[;

Applying this reasoning to a rectangular shape of width B and length L, and noting that

BL? L
A:BL ]);:E L]:LZZE

the expressions for the peak pressures take the form

P n 6Pe
e
BL  BL

(7.6)
P 6Pe
= BL B

The critical value for e, which corresponds to either g; or ¢, equal to 0, is given by

L

€ = Ecritical — g (77)

In order for the soil pressure to be compressive throughout the footing area, the point of
application of the applied loading must be within a zone of width L/3 centered on the centroid.
When loaded outside this region, (7.2) does not apply. In this case, the triangular distribution acting
on a portion of the surface shown in Fig. 7.9d is used. The soil pressure adjusts its magnitude and
extent such that the line of action of the resultant coincides with the line of action of the column force.
The expressions for ¢, takes the form

a
q1 B
3
2P

ql:B_a



482

7 Shallow Foundations

Fig. 7.9 (a) Plan—
rectangular area. (b)
Elevation e < egiical-

(c) Elevation e = egyigicar-

(d) Pressure distribution
fOI‘ e > €critical

a1

A centroid of area

I L
lP
| _
Lle
é
' Centroid
1 L
.I
q
%M 2
lP
N L
: e=ecritical=g
N .
. /_Centr0|d
i |
a
3
+—t
lp P
1\.
I
| L
| e | 2 . e I
| ' _centroid ' rcentroid
1 [
. | —> | hd |
A L
T d1 5 )
a
| a | 5
' ' —F




7.3 Dimensioning a Single Rectangular Footing 483

7.3 Dimensioning a Single Rectangular Footing

Normally, the column position is fixed by the geometry of the structure, and one can only adjust the
location of the footing with respect to the column. We consider the case where the design goal is a
uniform soil pressure. The optimal dimensions of the footing are achieved by locating the centroid of
the footing on the line of action of the column force, i.e., by taking e = 0 in Fig. 7.7. The first choice
is a square footing. If there is insufficient space in one direction, one can shift to a rectangular footing.
If the design is still constrained by space restrictions, one can then follow a different strategy and
work with a strap-type footing which is discussed later.

We have shown that the soil pressure distribution is uniform for symmetrically positioned
footings. The footing area is determined using service loads, P, and the effective soil pressure, q.,
which accounts for the weight of the footing and the soil above the footing. This notation is defined in
Fig. 7.10. The relevant computations are

Yeone. 1 ¥soil
qe = Yallowable — Ycone.! — }/soil(h - t) ~ allowable — (M)h

Avequired > L —L and B—A=LB
9e
Current practice estimates the peak values of shear force and moment in the footing using the
factored ultimate load P, and determines the footing thickness and the required reinforcement steel
area based on these values. Figure 7.11 illustrates this procedure for a single axial loaded footing. The
expressions for the factored ultimate shear and moment are:

Vu(x) = Bg,x
Bg,x* (7.8)
My(x) = —5

where g, = %, Positive bending moment requires reinforcing steel placed in two directions at the lower
surface. One needs to check for two types of shearing actions, one way shear and punching shear.

Fig. 7.10 Notation- a —+
effective soil pressure (g.).
(a) Plan. (b) Elevation

P
b l/P_('olumn load l _~Column load

b

L = ]
h | |
s e T

allowable

CH
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Fig. 7.11 Footing P
dimensioning process. u
(a) Factored soil pressure. j,
(b) Shear and moment A
diagrams. (¢) One way |
shear. (d) Punching shear |

]

-
— x X —
} L :
b
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Figure 7.11 shows the location of the critical sections for shear. The distance parameter depends on the
column type (steel, concrete) and the specific design code.

Most footings are constructed using reinforced concrete. The location and magnitude of the steel
reinforcement is dictated by the sense of the bending moment distribution (i.e., positive or negative).
The function of the reinforcement is to provide the tensile force required by the moment. It follows
that the moment diagrams shown in Fig. 7.11b require the reinforcement patterns defined in Fig. 7.12.
The actual size/number of the rebar depends on the magnitude of the moment and particular design
code used to dimension the member.
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Fig. 7.12 Single footing
steel details. (a) Steel
column. (b) Reinforced
concrete column
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Column

steel base plate

[J [ [J [J o O e o (] ® [

reinforcing

Column

reintorcing ~J_

Dowel Dowel

ooo-i—o—v—oooop
|
1”4

reintorcing

Figure 7.12 illustrates steel reinforcement for steel and concrete columns. A steel plate is welded to
the base of a steel column and anchored to the footing with bolts embedded in the concrete. Dowels
are used to connect the longitudinal steel in the concrete column to the footing. Usually the column
loading is purely axial and the support is considered to be simply supported. However, there are
situations where moment as well as axial force is present in the column. The design strategy is the

same for both cases.

Example 7.1 Single Footing

Given: A 400 mm x 400 mm concentrically load column with axial dead load (Pp = 890 kN), and
axial live load (P = 1070 kN) to be supported on a shallow foundation. The effective soil pressure is

ge = 165 kN/m? (Fig. E7.1a, b).
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r&— o

Plan Elevation
Fig. E7.1 Geometry and loading

Determine: The footing dimensions using service loads. Draw shear and moment diagrams using a
factored load of P, = 1.2Pp + 1.6P. Consider (a) A square footing, (b) A rectangular footing with
B =3m.

Solution:
Footing dimensions
The required footing area is based on the service load and effective soil pressure.

Pservice = Z (PD +PL) = 890 + 1070 = 1960kN

Pervi 1960
Arequired =% = ﬁ =11.88m”

qe

Assuming a square shape, the required dimension is /11.88 = 3.44m

Weuse L =B =3.5m.

Assuming a rectangular footing B = 3 m, the required dimension is L = % = 3.96m. We use
L=4m

Shear and moment distributions
The factored load is

Py = 1.2Pp + 1.6P_ = 1.2(890) + 1.6(1070) = 2780kN

The corresponding factored soil pressure, ¢, and V,, M,, are:
Square shape:

P, 2780

=== —226.94kN/m?
W=Ig T ()35 2604kN/m
Viemax = 226.94(3.5)(1.55) = 1231kN

1.55)
(1.55) = 954kNm

Mymax = 226.94(3.5)
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The shear and moment diagrams are plotted below.

Rectangular shape:

P, 2780 ,
— e 2T 531 67KN
©“TIBT (3)(4) fm
Vi tong = 231.67(3)(1.8) = 1251kN

(1.8)*

My, 1ong = 231.67(3) = 1126kNm

2
Vi shon = 231.67(4)(1.3) = 1205kN

(1.3)
2

S}

M, shor = 231.67(4) =783kNm

f.ij.\lu
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The shear and moment diagrams are plotted below.

Pu Pu

J J

| 4m | | 3m .
| T T I
1251
1205 Vu
: : =1
1251 1205
1126 | 1126 783| 1783 M,
Ll +‘ + ? + 5

Example 7.2 Dimensioning a Footing Under a Column with Eccentric Loading

Given: A 12 in. X 12 in. column supporting the following loads: Pp = 120 kip, P = 80 kip,
Mp = 60 kip ft, and My = 40 kip ft. The effective soil pressure is g. = 4.5 kip/ft>.

P = Pp + P =120 + 80 = 200kip
M= Mp + My = 60 + 40 = 100kipft

Determine: Dimension square/rectangular footings for the following cases.
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Case (a): the center line of the column coincides with the centroid of the footing. M is counterclock-
wise (Fig. E7.2a).

WA

L/2 L/2 | L

Plan
Elevation

Fig. E7.2a Geometry and loading

Solution: Case (a)
Square footing (L = B): We use (7.6) and set ¢; = ¢,

200 6(100

4.3kip/ft?

For L=B =8ft=¢q,,q, =3.125+1.17 = 1.95kip/ft2

Rectangular footing: We take B = 6 ft. The pressure equation has the form

P 6M
67L+@_qe
(3
200 6(100)

=45=L=9.7ft

6L ' 6L2
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4.33kip/ft?

For L =10ft and B =6ft=g¢,,q, =333+1.0= 2.33kip//fi?

Mo

lp
_—

L

Case (b): the center line of the column is 3 ft from the property line. M is clockwise (Fig. E7.2b).

N M
—
property line

L. o
1L " i I

3 ft e | 3 ft | € L/2 .
'|_|_|' I I [ [
L
] | . L |
I I I I
Elevation Plan

Fig. E7.2b Geometry and loading

Solution: Case (b) We position the centroid of the footing so that it is on the line of action of the
resultant force. The location of the resultant is
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Mo = M — Pe = 100 — 200(¢) = 0 = e = 0.5ft

Then L
3+e:§:>L:2(3+e):7ft
P 200
= =—< > = 0.
91 = 9> LB_qe—>B_7(4.5) 6.35
p 200 .
For L =7ft and B:6.5ft:>q1:qzzqzﬁzm:4.39klp/ft2
/\ M
P
vV
¢
~centroid
y
q TTT
L
| |
1 1

Case (c): the center line of the column is 3 ft from the property line. M is zero (Fig. E7.2c).

——

l property line T

I | I

Elevation

Fig. E7.2c Geometry and loading

Solution: Case (c¢) For this case, we locate the centroid on the center of the column. Then e = 0 and
L = 6.0 ft. The area is determined with
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492
P 200
=q¢, =q,=—< B> =74
UseL=6ftand B = 7.5 ft
P 200
=— = = 4.44kip/ft?
1= 1B~ 75(6) ip/

0« T

Case (d): the center line of the column is 3 ft from the property line. M is counterclockwise
(Fig. E7.2d).

M
property line 23
P\I/
- : Il
I :
3 ft 3 ft
— +——t
\ L | L I
I 1 | I
Elevation Plan

Fig. E7.2d Geometry and loading

Solution: Case (d) We decide to locate the centroid on the column line. Then e = 0.5 ft. This leads to
the trapezoidal pressure distribution shown below. Taking L = 6 ft, and noting (7.3),

200 6(100)

=—+ <45=B>1l11
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4.44kip/ft?
For L=6ft and B=11.25ft =296+ 1.48 =
of an T =29 1.48 kip/ft2

% f—e:O.Sﬁ

q2=1.48
91 =444

f f

Another option is to take the centroid on the line of action of the resultant force. Then, e = O ft,
L = 5 ft, and (7.6) yields

200

ForL =5ftand B =9 ftq=gq, = g, = 29 = 4.44kip/f’

SN
‘LP

L ¥TTe=0.5 ft

| 2.5 ft

RS

7.4 Dimensioning Combined Footings

A combined footing has multiple column loads acting on a single area. This design is adopted when the
column spacing is too small to allow for separate footings. Figure 7.13 illustrates the case of two columns.
The analytical method described in Sect. 7.2 is also applicable here. One just has to first replace the
column loads with their resultant force, and then apply (7.2) to determine the pressure distribution.
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Fig. 7.13 Notation- a d
combined footing. (a) Plan. } }
(b) Elevation ] d 1 I d 5 |
I
| v
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| |
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IR ) |
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Pve | \ 2 | —RX
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X < Centroid of footing area
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Specializing (7.2) for this case, and noting the notations defined in Fig. 7.13, the pressure
distribution is given by

(x)R+<Re)x
TO=3"\1, (7.9)
R=P +P;

where e is positive when R is located to the left of the centroid of the footing area.
The location of the resultant force can be determined by summing moments about the line of action
of P 1

Pad
X|=-——"—"—"

(P14 P>) (7.10)
e = dl — X1

It follows that the soil pressure distribution is uniform when the centroid of the footing area is
located on the line of action of the resultant force (Fig. 7.14). For this case, e = 0 and ¢ = R/A.

We compute the peak shear and moment, using factored loads. The position of the resultant with
respect to the centroid may change when factored loads are used.
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Fig. 7.14 Conditions for d
soil pressure distribution. a 4 }
@e>0.(bye=0
M = Re
N
P 7, P
1 2
R |
A 4 .
— l +
| d oy dedr |
i >5< 3|
J 1
| v |
L

<
X 4—| Centroid of footing area

q J a4,

° | < |
P
1 R Pg
)
= I -
| xi=d V d-x; |
K *~=< :
I v :
L

N\
X 4—1 Centroid of footing area
|

Ry = Py + Py

Then,
P 2u

X1, = d] — €y = R d (711)

If e, # 0, the distribution of pressure is trapezoidal, and we use (7.9) to find the corresponding
peak pressures due to the factored loads.
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Fig. 7.15 (a) Rectangular footing with uniform ultimate soil pressure ¢, = 0. (b) Shear and Moment diagrams ¢, = 0.
(c) Steel reinforcing pattern for longitudinal bending. (d) Steel reinforcing pattern for transverse bending

The shear and moment diagrams corresponding to uniform soil pressure are plotted in Fig. 7.15b.
Note that for this type of footing, the bending moment distribution in the footing in the longitudinal
direction has both positive and negative regions. The peak moment values are

P
Vu :0_>Bquxmax — Py =0 — Xmax =
Bq,
.X2
S M nax = By H;X — Pui(Xmax — 1)
a
~Bau (11 =3)

a
—Bg, (11 +§) + Py
b

Bqu <12 - 5)
b
Bgq, (12 + 5) — Py

At edges of columns V,
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Since the moment diagram for a combined footing generally has both positive and negative values,
the steel placement pattern for a combined footing involves placing steel in the top zone as well as the
bottom zone of the cross section. The required steel reinforcing patterns are shown in Fig. 7.15¢, d. In

general, the reinforcement pattern is two way. For the transverse direction, we treat the footing similar
to the single footing and the steel for tension is placed at the lower surface.

Example 7.3 Dimensioning a Combined Footing

Given: A combined footing supporting two square columns. Column A is 400 mm x 400 mm and
carries a dead load of 700 kN and a live load of 900 kN. Column B is 500 mm x 500 mm and carries
a dead load of 900 kN and a live load of 1000 kN. The effective soil pressure is g. = 160 kN/m*
(Figs. E7.3a and E7.3b).

Fig. E7.3a Elevation

T

18
L]
=]
N"‘--.

Fig. E7.3b Plan
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Determine: The dimensions B and L for service load of P = Pp + P, assuming the soil pressure
distribution is uniform. Draw shear and moment diagrams for factored load of P, = 1.2Pp + 1.6Py.

Solution:
Step I: Locate the resultant force
Py = Pp+ PL =700+ 900 = 1600kN
Pg = Pp + P =900 4 1000 = 1900kN
R =P + Pg = 3500kN
_1900(5)

_ — 271
A= 73500 7lm

The resultant equals 3500 kN located 2.71 m from column A.

Xa =2.7 23m

R

PA= 1600 kN‘L I
.4 J ]
|
|
|
|

lPB= 1900 kN
if
I
|

C |

Step II: Select a rectangular geometry. We position the rectangle so that its centroid is on the line of
action of the resultant. The design requirement is

=xp+05=(271)+05 =321

R 3500
Arequired = = 7165 = 21211’12

|

€
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Take L=64mand B=34m — A =B x L=21.76m"
The final geometry is shown below

A Centroid
sam| | W -

__u‘
=]
9
i
=
[ ]
W
B
O
=

Step III: Draw the shear and moment diagrams corresponding to the factored loads P, = 1.2Pp + 1.6
P . We work with the soil pressure integrated over the width of the footing. This leads to the “total”
shear and “total” moment. These distributions are plotted below. Note that we treat the column
loads as concentrated forces. One can also model them as distributed loads over the width of the

column.
Pay = 1.2Pp + 1.6PL = 1.2(700) + 1.6(900) = 2280kN
Pg, = 1.2Pp + 1.6P;, = 1.2(900) + 1.6(1000) = 2680kN
R, = Pay + Ppy = 4960kN

N ~2680(5)
AU 4960

=2.70Im

The factored resultant acts 2.701 m from column A. It follows that ¢ = 12 mm. We neglect this
eccentricity and assume the pressure is uniform.

R 4960
=—t=_"" —228kN/m>
W= 4 T 64(3.4) /m

Then for B = 3.4 m, w, = 228(3.4) = 775.2 kN/m.
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The shear and moment diagrams are plotted below.

Pou = 2680

o
|

-1 T 1 i 1 W, =7752kN/m

Example 7.4

Given: A combined footing supporting two square columns. Column C; is 16 in. X 16 in. and carries
a service load of 220 kip. Column C, is 18 in. x 18 in. and carries a service load of 440 kip
(Figs. E7.4a and E7.4b).

Py =440 kip
P, = 220 kip 1
| 16 ft
1.5ft 11.5ft : 9 ft

-

Fig. E7.4a Elevation
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property lins,  _, 16 ft %
| |

< Axis of symmetry c,

a| | ¥i)
|

1.5 ft, 115ft | 9 ft

Fig. E7.4b Plan

501

9 ft

Determine: The soil pressure distribution caused by the service loads P; and P5.

Solution:
Locate the centroid of the area

A=(9)(9) + (13)(7) = 1721t
. 81(17.5) +91(65)

' 172
dy=11.68 — 1.5 = 10.18ft

= 11.68ft

Y

C

X J =)

7 ft —*— < *—
(C!

9ft

1.5 ft 115ft 9 ft

e

—_—

Fig. E7.4c
Locate the resultant force
R =P + P, =220 + 440 = 660kip
_ Pyd 440(16)
TR 660
e = —0.491t

= 10.67ft

X1
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The peak pressures are
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_ [R  (Re)Ly\ _ 660  660(—0.49)11.68 . . ,
q,= {A+ 7, } = 172—1——7014 = 3.3kip/ft
_[R_(Re)Ly| _ 660 660(—0.49)10.32 . .,
qz_{A 1, }_172 7014 = 4.3kip/ft
X1 =10. 67&
d1=10.18 R
| o o
Centroid of Y C
entroid oI area 2
7ft +——- prie et | 9
I _
Li=11.68 ft Ly =10321ft
Pl P2
i
1
i i
N 2 N
3.3 kip/ft 4.3 kip/ft2

Fig. E7.4d

7.5 Dimensioning Strap Footings

Strap footings consist of individual footings placed under each column and connected together with a
rigid beam to form a single unit. Figure 7.16 illustrates the geometric arrangement for two columns
supported by two rectangular footings. The centroid for the interior footing (footing #2) is usually
taken to be on the line of action of the interior column. The zone under the rigid beam is generally
filled with a geofoam material that has essentially no stiffness and provides negligible pressure on the
beam. Therefore, all of the resistance to the column loads is generated by the soil pressure acting on

the individual footing segments.

We suppose the axis connecting the columns is an axis of symmetry for the area segments. The
approach follows essentially the same procedure as employed for combined footings. Figure 7.17

defines the notation for this method.
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a
Propeﬁy)ine .
Footing #2
Footing # 1 =
Strap beam
B d}w_____ — ___..___43 B,
: C, C2
1 L, 1
' ! : L, .,
I ]
b
N |
] ]
| |
1 Strap beam\ 1
£350 0°0,°0 P FETO
- foam L,

Fig. 7.16 Strap footing. (a) Plan. (b) Elevation

First, we locate the resultant of the column loads.

Py
.X]ZEd
R=P, +P,
ezdl — X1

Note that when e is negative, R is located to the right of the centroid (see Fig. 7.17b).

Next, we take footing #2 to be located such that its centroid coincides with the line of action of load
P 2.

We locate the origin of the x-axis at an arbitrary point on the axis of symmetry and use (7.1) to
determine the soil pressure acting on the individual footings. We assume there is no soil pressure
acting on the link member. Noting (7.1), the soil pressure is taken as

q(x) = b+ ax forfootings #1and #2
q(x)=0 forthe strap beam.

The coefficients are evaluated by infegrating over the footing areas. Enforcing equilibrium leads to

R= Jq(x)dA =b(A1 +A4,) +aUA xdA +J di}

1 Az

xdA + szdA} +a |:JA1X2dA + JAZdeA} e

Re :qu(x)dA =b UA
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2 ¢ |
P
. P
l R=p +P l 5
12 .
. | x
E, N J. X: -
.‘ P F 'u
I centroid of footmgamag 3 [
. X<~ - .
(L
L L,
; L * —
b Footing #2
Footing # 1 Y L, :
I‘l. ; 1 i
1 J
I |
Strap beam
B, éé_._-___ x~——4 R .___Ebc g
1 centroid 1 € A
X X )
| :
+ dy dy 5
|

(8
|
Fig. 7.17 Notation and pressure distribution for strap footing. (a) Elevation. (b) Plan

di+J xdA = 0Oand

Now, we take the origin for x at the centroid of the combined section. ThenJ
Ay

A
(7.12) reduces to
R=b(A1 +A2)

(7.13)
Re :a(1y1 + [yg)

where (Iy; + Iy2) is sum of the second moments of area of the two footing cross sections about the
Y-axis through the centroid. The Iys are computed using the following equations:
- —
Iy1 = Iy +Ad,
- —
Iyy = Iy> + Ayd,
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Fig. 7.18 Geometry—strap e Y
footing Y Footing # 2

=l
b

Lastly, the pressure equation takes the form:

R n Re
X
(A1 +A2)  (Iyi +1y2)

4(x) = (7.14)

We use (7.14) to determine the pressure for a given geometry and loading.
When dimensioning the footing, we locate the centroid of the combined footing area on the line of
action of the resultant. This step results in a uniform pressure,
R Py +P;

e=0 — g¢g= A+ A) = A+ A (7.15)

Given the effective soil pressure, we determine the total area with

P +P
A4, >0 (7.16)

S
The solution procedure is as follows:
We assume the magnitude of either A; or A, and compute the other area with (7.16). Since we are
locating footing #2 such that its centroid coincides with the line of action of P,, it follows from
Fig. 7.17 that x, = d». Then noting Fig. 7.18, d, = d,. Lastly, we determine d; with (7.17)

Ady = Ayd, (7.17)

This equation corresponds to setting e = 0.

An alternative design approach proceeds as follows. Consider Fig. 7.19. The resultants of the
pressure distributions acting on the footings are indicated by R; and R,. Summing moments about the
line of action of R, leads to

Pie;

— e

Ry=Py—

(7.18)

Summing forces leads to

Ri+R, =P+ P
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Fig. 7.19 Approximate
strap footing analysis. (a)
Plan (b) Elevation (c)
Components of footing

a . d
N a- 4
T 1
M|
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/Rigid beam
Bl @-_4-.._.. "____'_¢ 32
Cl . Cy
\A'I
L, Ag”
' i L,
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b d

Rigid beam | |
HTIT T T3 o I
O
| d l
[ [
| ’ Rigid beam l' =
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Then
Pie
R, =P 7.19
1 1 +d s ( )
Let
Pieq
V=e_—" 7.20
d_el ( )
then
Ri=P+V
Ry,=P, -V (7.21)

R=R|+R, =P+ P

The quantity, V, is the shear force in the strap beam.
Once ¢ is specified, one can determine R and R,. We also assume the soil pressure acting on the
footing is constant and equal to the effective soil pressure (g.). Then,

R,
A required = —
e
7.22
hy (1.2
As required = ~

€

Typical reinforcing patterns required for bending in strap footings are illustrated in Fig. 7.20.

Fig. 7.20 Typical
reinforcing patterns

| |
| f

Example 7.5

Given: The eccentrically loaded footing A connected to the concentrically loaded footing B by strap
beam as shown below. Assume the strap is placed such that it does not bear directly on the soil
(Figs. E7.5a and E7.5b).
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Determine: The soil pressure profile under the footings.

2000 kN
J 2400 kN

» J

fSlrap becam
| 2m | Im ; 3m |
| | J I
Fig. E7.5a Elevation
—— : Y e
Footing A Footing B
4m 4m
3m| [J.4m x «—2 ¢ (J.4m 3m
e
—+
3m
i 2m | 3m |

—+

Fig. E7.5b Plan view

Solution: Noting Fig. 7.17, the various measures are

d=63m
| 2400(6.3)
X1 = W = 3.436m

A;=2(3) = 6m?
Ay =3(3) = 9m?

R = 2000 + 2400 = 4400 m?
6d, =9(55-d|) = dy=33m dr,=22m
di=d +08=4.1m
e=d; —x; =0.66m

3(2)° 3(3)°
Iy + 1y, = % +6(3.3)* + % +9(2.2)* = 117.65m*

Note that e is positive when R is located to the left of the centroid
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( ) R n Re

x) = X

1 (A1 +42)  (Iy1 +1r2)
4400 4400(0.66)

x=1293.3+424.7x

15 117.65
¢(4.3) = 399kN /m?
q(2.3) = 350kN/m?
q(—0.7) = 276kN/m?
q(—3.7) = 202kN/m?

The corresponding soil pressure is shown below.

2000 kN
l 2400 kN
/ Strap beam
’L 276 ,J_/ﬁ/ 202
399 350
2m 3m 3m

Example 7.6 Dimensioning a Strap Footing

Given: The exterior column C; is 12 in. X 12 in. and carries a dead load of 160 kip and a live load
of 130 kip. The interior column C, is 16 in. X 16 in. and carries a dead load of 200 kip and a live
load of 185 kip. The property line is at the edge of column #1 and the distance between the center
lines of the columns #1 and #2 is 20 ft. The effective soil pressure is g. = 4.625 kip/ft* (Figs. E7.6a
and E7.6b).
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Determine: The dimensions of the footings for both columns using the two methods described

above.
| d=20 ft |
| Footing #2
Footing #1 —
C
C1 r Rigid beam !
o | =————---f ||
N
A AT
1#% _
L2
| |
[ [
Fig. E7.6a Plan
6in
4L d =20 ft X
A K A
\J/P1 R =675 Ps
-] _ | ]
J]_ 11.6 ft ! 8.4 ft :
\ * DY
| \V4 |
I |
" M7 O
ﬂ;’—% i
| , |
Jey 4 i i !
& 2 L2 | L
I 2 2
R1 I
Ro

Fig. E7.6b Elevation

Solution:

Procedure #1: The individual column loads are:
Py =160+ 130 = 290kip
P, =200+ 185 = 385kip

Next, we locate the resultant of the column loads.

R =P, + P, = 675kip
385

~ 675
dy = xy = 20 — 11.407 = 8.593 ft

di=x; (20) = 11.407ft
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Noting (7.16), we obtain:

675
A+ A = 1605 > 146 ft

We estimate A, knowing R, the resultant of the pressure distribution acting on footing # 2, is less
than P,.

385
Ay S —— =83ft
2% 1605~ Ot

We take L, = B, = 8.5ft(A; = 72.25ft%).
Then A; > 73.75ft
Noting (7.17),

73.75d; =72.25(8.593) = d; = 8.418ft

Then
L -
S et (di —d) = 0.5+ (11.407 — 8.418) = 3.49ft

Take L; = 7ft and B; = 10.75 ft(A1 =175.25 ftz)
The final dimensions are shown below.

(ngidbcam
10758 | o F ——--—---—-|-- M---{1| 85¢8
7 ft 8.5ft
— 1

Procedure #2: We illustrate the second design approach here. We estimate A; by requiring the
pressure under the footing #1 to be equal to g..

P, 2
SR 290 e

A
! 4.625

[
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We take L; = 6 ft as a first estimate. Then, noting Fig. E7.6b

L
e = 71 0.5~ 2.5t

The remaining steps are listed below

P1e1 o 290(25)

V= =
d—e 20-25

= 41.43kip

Ry =P +V =290+41.43 = 331.43kip

Ry =P, — V = 385 — 41.43 = 343.57kip

331.43 71.66
= =71.66ft> =B, =——=1194=L, =6ft B, = 12t
lrequlred 4625 :> 1 6 9 :> 1 1
34357

tes = 4 g5 = T4 = Ly = By = V7429 =8.62 = By = L, = 851t

The final dimensions are shown below.

C Rigid beam
2ft | o £ ——----- —-|-- M---{ | 8751

6 fi 8.75 ft
— [ |

Repeating this computation for the ultimate loading case,

Pio= 1.2Pp + 1.6PL = 1.2(160) + 1.6(130) = 400kip
Py = 1.2Pp + 1.6P_ = 1.2(200) + 1.6(185) = 536kip
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and assuming the same value for e; leads to

Pu1€1 o 400(25)

Vu = =
d—e 17.5

= 57.14kip

Riy = Py +Vy =400+ 57.14 = 457.14kip

R 457.14 o
= M WY 6 35kip/te
BiL, _ 6(12) ip/

d1u

Roy = Py, — Vyy =536 — 57.14 = 478.86kip

Roy 478.86

— - = 6.25kip/ft?
Bol,  8.75(8.75) ip/

Ubm

The corresponding forces are shown in the sketches below.

1000 Kip ft

ej Plu - 536 klp

J, P, =400 kip
C 1 | |

I Ry, = 457.1kip TR:U = 478.86 kip
Py, =400 kip P,, = 536 kip

J l

il TTT_TT+

Qs = 6.35 kip/it® Qu = 6.25 kip/ft’
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The shear and moment diagrams are plotted below.

Py, = 400 kip P», = 540 kip

T 1

4y, = 6.3 kip/fit? Qy, = 6.3 kip/fit?

N

57 kip 57 kip

62 kip
249 kip ft

828 kip ft

7.6 Summary
7.6.1 Objectives of the Chapter

» To describe the various types of footings used in shallow foundations.

» To develop an analytical procedure for dimensioning footings.

» To develop a general analytical procedure for generating the shear and moment distribution in
footings based on the assumption of a linear soil pressure distribution.

+ To identify critical loading conditions which produce pressure loading distributions with high peak
magnitudes.
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7.7 Problems

Problem 7.1
Consider the footing geometry shown below. Determine the soil pressure distribution
corresponding to

(@) B=L=8ft
(b) L=10f,B =5ft

180 kip ft

("l 120 kip
e,

4
: B2

A
E In' 1

B2

Problem 7.2

The plan view and elevation of a single footing supporting a 300 mm x 300 mm column are shown
below. Determine the soil pressure distribution under the footing. Use a factor of 1.2 for DL and 1.6
for LL.

M =40kN-m €\
pn]_ = 200 kN

B/2

B/2

L=3m

Elevation Plan
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Problem 7.3

The plan view and elevation of a single footing supporting a column are shown below. The effective
soil pressure is 4 kip/ft*. Determine the required value of L.

M = 48kip ft

q

P = 138kip

12" L2
- 12|| . .
L/2

| L | L2, L2 |

Elevation Plan

Problem 7.4

A 450 mm x 450 mm concentrically load column is to be supported on a shallow foundation. The
base of the footing is 1 m below grade. Estimate the size of the footing using service loads. Draw
shear and moment diagrams using a factor load of P, = 1.2Pp + 1.6P. The allowable soil pressure is
Gattowable = 250 KN/m?, 7411 = 18 KN/m?, yeone = 24 kKN/m?®, P, = 1000 kN, and P, = 1400 kN.
Consider: (a) A square footing (L; = L, = L) and (b) A rectangular footing with L, = 2.5 m.

W . Ls
I
h=1m

L
Elevation Plan

—p—

Problem 7.5
A 350 mm x 350 mm column is to be supported on a shallow foundation. Determine the dimensions

(either square or rectangular) for the following conditions. The effective soil pressure is Geffective
= 180 kN/m”>.
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(a) The center line of the column coincides with the center line of the footing.

240 kN-m
550 kN W
Ly=25m
[ g |
l L|4"2 | Ly‘lz | I Ll l
' Elevation Plan

(b) The center line of the column is 0.75 m from the property line.

A 240 kN-m

——
lSSU N property line

|
—'rl— __*_!___- L,=2.5 m
|

75m L, /2 I5m L2
| Il 1 " ! " \
| 1 I I I I 1 1
| Ly | L

T 1

Elevation Plan

(c) The center line of the column is 0.5 m from the centroid of the footing.

240 kN-m ‘/\

lSSU kN
Sn

centroid
|| - - — - L=235m
i

| T

1 Ly/2 Sm Ly/2
i~ —t 1
| Ly | : L |
1 . 5 T 1| |
Elevation Plan

Problem 7.6

A combined footing supports two square columns: Column A is 14 in. x 14 in. and carries a dead
load of 140 kip and a live load of 220 kip. Column B is 16 in. x 16 in. and carries a dead load of
260 kip and a live load of 300 kip. The effective soil pressure is ¢. = 4.5 kip/ft>. Assume the soil
pressure distribution is uniform, except for case (b). Determine the footing dimensions for the
following geometric configurations. Establish the shear and moment diagrams corresponding to the
factored loading, P, = 1.2Pp + 1.6Py.
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Case (a): i l

I Column A i Column B
< | | R

(21t 14 ft
| L
|

Elevation

B
Axis of symmrty A
S NIRRT

2 ft 14 ft |
| | |
| . |
Plan
Case (b): l l
Column A | ’
| : Column B
| |
I
R | <=
| 16 ft |
| . |
Elevation
A B

Axis of symmetry

16 n

Plan
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Case (c):
! J

| Column A

|
|| columnB
| I
| 7???
RS . |
X .
| |
Ca 10 ft . b |
T 1 !
) L 1
| : '
Elevation

Axis of s T ‘* - | —_—— -
Yy etr_y - - T‘
— ———— — - - B =10.25 ft

| a | 10 ft b |
) L 1
| 1
Plan
Case (d): l l
]
I
| Column A | Column B
| | AR
TR | .
1.'5f|t 16 ft
I| T L ' I
| I
Elevation

Axis of symmetry

B/2

1.5 ft 16 ft
:

Plan
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Case (e):
! I
Column B
| Column A |
~z= |, |
I K
| t
151t 16 ft
— 1
. L |
| |
Axis of symmetry
B B/2

Problem 7.7

Column A is 350 mm x 350 mm and carries a dead load of 1300 kN and a live load of 450 kN.
Column B is 450 mm x 450 mm and carries a dead load of 1400 kN and a live load of 800 kN. The
combined footing shown below is used to support these columns. Determine the soil pressure

distribution and the shear and bending moment distributions along the longitudinal direction
corresponding to the factored loading, P, = 1.2Pp + 1.6Py.
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.1'5m. 3.5m im .

Elevation

‘*A | B Axis of symmetry
[ S -

6m

Plan

Problem 7.8

Dimension a strap footing for the situation shown. The exterior column A is 14 in. x 14 in. and
carries a dead load of 160 kip and a live load of 130 kip; the interior column B is 18 in. x 18 in. and
carries a dead load of 200 kip and a live load of 187.5 kip; the distance between the center lines of the
columns is 18 ft. Assume the strap is placed such that it does not bear directly on the soil. Take the
effective soil pressure as g, = 4.5 kip/ft*. Draw shear and moment diagrams using a factored load of
P, = 1.2Pp + 1.6Py.

18 ft
1 |
| |
251t
I B
A
Plan
2.5t
: ! 18 Mt |

Elevation
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Problem 7.9

Column A is 350 mm x 350 mm and carries a dead load of 1300 kN and a live load of 450 kN.
Column B is 450 mm x 450 mm and carries a dead load of 1400 kN and a live load of 800 kN. A
strap footing is used to support the columns and the center line of Column A is 0.5 m from the
property line. Assume the strap is placed such that it does not bear directly on the soil. Determine the
soil pressure distribution and the shear and bending moment distributions along the longitudinal
direction corresponding to the factored loading, P, = 1.2Pp + 1.6Py.

Sm
L
T

]P,\
IW [

[

Elevation

Sm

i Sm L I.ﬁm‘

T T o Ll
A B

| E— Plan

Problem 7.10

An exterior 18 in. X 18 in. column with a total vertical service load of P; = 180 kip and an interior
20 in. x 20 in. column with a total vertical service load of P, = 240 kip are to be supported at each
column by a pad footing connected by a strap beam. Assume the strap is placed such that it does not
bear directly on the soil.

(a) Determine the dimensions L; and L, for the pad footings that will result in a uniform effective
soil pressure not exceeding 3 kip/ft> under each pad footing. Use ¥ ft increments.

(b) Determine the soil pressure profile under the footings determined in part (a) when an additional
loading, consisting of an uplift force of 80 kip at the exterior column and an uplift force of 25 kip
at the interior column, is applied.
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20rn i
< >
P, =180 kip ekl

-
e

}Slup beam
I | 1:
Elevation
2N
N it o
T | Footing #1 Fooling #2 5.
r'd
I | =gy Ls
- 1,
6.5 o } 4
Reference

1. Terzaghi K, Peck RB. Soil mechanics in engineering practice. New York: Wiley; 1967.



Abstract

Vertical wall type structures function as barriers whose purpose is to
prevent a material from entering a certain space. Typical applications
are embankment walls, bridge abutments, and underground basement
walls. Structural Engineers are responsible for the design of these
structures. The loading acting on a retaining wall is generally due to the
soil that is confined behind the wall. Various theories have been proposed
in the literature, and it appears that all the theories predict similar loading
results. In this chapter, we describe the Rankine theory which is fairly
simple to apply. We present the governing equations for various design
scenarios and illustrate their application to typical retaining structures.
The most critical concerns for retaining walls are ensuring stability with
respect to sliding and overturning, and identifying the regions of positive
and negative moment in the wall segments. Some of the material
developed in Chap. 7 is also applicable for retaining wall structures.

8.1 Introduction
8.1.1 Types of Retaining Walls

Vertical retaining wall structures are used to form a vertical barrier that retains a fluid or other
material such as soil. Figure 8.1 illustrates different types of vertical retaining wall structures. They
are constructed using unreinforced concrete for gravity walls and reinforced concrete for cantilever
walls and bridge abutments. The base of the wall/footing is placed below the frost level. The material
behind the wall is called backfill and is composed of granular material such as sand.

8.1.2 Gravity Walls

A free body diagram of a gravity structure is shown in Fig. 8.2. The force acting on the structure due
to the backfill material is represented by P; the forces provided by the soil at the base are represented

© Springer International Publishing Switzerland 2016 525
J.J. Connor, S. Faraji, Fundamentals of Structural Engineering,
DOI 10.1007/978-3-319-24331-3_8
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a b
Fluid backfill (granular material)
TR

TI777 7777777777777 LA ALAAA LA

c d
Bridge deck  / o TP
N g \\pprmch slab
L—vwmm
backfill XXX

RICORITTR

L |

Fig. 8.1 Vertical retaining wall structures. (a) Gravity dam. (b) Cantilever retaining wall. (¢) Bridge abutment.
(d) Underground basement

backfill

P

Fig. 8.2 Free body diagram—gravity structure

by the friction force F and the normal force N; lastly, the weight of the structure is represented by W.
The end points of the base are called the “toe” and the “heel.” We observe that P tends to overturn the
wall about its toe and also to slide the structure in the horizontal direction. The overturning tendency
is resisted by the gravity force W which has a counterbalancing moment about the toe. Sliding is
resisted by the friction which is proportional to the normal force. Therefore, since both resisting
mechanisms are due to gravity, this type of structure is called a “Gravity” structure.

Of critical concern are the sliding and overturning failure modes. The key design parameter is the
length of the base. We need to select this parameter such that the factors of safety for sliding and
overturning are sufficient to ensure global stability of the structure.
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backfill

P
stem
X" 1 0e W heel
PSSR IS
F— %
T footing
N

Fig. 8.3 Free body diagram—cantilever structure

8.1.3 Cantilever Walls

The amount of concrete required for a gravity type wall increases with height. Therefore, in order to
minimize the concrete volume, the cantilever type retaining wall geometry shown in Fig. 8.3 is used.
A portion of the concrete wall is removed and a “footing” extending out from both the heel and toe is
added. This change has a stabilizing effect in that the weight of the backfill above the footing,
represented by W, now contributes to the counterbalancing moment and also to the normal force. The
wall stem segment of a cantilever wall carries load through bending action, whereas the gravity wall
carries load primarily through horizontal shear action. These behavior modes dictate the type of
construction.

Cantilever retaining walls, such as shown in Fig. 8.4, are reinforced concrete structures; gravity
type walls tend to be unreinforced concrete. The key design issue is the width of the footing. This
parameter is controlled by the requirements on the factors of safety with respect to overturning about
the toe and sliding of the wall.

Fig. 8.4 Cantilever wall construction
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8.2  Force Due to the Backfill Material
8.2.1 Different Types of Materials

8.2.1.1 Fluid

We consider first the case where the backfill material is an ideal fluid. By definition, an ideal fluid has
no shear resistance; the state of stress is pure compression. The vertical and horizontal pressures at a
point z unit below the free surface are (see Fig. 8.5):

Py=Ph=D =71 (8.1)

where y is the weight density.
We apply this theory to the inclined surface shown in Fig. 8.6. Noting (8.1), the fluid pressure is
normal to the surface and varies linearly with depth. The resultant force acts H/3 units up from the

base and is equal to
1 H 1 (H
p_L _ - 8.2
2Psin 6 27<sin 9) 82)

Resolving P into horizontal and vertical components leads to
. [
Ph:Psm9:§yH

1 1
P, =P cos 0 = —yH?>
cos 2}/ tan 0

Z J“*p:{)
Py

, v
- pr.—)[%](—pn

Py

Fig. 8.5 Hydrostatic pressure

Fig. 8.6 Hydrostatic
forces on an inclined
surface

== l(/_p

H/3
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8.2.1.2 Granular Material

We consider next the case where the backfill behind the wall is composed of a granular material such as
dry loose sand (Fig. 8.7). Loose sand behaves in a different manner than a fluid in that sand can resist
shearing action as well as compressive action. The maximum shear stress for a sandy soil is expressed as

T = optan ¢

where o, is the normal stress and ¢ is defined as the internal friction angle for the soil. A typical value
of ¢ for loose sand is approximately 30°. One can interpret ¢ as being related to the angle of repose
that a volume of sand assumes when it is formed by dumping the sand loosely on the pile. Figure 8.8
illustrates this concept.

The presence of shear stress results in a shift in orientation of the resultant force exerted on the wall
by the backfill. A typical case is shown in Fig. 8.9; P is assumed to act at an angle of ¢’ with respect to
the horizontal, where ¢ ranges from 0 to ¢.

Fig. 8.7 Granular
o On
material-stress state

Fig. 8.8 Angle of repose

I/<09 “

T T raaraad

Fig. 8.9 Active and
passive failure states
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The magnitude of the soil pressure force depends on how the wall moved when the backfill was
placed. If the wall moved away from the backfill (to the left in Fig. 8.9), the soil is said to be in an
active failure state. The other extreme case is when the wall is pushed into the soil; the failure state is
said to be in the passive mode. There is a significant difference in the force magnitudes corresponding
to these states.

In general, the active force is an order of magnitude less than the passive force. For the
applications that we are considering, the most likely case is when the wall moves away from the
soil, and therefore we assume “active” conditions. The downward component tends to increase
the stability with respect to overturning about the toe and also increases the friction force.

Different theories for the soil pressure distribution have been proposed which relate to the choice
of ¢'. The Rankine theory assumes (p/ =0 (i.e., no shear stress), and the Coulomb theory assumes
@ = ¢. Considering that there is significant variability in soil properties, both theories predict
pressure distributions which are suitable for establishing the wall dimensions.

In what follows we present the key elements of the Rankine theory. There are many textbooks that
deal with mechanics of soil. In particular, we suggest Lamb and Whitman [1], Terzaghi and Peck [2],
and Huntington [3].

8.2.2 Rankine Theory: Active Soil Pressure
Figure 8.10 defines the geometry and the soil pressure distribution. The pressure is applied to vertical

surfaces through the heel and toe and is assumed to vary linearly with depth as shown. The
magnitudes of the forces acting on a strip of unit width in the longitudinal direction of the wall are:

1
P,= Eszka
| (8.4)
2
Pp = E}’h kp

Fig. 8.10 (a) Soil pressure distribution for Rankine theory a # 0. (b) Soil pressure distribution for Rankine
theory a = 0
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h‘s
— ps
H _— = P,
II /3| H2
p

s P

Fig. 8.11 Pressure distributions due to surcharge and active soil pressure

where y is the unit weight of the soil backfill, k, and k, are defined as the active and passive soil
pressure coefficients,

cos a — \/( cos a)> — (cos @)°

k,= cos a
cos a + \/( cos a)” — (cos @)* (8.5)
1+ sin g
hy=———7
1— sing

where ¢ is the internal friction angle, and « is the angle of inclination for the backfill.
When the backfill is level, « = 0 and k, reduces to

_1—sing

k, (8.6)

~1+sing

In this case, both resultants are horizontal forces.

8.2.2.1 Soil Pressure Due to Surcharge

When a surcharge is applied to the top of a backfill, additional soil pressure is developed. This
pressure is assumed to be uniform over the depth. In the case of a uniform surcharge applied to a
horizontal backfill, the added pressure is estimated as

Ds = kaws

P, ~ k,wH (8.7)

where k, is defined by (8.6). The soil pressure distributions due to the surcharge and the active soil
pressure are illustrated in Fig. 8.11.

8.3  Stability Analysis of Retaining Walls

The key concerns for a retaining wall are overturning about the toe and sliding. In order to address
these issues, one needs to determine the forces acting on the wall. This step requires that we carry out
an equilibrium analysis.

Consider the typical gravity wall shown in Fig. 8.12. The weights of the wall and soil segments are
denoted by W;; P, and P, represent the lateral soil pressure forces; N and F are the normal and
tangential (friction) forces due to the soil pressure acting on the base. ¥ defines the line of action of
the normal force acting on the base.

Summing forces in the vertical direction leads to

N=>"W, (8.8)
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Fig. 8.12 Typical gravity wall

Similarly, horizontal force summation yields

F=>"P (8.9)

The maximum horizontal force is taken as F,,,x, = uN. where y is a friction coefficient for the soil/
base interface. This quantity is used to define the factor of safety for sliding:

Froax N
F~S'sliding = % = 7 (810)
The line of action of N is found by summing the moments about the toe.
NX = Pyy, = Payy + ) Wiy = M
Y (8.11)
T = Mnet
N

For stability with respect to overturning, X must be positive. A negative value of X implies that the
line of action of N lies outside the base. The safety measure for overturning is defined as the ratio of
the resisting moment about the toe to the overturning moment.

M.
resisting (8 1 2)

F-S-overturning = M -
overturning

Noting Fig. 8.12, this definition expands to

Py, + > Wi,

8.13
P.y, (8.13)

F.S -overturning —

Typical desired values are F.S gjiging > 1.5 and F.S.vertuming > 2.

In order to increase the factors of safety against sliding and overturning, either one can increase the
width of the concrete wall or one can add a footing extending out from the original base. These
schemes are illustrated in Fig. 8.13.
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a <o P —STTK

Soil
Soil

Fig. 8.13 (a) Gravity wall and (b) cantilever retaining wall

8.4  Pressure Distribution Under the Wall Footing

We consider the pressure acting on the footing is assumed to vary linearly. There are two design
constraints: firstly, the peak pressures must be less than the allowable bearing pressure for the soil and
secondly the pressure cannot be negative, i.e., tension. Noting the formulation presented in Sect. 7.2,
the peak pressures are given by (7.6) (we work with a unit width strip of the footing along the length
of the wall, i.e., we take B = 1 and N as the resultant) which we list below for convenience.
Figure 8.14 shows the soil pressure distributions for various values of e.

7N lJr6e
fh—L L

(8.14)

The second design constraint requires lel < L/6 or equivalently, the line of action of N must be
located within the middle third of the footing width, L. The first constraint limits the maximum peak
pressure,

|q | max § Gallowable

where ¢aowanle 1S the allowable soil pressure at the base of the wall. We note that the pressure
distribution is uniform when N acts at the centroid of the footing area which, for this case, is the
midpoint. Since e depends on the wall height and footing length, we define the optimal geometry as
that combination of dimensions for which the soil pressure is uniform. Note that the line of action of
the resultant N always coincides with the line of action of the applied vertical load.


http://dx.doi.org/10.1007/978-3-319-24331-3_7
http://dx.doi.org/10.1007/978-3-319-24331-3_7
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Fig. 8.14 Pressure distributions on footing/wall base. (a) ¢ = 0. (b) e < L/6. (¢) e = L/6. (d) e > L/6

Example 8.1 Gravity Retaining Wall Analysis

Given: The concrete gravity wall and soil backfill shown in Fig. E8.1a.
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1 ft
et
T SRR -+
Yocil = l"klpfl
10 ft G aan
g ‘ H=121
Yoore = .15 kip/f®
u=.577
| XXRXX
L=411

Fig. E8.1a Wall geometry

Determine: The factor of safety against sliding; the factor of safety against overturning; the line of
action of the resultant. Use the Rankine theory for soil pressure computations. Neglect the passive
pressure acting on the toe.

Solution:

For ¢ — 30k, — - — ¢ _ 1

l+sing 3
Then P, = 1(0.12)(12)* (1) (1ft) = 2.88kip/ft of wall
Next, we compute the weight of the concrete wall segments per foot of wall. Noting Fig. ES.1b,

W1 = (0.150)(10)(1)(1ft) = 1.5kip
(0.150) (—0> )(1ft) = 2.25kip

(0.150)(4)(2)(1ft) = 1.2kip
P, = 2.88 kip
—
W, |W
: H3 =41
o LWL |
—_— l_‘

Fig. E8.1b Free body diagram
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Applying vertical force equilibrium yields
N=W;+W,+W;=154+2.254+1.2=4.95kip

The factor of safety with respect to sliding is defined as the ratio of the maximum available friction
force F,,x to the actual horizontal force.

Fumax = uN = N tan ¢ = 0.577(4.95) = 2.86kip
uN  2.86

F.S glidine = —=—-—-=0.
S sliding P~ 288 0.99

The line of action of N is determined by summing moments about the toe. The factor of safety with
respect to overturning is defined as the ratio of the resisting moment to the overturning moment, both
quantities with respect to the toe.

H
MBOVer[uming = Pa <§) = 288(4) = 1152klp ft

My =Wi(3.5) + Wa(2) + W3(2)

=1.5(3.5) +2.25(2) + 1.2(2) = 12.15kipft

resisting

Mg

I::-S-overtuming = M o — 1152 =1.05
Boverluming °
Mper = MBoverluming -M Bresising — 0.63kipftclockwise
My 0.63
X= =——=0.13ft
TN T 495

In order to increase the factors of safety, the geometry needs to be modified.
The following procedure is useful for estimating appropriate values for b; and b,. Given the wall
height, one can derive expressions for the factors of safety. The details are listed below.

b,

W=W, +W,

H

H/3
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(b1 + bz)

W=y =N
Py = kid 2y 2
a — a zys
N
F.S iiding = 'L;,—a
(3

uye \ (b2 by
F.S qlidine = Z)1+=
S sldng (’%n) (H ) ( " bz)

1
Movertuming = gpa = gkaysHS

=

2 b
Mesisting = 3 (by — b))W, + (b2 — %) W,
2
3 2 b2 bz

L VAR
Bresisling 3 2 b2 b2

F.S. overturning — = 1

Bovermming 6ka}/sH3

4

2r. (b\? 1/6\> b
F. -overturnin =—=(= 1 —=|— 7
Srovruming =0 (H> 2\b)

537

One specifies the factor of safety with respect to overturning, and the ratio b;/b,, and then
computes the value for b,/H. With b,/H known, one checks for sliding and if necessary modifies

the value of b,/H.

Example 8.2

Given: The concrete gravity wall and soil backfill shown in Fig. E8.2a.



538 8 Vertical Retaining Wall Structures

Sm
—
0
Yot = 18 kN/m?
g=3: 4m
Yeone = 24 kN/m?
k=173
b,
+—Ft

Fig. E8.2a
Determine: The required value for b,. Take the factors of safety for overturning and sliding to be

equal to 2 and 1.5, respectively.

Solution: Given b; = 0.5 m, H = 4 m, F.S.qverwuming = 2, and F.S.giging = 1.5, we determine b,
corresponding to the two stability conditions.

2. (b 1(b\* b
F. -overturnin =—<(= 1 —=|— T
S.overtu g Kt <H> { 2<b2) +b2
2(24) (b2 1/05\* o.
o ey )

b3 +0.5by —4.125 =0 b)required = 1.8m

b b
o ()2
al’s
0.5(24) (b 0.5
15=0524) <—2> (1 + —> b2 required = 2.5m
)

(ont 17

Use b, =2.5m
Example 8.3 Retaining Wall with Footing

Given: The walls defined in Figs. E8.3a, E8.3b, and E8.3c. These schemes are modified versions of
the wall analyzed in Example 8.1. We have extended the footing to further stabilize the wall.
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It
—+—
T KN
Tou = -12 kip/t?
10 ft ¢ =30°
Yeone = -15 kip/i
p =577
21t B |A
, 4t 3ft
1 1 1
Fig. E8.3a Case “A”
1 i
. 3
7] AN
Yeor = -12 kip/i?
10 ft @ =30°
Yeone = -15 kip/ft?
= .577
1 |4n #
(2L, 4n
I 1 I
Fig. E8.3b Case “B”
I ft
-T—¥
7 AN
Yeou = -12 kip/f®
10 ft @ =30°
Yeonc = -15 kip/ft®
p =.577
4t
] ] B | A

Fig. E8.3c Case “C”

P30y
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Determine: The factor of safety against sliding; the factor of safety against overturning; the base
pressure distribution. Use the Rankine theory for soil pressure computations. Neglect the passive
pressure acting on the toe.

Solution:
Case “A”: We work with the free body diagram shown in Fig. E8.3d. The vertical surface is taken to
pass through the heel.

I Soil

W,
W,
Pa
W,
| 41t
W
—>F

X |N

Fig. E8.3d

From Example 8.1:
Wi =15kip W, =225kip P, =2.88kip Mg, ., = 11.52kipft
The weight of the footing is
W3 = (0.150)(7)(2)(1ft) = 2.1kip
The weight of soil is W, = (0.120)(10)(3)(1 ft) = 3.6 kip
Then
N=> W;=15+225+2.1+3.6=945kip
Wy4+Wi4+ W,y 4+ W,

Fumax = uN = 0.577(9.45) = 5.45kip

Fmax 545
=—=1.89
P, 2.88

F.S iding =

We sum moments about the toe:

M3, e = W1(3.5) +W2(2) + W5(3.5) + W4(5.5)
— 1.5(3.5) + 2.25(2) + 2.1(3.5) + 3.6(5.5) = 36.69kipft

Mg = 11.52kipft

overturning
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Using these moments, the factor of safety is

MBrc»isling _ 36-9 _
My 1152

overturning

32

F.S -overturning —

Next, we determine the line of action of the resultant

Myt = MBoverlurning - MBresiSling = 25.38kipft
M., 2538
L e ) I 4 01
TN T 945
L L
=5 -F=35-268=082fi <<= L167f

Lastly, we compute the pressure loading acting on the base.

N 6 45 6(0.82
9=7 (1 ii) = —97 (1 . 5082) - )> = g, = 2.3kip/ft*, ¢, = 0.4kip/ft*

Case “B”: For this case, we work with the free body diagram shown in Fig. E8.3e. The dimensions are
defined in Fig. E8.3b. W3 = (0.150)(6)(2)(1 ft) = 1.8 kip. W5 = (0.120)(2)(2)(1 ft) = 0.48 kip

soll w) 2.88 kip
Wa
“’ -
- 4
=
B s %
— > F
X
N

Fig. E8.3e



542 8 Vertical Retaining Wall Structures

The calculations proceed as follows:

N=W;+Ws+Ws+Ws=15+225+ 1.8+ 0.48 = 6.03kip
Fumax = uN = 0.577(6.03) = 3.48kip

Frax 348

T 22
P, 288

F.S gliding =

We sum moments about the toe:

MBresAsling = Wl (55) + W2(4) + W3(3) + WS(I)
= 1.5(5.5) +2.25(4) + 1.8(3) + 0.48(1) = 23.13kipft
MBovcnuming = 1152 klp ft
Mg, ., 2313
F.S.overturning = e = =20
" ¢ MBovermming 1 1 52
Mnel = MBovenummg - Bresising 11.61 klp ft
M, 11.61
X=— = —— = 1.925ft
TN T 603
L L
=5 —¥=3-1925=107ft > = 10f /%= S a=s77m
N 2(6.03) e
== = 2.1kip/ft
N T s ip/
Lo 9 4 TR
RRXRXX
>
B A A
2.1
ek} § a=sT? 23
e T
61t
e

Note that the line of action of the normal force is within the base but the pressure is negative at the heel.

Case “C”: We work with the free body diagram shown in Fig. E8.3f. The dimensions are defined in
Fig. E8.3c. The revised value of W5 is W3 = (0.15)(9)(2)(1 ft) = 2.7 kip
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(— Soil

]

w,

soil J« l 2.88 kip

4n

Fig. E8.3f

Then

N=W,+W,+W;s+W4+Ws=15+225+27+3.6+0.48 = 10.53kip
Frmax = uN = 0.577(10.53) = 6.1kip

Foae 6.1
F.S gliding = % =5gg = 212
a .

We sum moments about the toe:

Boalancing — WI(SS) + W2(4) + W3(45) + W4(75) + WS(I)
= 1.5(5.5) +2.25(4) + 2.7(4.5) + 3.6(7.5) + 0.48(1) = 56.88Kipft

MBrcsisling _ 56.88

F.S.overturnine = = =4.94
overrming MBoverlurning 1 1'52
Myee =M Bovertuming — {" Bresisting 45 36k1p ft
My 45.36
X= =——=473ft
TN T 1053

L
625—324.5 —43 =021t
le| < L/6=1.5ft

N{. 6\ 1053/, 6(0.2
.-.q:2<1 i{) == (1 + <9 )) = ¢, = 1.3kip/ft%, ¢, = 1.0kip/ft*
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—.

———%x%X
c;»m/

B ——a

1.3

We point out that case C has the lowest peak pressure. The analysis results are summarized in the

table below.

Case A Case B Case C
N 9.45 kip 6.03 kip 10.53 kip
Friction 5.45 kip 3.48 kip 6.1 kip
F.S iiding 1.89 1.2 2.12
Mpatancing 36.9 kip ft 23.13 kip ft 56.88 kip ft
M verturning 11.52 kip ft 11.52 kip ft 11.52 kip ft
F.S.overturning 3.2 2.0 4.94
X 2.68 ft 1.925 ft 4.3 ft
e 0.82 ft < L/6 1.07 ft > L/6 0.2 ft < L/6
q1 2.3 kip/ft 2.1 kip/ft 1.3 kip/ft*
4 0.4 kip/ft - 1.0 kip/ft®

Example 8.4 Cantilever retaining wall

Given: The retaining wall and soil backfill shown in Fig. E8.4a

| Surcharge = 0.2 kip/ft?

'fw“ = ‘12 kiplrﬂs
18 ft ¢ =30
Toone = -15 kip/f} 19 fi-8 in
u=.51M
—FRRRIRK
=4 T
e | b 2 -4 in
—_— -4
SR, 2R, 71t .
L= 141t

Fig E8.4a

I
o
[
-
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Determine: The factor of safety against sliding; the factor of safety against overturning; the base
pressure distribution. Assume the allowable soil pressure = 4 ksf. Use the Rankine theory for soil
pressure computations.

Solution:
Noting Fig. E8.4b, the soil pressure and weight forces are

1
P,= EkaYSHZ =

%G) (0.12)(22)* = 9.68kip

1oa
Py = ShprH” = 5(3)(0.12)(4)” = 2.88kip

1
Py = kowiH = 3(02)(22) = 147kip

-
{
|
I
| P
H=22ft J,lw «— . —4—
w a
W, : 4 P —
W,
| HA2
P, ! | HA
w3| ,l,ws
x
B = F A
N
_|—-
X
L=14 1

Fig. E8.4b

W1 = 0.15(1)(19.66) = 2.95kip
19.66
W, =0.15 1)( 0 ) = 1.47kip

(
(
= 0.15(2.34)(14) = 4.19kip
W4 =0.12(7)(19.66) = 16.5kip
=0.12(5)(1.67) = 1.0kip

The normal and horizontal forces are



546 8 Vertical Retaining Wall Structures

N=W,+Wr+ W3+ W4+ Ws =26.84kip
Fanax = pN = 0.577(26.84) = 15.5kip
> Frorizonat = Pa + Py — Py = 9.68 + 1.47 — 2.88 = 8.27kip

Next, we compute the factors of safety.

Fonax 15.5
F.S qiding = — 187

ZFhorizontal a 8.27

H H 22 22 .
MBovcrluming = Pa (g) + PS (E) - 968 <?> + 147 (?) == 87.2k1pft

Mg,y = W1(6.5) + Wa(5.67) + W3(7) + W4 (10.5) + W5(2.5) + Py(1.33)
—2.95(6.5) + 1.47(5.67) + 4.91(7) + 16.5(10.5)
+1.0(2.5) +2.88(1.33)
— 241.5Kipft

Bresistin 241 '5
F-S-ovretuming = MB L= 872 =2.77

overturning

Lastly, we determine the location of the line of action of N.

Mnet = MBovenuming - MBrcsisling = 154'8k1p ft
My, 1548
T et %0 s oo
TN T 2684
L 14 L
L x— 577 =123t < = =233t
¢=57%Y=5 <%

Using the above values, the peak pressures are

N 6e\  26.84 6(1.23) s o
=) =221+ — 2.92kip/ft — 0.91kip/ft
q L( L) 7 < 7 );*ql 92kip/ft® g, = 0.91kip/

I dd = |

T

Example 8.5 Retaining Wall Supported by Concrete Piles
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Given: The structure shown in Fig. E8.5a. Assume all the loads acting on the wall are resisted by the
axial loads in the concrete piles. Consider the pile spaced at 6 ft on center. Use Rankine theory.

1.5 ft
+—+
Jjii
Yeou = -12 kip®
¢=30°
Yoone = -15 kip/f®
k,= 173 H= 20ft
L ift Sht q
I i |
SR
|5n| M :IEsn

I

I

I

I

|

ey ]

pile pile Wl
Fig. E8.5a
Determine: The axial loads in the piles.

Solution: We consider a 6 ft segment of the wall. The free body diagram for this segment is shown in
Fig. E8.5b. F| and F'; denote the pile forces; P, is the active lateral soil force; and the W term relates to
various weights. We neglect the passive soil force and assume the horizontal load is carried by the
inclined pile.

P, = ;(;) (0.12)(20)*(6) = 48kip
Wi = (5)(17.5)(6)(0.12) = 63kip
= (1.5)(17.5)(6)(0.15) = 23.6kip

)
= (2:5)(9:5)(6)(0.15) = 21.4
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P

W, —~—P,
6.67 ft
A J,“ ' B
+ + .
}"'\‘h ﬁ T
T I
Fay ]
6.5 ft

Fig. E8.5b

By summing the moments about A, we determine F:
ZMA =0 (225)W, ++(5.5)W, = 6.67P, + 6.5F, = F| = 22.92kips
Summing the vertical forces leads to
> Fy=0=F,, =85.1kip
Similarly, the horizontal loads yields
> Fy=0= F, = P, = 48kip

Then, the axial force in the battered pile is

Fr=\/F} +F>=977

And the required batter is 48/85.1 = 0.56

8.5 Critical Sections for Design of Cantilever Walls

The different segments of a typical cantilever retaining wall structure are shown in Fig. 8.15. The
stem functions as a cantilever beam supported by the footing. Gravity and lateral loading are
transmitted by the stem onto the footing which then distributes the loading onto the soil. The footing
has two counteracting loadings at the heel; the loading due to the weight of the soil, and the pressure
loading. The latter is usually neglected when estimating the peak negative moment in the footing. The
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Fig. 8.15 Loadings and a Surcharge
response pattern for I'T T T T I1 -
cantilever retaining wall ARR

structure. (a) Cantilever

retaining wall components.

(b) Stem—Iloads and Stem~
bending moment. (c) Backfill H

Footing—loads. (d) <
Heel
}
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(Fooling

b SR
q
l o
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M
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c "sg_lll 111

—_— — — —3 — — — —
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il 1 1 1 J

- N M, Y
WES
4. - C ;> I//
Toe-loads and moment Heel-loads and moment

bending moment distributions are also plotted in Fig. 8.15d. Note that for this type of structure, the
bending moment distribution in the footing has both positive and negative regions. The critical region
for design is the stem—footing junction.
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Fig. 8.16 Typical bending TR
steel reinforcement
patterns
Backfill
Heel
Toe

Retaining wall structures are constructed using reinforced concrete. The thickness of the footing
sections is governed by the shear capacity. The location and magnitude of the bending steel
reinforcement is dictated by the sense of the bending moment distribution (i.e., positive or negative).
Noting that the function of the reinforcement is to provide the tensile force required by the moment,
the moment diagrams shown in Fig. 8.15d require the reinforcement patterns defined in Fig. 8.16. The
actual size/number of the rebars depends on the magnitude of the moment and the particular design
code used to dimension the member.

Example 8.6

Given: The structure shown in Fig. ES.6a.

JOKN  cmmp =
I m
AKX T
k,=.35
Ysoit = 18 kN/m’ 4m
Yeone = 24 kN/m’

[ ] Sm

L, Sm Im

Fig. E8.6a

Determine:
(a) The required L; such that the factor of safety with respect to overturning is equal to 2.
(b) The tension areas in the stem, toe, and heel and show the reinforcing pattern.
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Solution:
10 kN
—_— -+
I m
L |
H=45m W, W,
_ Lrcum—
B
, L, l.ﬁml Im |
P, = %kaySHz = %(0.35)(18)(4.5)2 = 63.8kN
= (0.5)(5)(24) = 60kN
= (0.5)(1.5 4 L1)(24)
W3 = (4)(L1)(18)

4.5
M, = 63.8 (T) +10(5.5) = 150.7

Li+15 L
MBresisling = W1(1'25) + W2< 1 2 ) + W3(21 + 1 5)

Bresisling _

L 1.5 L
W1(1.25)+W2< ”; >+W3<?1+1.5>

F.S.overtuming = 2 = ]MBOVCM‘““g - 150.7

4

L required — 1.2m

The figure below shows the reinforcing pattern required for the tension areas.

10 kN > K
KR X
k, =35
Yoou = 18 kN/m’ S5m
Yome = 24 kKN/m’
] __5 m
toc T
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8.6 Summary
8.6.1 Objectives of the Chapter

» To introduce the topic of vertical retaining wall structures used for embankments, abutments, and
underground structures.

» To present a theory for establishing the lateral loading exerted by soil backfill on vertical walls.

» To develop a methodology for evaluating the stability of cantilever retaining walls when subjected
to lateral loading due to backfill and surcharges.

8.6.2 Key Concepts and Facts

» The Rankine theory predicts a linear distribution of soil pressure which acts normal to a vertical
face and increases with depth. The resultant force is given by

1
P, = Eszka
where H is the vertical wall height, y is the soil density, and k, is a dimensionless coefficient that
depends on the soil type and nature of the relative motion between the wall and the backfill. For
active conditions,

_1—sing

k, =
1+ sing

where ¢ is the soil friction angle, typically ~ 30°.

+ Stability is addressed from two perspectives: Sliding and overturning. The factor of safety with
respect to sliding is defined as the ratio of the peak available horizontal friction force to the actual
friction force. The factor of safety with respect to overturning about the toe is taken as the ratio of
the restoring moment to the unbalancing moment.

» One selects the dimensions of the footing, such that these factors of safety are greater than one and
the resultant force due to the structural weight and the soil loads acts within the middle third of the
footing width.

8.7 Problems

Problem 8.1 For the concrete retaining wall shown, determine the factors of safety against sliding
and overturning and the base pressure distribution. Use the Rankine theory for soil pressure
computations.
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Problem 8.2 For the concrete retaining wall shown, determine the factors of safety against sliding
and overturning and the base pressure distribution. Use the Rankine theory for soil pressure

computations.
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Problem 8.3 For the concrete retaining wall shown, determine the factors of safety against sliding
and overturning and the base pressure distribution. Use the Rankine theory for soil pressure

computations
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Problem 8.4 For the concrete retaining wall shown, determine the required value for b,. Take the
factors of safety for overturning and sliding to be equal to 1.75 and 1.25, respectively. Use the
Rankine theory for soil pressure computations.
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Problem 8.5 For the retaining wall shown, determine

(a) The soil pressure acting on the wall

(b) The factor of safety for overturning

(c) The factor of safety for sliding

(d) The soil pressure distribution under the footing

Assume: u = 0.5, yeon = 0.12 kip/ft®, ko = 1/3, Yeonerete = 0.15 Kip/ft®, u = 0.5, and @ = 30°.
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Problem 8.6
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(a) Determine the factors of safety against overturning and sliding.
(b) Determine the soil pressure distribution under the footing (g, ¢»).
(c) Determine the moment distribution in the stem.

(d) Determine the bending moment distribution in the heel.

Assume: Allowable soil pressure = 5.0 ksf, 7o = 0.12 kip/ftB, k., = 1/3, and yconcrere = 0.15 kip/ft3

Problem 8.7
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Suggest values for b, and b,. Take the safety factors for sliding and overturning to be equal to 2.

Assume: yqoi = 0.12 Kip/ft, Yeoncrete = 0.15 kip/ft®, g = 0.57, and & = 30°.
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Problem 8.8
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Determine the minimum value of w at which soil failure occurs (i.e., the soil pressure exceeds the
allowable soil pressure).

ASSUMeE: Guiiowabte = 3 KIp/ftZ, yson = 0.12 Kip/ft®, yeonerete = 0.15 Kip/ft®, u = 0.57, and & = 30°.

Problem 8.9 Which of the retaining walls shown below is adequately reinforced for bending?

S —— -
a b S

Problem 8.10

(a) Determine the factor of safety with respect to overturning and sliding.
(b) Identify the tension areas in the stem, toe, and heel and show the reinforcing pattern.
(c) Determine the location of the line of action of the resultant at the base of the footing
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Statically indeterminate structures are over-restrained in the sense that there are more force unknowns
than available equilibrium equations. This situation arises when there are more supports than needed
to prevent rigid body motion. Multi-span continuous beams and two-hinged frames are examples of
this case. Indeterminacy may also result when there is an excess of members, such as a truss with
multiple diagonals. Two dominant methods of analysis are used for indeterminate structures.

The traditional approach for analyzing statically indeterminate structures is based on the assump-
tion that the structure behaves in a linear elastic manner, and therefore displacement patterns
corresponding to different systems of forces can be superimposed to achieve a desired displacement
pattern. One replaces the displacement constraints with unknown forces, determines the deflected
shapes for each unit force, and then combines and scales these shapes to obtain a final deflected shape
that satisfies the constraints. Since one works with force unknowns, this approach is called the “Force
Method.” It is also called the “Flexibility Method.” Engineers find the method appealing since the
process of superimposing the different deflected shapes can be easily visualized and the computa-
tional details, which are suited for hand computation, provide insight into the deflection behavior.

A second method is based on solving a set of equilibrium equations expressed in terms of certain
displacement measures that define the loaded configuration. It views the structure as an assemblage of
members and uses a set of member end force—end displacement relations called the slope deflection
equations. In general, the number of displacement unknowns is larger than the number of force
unknowns, but the method is readily programmed and numerous software packages now exist. We
refer to this approach as the “Displacement Method.” It is also called the “Stiffness Method” since the
equations involve stiffness coefficients.

In what follows, we discuss both methods. We also describe some approximate hand calculation-
based methods that are suitable for rapidly estimating the response due to gravity and lateral loads.
Finally, we describe the underlying theory for the Displacement Method and illustrate how to apply
the method using computer software.



Abstract

Up to this point, we have focused on the analysis of statically determinate
structures because the analysis process is fairly straightforward; only the
force equilibrium equations are required to determine the member forces.
However, there is another category of structures, called statically indeter-
minate structures, which are also employed in practice. Indeterminate
structures require another set of equations, in addition to the force equi-
librium equations, in order to solve for the member forces. There are two
general methods for analyzing indeterminate structures, the force (flexi-
bility) method and the displacement (stiffness) method. The force method
is more suited to hand computation whereas the displacement method is
more procedural and easily automated using a digital computer.

In this chapter, we present the underlying theory of the force method
and illustrate its applications to a range of statically indeterminate
structures including trusses, multi-span beams, arches, and frames. We
revisit the analysis of these structures in the next chapter using the
displacement method, and also in Chap. 12, “Finite Element Displace-
ment Method for Framed Structures,” which deals with computer-based
analysis.

9.1 Introduction

The force method is a procedure for analyzing statically indeterminate structures that works with
force quantities as the primary variables. It is applicable for linear elastic structures. The method is
based on superimposing structural displacement profiles to satisfy a set of displacement constraints.
From a historical perspective, the force method was the “classical” analysis tool prior to the
introduction of digital-based methods. The method is qualitative in the sense that one reasons
about deflected shapes and visualizes how they can be combined to satisfy the displacement
constraints. We find the method very convenient for deriving analytical solutions that allow one to
identify key behavior properties and to assess their influence on the structural response. The key step
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is establishing the displacement constraints which are referred to as the geometric compatibility
equations.

Consider the structure shown in Fig. 9.1. Since there are four displacement restraints, the structure
is indeterminate to the first degree, i.e., one of the restraints is not needed for stability, and the
corresponding reaction force cannot be determined using only the force equilibrium equations.

The steps involved in applying the force method to this structure are as follows:

1. We select one of the force redundants and remove it. The resulting structure, shown in Fig. 9.2, is
called the primary structure. Note that one cannot arbitrarily remove a restraint. One needs to
ensure that the resulting structure is stable.

2. We apply the external loading to the primary structure and determinate the displacement at C in
the direction of the restraint at C. This quantity is designated as Ac, o. Figure 9.3 illustrates this
notation.

3. Next, we apply a unit value of the reaction force at C to the primary structure and determine the
corresponding displacement. We designate this quantity as dcc (see Fig. 9.4).

4. We obtain the total displacement at C of the primary structure by superimposing the displacement
profiles generated by the external loading and the reaction force at C.

AC primary structure — AC, o+ 5CCRC (91)

5. The key step is to require the displacement at C of the primary structure to be equal to the
displacement at C of the actual structure.

Fig. 9.1 Actual structure

Fig. 9.2 Primary structure
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Fig. 9.3 Displacements
due to the external loading \ B o /

Fig. 9.4 Displacement — e SN S

due to unit value of R¢ / a\
{ \

Ac |actual = Ac primary — AC,O + éccRe (92)

Equation (9.2) is referred to as the “geometric compatibility equation.” When this equation is
satisfied, the final displacement profiles for the actual and the primary structure will be identical. It
follows that the forces in the primary structure and the actual structure will also be identical.

6. We solve the compatibility equation for the reaction force, Rc.

Rc = % (Acactuat — Ac,o) (9.3)
cC
Note that Ac|sctual = O when the support is unyielding. When R is negative, the sense assumed in
Fig. 9.4 needs to be reversed.
7. The last step involves computing the member forces in the actual structure. We superimpose the
member forces computed using the primary structure according to the following algorithm:

Force = Force|exiernal load + Rc (Force|g.—1) (9.4)

Since the primary structure is statically determinate, all the material presented in Chaps. 2, 3, 4, 5,
and 6 is applicable. The force method involves scaling and superimposing displacement profiles. The
method is particularly appealing for those who have a solid understanding of structural behavior. For
simple structures, one can establish the sense of the redundant force through qualitative reasoning.


http://dx.doi.org/10.1007/978-3-319-24331-3_6
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Fig. 9.5 Actual structure \ /

D B

Essentially, the same approach is followed for structures having more than one degree of
indeterminacy. For example, consider the structure shown in Fig. 9.5. There are two excess vertical
restraints.

We obtain a primary structure by removing two of the vertical restraints. Note that there are
multiple options for choosing the restraints to be removed. The only constraint is that the primary
structure must be “stable.” Figure 9.6 shows the different choices.

Suppose we select the restraints at C and D as the redundants. We apply the external loading to the
primary structure (Fig. 9.7) and determine the vertical displacements at C and D shown in Fig. 9.8.

The next step involves applying unit forces corresponding to Rc = 1 and Rp = 1 and computing
the corresponding displacements at C and D. Two separate displacement analysis are required since
there are two redundant reactions (Fig. 9.9).

Combining the three displacement profiles leads to the total displacement of the primary structure.

AC |primary structure — AC,O + 6CCRC + 5CDRD (9 5)
Ap |primary structure — AD,O + dpcRc + dppRp

The coefficients of Rc and Ry, are called flexibility coefficients. It is convenient to shift over to
matrix notation at this point. We define

Ac,o Rc
Ao - X=
Ap, o Rp

(9.6)
. R . §CC §CD
flexibility matrix = & =
dpc  6pp
Using this notation; the geometric compatibility equation takes the form
A actual structure — éo + §§ (97)

Note that A |scwalstructure = 0 When the supports are unyielding. Given the choice of primary
structure, the flexibility coefficients are properties of the primary structure whereas A, depends on
the both the external loading and the primary structure. We solve (9.7) for X,
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Fig. 9.6 Choices for
primary structure. (a)
Option 1. (b) Option 2.
(c) Option 3

Fig. 9.7 Primary structure

restraint direction at C

restraint direction at D
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Fig. 9.8 Displacements
due to external loading

Fig. 9.9 Displacement
due to unit values of the
redundant. (a) Rc = 1.
(b)Rp =1

9 The Force Method
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Rp =l -75;_‘-

§ = §_l (A’actual structure Ao) (98)

and then determine the member forces by superimposing the individual force states as follows:

E = E external load 1 (E|RC:1)RC + (E|RD:1)RD (99)

The extension of this approach to an nth degree statically indeterminate structure just involves
more computation since the individual matrices are now of order n. Since there are more redundant
force quantities, we need to introduce a more systematic notation for the force and displacement

quantities.

Consider the frame structure shown in Fig. 9.10a. It is indeterminate to the third degree. One
choice of primary structure is shown in Fig. 9.10b. We remove the support at D, take the reactions as
the force redundants, and denote the jth redundant force as X; and the corresponding measure as 4;.
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Fig. 9.10 (a) Actual a ¢ b B e
structure. (b) Primary
structure—redundant
reactions

Xy» 8y «+lp ) X3 4
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The resulting displacements of the primary structure due to the external loading and the three force
redundants are expressed as

Al |primary structure — Al, o+ 511X1 + 512X2 + 613X3
43 |primary structure = 42,0 + 021X1 + 022X + 523X3 (9.10)
43 |primary structure — A3, 0+ 031X1 + 832Xz + 633X3

The matrix form of (9.10) is

A primary structure — AO + §X (91 1)
where
o 612 613 Ao X,
0= [0 On 6| Ay=14 420 X=¢X
031 63 033 430 X3

Note that the displacement measures may be either a translation or a rotation. A major portion of
the computational effort is involved with computing the flexibility coefficients using the Principle of
Virtual Forces. The matrix form of the geometric compatibility equation (9.7) is generic, i.e., it is
applicable for all structures. One just has to establish the appropriate form for A, and 8.

Other possible choices of primary structures are shown in Fig. 9.11. We can retain the two fixed
supports, but cut the structure at an arbitrary interior point (Fig. 9.11a). The redundants are taken as
the internal forces (axial, shear, and moment) at the point. The flexibility coefficients are now
interpreted as the relative displacements of the adjacent cross sections (e.g., spreading, sliding,
relative rotation). Another choice involves removing excess reactions as in Fig. 9.11b.

For multi-bay multistory frames, one needs to work with internal force redundants since removing
fixed supports is not sufficient to reduce the structure to a statically determinate structure. Figure 9.12
illustrates this case.

Multi-span beam-type structures are handled in a similar way when choosing a primary structure.
Consider Fig. 9.13. One can either select certain excess reactions or work with bending moments at
interior points. We prefer the latter choice since the computation of the corresponding flexibility
coefficients is simpler due to the fact that the deflection profiles associated with the redundant
moments are confined to adjacent spans.

For truss-type structures, various cases arise. The truss may have more supports than needed, such
as shown in Fig. 9.14a. One choice would be to remove sufficient supports such that the resulting
structure is statically determinate (Fig. 9.14b).

We can also keep the original restraints, and remove some members, as indicated in Fig. 9.14c.

Another example is shown in Fig. 9.15a. The truss has too many members and therefore the only
option is to remove some of the diagonals. Figure 9.15b illustrates one choice of redundants.
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Fig. 9.11 (a) Primary
structure—redundant
internal forces. (b) Primary
structure—redundant
reactions

Fig. 9.12 (a) Actual
structure. (b) Primary
structure

Fig. 9.13 Multi-span
beam. (a) Actual structure.
(b) Primary structure—
redundant reactions. (c)
Primary structure—
redundant moments
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Fig. 9.14 (a) Actual a
structure. (b) Primary
structure—redundant
reactions. (¢) Primary
structure—redundant

internal forces ; i

Ka

i
*

Fig. 9.15 (a) Actual a
structure. (b) Primary

structure—redundant

internal forces
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9.2 Maxwell’'s Law of Reciprocal Displacements

The geometric compatibility equations involve the flexibility matrix, §. One computes the elements of
d using one of the methods described in Part I, such as the Principal of Virtual Forces. Assuming there
are n force redundants, 8 has n® elements. For large n, this computation task becomes too difficult to
deal with manually. However, there is a very useful relationship between the elements of §, called
“Maxwell’s Law,” which reduces the computational effort by approximately 50 %. In what follows,
we introduce Maxwell’s Law specialized for member systems.

We consider first a simply supported beam on unyielding supports subjected to a single
concentrated unit force. Figure 9.16a defines the geometry and notation. The deflected shape due to



570

9 The Force Method

Fig. 9.16 Reciprocal
loading conditions. (a)
Actual structure. (b) Actual
loading (M ). (¢) Virtual
loading (6Mp). (d) Actual
loading (Mp). (e) Virtual
loading (6M )
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the unit force applied at A is plotted in Fig. 9.16b. Suppose we want to determine the deflection at B
due to this load applied at A. We define this quantity as dgs. Using the Principle of Virtual Forces
specialized for beam bending; we apply a unit virtual force at B (see Fig. 9.16¢) and evaluate the

following integral:

dx
0ga = | MaASMp — 12
on = [ Madta 9.12)

where M, is the moment due to the unit load applied at A, and M3y is the moment due to the virtual

unit load applied at B.
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Now, suppose we want the deflection at A due to a unit load at B. The corresponding virtual force
expression is

dx
OaB = | MpoMa — 9.13
= [ Muos 913)

where 6M 4 is the virtual moment due to a unit force applied at A and My is the moment due to the
load at B. Since we are applying unit loads, it follows that

Mp = Mp
(9.14)
Mg = 6My
and we find that the expressions for 55 and g4 are identical.
5AB56BA (915)

This identity is called Maxwell’s Law. It is applicable for linear elastic structures [1]. Returning
back to the compatibility equations, defined by (9.7), we note that the coupling terms, d; and 6;;, are
equal. We say the coefficients are symmetrical with respect to their subscripts and it follows that §
is symmetrical. Maxwell’s Law leads to another result called Miiller-Breslau Principle which is
used to establish influence lines for indeterminate beams and frames. This topic is discussed in
Chaps. 13 and 15.

9.3  Application of the Force Method to Beam-Type Structures

We apply the theory presented in the previous section to a set of beam-type structures. For
completeness, we also include a discussion of some approximate techniques for analyzing partially
restrained single-span beams that are also useful for analyzing frames.

Example 9.1

Given: The beam defined in Fig. E9.la. Assume [ = 120(10)6 mm*, L =6 m, w = 30 kN/m,
vg = 40 mm, and £ = 200 GPa

A W
v Vv Vv Vv Vv Vv Vv VB

2 )

SN

Fig. E9.1a

Determine: The reactions for the following cases:
1) w=30kN/m,vg =0

@ii)) w =0, vg = 40 mm

@iii)) w = 30 kN/m, vg = 40 mm


http://dx.doi.org/10.1007/978-3-319-24331-3_15
http://dx.doi.org/10.1007/978-3-319-24331-3_13
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Solution: The beam is indeterminate to the first degree. We work with the primary structure shown
below (Fig. E9.1b).

A 7
/

Fig. E9.1b Primary structure

Applying the external loading and the unit load results in the following deflected shapes
(Figs. E9.1c and E9.1d):

w

v v b b b Y
B

1

NN

AB

Fig. E9.1c Displacement due to external loading

-

Fig. E9.1d Displacement due to the unit values of Ry~ The deflection terms are given in Table 3.1.

S

wL*
An g — o
B0 = gy |
13
Snp — ——
BB = 3r T

Then

+ 1 Aglacwa = 45,0 + SBRE

\
_ WL4 L? . o Ap |actual + (WL4/8E[)
AB|actual = _@ +ERB " Rp = (L3/3E])
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Case (i): For Ap|uctuat = 0

Ry = ((wL*/8EI)/(L*/3EI)) = %wL =2(30)(6) = 67.5kN 1

oo W

Knowing the value of Rg, we determine the remaining reactions by using the static equilibrium
equations.

5 5
S Fy=0 Ra= L =5(30)(6) = 112.5kN |

wL

ZM@A =0 Mp=—=135kNm counterclockwise
30 kN/m
M, = 135 kN-m ***W¢¢**}f
B
= 12.5kN Ry = 67.5 kN
Case (ii): For w = 0, Aglaciual = —VB
(—vg) 3EI 3(200)(10)°120(10)°
Rp=-5—v = ——yp= — 0.040) = —13.33kN .. Rg = 13.33kN
BT (L 3E R (6) (0.040) ? :

The reactions are
3EI
E Fy:() RA :FVB:1331(NT

3EI
ZM@A =0 M, :?VB = 80kNm counterclockwise

M, =80 kN-m

A 1B _\F
f ¢ vg = 40 mm
Ry = 1333 kN
R, =333 kN
Case (iii): For w # 0 and Ag |amual = —vg

—Vvg + (WL4/8EI)
(L*/3EI)

3 3EI
= —l—ng — L—3vB =675—-1333 =542kN T

Rg =
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The reactions are as follows:

30 kN/m
215 kN-m A : Y V¥ ¥ ¥ V¥ ¥ v \Iy "
4 4 40 mm
125.83 kN Ry = 542 kN

Note that since the structure is linear, one can superimpose the solutions for cases (i) and (ii).

Example 9.2

Given: The beam and loading defined in Fig. E9.2a. Assume I = 400 int, L =54ft,w=2.1 kip/ft,
6p = 2.4 in., and E = 29,000 ksi.

5-‘\T rf»r I oy I

2L73

Fig. E9.2a

Determine: The reactions due to
(i) The distributed load shown
(i) The support settlement at A

Solution: The beam is indeterminate to the first degree. We take the vertical reaction at B as the force

unknown and compute the deflected shapes due to w and Rg = 1 applied to the primary structure
(Figs. E9.2b and E9.2¢).

Ao

Fig. E9.2b Deflected shape due to w

£ — -
A C
Rp =1

Fig. E9.2c Deflected shape due to unit value of Rp
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Case (i): The distributed load shown

+ 1 ABlacwa = 45,0 + S5BRE
I

A
Ago+0peRg =0 .. Rg = _~2B,0
OBB
The deflection terms can be determined using (3.34).
4wlL?
A = —-——
B0 T 700E]
S — 413
B8 = 243E1
Then
A 4wL* J729EI L
Ry = An0_ (BWLTOED) WLy gy

Spp (4L°/243EI) 3

Knowing the value of Rg, we determine the remaining reactions by using the static equilibrium
equations.

2.1 kip/ft

_f—-—"""ﬂﬂy I,/ \[ W
B

6.3 kip i 11{3 =37.8 kip i -
|
|

iz O
(§]
7
E

| 18 ft 36 ft

Case (ii): The support settlement at A (Fig. E9.2d)

A B

Apo = -‘;-5,\

Fig. E9.2d Displacement due to support settlement at A

+ 1 Aplacwa = 45,0 + SBRE
where

arr  4(s4)’(12)°

_ _ = 0.386in.
243E1 ~ 243(29,000)(400) n

OBB

2
AB’Q = §5A = —1.6in.
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Therefore

4go  (—1.6)

Rp = —
B S8B 0.386

= 4.14kip 1

We determine the remaining reactions using the static equilibrium equations.

‘ I_ \[ l(w
A = l
..-‘b kll' | RH —4'4 kl[) t I._\‘. kl[

i 18 1 ' 36 1t I
T T T

Example 9.3

Given:
The three-span beam defined in Fig. E9.3a. Assume EI is constant, L = 9 m, and w = 20 kN.

Awlz 1 ¥ & ¥ A N D
v 1 wr I o I o
B C
L | L 5 -

Fig. E9.3a

Determine: The reactions

Solution: The beam is indeterminate to the second degree. We remove the supports at B and C, take
the vertical reactions at B and C as the force redundants, and compute the deflected shapes due to w,
X, =1, and X, = 1 applied to the primary structure (Figs. E9.3b, E9.3c, E9.3d).

w

At T T T . I 1o
— T I
Ao A2

Fig. E9.3b Deflected shape due to external loading

3y
821
A
D
A BT C
X =1

Fig. E9.3c Deflected shape due to X; = 1
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B
d12 -
.
W\ D
B c1 s
X5 =1

Fig. E9.3d Deflected shape due to X, = 1

The displacements of the primary structure due to the external loading and the two force
redundants are expressed as:

Alo+6uXi +61X,=0
Az o+ 00X+ 00X =0

Noting symmetry and the deflection results listed in Table 3.1, it follows that:

X=X,
A1 0=12420 = _1112_145
611 =6n = ;%
G231 =612 = 178—1;531
Then
Ximxp— Awo o (YRR 1.1(20)(9) = 198kN

2T 51 61 (AL7/9EI) + (7L7/18EI)
Lastly, we determine the remaining reactions

> Fy=0 Rx=Rp=04wL=T72kN1

20 kN/m
A J J J J 3£ ¥ D
P ’%,7 B C o3y, o,
72 kN *wg KN ?103 kN *7,, i
! 9m | 9m i 9m z

9.3.1 Beam with Yielding Supports

We consider next the case where a beam is supported by another member, such as another beam
or a cable. Examples are shown in Fig. 9.17. When the beam is loaded, reactions are developed,
and the supporting members deform. Assuming linear elastic behavior, the supporting members


http://dx.doi.org/10.1007/978-3-319-24331-3_3
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Fig. 9.17 Beam on a
flexible supports. (a) Beam.
(b) Cable. (¢) Column

Fig. 9.18 Beam supported L
by another beam ! ab

L 11 \;» X
C,A, = T#-'D

|
|

Lcd

behave as linear elastic restraints, and can be modeled as equivalent spring elements, as indicated in
Fig. 9.17.

We consider here the case where a vertical restraint is provided by another beam. Figure 9.18
illustrates this case. Point B is supported by beam CD which is parallel to beam AB. In this case, point
B deflects when the load is applied to beam AB. One strategy is to work with a primary structure that
includes both beams such as shown in Fig. 9.19. The force redundant is now a pair of self-
equilibrating forces acting at B, and the corresponding displacement measure is the relative displace-
ment apart between the upper and lower contact points, designated as B and B'.
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Fig. 9.19 Choice of force a =T —T
redundant and T I T ] \\L
displacement profiles. (a) A o
Primary structure—force T X,

redundant system. (b) A
Deflection due to external X I
loading. (c) Deflection due l 1

to redundant force at B Cr ]

C
B D
8I Ilhcum .
D

The total displacement corresponding to X; = 1 is the sum of two terms,

811 = 11|as + 11 |ep
3

= % + 811 cp
Beam CD functions as a restraint on the movement of beam AB. The downward movement of B’ is
resisted by the bending action of beam CD. Assuming linear elastic behavior, this restraint can be
modeled as a linear spring of stiffness k. One chooses the magnitude of k such that the spring
deflection due to the load P is the same as the beam deflection.
Then, it follows from Fig. 9.20 that

1

11’CD = E (9.16)

Assuming the two beams are rigidly connected at B, the net relative displacement must be zero.

A=A 0+X L+L—3 -0 (9.17)
R VNV ‘
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P P
C ¥ D T ]
;' = - — :> u u® = P
e kep keo
I"
u*=9 |
Hep

Fig. 9.20 Equivalent spring

Solving (9.17) for X, leads to

—1
e {(L3/3E1) + (1//@)}4"0 (9.18)

Note that the value of X; depends on the stiffness of beam CD. Taking kcp = oo corresponds to
assuming a rigid support, i.e., a roller support. When kcp = 0, X; = 0. It follows that the bounds
on X, are

3EI
0<X < <F>A1’O (919)

When the loading is uniform,

wL?

SEL

A=

Another type of elastic restraint is produced by a cable. Figure 9.21 illustrates this case. We replace
the cable with its equivalent stiffness, k¢ = A‘hEC and work with the primary structure shown in
Fig. 9.21b.

Using the results derived above, and noting that A; = 0, the geometric compatibility equation is

Ay =410+ (811 |a + 611 sc) X1 =0

For the external concentrated loading,

P (d’L &
Mo=7 |5 "%
EI\ 2 3



9.3 Application of the Force Method to Beam-Type Structures 581

Fig. 9.21 (a) Actual a 6 L
structure. (b) Primary C N
structure—force redundant
system. (c¢) Deflection due “able
to applied load S .
AE,
P
1 Beam
y (
A 2 § T
A B
/ Eply
=
. L
T t
b
C
P X, | B I
X A
| A2
A y B
a
T
L
L L
' I
c P
A S B
__‘_E_‘_'“"‘m Ag
a Ty
—t
L

Substituting for the various flexibility terms leads to

-1
ne [(ﬁ/ 3Eply) + (1 /kc)]Al’O (9.20)

It kl is small with respect to ﬁ, the cable acts like a rigid support, i.e., X; approaches the value

for a rigid support. When ki is large with respect to ﬁ, the cable is flexible and provides essentially
no resistance, i.e., X; = 0. The ratio of cable to beam flexibilities is a key parameter for the behavior
of this system.

Cable-stayed schemes are composed of beams supported with inclined cables. Figure 9.22a shows
the case where there is just one cable. We follow essentially the same approach as described earlier
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Fig. 9.22 (a) Cable-
stayed scheme. (b) Force
redundant. (¢) Deflection
due to applied load. (d)
Deflection due to X; = 1.
(e) Displacement
components

b
C
g /g N
Xi
P xl S/
o o LN
7]
7 a
—
¢ p
Aj J’ .B
P |
8
Alo
Vio
8
d 1
L 8 sin 8
a
B Condition X, =1

,
i
>+
=

except that now the cable is inclined. We take the cable force as the redundant and work with the
structure defined in Fig. 9.22b.

Note that A, is the relative movement together of points B and B’ along the inclined direction. Up
to this point, we have been working with vertical displacements. Now we need to project these
movements on an inclined direction.

We start with the displacement profile shown in Fig. 9.22c. The vertical deflection is vgy.
Projecting on the direction of the cable leads to
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P 2L 3
Ao = —sinbvgy = — sinH{EBlB <a ZB - %) } (9.21)

Next, we treat the case where X; = 1 shown in Fig. 9.22d. The total movement consists of the
elongation of the cable and the displacement of the beam.

811 = 811 |sc + 811 as
The elongation of the cable is

Lo 1
AcEc ke

S |pc =
The beam displacement follows from Fig. 9.22e.

in 0L’ L3
S11|aB = vB,1 SIn@ = sine{ ZIII;BIBB} = (sinf)’ <3E:IB>

Requiring A; = 0 leads to

= 1 Psin@ (a*Lg B £
= (sine)z(L§/3EBIB) + (1/kc) [EB]B < ) 6)} (9.22)

Finally, we express X; in terms of the value of the vertical reaction corresponding to a rigid
support at B.
sin @

e Rlrigia su 9.23
: (Sina)z+3(EBIB/L133)(LC/ECAC) |rgldspportatB ( )

There are two geometric parameters, 0, and the ratio of I5/Lg> to Ac/Lc. Note that X, varies with
the angle 6. When cables are used to stiffen beams, such as for cable-stayed bridges, the optimum
cable angle is approximately 45°. The effective stiffness provided by the cable degrades rapidly with
decreasing 6.

Example 9.4
Given: The structure defined in Fig. E9.4a.

Assume I = 400 in.*, L = 54 ft, w = 2.1 kip/ft, k, = 25 kip/in., and E = 29,000 ksi.

Determine: The reactions, the axial force in the spring, and the displacement at B.

—
-
Al

Fig. E9.4a
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Solution: The structure is indeterminate to the first degree. We take the axial force in the spring at B
as the force unknown.
The geometric compatibility equation is

1
Ahm+<&ﬂwc+;)X1=0
v

The deflection terms can be determined using (3.34).

4wL*
MO T 70E1 "
4L .
511‘ABC = m = 0.386in.
8“IABC
/T\
A = ] C
a— B A ¥33
X =1
X=1
Kyl K,
Fig. E9.4b Deflected shape due to X; = 1
w
Ar C
F——

Fig. E9.4c Deflected shape due to external loading

Solving for X;, leads to:


http://dx.doi.org/10.1007/978-3-319-24331-3_3
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Ao 14.6

X\ = ¥ (1/ky) 0386+ (1/25)

5 = 34.26kip |
11’ABC

X, = 34.26 kip

ky

The displacement at B is

X1 34.26
VB :k_j:?: 1.37in. i

Next, we determine the remaining reactions by using the static equilibrium equations.

2.1 kip/ft

B c
3.94 kip i I:mn kip

I8 ft 6t

Example 9.5

Given: The structure defined in Fig. E9.5a. Assume [ = 200(10)6 mm4, L =18 m, P = 45 kN,
Ac = 1300 mm?, and E = 200 GPa.

Fig. E9.5a

Determine: The forces in the cables, the reactions, and the vertical displacement at the intersection of
the cable and the beam.
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(a) 0 = 45°
(b) 6=15°

Solution: The structure is indeterminate to the second degree. We take the cable forces as the force
redundants and work with the structure defined below (Fig. E9.5b).

| L4 | L4

Fig. E9.5b Primary structure

Next, we compute the deflected shapes due to external loading P, X; = 1, and X, = 1 applied to
the primary structure (Figs. E9.5¢, E9.5d, E9.5¢).

P
‘T l D
% e b

Voo

Co

Fig. E9.5c External loading P

A '[ s

sin O

Fig. E9.5d X, = 1

C2
A D

e T 4

Fig. E9.5e X, =1

The displacements of the primary structure due to the external loading and the two force
redundants are expressed as
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Al,() + 611 X1 + 612X, =0
Az o+ 02X + 00X, =0

where
o1 =01 |Beam +6n |cable
522 - 522|Beam + 522|cable
812 = 12|peam
021 = 621 |Beam

also

AI,O = VB,0 sin @
AZ,O =VC,0 sin @
5]1 |Beam = VB,1 sin @
81| geam = Ve, 1806
521 |Beam = VB,2 sin @

522|Beam =Vvc,2 sin 0

Because of symmetry:

3sin 0*L3
6 cam = O eam — mf =—M
b 22[Bean = V8,180 ==y
. 7 sin 0°L>
612|Beam = Oy |Beam = VB,2 sin@ = W
11sin6PL?
A g=450= ing—_—— "%~
Lo A0 T R0 763E]
Lc L

6 = 6 =
11 |Cable 22 | Cable AcE 4 cos GAcE
X =X
Lastly, the redundant forces are

Ao

Xi=Xp=
: ? (511|Beam +511|Cable) +512}Beam

2X,sin@

587
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(a) For # = 45°

Ay
(811]Beam + 811 | cavte) + 812 |Beam
J. 2X;sin@ = 2(43) sin45 = 60.8kN

Xl :X2: :43kN

The remaining reactions are determined using the static equilibrium equations.

R = 60.8 kKN

5 4
A B (45 45 M C D
> I P

79kn § " t 7ok
I 18 m '
(b) For g = 15°
A0

= 109.8kN

X=X, =
! 2 (811]Beam + 811 |cavte) + 812|Beam

J. 2X ) sin@ = 2(109.8) sin 15 = 56.9kN

The remaining reactions are determined using the static equilibrium equations.

R = 56.9 kN
E 4
A B ) ) c D
. [ ) P
5.95 kN t t 6
45 kKN 5.95 kN

18 m

9.3.2 Fixed-Ended Beams

We treat next the beam shown in Fig. 9.23a. The structure is fully restrained at each end and therefore
is indeterminate to the second degree. We take as force redundants the counterclockwise end
moments at each end. The corresponding displacement measures are the counterclockwise end
rotations, 8, and Og.

We write the general form of the compatibility equations as (we use € instead of A to denote the
displacement measures and M instead of X for the force measures):
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Fig. 9.23 (a) Beam with a

full end restraint. (b) Ma m My
Primary structure. (c)

External loading— g AR LB }

displacement profile. (d) /4

Displacement profile for -f R

M, = 1. (e) Displacement A
t

L
profile for Mg =1
b Ay , B
THn »
| L I
[ |
. SN
A = — 9
0r0 050
| L |
[ |
d
g A B
= — %
Ma =1 0_.\__.\ Oll_.-\
€A B 5 Mg =1
| |
,ﬁn‘d-_._____________________..-“",gy
O Oy

Oa = Oa,0 + MAOAA + MpOag
(9.24)
O = 0,0 + MaAOga + MpOgg

where 04 o and g o depend on the nature of the applied loading, and the other flexibility coefficients
are

L
Oan = 3E]
o L
B8 3Kl
Oap = Opa = Sl
We solve (9.24) for M5 and My
2EI
My = T{Z(GA —0a,0) + (08 —6B0)}
(9.25)
2EI

Mg = T{2(5’B —0g,0) + (0a — Oa,0)}

When the ends are fixed, 5, = 0 = 0, and the corresponding values of M, and My are called the
fixed end moments. They are usually denoted as M, and Mg"
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2EI
ML =— I {20a,0 + 08,0}
(9.26)
F 2EI
Mg =— T {2080 +0a.0}
Introducing this notation in (9.25), the expressions for the end moments reduce to
2EI
My = T{Z9A + 05} +M£
(9.27)

2EI
We will utilize these equations in Chap. 10.

Example 9.6 Fixed End Moments for Uniformly Distributed Loading

Given: The uniform distributed loading applied to a fixed end beam (Fig. E9.6a).

W
PP N A - T 5
A N

Fig. E9.6a
Determine: The fixed end moments.

Solution: We take the end moments at A and B as force redundant (Fig. E9.6b).

A B
77 = -
| L ]

| |
Fig. E9.6b Primary structure
Noting Table 3.1, the rotations due to the applied load are (Fig. E9.6¢)

wL? wL?
EIQA,O - _ﬁ EI@B,O = H


http://dx.doi.org/10.1007/978-3-319-24331-3_3
http://dx.doi.org/10.1007/978-3-319-24331-3_10
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w
J J 4 ) 1 1

Oa0 Opo
Fig. E9.6c Deformation of primary structure due to applied load

Substituting their values in (9.26) leads to

2EI wl?  wL?>  wL?
M{=-—"{26 Opo} =————>=—5
A L 12080+ 080} 6 12 12
2FI wL wL wL
Mg =—-=—"{20 Orof=——+—F=——
B L {208.0+ 0a0} 6 12 12

wL?
ME =
D) <>

L2
ME =Y )
12

The shear and moment diagrams are plotted in Fig. E9.6d.

“'“(}A; LIl L1 g vt

12 ; 12
wL WLT
2 R

wL ' _ IS Y LET

2

wlL-
24

| X A“ | X |

' ‘ m (&)
wL? \J wL?
12

Fig. E9.6d

591

Note that the peak positive moment for the simply supported case is +(wL?/8). Points of inflection

are located symmetrically at
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x:é(l—i> ~0.21L
V3

This solution applies for full fixity. When the member is part of a frame, the restraint is provided
by the adjacent members, and the end moments will generally be less than the fully fixed value.

Example 9.7 Fixed End Moment—Single Concentrated Force

Given: A single concentrated force applied at an arbitrary point x = a on the fixed end beam shown
in Fig. E9.7a.

P
}Li
2 ?
A 7 j B
4 2
F— x
1 L ]
| |
Fig. E9.7a
Determine: The fixed end moments.
Solution: We work with the primary structure defined in Fig. E9.7b.
A B
T %
l L l

| |

Fig. E9.7b Primary structure

Using the results listed in Table 3.1, the rotations are given by (Fig. E9.7¢)

Pa(L — a)(2L — a)
6L

Pa(L — a)(L + a)

6L

Elf o = —

Elfg o =

Fig. E9.7c Deformation of primary structure due to external loading
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Substituting into (9.26) leads to

¢ Pa(lL— a)’
M, = I
ME = _P(L —za)az
L

The critical location for maximum fixed end moment is a = L/2; the corresponding maximum
values are Mk = —ML = %. The shear and moment diagrams are plotted below.

p
PL
A l B _ g
b g [ ) )
P
JE > {
- L2

1 ' f

v &St

o
&\/ \lPLMfEE
8 8

Note that there is a 50 % reduction in peak moment due to end fixity.
Results for various loadings and end conditions are summarized in Tables 9.1 and 9.2.
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Table 9.1 Fixed end actions for fully fixed

L4 w wL? . P
&A lﬂ IS S S S S LIBD" E' 1 ﬂ;_
[T L %—. Pb’(snb) T . ) [Pl’(:lu 9
: L +
e o b e j n
A [ B _
C I & L = | D C Iz x| D
— A S S
e anm

wl? . ezm
20 20
(o B )

Ik, TwL I uzm IZEIA

20
X L 20
11wL? - SwL? Mb(z._b; M.(zh a)
G e D) FJ_I )
I‘ 13wL 3wl 'I‘ su ab o
32 L L 32 .
! 2 | 2 F L a \
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Table 9.2 Fixed end actions for partially fixed
w wi? P
EL 1T 1 & T 1 I3 | Pabse1)
ISR R ARt PR —
A BD
Swi
%T + T Pbi(a+ ZL)T T Pa(L? - 2%
. L : | . > T
: '. -
w P
SwL? 3PL
m - i l D 16
“.—B Y . I
21 L L T ue
i, T S S S L
. F] | 2 :
* 5 A 7 BD %ﬁ
wL
m 15 nl szl 3EIA f
“.—B‘) R T
L .
wL 4wL '
= |
L L 1
w gwL? M, 3a?
S s . D
" —BD A#D
; : aM 3
slo:al_T 1 25wL %U‘%ﬂl HMa-n

9.3.3 Analytical Solutions for Multi-Span Beams

Consider the two-span beam shown in Fig. 9.24a.
moments of inertia for the spans. Our objective here

We allow for different lengths and different
is to determine analytically how the maximum

positive and negative moments vary as the load moves across the total span. We choose the negative
moment at B as the redundant. The corresponding primary structure is shown in Fig. 9.24b. Here, Afg
is the relative rotation together of adjacent cross sections at B.

The geometric compatibility equation involves the relative rotation at B.

Afg = ABg o + 50psMp = 0

The various rotation terms are given in Table 3.1.

applied loading.

1
00pp = 3E

When the loading is on span AB (see Table 3.1),

Alg o = —
B0 T6ELL,

L1+
I

Note that the 60gp term is independent of the
L
I

a(a2 - L%)
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Fig. 9.24 (a) Actual a P
structure—notation for
a two-span beam. (b)
Primary structure— A D B C
redundant moment. (c)
Displacement due to a unit I I,
value of the redundant | i
moment. (d) Rotation due L L
to external loading ! 1 } 2 }
b M B 3(3"
YR I —
L, L,
| : % i
¢ My =1
L,2I
) 2 2
I L,: I, | i |
t i T 1
d P

N

] L, | } L

Then

_ —Afgo (L /) 1 2
Ms = 59;. = {(L1/11)1+ (1L2/12)}§Pa<1 —L—lz> (9.28)

Given the value of Mg, we can determine the reactions by using the static equilibrium equations.
Noting (9.28), the peak moments are given by:

PL, a a2
Negative moment Mg = —f—(l — —)
g B 2L\ L2

2 2
Positivemoment Mp = PL, 4 i _]_”a_z 1— a_z
L Ly 2Ly Ly

1
L+ (I1/Ly)(Ly /1)

(9.29)

where

f=
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Fig. 9.25 Bending P
moment distribution
for load on span AB

A g M (E)

Mg

We define the ratio of I to L as the “relative stiffness” for a span and denote this parameter by r.

r=— (9.30)

With this notation, f takes the form

T =1 /)

The typical bending moment diagram is plotted in Fig. 9.25.
When the load is on span BC, one just has to use a different expression for Afg (. Redefining the
location of P as shown in Fig. 9.26a, the solution takes the following form:

m(-2)-2)
Ao = = 6EI,

Then

My =g = e @) () 1) 531

Given Mg, one can construct the moment diagram. It is similar to Fig. 9.25, but rotated 180°.

Example 9.8

Given: The two-span beam shown in Figs. E9.8a and E9.8ab.
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Fig. 9.26 (a) Actual
structure—loading on span
BC. (b) Primary
structure—redundant
moment. (¢) Rotation due
to external loading. (d)
Bending moment
distribution for load on
span BC

I)
A B \l E C
I b I
+—t
L; L,

.

——
-

I b
! ! _t L,
T % = %
P
A B C
I| E I
R.f R ! R¢
l L l L )
T T I
Mg
/\—
' ' ' M

M B
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Determine: The variation of the bending moment at B with relative stiffness of the adjacent spans (r/
r, = 0.1, 1, and 10).

A
75; D -
" I ¥, I
—
L, L,y
L L 1
T T 1
Fig. E9.8a
P
A B l C
- L
7 Lo L E b ¥y,
—
L, L
1 1 1
T T T
Fig. E9.8b

Solution: We determine the variation of the moment at B for a range of relative stiffness ratios
covering the spectrum from one span being very flexible to one span being very rigid with respect to
the other span using (9.29) and (9.31). Results for the individual spans are plotted in Figs. E9.8c and
E9.8d.

Myl
112PL,
5 1
T b
curve r_; (1 +H 1
35 g n=q-
T curve(a) (@ | 01| 09 !
(b) 1 5 5 _ b
+ @] 0] » L

curve(c)

w
|u

A B3 B B

Fig. E9.8c Load on the left span (9.29)
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Mgl
172PL,
’ I
r I
curve }% a r_;)
1 35 @ | 01| 09
i b [ 1 5
! curve(c) (<) 10 .9
19 curve(b)
'
1
1
]
!
| 035 curve(a)
: I_'_'_""—-—-._ = b
B 0.433 C L

"

Fig. E9.8d Load on the right span (9.31)

Example 9.9 Two-Span Continuous Beam—Uniform Loading

Given: The two-span beam shown in Fig. E9.9a.

“.‘I Wa

9 The Force Method

"

rrrrrrryl bbbl

A ¥t
50 B .

L
Fig. E9.9a

Determine: The bending moment at support B.

Solution: We take the negative moment at the interior support as the force redundant. The solution
process is similar to that followed for the case of a concentrated load. One determines the relative

rotations at B, and then enforces continuity at B (Fig. E9.9b).

Mp  A6g

16
.=

Fig. E9.9b
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The various terms are (see Table 3.1)
wild  woL3
24E1, 24EI,

L L
S0pp = —— + 2
BB = 357 3R

Afg o =

Requiring the relative rotation at B equal to zero leads to

—Afgo (wlL?> L+ (wa/w1)(La/L1)* (r1/r2)

M =
B 508, 8 1+ (ri/r2)
where
I I,
r=-—, Iy;=-—
1 L 2 L

Suppose the loading and span lengths are equal. In this case,

wil?
My =5~

for all combinations of /; and /. The moment diagram is plotted below (Fig. E9.9¢).

M 4
3 W= wyow
Lj=L,-L
2
16 [~ >~ ! |
A A L -
C

Fig. E9.9¢
Another interesting case is where w, = 0 and /; = I,. The solution depends on the ratio of span

lengths.
M _W1L12 1
T8 14 (/L)
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——
—_—

Suppose L, = L; and I; = I, then
Mo — 1 W1L12
AU

Example 9.10 Two-Span Continuous Beam with Support Settlement

Given: The two-span beam shown in Fig. E9.10a. The supports at B or A experience a vertical
displacement downward due to settlement of the soil under the support.

A B C
| ]
,97 [| & |-_, #r
% i %
L, L,
Fig. E9.10a
Determine: The bending moment at B.
Solution: We work with the primary structure shown in Fig. E9.10b.
M B Aeu
C
A K 1 B D g J. :
| 1 4
| 1 I T

Fig. E9.10b Primary structure—redundant moment

If the support at B moves downward an amount vg, the relative rotation of the section at B is

VB VB
Abgog=—+—
B,0 L +L2

A B C

#7 I, "nI ’ﬁ' L ’%

| | }
T T T
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Compatibility requires the moment at B to be equal to

My = 200 ve((1/Ly) + (1/L2))

00sB (1/3E)((L1/11) + (L2/12))

The minus sign indicates that the bending moment is of opposite sense to that assumed in
Fig. E9.10b.

A B C
R, ¥ DRSS R,
Mg

//4\4
b l =y

When the properties are the same for both spans (/; =1, and L; = L,), My reduces to
3El,

B = —
L
When the support at A moves downward an amount v,, the behavior is reversed.

VB.

A B B

T S 1, £ I .3

A L =
1 1 2
T

—4—

VA/Ll

In this case, Afg o = —va/L; and Mp = (3B (L /1) + (Ta/1)

A B

. 3
r‘\T tr, tr, Fr

C

=

Mg

When the properties are the same for both spans (/; =1, and L, = L,;), Mg reduces to
3EI,

Mg =—v
B2

A-
9.4  Application to Arch-Type Structures
Chapter 6 introduced the topic of arch structures. The discussion was concerned with how the

geometry of arch structures is defined and how to formulate the equilibrium equations for statically
determinate arches. Various examples were presented to illustrate how arch structures carry
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Fig. 9.27 (a) Actual
structure—geometry. (b)
Primary structure—
redundant reaction
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LAE hy
tanQl = —
|
B
Ay e
e hg
__— I xtana
O X
e
l X o
™~ “1
L
|
B
<« X4
A

transverse loading by a combination of both axial and bending actions. This feature makes them more
efficient than beam structures for long-span applications.

In what follows we extend the analytical formulation to statically indeterminate arches. We base
our analysis procedure on the force method and use the principle of virtual forces to compute
displacement measures. One of our objectives here is to develop a strategy for finding the geometry
for which there is minimal bending moment in the arch due to a particular loading.

We consider the two-hinged arch shown in Fig. 9.27a. This structure is indeterminate to the first
degree. We take the horizontal reaction at the right support as the force redundant and use the
Principle of Virtual Forces described in Sect. 6.5 to determine A o, the horizontal displacement due to
loading, and &, the horizontal displacement due to a unit value of X.

The general expressions for these displacement measures follow from (6.9)

F() V()(X) M()(X)

Ao = | {2%F 5V oM \ds
Lo L{AE toa T TE ’
SFY  (8V)*  (8M)*

511 = (6F)"  (oV) +( ) ds
| AE T GA EI

(9.32)

We usually neglect the shear deformation term. Whether one can also neglect the axial deforma-
tion term depends on the arch geometry. For completeness, we will retain this term. The two internal
force systems are summarized below. We assume the applied load is uniform per projected length

(Fig. 9.28).

Substituting for the force terms leads to the following expressions for the displacement measures:

L 1
A= -
ho JO {AE cos @

— — WX

> sin@( cos @ + tanasin6) — <

(Ay)?

0

JL (cosf + tanasin @)
AEcos@

El cos@

2)(

wL WX

Ay
dxs
) El cos 0} "

(9.33)
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Fig. 9.28 (a) Force dueto a W

applied loading (Fo, My). v ¥ & A ¥
(b) Force due to X; = 1
(6F, 5M)

h
M =-y + —Lﬂ.\' =-Ay
: hg .
OF = —cosO - T sin@

h
IanC!:l—B

Geometric compatibility requires

X = _ALo (9.34)
11
One can use either symbolic integration or numerical integration to evaluate the flexibility
coefficients. We prefer to use the numerical integration scheme described in Sect. 3.6.6.
The solution simplifies considerably when axial deformation is neglected with respect to bending
deformation. One sets A = oo in (9.33). This leads to

L L
wL wx? Ay MyAy
10 J( 272 )Elcos6’ JEICOSG
9 oy 0 (9.35)
Yy
o1 = dx
t +JEICOS€
0
Suppose Ay is chosen such that
L 2
Ay =g — 2 —pm, (9.36)
2 2
Then,
A ! )
1,0 = —7011
p
and it follows that

1

X ==
b (9.37)

M=My+ X 06M = M, + (%) (—ﬂMo) =0
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With this choice of geometry, the arch carries the exterior load by axial action only; there is no
bending. Note that this result is based on the assumption that axial deformation is negligible. In
general, there will be a small amount of bending when # is not small with respect to L, i.e., when the
arch is “shallow.” One cannot neglect axial deformation for a shallow arch.

Example 9.11 Parabolic Arch with Uniform Vertical Loading

Given: The two-hinged parabolic arch defined in Fig. E9.11a.

Y
™
w
L 4 ] 4 4 4 + + + &#J-l-i-
L)
! h
¥(x)
B
AL 2

Fig. E9.11a

Determine: The bending moment distribution.

Solution: The centroidal axis for the arch is defined by

ol

The bending moment in the primary structure due to the uniform loading per unit x is

wL wx?  wl? [x X\ 2
- )
2 2 2 |L L

We note that the expressions for y and M are similar in form. One is a scaled version of the other.

wL? 1 wiL?
M = —— = —
0= an” T jn
Then, noting (9.36),
8h
P =

L2
and X| = M;;—h
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The total moment is the sum of M and the moment due to X;.

wL? wL? —0

gh” 8h

We see that there is no bending for this loading and geometry. We should have anticipated this result
since a uniformly loaded cable assumes a parabolic shape. By definition, a cable has no bending
rigidity and therefore no moment. We can consider an arch as an inverted cable. It follows that a

two-hinged uniformly loaded parabolic arch behaves like an inverted cable.

M=M,—yX| =

Example 9.12 Approximate Solutions

Given: The two-hinged arch and the loading defined in Fig. E9.12a. The integral expression for X is
given by 9.3.4. Noting (9.35), the solution equals to

M
SR DRT
(&) 5
El
This result applies when there is no support movement.

Determine: An approximate expression for X;. Assume the cross section of the arch is deeper at the
abutment than at the crown, and use the following approximation to define /,

Iy
" cosd

where [ is the cross-sectional inertia at the crown.

P

l

Fig. E9.12a Variable depth arch
. o dx . o
Solution: Substituting for / and ds = s the integrals simplify to
cos

+<1/E10>JAyModx
X =

<1/E10>j<Ay>2dx

and now one can easily determine analytical solutions.
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Suppose a concentrated force, P, is applied at mid-span. The corresponding terms for a symmetri-

cal parabolic arch are:
4y x?
Ay=—(x——
=2 (1)

1 5 PhL?
— | AyMydx = —
EIOJ AT

1 5 8 h’L
— | (ay)2de = 22 E
E]OJ( y) 15 EI,

e

_ 25, (L
T8 \n

Note that the bending moment is not zero in this case.
Example 9.13

Given: The two-hinged arch and the loading defined in Fig. E9.13a
2.5 wy 25wy

H'o

wn
(=]
-

| 100 ft

Fig. E9.13a

Determine: The particular shape of the arch which corresponds to negligible bending.
Solution: This two-hinged arch is indeterminate to the first degree. We take the horizontal reaction at
the right support as the force redundant (Fig. E9.13b).
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100 ft

Fig. E9.13b Primary structure—redundant reaction

The applied loading is given by (Fig. E9.13c)

1.5
w(x) =W0{2.5—50x} 0<x<50
2.5 Wy 2.5 Wwo
Wo
A B
S o
—>x

Fig. E9.13c

The corresponding shear and moment in the simply supported beam spanning AB are

dv 15,
o wx) =V = WO{Z.Sx—mx } +C
dm 2.5 1.5
= _V M= — -2 -3 C C
P = wo{zx 300)6}—1- 1Xx+ Gy
Enforcing the boundary conditions,
(0)=0
M(100) =0
leads to
C,=0
1.5(100)*
= 1.25(100) - ——=—» =
C] Wo{ 5( 00) 300 75W0

Finally, the expression for M reduces to
M = wo{75x — 1.25x* +0.005¢} 0 <x <50

follows (9.36) and (9.37).
The desired shape is
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Fig. 9.29 (a) Single a
tie arch. (b) Multiple
connected arches

Tic\

M(x)
X

y(x) = T = 200755 — 1,250 40,0058} = ~2f(x)
Xl Xl

The function f{x) is plotted below. Note that the shape is symmetrical.

f(x)

X
0 50 100

When the abutments are inadequate to resist the horizontal thrust, different strategies are employed
to resist the thrust. One choice is to insert a tension tie connecting the two supports, as illustrated in
Fig. 9.29a. Another choice is to connect a set of arches in series until a suitable anchorage is reached
(see Fig. 9.29b). The latter scheme is commonly used for river crossings.

We take the tension in the tie as the force redundant for the tied arch. The corresponding primary
structure is shown in Fig. 9.30. We just have to add the extension of the tie member to the deflection
611. The extended form for &;; is

ds L
— — &1 =Jy2§+ﬁ (9.38)
t

The expression for A; o does not change. Then, the tension in the tie is given by:

(Mods/EI)
X =M o (9:39)

O (J yz(ds/EI)> + (L/AE)

Note that the horizontal reaction is reduced by inserting a tie member. However, now there is
bending in the arch.
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Fig. 9.30 Choice of
redundant

Example 9.14

Given: A parabolic arch with a tension tie connecting the supports. The arch is loaded with a
Iy

cos 6
Determine: The horizontal thrust and the bending moment at mid-span (Fig. E9.14a).

uniformly distributed load per horizontal projection. Consider / to be defined as

Tie B

Fig. E9.14a

Iy
cos@

Solution: We note the results generated in Example 9.12 which correspond to taking I =

ds 1 (*
Ao=— oS = — | yMydx
1,0 Jy OE1 EIOJOy 0

1wl (*,
= (== dx
E10<8h)Joy

_ L (B (L) AL’
 El\15 8h ) 15EI,
L 8 KL

Sl = — =
"= AE T 15 B

The tension in the tie is
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¥ A wl? 1
T oen 8h (14 (15/8) (Io/ARY))

Using this value, we determine the moment at mid-span.

M<%> =My — hX,

_wL2 1 1
C 8 | (14 (15/8)(1o/aR))

M(g)_w_ﬁ (15/8)(lo/AR%) | _wL? !
2) 8\ (1+(15/8)(to/AR%)) [ 8 | (1+(8/15)(AR*/1o))

Note that the effect of the tension tie is to introduce bending in the arch.

9.5 Application to Frame-Type Structures

Chapter 4 dealt with statically determinate frames. We focused mainly on three-hinge frames since
this type of structure provides an efficient solution for enclosing a space. In this section, we analyze
indeterminate frames with the force method. In the next chapter, we apply the displacement method.
The analytical results generated provide the basis for comparing the structural response of determi-
nate vs. indeterminate frames under typical loadings.

9.5.1 General Approach

We consider the arbitrary-shaped single bay frame structure shown in Fig. 9.31. The structure is
indeterminate to the first degree. We select the horizontal reaction at the right support as the force
redundant. The corresponding compatibility equation is

Ao+ onX =44

where A; is the horizontal support movement at D.

We compute d;; and A, with the Principle of the Virtual Forces described in Sect. 4.6. The
corresponding form for a plane frame specialized for negligible transverse deformation is given
by (4.8)

Fig. 9.31 (a) Actual a b
structure. (b) Primary C B G
structure—redundant B
reaction
D D i
—
A . A

) e
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Fig. 9.32 (a) Actual a p b
structure. (b) Primary C B C
structure—redundant
reactions
D X1, A
-4
2 e xl 42 1
717' A X , As

doP =" membersj { (%)M + (&) 5F}ds

S

Axial deformation is small for typical non-shallow frames and therefore is usually neglected. The
011 term is the horizontal displacement due to a horizontal unit load at D. This term depends on the
geometry and member properties, not on the external loads, and therefore has to be computed only
once. The A term is the horizontal displacement due to the external loading and needs to be
evaluated for each loading. Different loading conditions are treated by determining the corresponding
values of A; o. Given these displacement terms, one determines X; with

X 1= —ﬁ
on

Consider the frame shown in Fig. 9.32. Now there are three force redundant and three geometric
compatibility conditions represented by the matrix equation (see (9.11)),

A primary structure = A() + §X

The flexibility matrix § is independent of the loading, i.e., it is a property of the primary structure.
Most of the computational effort is involved with computing 6 and A numerically. The integration
can be tedious. Sometimes numerical integration is used. However, one still has to generate the
moment and axial force diagrams numerically.

If the structure is symmetrical, one can reduce the computational effort by working with simplified
structural models and decomposing the loading into symmetrical and anti-symmetrical components.
It is very useful for estimating, in a qualitative sense, the structural response. We discussed this
strategy in Chap. 3.

In what follows, we list results for different types of frames. Our primary objective is to show how
these structures respond to typical loadings. We use moment diagrams and displacement profiles as
the measure of the response.

9.5.2 Portal Frames

We consider the frame shown in Fig. 9.33a. We select the horizontal reaction at D as the force
redundant.

The corresponding flexibility coefficient, &;;, is determined with the Principle of Virtual Forces
(see Chap. 4).
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Fig. 9.33 Portal Frame. a, g 2 b s C
(a) Geometry. Iz
(b) Redundant. ;
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Fig. 9.34 Reactions— a
gravity loading +—t
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1 h2
A
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L
f f
o by L
S = - hi + h5 + hih 9.40
3R 3E13+3E12{1+ 2 hha} (9:40)
This coefficient applies for all loading. Considering the arbitrary gravity loading shown in
Fig. 9.34, the expression for the displacement, 4, , is determined in a similar way.
Pa(L — a) Pa(h, — hy) ,,, )
A W =———{(L—a)h h ——— (L"+2a" — 3al 9.41
1,0|grav1ty 2ELL {( a) 2t+a 1} + 3ELLL ( +2a a ) ( )
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Fig. 9.35 Reactions— P B &
lateral loading > 4
by b
—i— A
p :
by D %
P 8
L hl
[2e
L
L

Lastly, we consider the lateral loading shown in Fig. 9.35. The displacement term due to loading is

1 (Pw3 1 (PhiL (hy
A1,0|lateral = _?h {31} + Elz{ 3 (2 + hl) } (942)

When h, = hy = hand I, = I, = I, these expressions simplify to

2 L,
o1 = @‘FE( )
Ph
Al,0|gravity = _ﬁ (Cl)(L - a) (943)
PR PHL
Al,O’lateral - 7@ - ET

Gravity loading:
P L\ (a/L)(1 — (a/L))
X1 ‘gravity = (E z) W

M, |gravity = hX, |gravity

a
M2|gravity = a<1 - Z)P - M, |gravity
Lateral loading:
P
Xl ’1aleral = E

Ml ’]atera] = th lateral

The corresponding bending moment diagrams for these two loading cases are shown in Fig. 9.36.
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Fig. 9.36 Two-hinged a b
frame (a) Gravity loading. é : M,
(b) Moment diagram. p
(c) Lateral loading. l 4
(d) Moment diagram B C M, M,
I
h I :
A D
'l L 'l
T T
c d
P B M
I - -
h I I
, A D
i ,

9.5.2.1 Lateral-Loading Symmetrical Portal Frame
We consider first the two-hinged symmetrical frame shown in Fig. 9.37. This structure is indetermi-
nate to the first degree. We decompose the loading into symmetrical and anti-symmetrical
components and generate the corresponding symmetrical and anti-symmetrical structural modes
using the material presented in Sect. 3.9. These results are shown in Fig. 9.38b. Point E is at
mid-span. The anti-symmetrical model is statically determinate since the bending moment at
mid-span must equal zero for anti-symmetrical behavior (Fig. 9.38c).

The symmetrical loading introduces no bending in the structure, only axial force in member
BE. The bending moment distribution due to the anti-symmetrical component is plotted in Fig. 9.39.

Fig. 9.37 Geometry of 5 B e
two-hinged portal frame P ¥
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Fig. 9.38 Structural models. (a) Decomposition into anti-symmetrical and symmetrical loadings. (b) Anti-symmetric
and symmetrical models. (¢) Free body diagrams of anti-symmetric and symmetrical segments

Fig. 9.39 Bending
moment distribution due to
the anti-symmetrical lateral
loading

2 \
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9.5.2.2 Gravity-Loading Symmetrical Portal Frame

We consider next the case of gravity loading applied to a two-hinged portal frame. Figure 9.40a
defines the loading and geometry. Again, we decompose the loading and treat separately the two
loading cases shown in Fig. 9.40b.

B ,I, C

h II ||
A D
| L 1
I 1
b a a a a a
1 4 +—t 4+ +—t
P ' P2 P2 P/2 P2
B l C B l T c B l l c
= +
A D A D A D

Fig. 9.40 (a) Two-hinged frame under gravity loading. (b) Decomposition of loading into symmetrical and anti-
symmetrical components

Geometry and Loading
The anti-symmetrical model is statically determinate. Figure 9.41 shows the model, the
corresponding free body diagram and the bending moment distribution.
The symmetrical model is statically indeterminate to one degree. We take the horizontal reaction
at the right support as the force redundant and work with the primary structure shown in Fig. 9.42.
Assuming unyielding supports, the compatibility equation has the following form

Ap,o + oppHp =0

where Ap o and dpp are the horizontal displacements at D due to the applied loading and a unit value
of Hp. We use the Principle of Virtual Forces specialized for only bending deformation to evaluate
these terms. The corresponding expressions are

EI
ds (9.44)
EI

ds
Apo = JMoéM—

S
dpp = l(‘sM)
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Fig. 9.41 (a) Anti- a a a
symmetrical model. (b) a e — b PP
Free body diagram—anti- P/2 P/2
symmetrical segment. B l T B
(¢) Bending moment . - ¢ =
distribution—anti- FR = o
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h h I
A D A
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2 4=
Fig. 9.42 Primary a a
structure for two-hinged 1 +—t
frame—symmetrical
loading case P/2 P/2
B C
A D «— H D’ A D

where M is the moment due to the applied loading and 6M is the moment due to a unit value of Hp.
These moment distributions are plotted in Fig. 9.43.
Evaluating the integrals leads to:

P ha
AB 0= —EE(L—G)
s o . 2L (9.45)
® T 3EL T EL
Finally, the horizontal reaction at support D is

a(L — a) |
Hp =P 9.46
P 2hL |1+ (2/3) (rg/rc)] (9.46)

where
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Fig. 9.43 Bending a

a
moment distributions— +— 4+
symmetrical loading—
primary structure E Pa
2 2
/T\ b h
h / _ h
v .
M
¢ M
Fig. 9.44 Final bending a
moment distribution At : a '
P M;
P M-
B l C +
M, M,
h
A D
L
! I
T 1
I I
rc:Z rgzz (947)

are the relative stiffness factors for the column and girder members.
Combining the results for the symmetrical and anti-symmetrical loadings results in the net bending
moment distribution plotted in Fig. 9.44. The peak moments are defined by (9.48).

Pa a !
M= —7( _Z)W

_  Pa|(a/L)+ (2/3)(rg/re)| Paf 2a

Mo=+5 1+ (2/3)(rg/re) ] 2(1L (9.48)
_ [ Pa|(a/L) + (2/3)(r¢/rc)|  Paf 2a

Ms =+ 1+ (2/3)(re/re) ]Jr 2 (1 L>
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Example 9.15 Two-Hinged Symmetrical Frame—Uniform Gravity Load

Given: The frame and loading defined in Fig. E9.15a.

Determine: The bending moment distribution.

Fig. E9.15a

A D «— Hp: Ap

Fig. E9.15b

Solution: We work with the primary structure shown in Fig. E9.15b. We only need to determine the
Ap term corresponding to the uniform loading since the dpp term is independent of the applied

loading. The solution for Hp, is
_ wL? 1
DT 2R 1+ (2/3)(rg/re)

where

Figure E9.15c shows the bending moment distribution. The peak values are

_ w2 1
FT2 14 (2/3) (re/re)
wlL? 2 1

M, = 8 ! 31+ (2/3)(rg/rc)
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When members AB and CD are very stiff, r. — oo and Hp — wL?/12h. In this case, the moment
at B approaches wL?/12 which is the fixed end moment for member BC.

Fig. E9.15¢ Bending moment distribution

9.5.2.3 Symmetrical Portal Frames with Fixed Supports

We consider the symmetrical frame shown in Fig. 9.45. Because the structure is symmetrical, we
consider the loading to consist of symmetrical and anti-symmetrical components. The structure is
indeterminate to the second degree for symmetrical loading and to the first degree for anti-
symmetrical loading (there is zero moment at mid-span which is equivalent to a hinge at that
point). Figure 9.45b defines the structures corresponding to these two loading cases.

Fig. 9.45 (a) Geometry. a P
(b) Decomposition into 5 B C
symmetrical and anti- I
symmetrical loadings
h I I,
A D
L
1 1
) )
b R Mg
P2 B E P2 B W
> -3 > W
~ FE
Ve |
h E h
A A
L2 L2
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Fig. 9.46 Bending M *
moment distribution—
anti-symmetric loading P2 M * \ M * P/2
% %
‘ =
M*
y*
~ +
” - o
* ok
M M* ¥
Evaluating the various displacement terms for the anti-symmetrical loading, one obtains:
_PLR?
B0 REL
5o — L N L*h
*F T 24EL, T 4Kl
Ve — —Ago (Ph) 1
P \2L) (14 (1/6)(L/I) (11 /h)
The moment diagrams are plotted in Fig. 9.46. The peak values are
« Ph 1
M=t————-—
41+ (1/6)(1‘C/rg)
. Ph 1 1
M™ =+— -1+ (9.49)
> |7 e <rc/rg>)]
I I
Fe=— Fg=—
" h f L
There are inflection points located in the columns at y* units up from the base where
* 1 1
=h|l —c——FF—— 9.50
' [ 21"‘(1/6)(%/”‘;)1 5:30)

When the girder is very stiff relative to the column, r./r, — 0 and y" — h/2. A reasonable
approximation for y* for typical column and girder properties is ~0.6 h.

Figure 9.47 shows the corresponding bending moment distribution for the two-hinged portal
frame. We note that the peak positive moment is reduced approximately 50 % when the supports
are fixed.

We consider next the case where the girder is uniformly loaded. We skip the intermediate details
and just list the end moments for member AB and the moment at mid-span (Fig. 9.48).
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Fig. 9.47 Moment
distribution for two-hinged

9 The Force Method

frame 2 —
2 pn e 2 P/2
—_— = -
- % —| Ph
2
Ay
Fig. 9.48 (a) Portal frame g W b W M
with fixed supports under L J A J J ) PR SR 8
gravity loading. (b) C B H_D
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h 11 Il h
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1 L L}
Mo — wL? 1
AT 14 (1/2) (re/re)
1
MAB :EMBA (951)
v W2 1
FTs 31+ (1/2)(re/re)

The bending moment distribution is plotted in Fig. 9.49. The solution for the two-hinged case is
shown in Fig. 9.50. These results show that the bending moment distribution is relatively insensitive

to end fixity of the base.

M, = Mg

My = Mga

2/3

1+2/3(rg/re)

C1+2/3(rg/r)  wl? L (@3
23 8 1+2/3(rg/re)
1+ 1/2(rg/re) (9.52)

L+ 1/2(rg/re) — wl?

1
12 (1 +2/3(rg/rc)>
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Fig. 9.49 Bending ME
moment distribution—
symmetrical loading— /;\
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Fig. 9.50 ' Be‘ndi.ng M-
moment distribution— B
symmetrical loading—
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-

M, M,

9.5.3 Pitched Roof Frames

We consider next a class of portal frames where the roof is pitched, as shown in Fig. 9.51a. We choose
to work with the primary structure defined in Fig. 9.51b.

We suppose the structure is subjected to a uniform load per horizontal projection on members BC
and CD. The bending moment distribution in the primary structure due to the applied loading, M, is
parabolic with a peak value at C (Fig. 9.52). Taking Hg = 1 leads to the bending moment distribution
shown in Fig. 9.53. It is composed of linear segments.

Assuming the supports are unyielding, the flexibility coefficients are

wL3 5 1
Apo=———Sh1+=hy p —
50 120059{ 1ty 2}E12
- . 2 (9.53)
Spp=-—~+—— W+ hh+-2
EE 3E11+Elzcos¢9{ 1t 2+3}
We define the relative stiffness factors as
Il * 12
r=— I =— 9.54
1= 2T (9.54)

where L” is the length of the inclined roof members BC and CD.
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L2 , 1k

| L2 L2 2

Fig. 9.52 (a) Primary structure-external loading. (b)Bending moment distribution for applied loading, M,
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a

Iy

by

Fig. 9.53 (a) Primary structure-unit load. (b)Bending moment distribution for Hg = 1

Fig. 9.54 Distribution of
total bending moments

# L

L = 9.55
2cos @ ( )
Using this notation, the expression for the horizontal reaction at E takes the form
L? 1+ (5/8)(h2/h

e =13, (1/3)(r3/r1) + 1+ (ha /1) + (1/3)(ha/ 1y )?

The total bending moment distribution is plotted in Fig. 9.54. Equation (9.57) contains the
expressions for the peak values.

L2
M1 = —w—a1
wlé (9.57)
My, =+—a

where

1+ (5/8)(h2/h1)
(1/3)(r3/r1) + 14 (ho/hy) + (1/3)(ha/Iy)*

2 h
a=1 —§<1+h—i>a1

a) =

(9.58)
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a w b
! R }
[
has Hmge
bt
B D '
b
A B 2
- *h
L2 L2

Fig. 9.55 Three-hinge solution. (a) Loading. (b) Bending moment distribution

These values depend on the ratio of heights /,/h, and relative stiffness, rz*/rl. One sets h, = 0 and
> = 2r, to obtain the corresponding two-hinged portal frame solution. For convenience, we list here
the relevant solution for the three-hinge case, with the notation modified to be consistent with the
notation used in this section. The corresponding moment distributions are shown in Fig. 9.55.

The peak negative and positive moments are

WL2 h1

My == _ "1
T8 (h+ )

w2 [1 1 & 1/ h 2
My=—"-I{—— L - !
8 14 2 +h 4\ +hy

In order to compare the solutions, we assume r,* = rq, and &, = h; in the definition equations for
the peak moments. The resulting peak values are

Three-hinge case (9.59):
M wL? (1
T 2

(9.59)

Two-hinge case (9.57):

L* (13 L?
Ml_—w< >_—W(0.4O6)

8 \32 8
I, __'_wL2 3
2T \16

We see that the peak negative moment is reduced by approximately 20 % when the structure is
reduced to a two-hinged frame. However, the positive moment is increased by a factor of 3.



9.6 Indeterminate Trusses 629

a
=
X}. ? &1
Actual structure Primary structure- redundant reaction
b /
XA
=
Xp A
Actual structure Primary structure-redundant internal force
Cc
X, - A,
=
Actual structure Primary structure-redundant internal forces
d
= X4y
/ X 17 Al
A, . A,
Actual structure Primary structure-redundant internal force and reaction

Fig. 9.56 Examples of statically indeterminate trusses

9.6 Indeterminate Trusses

Examples of indeterminate truss structures are shown in Fig. 9.56. One can choose a primary structure
by taking either reactions or member forces or a combination as the force redundants. When working
with member forces, one visualizes the member as being cut and works with the relative displacement
of the adjacent faces. Continuity requires that the net relative displacement is zero.

We illustrate the Force Method procedure for the three-member truss shown in Fig. 9.57a. The
truss is indeterminate to the first degree. The force in member BC is taken as the force redundant and
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AAB:ABD =:Al
4dpc = 43
Lap=Lpp=7r,
Lpc=1,sing

f hY
K . A

2sin@ Zcosd

\ ),

Fig. 9.57 (a) Three-member truss. (b) Primary structure—redundant internal force. (¢) Fy. (d) SF(X; = 1)

A, is the relative displacement together at the end sections. Two deflection computations are required,
one due to the external loads and the other due to X; = 1. We use the Principle of Virtual Forces
discussed in Sect. 2.3.4 for these computations. Results are summarized below.

Displacement due to external loads:

FoL
A=) (ﬁ)&v

B 1 Py . Py L, . 1 Py Py Ly
© 2sinf\2sind  2cosd)AE 2sinf) \2sinf 2cosf)AE

Py, L
2sin20AE

Displacement due to X; = 1:

L
Sn=> (5F)2E

_ 1 Ll Ll sin9+ 1 L1 - 1 L] +L1 sin @
"~ 4sin20 AjE = AE  4sin?0 A\E 2sin20 AJE AE

Enforcing compatibility (9.3) leads to

Ajo+onX; =0
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Py - Ao _ (Py/2sin?0)(L, /AE)
B A T s T (1/2sin20) (L1 JALE) + (L, sin 0/A3E)
(9.60)
(Az/ sin 9)
Y (A,/ sin@) + 24, sin26
Lastly, the remaining forces are determined by superimposing the individual solutions.
F =Fy+ oFX,
Py Ajsiné

Fap=——+P

AP 200s6’+ y{(Az/ sin @) + 24, sin2¢9} (9.61)

P — Py n Ajsind
PP 0 cos0 Y (Ay/ sinf) + 24, sin 20

As expected for indeterminate structures, the internal force distribution depends on the relative
stiffness of the members. When A, is very large in comparison to Ay, Py is essentially carried by
member BC. Conversely, if A, is small in comparison to A;, member BC carries essentially none
of P,.

y

Example 9.16

Given: The indeterminate truss shown in Fig. E9.16a. Assume AFE is constant, A = 2 in.2, and
E = 29,000 ksi.

6 kip
—+ 4kip «— B
LN
/! ™,
o N
10 ft 7 \\
/ S
/ \
—- o F AN
/ - < AN
F g D .
/ / \ \\
10 ft . e \
L =N
dag o
15 ft 15 fit

Fig. E9.16a

Determine: The member forces.
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Solution: The truss is externally indeterminate to the first degree. The horizontal component of the
reaction at C is taken as the force redundant (Fig. E9.16b).

B

/ D\ \
/ Vs \\\
s
A e
A { C—) X, 0 4
Fig. E9.16b Primary structure—redundant reaction

We apply the geometric compatibility equation to this truss,

A1 o+611X1=0

where L
Ao = ZF()(SFE

L
Si=)y_ (5F)ZE

The corresponding forces are listed in Figs. E9.16c and E9.16d.

6 kip

T

4kip «— »B

—+
t.j,\ S Mo
5611
Fig. E9.16¢c F,
B
ol -1.6
1.67
D"
24 24
I(-+-T5;' &f’—b X, =1
4
4

Fig. E9.16d 6F(X, = 1)
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, L (6F)° L E)sFi
Member L (in.) A (in.) A Fo oF AE AE
AB 300 2 150 7.5 —1.67 418.3/E —1878.7/E
BC 300 2 150 14.16 —1.67 418.3/E —3547/E
CD 216.3 2 108.2 -10.21 2.4 625.1/E 2656/F
DA 216.3 2 108.2 -10.21 2.4 625.1/E 2656/F
BD 120 2 60 —11.33 2.67 422.7/E —1815/E
5 2509.5/E —12,552.7/E

Inserting this data in the compatibility equation leads to

X =

(A 125527
& 25095

Then, the forces are determined by superimposing the individual solutions

F = Fo + 6FX,

The final member forces and the reactions are listed below:

Member Fy OFX, F

AB 7.5 —8.35 —0.85
BC 14.16 —8.35 5.81
CD —10.21 12.0 1.8
DA —10.21 12.0 1.8
BD —11.33 13.35 2
R.x 4.0 -5.0 —-1.0
Ray —0.33 0 —0.33
R« 0.0 +5.0 +5.0
Rey —5.67 0 —5.67




634 9 The Force Method

Example 9.17

Given: The indeterminate truss shown in Fig. E9.17a.

Determine: The member forces. Assume AE is constant, A = 200 mmz, and £ = 200 GPa.

50 kN
+ B C—>30kN
4m
1A D

im

Fig. E9.17a

Solution: The truss is internally indeterminate to the first degree. The force in member BD is taken as
the force redundant (Fig. E9.17b).
B \

Fig. E9.17b Primary structure—internal force redundant

We apply the geometric compatibility equation to this truss,

Ao+611X1 =0

where
L
A]’O: E F05 E

L
Sn=> (5F)2E
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The corresponding forces are listed in Figs. E9.17c and E9.17d.

50 kN
> 30 kN
Fig. E9.17¢ F,
B = 0.6 C
X, =1 1
-0.8 -0.8
X =1
O A D
! - 0.6
0 0
Fig. E9.17d S§F(X; = 1)
L

Member L (mm) A (mm?) A Fo SF (6F)*(L/AE) FoSF(LIAE)
AB 4000 200 20 -50 —0.8 12.8 800
BC 3000 200 15 0 —0.6 5.4 0
CD 4000 200 20 —40 —0.8 12.8 640
DA 3000 200 15 0 —0.6 5.4 0
BD 5000 200 25 0 1 25 0
AC 5000 200 25 50 1 25 1250

2 86.4/E 2690/E

Enforcing comparability leads to

Ao 2690
X =Fpp=—"T"—=——=-31.13
PTOBP T ST 864

SFgp = 31.13kN  compression
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Then, the forces are determined by superimposing the individual solutions.

The final member forces and the reactions are listed below.

F =Fy+ 6FX;

Member Fq OFX, F
AB —50 24.9 —25.1
BC 0 18.68 18.68
CD —40 249 —15.1
DA 0 18.68 18.68
BD 0 —-31.13 —31.13
AC 50 —-31.13 18.87
Rax —-30 0 —30
Ra,y 10 0 10
Rp, 40 0 40
50 kN
l 18.68
B C 5 30kN
-31.13
2251 -15.1
18.87
18.68
10 kN 1 i 40 kN
9.7 Summary
9.7.1 Objectives

The primary objective of this chapter is to present the force method, a procedure for analyzing
statically indeterminate structures that work with force quantities as the unknown variables.

Another objective is to use the force method to develop analytical solutions which are useful for
identifying the key parameters that control the response and for conducting parameter sensitivity

studies.
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9.7.2 Key Factors and Concepts

» The force method is restricted to linear elastic behavior.

» The first step is to reduce the structure to a statically determinate structure by either removing a
sufficient number of redundant restraints or inserting force releases at internal points. The resulting
determinate structure is called the primary structure.

» Next one applies the external loading to the primary structure and determines the resulting
displacements at the points where the restraints were removed.

» For each redundant force, the displacements produced by a unit force acting on the primary
structure are evaluated.

» Lastly, the redundant forces are scaled such that the total displacement at each constraint point is
equal to the actual displacement. This requirement is expressed as

A actual — A loading + Z (6unilforce)X

redundant forces

where the various terms are displacements at the constraint points. One establishes a separate
equation for each constraint point. Note that all calculations are carried out on the primary structure.

9.8 Problems

Problem 9.1 Determine the vertical reaction at B. Take E = 29,000 ksi and / = 200 in4

2kip/ft

\iLlLlllllLlLL‘
/ ] ¢

%} TI 0in

| 201 | 10 ft |
| I I

Problem 9.2 Determine the vertical reaction at B. Take E = 200 GPa and I = 80(10)® mm*.

1 1 B
’57 Tl.? mm
6m
|

| I

ISkN/m
:d 4 3 1 1 11

NN NN
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Problem 9.3 Determine the force in spring CD.

ky, = 60 kip/in.
E = 29,000 ksi

I =200 in.*
1.0 kip/ft

NS AN S S S A S

B
g

10 fi

-
AANL AN

10 ft

-

Problem 9.4 Given the following properties and loadings, determine the reactions.

P = 40 kN
w = 20 kN/m
L=10m

E = 200 GPa

[ = 170(10)° mm*
k, = 40 kKN/mm

6 = 20 mm
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= I B 1 B
, 14L , L2 L2
| I | 1
b
A 8 C
T 1 B 1 &
l 14L | L 1
I | [
C B
A g C
I S
- T;é;:, I
14L L

0.7L 0.7L L
i : i |
e w
I I
ky
7777
TL 171

Problem 9.5 Use the force method to determine the reaction at B caused by:

1. The distributed load shown
2. The support settlement at B
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[ =400in.*

L = 54ft

w = 2.1kip/ft
5]3 = 1.2in. l
E = 29,000ksi

Problem 9.6 Use the force method to determine the forces in the cables. Assume beam is rigid.
Ac = 1200 mm?, L = 9 m, P = 40 kN, and E = 200 GPa.

C
s L ”
B
- -
A
— - Cable 3A¢
\ ]
34L L2 2A¢ Cable
L[ A Neabie P
- 1 /Ih:am 1
L/4 2
| L/4 . i L/2 }

Problem 9.7 Consider the parabolic arch shown below. Assume the arch is non-shallow, i.e., A/L is
order of (1/2).

y(x)
B
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(a) Determine the horizontal reaction at B due to the concentrated load.

(b) Utilize the results of part (a) to obtain an analytical expression for the horizontal reaction due to
a distributed loading, w(x).

(c) Specialize (b) for a uniform loading, w(x) = wy.

(d) Suppose the horizontal support at B is replaced by a member extending from A to B. Repeat part
(a).

Problem 9.8 Consider the semicircular arch shown below. Determine the distribution of the axial
and shear forces and the bending moment. The cross-section properties are constant.

P

l

Problem 9.9

Parabolic arch

9m

18 m | 18 m
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Use a computer software system to determine the bending moment distribution and deflected
shape produced by the following loadings.

TakeA = 20,000mm?, [ =400(10)®mm* and E = 200GPa

a 15 kN/m
S N S S S T S N S S

b 540 kN

180 kN 180 kN
Sy —

4m

-1.mI

Problem 9.10
A =30in2 I=1000in* E =29,000ksi

Use a computer software system to determine the maximum bending moment and the axial force in
member ABC. Consider the following values for the area of the tension rod AC: 4, 8, and 16 in.?

Problem 9.11

Tension rod

120 ft

A =40in> [=1200in.* E = 29,000ksi

Use a computer software system to compare the bending moment distributions generated by the
following loadings:
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Parabolic arch

a cIth mhp mklp mhp th 20hp 20k|p 2ﬂk|p 10 kip

1 kip/ft
| N Y P O O O P A Y R

f\m

20!'[ 20ﬂ "Uﬂ 20l'l 201'[ 20I’I ‘?Gl‘l 200

b 0 klp 40I:1p 40k|p iﬂklp mklp d 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
kip hp hp hp ku kp kip kip kip hp kip kip kip kip kip

iy bl bl dob ] Ld J,l“‘"’

mf\

Il'l Il) 10 ID IU o, Il] IIJ 10 ]U llJ llJ 10 ID 10 IlJ

: 160 1 i
Problem 9.12 Determine the horizontal reaction at support D.
B I kipt
2 kip——> E T S— C
21
1 1 20 ft
A D
. A
n
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Problem 9.13 Determine the peak positive and negative moments as a function of 4. Consider
h=2,46m.

15 kN/m
! S - L

Problem 9.14 Determine the peak positive and negative moments as a function of 4. Consider
h =10, 20, 30 ft.

1.2 kip/ft
4 1 1 1 i i ) &
+— B &
21
h 1 I
1 Az mr D
50 ft

Problem 9.15 Using a computer software system, determine the bending moment distribution and
deflected shape due to the loading shown.

7.5 kip

5 ki S ki
2.5 kip 3 l Skip

10 kip —,

40 1, I:s fl 25 fl[ I

15 ft 65t 65 ft 15
I I ! I !
T T T T T
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Take /; = 1000 in.*, I, = 2000 in.*, E = 29,000 ksi, and A = 20 in.” all members.
Problem 9.16 Compare the bending moment distributions and the vertical displacement at B for the

structures defined below. Take E =200 GPa, I = 400(10)° mm®*, A = 100,000 mm? and
Ac = 1200, 2400, 4800 mm?. Use a computer software system.

9m

6m 6m 6m 6m
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Problem 9.17 Is there any difference in behavior for the structures shown below? Answer the
question without resorting to calculations.

Hinge 4

80

Problem 9.18 Determine the reactions and the member forces for the truss shown. Assume the
vertical reaction at d as the force redundant.

E = 200 GPa

A = 660 mm? all members
a=12 x 10°%°C

AT = 10°C

AT
4m AT
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Problem 9.19 Determine the forces in the members. E = 29,000 ksi and A = 1 in. all members.

6 kip
10 ki
—-— lp > b C
12 ft
T d d

91t

Problem 9.20 Determine the member forces of the truss shown. Assume the horizontal reaction at
¢ as the force redundant.

10 kip [

12t

6t 16 ft

=t
-t

A=A, = A; = A, = 10 in.?

As = 5in.?
a=6.5 x 10°°F
AT = 60 F

E = 29,000 ksi
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Problem 9.21 Determine the member forces for the truss shown. Assume A = 1000 mm> and
E = 200 GPa for all the members. Take the force in member ac and the reaction at support f as the
force redundants.

40 kN

b 30 kN

Reference

1. Tauchert TR. Energy principles in structural mechanics. New York: McGraw-Hill; 1974.



Abstract

The previous chapter dealt with the force method, one of two procedures
for analyzing statically indeterminate structures. In this chapter, we
describe the second procedure, referred to as the displacement method.
This method works with equilibrium equations expressed in terms of
variables that correspond to displacement measures that define the posi-
tion of a structure, such as translations and rotations of certain points on
the structure. We start by briefly introducing the method specialized for
frame-type structures and then apply it to truss, beam, and frame
structures. Our focus in this chapter is on deriving analytical solutions
and using these solutions to explain structural behavior trends. We also
include a discussion of the effect of geometrically nonlinear behavior on
the stiffness. Later in Chap. 12, we describe how the method can be
transformed to a computer-based analysis procedure.

10.1 Introduction

The displacement method works with equilibrium equations expressed in terms of displacement
measures. For truss and frame-type structures, which are composed of members connected at node
points, the translations and rotations of the nodes are taken as the displacement measures.

Plane truss structures have two displacement measures per node. For example, the plane truss
shown in Fig. 10.1a has two unknown displacements (u,, v,). The available equilibrium equations are
the two force equilibrium equations for node 2.

Planar beam-type structures have two displacement measures per node, the transverse displace-
ment and the cross-section rotation. The corresponding equations are the shear, and moment equilib-
rium equations for each node. For example, the planar beam shown in Fig. 10.1b has five unknown
displacements (6, 0,, 03, 04, v4).

Plane frame-type structures have three displacement measures per node: two translations and one
rotation. One works with the force and moment equilibrium equations for each unrestrained node. In
general, the number of node equilibrium equations will always be equal to the number of displacements.
For example, the plane frame shown in Fig. 10.1c has six unknown displacements (u5, V5, 05, U3, v3, 03).

© Springer International Publishing Switzerland 2016 649
J.J. Connor, S. Faraji, Fundamentals of Structural Engineering,
DOI 10.1007/978-3-319-24331-3_10
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Fig. 10.1 (a) Plane truss. a V)
(b) Planar beam. (c) Plane T
frame - u
2
| 3
b
$ 3 19"
5 5 2 3
| 5 3
Cc 9: V3 )
G 1 PN
W 2 - Ml
4

The approach followed to generate equations involves the following steps:

1. Firstly, we decompose the structure into nodes and members. Note that the forces applied by a
member to the node at its end are equal in magnitude but oppose in sense to the forces acting on the
end of the member. The latter are called end actions.

2. Secondly, we relate the end actions for a member to the displacement measures for the nodes at the
ends of the member. We carry out this procedure for each member.

3. Thirdly, we establish the force equilibrium equations for each node. This step involves summing
the applied external loads and the end actions for those members which are incident on the node.

4. Fourthly, we substitute for the member end actions expressed in terms of the nodal displacements.
This leads to a set of equilibrium equations relating the applied external loads and the nodal
displacements.

5. Lastly, we introduce the prescribed values of nodal displacements corresponding to the supports in
the equilibrium equations. The total number of unknowns is now reduced by the number of
prescribed displacements. We solve this reduced set of equations for the nodal displacements
and then use these values to determine the member end actions.

The solution procedure is systematic and is applicable for both statically determinate and statically
indeterminate structures. Applications of the method to various types of structure are described in the
following sections.
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10.2 Displacement Method Applied to a Plane Truss

Consider the truss shown in Fig. 10.2. We suppose nodes 2, 3, and 4 are unyielding. We analyzed this
structure with the force method in Sect. 9.6. We include it here to provide a comparison between the
two approaches. There are two displacement measures, the horizontal and vertical translations for
node 1. The structure is statically indeterminate to the first degree, so it is a trade-off whether one uses
the force method or the displacement method.

The first step is to develop the equations relating the member forces and the nodal displacements.
We start by expressing the change in length, e, of each member in terms of the displacements for
node 1. This analysis is purely geometrical and involves projecting the nodal displacements on
the initial direction of the member. We define an extension as positive when the length is increased.
Noting Fig. 10.3, the extensions of members (1), (2), and (3) due to nodal displacements are
given by:

ey = u;cos@ + vy sing
€p) = Vi (10.1)
e@3) = —u1 cos + vy sind

Next, we express the member force in terms of the corresponding extension using the stress—strain
relation for the material. Noting Fig. 10.3b, the generic equations are:

Fig. 10.2 Truss geometry Vi
and loading

Fig. 10.3 Extension and
force quantities—axial
loaded member
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e
Etotal = €0 +E6:Z

where ¢ is the initial strain due to temperature change and fabrication error. Then,

AE
F= Te — AFE¢g,
(10.2)
A
=—e
L

where FF is the magnitude of the member force due to initial strain.
Substituting for the extensions leads to the desired expressions relating the member forces and the
corresponding nodal displacements.

AE

AE
Foy = i cos Ouy +Ij—] sin Ov; —|—F(Fl)
AE AyE F
Fipy=—"p, =—="_ F 10.3
@ L, . L, sing"! ) (10.3)
AE AE
F3) = _L;l cos Ou; +%1 sin Ov, +F(F3)

We generate the force equilibrium equations for node 1 using the free body diagram shown below.

Y

F :
(1) -
ltl)

Y Fi=0— Pi=cosf(Fu) —F)

(10.4)
S Fy =01 Py=sin0(Fu)+Fg) +Fp
Substituting for the member forces, one obtains a set of uncoupled equations for u; and v;.
2AE
P, = { Li 00529}141 + cosG(F(Fl) —F&)
(10.5)

{ AE 2A(E
P, =

.2 . F F F
L sind L sin 6}\)1 + smH(F(l) +F(3>) +F(2)
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One solves these equations for #; and v, and then determines the member forces using (10.3).
The resulting expressions are:

P P, L p Ay sinf T
" 2cos@ 7\ Ay/sin@ + 24, sin 20 M

" A, /sin 0
Fio=P { 2/sin } +Fp (10.6)

Y| Ay /sin@ + 24, sin 20

P P, P Aysind L FF
G~ T2cosg Y A, /sin @ + 2A sin 26 &)
where

P.=P — cos¢9<F(F1) _F(F3>)

* - F F F
P =Py~ sin6(FF) + F)) + Fh

For this example, it may seem like more effort is required to apply the displacement method
vs. the force method (Sect. 9.6). However, the displacement method generates the complete solution,
i.e., both the member forces and the nodal displacements. A separate computation is required to
compute the displacements when using the force method.

10.3 Member Equations for Frame-Type Structures

The members in frame-type structures are subjected to both bending and axial actions. The key
equations for bending behavior of a member are the equations which relate the shear forces and
moments acting on the ends of a member to the deflection and rotation of each end. These equations
play a very important role in the analysis of statically indeterminate beams and frames and also
provide the basis for the matrix formulation of the displacement method for structural frames. In what
follows, we develop these equations using the force method.

We consider the structure shown in Fig. 10.4a. We focus specifically on member AB. Both of its
ends are rigidly attached to nodes. When the structure is loaded, the nodes displace and the member
bends as illustrated in Fig. 10.4b. This motion produces a shear force and moment at each end. The
positive sense of these quantities is defined in Figs. 10.4b, c.

We refer to the shear and moment acting at the ends as end actions. Our objective here is to relate
the end actions (V, Mg, Va, M) and the end displacements (vg, fg, va, 84). Our approach is based
on treating the external loading and end actions as separate loadings and superimposing their
responses. We proceed as follows:

Step 1. Firstly, we assume the nodes at A and B are fixed and apply the external loading to member
AB. This leads to a set of end actions that we call fixed end actions. This step is illustrated in
Fig. 10.5.

Step 2. Next, we allow the nodes to displace. This causes additional bending of the member AB
resulting in additional end actions (AVg, AMpg, AV, AM,). Figure 10.6 illustrates this
notation.

Step 3. Superimposing the results obtained in these two steps leads to the final state shown in
Fig. 10.7.


http://dx.doi.org/10.1007/978-3-319-24331-3_9
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Fig. 10.4 Member a ol Y
deformation and end
actions. (a) Initial
geometry. (b) Deformed
configuration for member

AB. (c¢) Notation for end T

shear and moment :1 L:
A A B =
7T rr7
b O
Oi\J \f‘l
/\/ BI
' V|
Va A B
A B
C
Ma
A B Mg
Fig. 10.5 Fixed end a
Actions. (a) Initial.
(b) Deformed N
b
F
F M
M, ( 7 E NB
A ;i F
F
T VA Vg T
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Fig. 10.6 Response to A
nodal displacements \ Oy
A 1B’
AMa % * x a
Ya > 14V, \\'H AMs B
A B

Fig. 10.7 Final state MT

Ma(Z——— EFyMs

v s

My = M§ + AMp
Ma =M + AM,
Vg =VE +AVg
Va=VE+ AV,

We determine the fixed end actions corresponding to the first step using the force method. Details
are described in Chap. 9. Fixed end actions for various loading cases are listed in Table 9.1.

For the second step, we visualize the process as consisting of two substeps. First, we displace node
B holding A fixed. Then, we displace node A, holding B fixed. Combining these cases result in the
response shown in Fig. 10.8c. Superposition is valid since the behavior is linear.

These two substeps are similar and can be analyzed using the same procedure. We consider first
case (a) shown in Fig. 10.8a. We analyze this case by considering AB to be a cantilever beam fixed at
A and subjected to unknown forces, AVg™" and AMp" at B (see Fig. 10.9a).

The displacements at B are (see Table 3.1):

AV amMyr?

VB =

3EI 2EI (107
o Aavrr  amMyL
B2k El

We determine AVg" and AMg' by requiring these displacements to be equal to the actual nodal
displacements vg and #g. Solving for AVB(]) and AMB(]) leads to

12EI 6EI
AV]<31) = 3 VB — —2 B

L L

AEI 6EI (108)
AM]<31> = —63 — —VB

L L


http://dx.doi.org/10.1007/978-3-319-24331-3_3
http://dx.doi.org/10.1007/978-3-319-24331-3_9
http://dx.doi.org/10.1007/978-3-319-24331-3_9
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Fig. 10.8 Superposition a g a3
of nodal motions. (a) @ \ /_‘ AMs
Support A fixed. (b) RV 9
Support B fixed. (¢) 4 \~ I Vs
Superimposed motions 4 FT
T avtf A\(:
b )

¢ AMa % 8
Y o N
i SN )
wpotava 7 s
Fig. 10.9 (a) Support A a (¢}
fixed. (b) Support B fixed :I " |3Al\t‘ha
A
A fis
b
Mcn s N B
. T @ |:

AV

The corresponding end actions at A are determined using the equilibrium conditions for the
member.

S F=0=avy +avy =0
S M=0=amy +amy) +Lavy =0
atA
Then
12EI  6EI
3 BT
6EI  2EI

AME:) = —FVB +TQB

NG On

(10.9)
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Equations (10.8) and (10.9) define the end actions due to the displacement of node B with A fixed.
Case (b) of Fig. 10.8 is treated in a similar way (see Fig. 10.9b). One works with a cantilever fixed
at B and solves for AV,® and AM,®. The result is

o 12EI  G6EI

AVA = T VA + F 6A

6EI 4E1 (10.10)
2 _
MM =Tt 0
The end actions at B follow from the equilibrium conditions for the member.
5 12E1 6El
AVy! =~ =

(10.11)

6E1 4EI
AM]<32> = FVA + TQA

Equations (10.10) and (10.11) define the end actions due to the displacement of node A with B
fixed.

The complete solution is generated by superimposing the results for these two loading conditions
and the fixed end actions.

6EI 12E1
Ve =AVY 4 AV 4 vE = =7 (O +0a) + =5 (s —va) + Vi

2EI 6EI
My = AMy) -+ AM) + M§ = + 57 (208 +0A) =5 (v — va) + M}

6E1 12E1
Va= AVI(AI) + Avf) + V£ = +7(9B +9A) _?(VB - VA) + Vﬁ

2E1 6El
My =AML + M + M =+ (65 +26,) — 7 (v —va) + M}

We rearrange these equations according to moment and shear quantities. The final form is
written as

2FI Vg — V
Mg === {29A+03—3( ) A)}+M£B
(10.12a)

MBA:?{QAHGB—s(VB;vA)}JngA
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and
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6EI VB — V
VAB:+7{9A+93—2( P b v

L
o (10.12b)
T T L) Y
M ° Mas
Mk
f\ r 1 l;
\Y% + El
I I\«'AB Via I
L

@I
/\/;'

v -+[ i I A’ Vg

A B

Equations (10.12a, 10.12b) are referred to as the slope-deflection equations. They are based on the
sign conventions and notation defined above.

10.4 The Displacement Method Applied to Beam Structures

In what follows, we first describe how the slope-deflection equations are employed to analyze
horizontal beam structures, starting with two-span beams and then moving on to multi-span beams
and frames. The displacement measures for beams are taken as the nodal rotations; the transverse
displacements are assumed to be specified.

10.4.1 Two-Span Beams

We consider the two-span beam shown in Fig. 10.10a. One starts by subdividing the beam into two
beam segments and three nodes, as indicated in Figs. 10.10b, c. There are only two rotations
unknowns: the rotations at nodes A and B; the rotation at node C is considered to be zero.
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a vg
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)
T
A [ | : C
v_m I o I, 2
l.] B L2
| 1 1
J | |
b Ma Mac Mcs
A 353 =0 B D (’l[E c
rgl leﬁ; \!; Ve
2
. /T—']n—- Mga Mic 7 Mc
S‘AB =0 YIBA g T_\T_\? CB
| A BT /an B C Tj
Vag Vac Vea
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|

A
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S

Fig. 10.10 Decomposition of two-span beam into beam segments and nodes. (a) Beam geometry and loading.
(b) Segments and nodes. (¢) Segments. (d) Reactions
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Next we apply the slope-deflection equations (10.12a) to members AB and BC.

2EI VB — V
MAB:—I 205 + 605 — 3 B A +M/§B
L L,

2E1 Vg — V
Mpa = 13205 + 04 —3(2—2) b + ME,
Ll Ll

- (10.13)
2 Ve — VB F
Mpc =—42605 — 3 M
L { ’ ( Ly ) } e
2E12 Vc — VB F
M =—-965 -3 M
CB L { B ( L ) } + Mcg
Then, we enforce moment equilibrium at the nodes. The corresponding equations are:
MAB =0
(10.14)
Mgpa + Mpc =0
Substituting for the end moments in the nodal moment equilibrium equations yields
4E11 2E11 6E11 VB — VA F
(7 O = -M
L * * L L Ly AB
2FEI 4EI, 4EI 6F1 6EI (10.15)
1 1 2 1 (VB — VA 2 (Vc — VB F F
[ O = — (M M
L A+<L1+L2)B L1<L1 >+L2(L2 ) (Mga + Myc)

Once the loading, support motion, and member properties are specified, one can solve for g and
0. Substituting for the s in (10.13) leads to the end moments. Lastly, we calculate the end shears.
Since the end moments are known, we can determine the end shear forces using either the static
equilibrium equations for the members AB and BC or by using (10.12b).

6E11 12E11 VB — VA F
Vap = ool (0p +05) — L (ZBYA) Ly
AB % (Oa + 6B) 2 < L >+ AB
6EI 12EI; [vg — Vv
VBAZ——21(913+9A)+ 21(B A)—FV]];A
Ly Ly L,
6El 12E1 (10.16)
2 2 (ve — VB E
Vic = Op) — 22 v
BC L% ( B) L% ( L2 ) + BC
6E12 12E12 Vc — VB F
Vae = — 0 Vv
BC 2 (0) + 2 ( L, + Vie

The reactions are related to the end actions by (see Fig. 10.10d)

Ra =Vas
Mpa=Mpg =0
Rp = Vpa + Vae
Rc =Vcp

Mc = Mcp
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AR
0

Fig. 10.11 Beam geometry and support settlements

Suppose the only external action on the above two-span beam is prescribed support settlements v 4,
vg, and vc as shown in Fig. 10.11. We compute the corresponding chord rotation terms and include
these terms in the slope-deflection equations. The chord rotations are

VB — VA
p =
AB Ll

e —va (10.17)
PBC = L

Noting (10.13), the chord rotation terms introduce additional end moments for each member
connected to the support which experiences the settlement. The corresponding expressions for the end
moments due to this support settlement are

2EI
Mg = L—‘ {207 + 05 — 3pp}
1

2EI
Mga = L—I{ZHB +0a —3pas}
1
(10.18)

2EI
Mpc = L—Z{ZQB - 3/)BC}
2

2EI
Mcg = L—Z{QB - 3PBC}
2

Substituting for the support movements, the nodal moment equilibrium equations reduce to

29A -+ HB = 3pAB
2EI 2EI 6El 6EI (10.19)
—1{2913 +0A}+ —2{263} = —lpAB + —2ch
Ly L, Ly Ly

Note that the solution depends on the ratio of EI to L for each span. One specifies p for each
member, solves (10.19) for the s, and then evaluates the end actions.
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Example 10.1

Given: The two-span beam defined in Fig. E10.la. Assume the supports are unyielding.
Take E = 29,000 ksi, / = 428 in.*, and L = 20 ft.

10 kip

1.5 kip/ft l
1L ¢ ¢ I 18 C

WANY

Fig. E10.1a
Determine: The end actions and the shear and moment diagrams due to the applied loading.

Solution: First, we compute the fixed end actions by using Table 9.1.

10 kip

SOkipft 25 kip ft 25 kip fu
S0 kip ft 1.5 kip/ft p
A A A
9 S — — | R
C JA B y ) C : B CA\ )
15 kip ‘} ‘I- 15 kip 5 kip . -]:nip
20 fi . 20t N
t $ . ’
1.5(20)? 1.5(20
M, = 15207 _ 50kipft Vi = 20) _ 15kip
12 2
1.5(20
ME, = —50kipft VE, = é ) _ 15kip

10(20 10
ME. = % =25kipft Vi, = - = Skip

10
ME, = —25Kkipft V= = Skip

We define the relative member stiffness for each member as
i s _ EI k= 29,000(428) 1
members AB — Amembers BC — L — Rl = 20 (12

Next, we generate the expressions for the end moments using the slope-deflection equation
(10.12a) and noting that 8, = 0 and the supports are unyielding (v = vg = v¢ = 0).

)2 = 4310kipft


http://dx.doi.org/10.1007/978-3-319-24331-3_9
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Map = 2ki(08) + 50

Mga = 2k;(26g) — 50

Mpc = 2k (20 + 0c) + 25

Mcp = 2k (0p + 20c) — 25
Enforcing moment equilibrium at nodes B and C

Mg Mpc

GzP i

e
Mga +Mpc =0
Mg = 0
leads to
20 + 4k, 0c = 25
8k10s + 2k10c = 25
U
k10g = 1.786
k10c = 5.357
4

O = 0.0004rad counter clockwise

Oc = 0.0012rad counter clockwise

These rotations produce the following end moments
Map = 53.57kipft
Mpp = —42.84kipft
Mpc = +42.84kipft
Mcg =0

Since the end moments are known, we can determine the end shear forces either by using the static

equilibrium equations for the members or by using (10.12b).

Mg = 53.57

1.5 kip/ft Mpga = 42.84 Mp- = 42.84

B
(;11111+) (i

1 Vas VB,} T 3

BC
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Noting (10.12b), we find

6 6
Vap = (kifs) + Vig = 50(1:786) + 15 = 15.53kip

6 6
Vap = — (ki05) + Ve = —5g(1786) + 15 = 14.47kip

6

6 F
Vae = Z(kleg +k10c) + Ve = 30

(1.786 + 5.357) + 5 = 7.14kip

6 6
Vap = =7 (ki0s + k16c) + Vg = —5(1786 + 5.357) + 5 = 2.86kip

The reactions are:
Ra =Vag = 15.53kip |
Ma = Mag = 53.57kipft
Rp = Vga + Ve = 21.6kip T
Rc =Vceg =2.86kip T
Mc=Mcg =0

Lastly, the shear and moment diagrams are plotted below.

10 kip
1.5 kip/i
ss.snmn(AlH PR . C

{t 2.86 kip

15.53 kip'I’ {' 21.6 kip

14.46 kip

10.35 ft / 286 kip
i\ 2.
] V{5t

7.14 kip

15.53 kip
26.8 kip ft 28.6 kip ft

ﬂ’\ /N M

42.84 kip ft
53.57 kip ft
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Example 10.2: Two-Span Symmetrical Beam—Settlement of the Supports

Given: The symmetrical beam shown in Fig. E10.2a. Assume EI is constant. Take L = 6 m, [ =
180(10)° mm*, and E = 200 kN/mm?>.

A

A 1 Br 1 By

Fig. E10.2a

Case (i), the middle support settles an amount vg = 40 mm.
Case (ii), the left support settles an amount v4 = 40 mm.

Determine: The end actions, the shear and bending moment diagrams.
Solution:

Case (i): Support settlement at B (Fig. E10.2b)

A B C
5 v .
Lo

———

Fig. E10.2b Settlement at B

Noting (10.17), the chord rotations due to settlement at B are:

VB—VA VB
Pas = =7

Vc — VB VB
L

Substituting for pag and pgc, the corresponding slope-deflection equation (10.12a) take the form

2EI 6E]
Mag = I (204 + 08) — [ PaB
2FE1 6L
Mpa ==~ (208 +0a) — I PaB
2EI 6E]
Mpc =~ (205 +6c) — —~Prc
2E1 6L]
Mcg = T(ZQC +6g) — — PBc
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We enforce moment equilibrium at nodes A, B, and C.

Mag=0 Mgy Mgc Mcp=-o

B Qe 1%

Vac Ve
The corresponding equations are:

MAB:0:>29A+QB:—3VTB
Mga +Mpgc =0 =07 +40g +0c =0
MCBzo:zach:%B

Solving for the s leads to

0g =0
3VB
Or = —— 2
AT oL
3VB
Oc = +2
¢=Tar

The corresponding end moments are:

2EI ( 3vg\ 6EI / g 3EI 3(200)(180)10°
Mpa="-—2)—— () =4+ m=—""—F—(40
BAT L ( 2L> - (-7) MR G
= 120,000kNmm = 120kNm

2EI (3vg\  6El /v 3EI
Mpe = (2B ——(—):—— — _120kN
BCTT (2L> L \L R m

Next, we determine the end shear forces using the static equilibrium equations for the members.

3E[ 3E '*El
A > C C
[ |
Vaed l Vaa ! Vea
L , L

1
| 1 1 T
T T

3EI 3(200)(180)10°
Vap = Ve = +? B —WMO) =20kN 1

3EI
Vea = Ve = VB = 20kN |
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The corresponding reactions are:
Ra = Vag =20kN 1
Rg = Vga + Vpc =40kN |
Rc =Veg =20kN T

One should expect that g = 0 because of symmetry. The shear and moment diagrams are
plotted below.

A B C
Rp=20kN§ "h"l'll,=40kN }Rrc=20kN
20 kN
+
- v it
20 kN
120kN m
4
M &
Case (ii): Support settlement at A (Fig. E10.2¢c)
A B C
- '
" 5%, %,

| L | L
| | |

Fig. E10.2c Settlement at A

Settlement at A produces chord rotation in member AB only. The chord rotation for member AB
due to settlement of node A is pag = va/L. Substituting for pg, the corresponding slope-deflection
equation (10.12a) take the form

2EI 6E]
Mag = I (204 + 08) — [ PaB
2FE1 6L
Mgpa = T (20 +04) — [ Pas
2EI

MBC - T(ZHB + 0(:)

2EI
MCB == T(ZQC + HB)
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Setting Mpag = Mcg = 0 and Mg + Mpc = 0 leads to
20A + 68 = 3pap
20c+6g =0
40 + 0a + Oc = 3pp

Solving for the s leads to

5
Op = 278
1
Op = B PAB
1
Oc = 1 PaB

Finally, the bending moment at B due to support settlement at A is:

2EI (va  5Sva 6EIv 1.5E1 1.5(200)(180)106
Mga=—1[—4+-—"F] — = — = 40
BAT T (L +4L) 2 " GoooE 0
= —60,000kNmm = —60kNm
Mpc = —Mpga = 60kNm  counterclockwise

Next, we determine the end shear forces using the static equilibrium equations for the members.

1.5 El 1.5 El 1.5 El
Ra==T7"A T VA A
Then,
1.5E1 1.5(200)(180)106
Ri— R — — - _ 40) = —10kN
A= R A (6000)° (40)
1.5E1 1.5E1
RB = VA +TVA = +20N

L3
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The shear and moment diagrams are plotted below.

A B C
‘F TR, = 10 kN 'TRBZL’UkN -i»Rc:lOk.\-’
10 kN -
~ v ¥4
10 kN

60 kN m

Example 10.3: Two-Span Beam with Overhang

Given: The beam shown in Fig. E10.3a. Assume FEI is constant.

40 kN
30 kN/m l 10 kN/m
1L L 11 11 1 I 1111
A7 |
7 I ¥, I 2 | p
B C
| Tm | 4m | Im | Im |
| | ] L

Fig. E10.3a
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Determine: The end actions and the shear and moment diagrams.

Solution: First, we compute the fixed end moments by using Table 9.1.

1225kNm

122.5kN m e
T T T 1 11 5)
C AA B R
T Tm T
| |
40 kN
20,139 kN m l 3918 kN m

)

NN
-
0
7777

. 4m | 3m
i | i
P 3007
My = +=5—=+122.5kNm
ME, = —122.5kNm
40(4)(3)*
ME. = L(z) = +29.39kNm
(7)
40(4)%(3
ME = — We) _ —39.18kNm

We define the relative member stiffness for each member as

EI
kmember AB = Kmember BC — f =k

Noting that 85 = 0 and the supports are unyielding (vo = vg = v¢ = 0), the corresponding slope-
deflection equation (10.12a) take the form

Mag = 2k (05) + 122.5
Mga = 2k (205) — 122.5

Mgc = 2k, (205 + 6c) +29.39
Mcp = 2k (20c + 6) — 39.18


http://dx.doi.org/10.1007/978-3-319-24331-3_9
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We enforce moment equilibrium at the nodes B and C.

Mg Mac Mg 45kNm 45KkNm !0kN/m

VMIE £: vql% l') 3’05‘"1“3:'0

30 kN
—2

The corresponding equations are:
Mga + Mgc = 0 = 2k10c + 6k0g = 93.11
Mcg +45=0 = 4k0c + 2k 0 = —5.82

Solving these equations leads to
ki6g = 13.71
ki6c = —8.31
The corresponding end moments are:
Map = +149.9kNm
Mpa = —67.6kNm
Mpgc = +67.6kNm
Mcp = —45kNm

Next, we determine the end shear forces using the static equilibrium equations for the members.

40 kN
14999 kN m 30 kN/m 676 kKN m 67.6 kKN m ]

10 kN/m

£+ &+ 3 331 33 3
[ 1B

t I

116.75 kN 93.2kN

1 20.4 kN ‘]-C

e

49.6 kN
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The shear and moment diagrams are plotted below.

40 kN
30 kN/m 10 kN/m
I 1T 1T 1T 11 I cEI 113

“ 1 F D

1499 kNm

116.75 kN 113.62 kN 49.62 kN
93.2 kN
+ 19.62 kN
20.38 30 kN
116.75 kN
774kN m
g 14kNm
\/Av,- M IS
45kN m
67.6 kN m
14999 kN m

10.4.2 Multi-Span Beams

In what follows, we modify the slope-deflection equations for the end members of a multi-span
continuous beam when they have either a pin or roller support. Consider the three-span beam shown
in Fig. 10.12a. There are three beam segments and four nodes. Since the end nodes have zero moment,
we can simplify the slope-deflection equations for the end segments by eliminating the end rotations.
We did this in the previous examples, as part of the solution process. Now, we formalize the process
and modify the slope-deflection equations before setting up the nodal moment equilibrium equations
for the interior nodes.

Consider member AB. The end moment of A is zero, and we use this fact to express @4 in terms of
0. Starting with the expression for M ag,

2E1 -
Mg — 221 (29A+93 —3(VBL VA)) T ME, =0

L, 1

and solving for 04 leads to

1 3 VB — VA Ll F
Or = —=0p += Vi
A 2B+2( L ) 4EL, A8
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YA B e "D
) 1 ) T
A i D
1
~ & & T
l L I;l L cl‘ Ls 1
1 1 I T
A QMas=o Mga Mic Mg s MI)C?U
.EJ! () 2 ()l 2 Ve wl'g!;
Vas Vga B Vie Ver C Ve D
NN ) A S
A B
Vas Vi v‘IcB . IVCB v Ag “
V[)C

Fig. 10.12 Three-span beam

Then, we substitute for 84 in the expression Mgy,

2EI VB —V
MBA=—1(293+0A—3 £ A)+M§A
Ly Ly

and obtain the following form,

3EI VB — V 1
MBA pirea = L—ll (QB - ( . L A)) + (M]l;A - §M£B> (1020)

Note that the presence of a pin or roller at A reduces the rotational stiffness at B from 4EI/L to
3EI/L. Substituting for €4 in the expression Vap and Vg4 leads to the following expressions,

6EI (1 1 VB — VA 3MF
VABmudlficd = +7 {EGB - E( I ) } + V/EB _ZAB

2 L
6EI (1 1 VB — VA 3MF
VBA oite = _F{EHB _5( I )} + V]l;A +E%

For member BC, we use the general unchanged form

2EI Ve — Vv
Mpc =2 (205 + 0c - 32 + ML,
L L

Vc — VB

MCB:—<29C+93—3 )+M§B
L 2
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The modified form for member CD is

Mpc =0

3EI 3 VD — V¢ F 1 F
Mcp = Oc — ME — M
CD L3 < C L3 ) + ( CD 7 DC

Nodal moment equilibrium equations

Now, we return back to Fig. 10.12. If we use the modified form of the moment expressions for
members AB and CD, we do not have to enforce moment equilibrium at nodes A and D since we have
already employed this condition to modify the equations. Therefore, we need only to consider nodes
B and C. Summing moments at these nodes,

Mpa +Mpc =0
Mcg +Mcp =0

and substituting for the end moments expressed in terms of g and ¢ leads to
3El, 4EI 2EI 6El, (ve — v 3EL (vg —vV
On e G 2| 2 (Ye—ve) OB (VB —va
L] L2 L2 L2 L2 Ll Ll
1
+{M};C ¥ (MgA - §M£B> } 0
2EI 4El, 3EI 6El; (ve — v 3El; (vp —v
On 21 4 o 2 BB 2 (Ye—ve) OB (vp — Ve
Ly Ly L L, Ly Ls Ls
1
+{ (M@D ~ EMSC> + MEB} =0

Given the nodal fixed end moments due to the loading and the chord rotations due to support
settlement, one can solve the above simultaneous equations for fg and 6c and determine the end
moments by back substitution. Note that the solution depends on the relative magnitudes of the ratio,
I/L, for each member.

In what follows, we list the modified slope-deflection equations for an end member with a pin or
roller support.

End member AB (exterior pin or roller at A end):

(10.21)

Mg =0
3EI VB —V 1 10.22a
MBA gitea = T{QB - ( B L A)} + (MII;A _§M£B> ( )
3EI Vg — V 3MF
VABmodified = F {QB - (%) } + VEB — 5%
. (10.22b)
SEI VR — V 3M
VBAmodmed = _?{QB - ( B I A)} + V]IS:A +§%
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MAB =0 T e
M ) < & r W B)MBA modified
v [ Vas modified IVAR El Vea | VBA e
L modified

Equations (10.22a, 10.22b) are referred to as the modified slope-deflection equations.
Example 10.4: Two-Span Beam with Moment Releases at Both Ends

Given: The two-span beam shown in Fig. E10.4a. Assume EI is constant.
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Fig. E10.4a

Determine: The end actions and the shear and moment diagrams.

Solution: The fixed end moments are (see Table 9.1):

1.4(20)
12

ME, = —46.67kipft

e _ 12(10)(20)°

F _
MAB*

= 46.67kipft

= 53.33Kkipft
BC (30) lp
12(20)(10)?
ME, = % = —26.67kipft

We define the relative member stiffness for each member as
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EI
kmemberBC = L_C = kl

B

EI
kmemberAB = L_ = 1Skl

AB

Next, we generate the expressions for the end moments using the modified slope-deflection
equation (10.22a).

MAB:O

1
M = M, = 3(1:50) 00) + (M5, ~ 5 MEy ) =3(158)0n)

1
+ {—46.67 - E(46.67)} = 4.5k,05 — 70

1
Mpc = MBCmdificd = 3(k1)(93) + <M]I;C - EMgB> = 3(k1)(9B)

1
+ {+53.33 - E(_26'67)} = 3k6p + 66.66
MCB =0
The moment equilibrium equation for node B expands to

Mgpa +Mpc =0
I
7.5k10g —3.34=0
U
k16g = 0.4453
Finally, the bending moment at B is
MBA = —68klpft
Mgc = —Mgp = 68klpft

Noting the free body diagrams shown below, we find the remaining end actions.
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The shear and moment diagrams are plotted below.
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Example 10.5: Three-Span Beam
Given: The three-span beam shown in Figs. E10.5a, E10.5b, E10.5c¢.
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Fig. E10.5b Settlement at A
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Fig. E10.5c Settlement at B
Determine: The end moments and draw the moment diagram for

Case (i): uniform load w. No support settlement.
Case (ii): No loading. Support settlement at A. Consider / and L are constants.
Case (iii): No loading. Support settlement at B. Consider / and L are constants.

Solution:

Case (i): Uniform loading
The supports are unyielding. Therefore v = vg = vc = 0. The fixed end moments due to the
uniform loading are (see Table 9.1)

wl? wlL?

ME — W gE W
AB = T+ B BA D
wlL? wl?

ME. — Y2 g W
Bc = T D CB D
wl? wl?

ME — W g W
CD + 12 DC 12

We use (10.22a) for members AB and CD and (10.12a) for member BC.
Mag =0

3EI 1 3EI wlL?
Mgpa = MBAmodified = L—lleB + (M]];A - 5M£B> = L—llgB - ?l

2EI 2EI w2
Mgc = —2{293 + Hc} +M]]3:C = —2{29]3 + GC} +—2
L, L, 12

2EI 2EI wlL?
Meg = =22 {0p + 200} + ME, = =2 {0 + 200} — —2
L2 L2 12

3EI 1 3EI wL?
Mcep = Mcp, 5500 = L—119C + (MgD - EMSC> = L—IIQC + Tl

Mpc =0
The nodal moment equilibrium equations are
Mga +Mpc =0
Mcg +Mcp =0

Substituting for the end moments, the above equilibrium equations expand to
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3El, A4EI 2EI wl?  wL?
93{—1-1-—2} +9(:{—2} =-———+"1

L, L, L, 12 8
2EI 4El, 3EI, wL?  wl3
9 S 9 — _— = — — RN
B{L2}+C{L2+Ll} 8+12
4

3 2

1512‘9 wl} -1 +§(L1/L2)
L, ° 12 )2+3(/L)(L/Ly)

Oc = —0y

The corresponding moments are

M _W_L% (Li/L2)* + (I, /I2) (L2 /Ly)
B¢ Y 1 +3/2( /L) (Lo/Ly)

Mcp = —Mpc

We note that the moments are a function of (/,/I5) and (L;/L,). The sensitivity of My to the ratio
(L{/L,) is plotted below for various values of (/,/1,).
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wl3 I |
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When I and L are constants for all the spans, the solution is

wiL?
On =
BT 120E1
wL3
Oc = —
¢ 120E1

and
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wiL?
Mga = Mcp = — —
BA CB 10
wiL?
Mpc =Mcp = —

10 10 10
w w w
A g I B) 61 1 JC.) CCL ¥ ¥p
‘},-1 wlL 6 wL[ SwL 5 H‘L] ] 6 wL 4 WL1-

The moment diagram is plotted below.

Aior % éplz t ,é,;c ; i

| 5 | L
I 1

|
T t
$ 4 wL ? 1.1 wL :F 1.1 wL ? 4 wL

=

n
wL*

08 wl2

F—*\/ \/r—*m

wL?
10

wl?
10

Case (ii): Support settlement at A, no loading, I and L are constants
The chord rotations are

A
pAB_+L
pag =pPcp =0

Specializing (10.22a) for members AB and CD and (10.12a) for member BC for / and L constant,
and the above notation results in

3EI v
MBAmodiﬁed = T {HB - —A}

L
2FE1
Mpc = —{2913 +6c}
2EI
Mcg = —{0]3 + 2ec}

MCDmodiﬁed = T {GC}
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The nodal moment equilibrium equations are

3y
Mga +Mpc =0 793+29C:TA
=
Mcg +Mcp =0 20g +70c =0

The solution is

7VA
O = —
P50
2VA
Oc = ——
CT s
and the corresponding moments are
Iy 8EI
= ——V
BA 572 VA
M 2EI
=——=V
CD 5L2 A

We determine the end shear forces using the static equilibrium equations for the members.
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The moment diagram is plotted below.
A B & D
] w5 1 x5 N
8EI IBE[ 12El 2El
VA —v i % -
DER - i sLs 1 TERG
| L | L | L |
I 1 I T
2El
v
5Lzt
| . M
. ! (=)
i
]
1
1
]
1
1
]
]
1
8EI
5 VA




682 10 The Displacement Method

Case (iii): Support settlement at B, no loading, / and L are constants
The chord rotations are

VB
PAB = I

VB
PBc = T 17
pcp =0

Specializing (10.22a) for members AB and CD and (10.12a) for member BC for / and L constant,
and the above notation results in

MBA it = 3% {HB t (VB) }

L
2EI
Myc === {205+ 0c - 39}
2FE1
Mcp —T{9B+29C _3E }
3EI
CDnodified — 7 {QC}

The nodal moment equilibrium equations are

3v
Mgs +Mpc =0 70 +20c = -2
=

6v
Mcg +Mcp =0 208 +79c=TB

The solution is

VB
O = —
B TsL
4
Oc = =2
. 5L
and the corresponding moments are
u 18EI
=—V
BA =57 VB
12E1
=—V
=52 VB

We determine the end shear forces using the static equilibrium equations for the members.
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Noting the free body diagrams, we find the reactions. The moment diagram is plotted below.
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Example 10.6: Uniformly Loaded Three-Span Symmetrical Beam—Fixed Ends

Given: The three-span symmetrical fixed end beam defined in Fig. E10.6a. This model is representa-
tive of an integral bridge with very stiff abutments at the ends of the beam.

L
$ 4 4 1 L1 1 & I L1 3 I 1% 1 J 1 1

l.| L: L]
Fig. E10.6a

Determine: The end moments.

Solution: The slope-deflection equations for unyielding supports, 85, = 0p = 0 and symmetry
O = —0Oc are

2EI
Map = —Mpc = L—I(QB) + Mg
1
2EI
Mga = L—l(zeB) +ME,
1
2EI
Mpc = —Mcp = L—;(HB) + Mg
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where
My = MgD = "‘%
MBFA :Mgc *WI—L;
Mg = +"1—L2%
M(];B = M;—LZ%

Summing end moments at node B

Mpa +Mpc =0

4E1, 2FEI
e
L L,

and solving for O leads to

b — o ((wLi/12) — (wL3/12))
8T TV T ((4EL /L) + (2ELJL2))

Suppose I and L are constants. The end rotations corresponding to this case are
Og =0c =0

It follows that the end moments are equal to the fixed end moments.

Mg = "5
12
Mg = —Mpc = —W—L2
12

The general solution for the moment at B follows by substituting for g in either the expression for
Mg or Mpc. After some algebraic manipulation, the expression for Mg, reduces to

w3 {0 20 /0) /) }
12 (T4 2(0 /D) (L /L))

BA —

We note that the moments are a function of (/,/;) and (L,/L,). The sensitivity of Mg to the ratio
(L{/L,) is plotted below for various values of (/,/I,).



10.5 The Displacement Method Applied to Rigid Frames 685

'\'1&&
wl,g I
2 A L=
I
ll
Vil
12 = /o _
i 5
- /
sy
0.8 P~
0.6 |-
l | % &
’ L'l

0.5 1 &

10.5 The Displacement Method Applied to Rigid Frames

The essential difference between the analysis of beams and frames is the choice of the nodal
displacements. The nodal variables for a beam are taken as the rotations. When there is support
movement, we prescribe the nodal translation and compute the corresponding fixed end moments. In
this way, the equilibrium equations always involve only rotation variables. Rigid frames are consid-
ered to be an assemblage of members rigidly connected at nodes. Since frame structures are formed
by joining members at an arbitrary angle, the members rotate as well as bend. When this occurs, we
need to include the chord rotation terms in the slope-deflection equations, and work with both
translation and rotation variables. Using these relations, we generate a set of equations relating the
nodal translations and rotations by enforcing equilibrium for the nodes. The approach is relatively
straightforward when there are not many displacement variables. However, for complex structures
involving many displacement unknowns, one would usually employ a computer program which
automates the generation and solution of the equilibrium equations.

The term “sideway” is used to denote the case where some of the members in a structure
experience chord rotation resulting in “sway” of the structure. Whether sideway occurs depends on
how the members are arranged and also depends on the loading applied. For example, consider the
frame shown in Fig. 10.13a. Sideway is not possible because of the horizontal restraint. The frame
shown in Fig. 10.13b is symmetrical and also loaded symmetrically. Because of symmetry, there will
be no sway. The frame shown in Fig. 10.13c will experience sideway. The symmetrical frame shown
in Fig. 10.13d will experience sideway because of the unsymmetrical loading. All three members will
experience chord rotation for the frame shown in Fig. 10.13e.

When starting an analysis, one first determines whether sideway will occur in order to identify the
nature of the displacement variables. The remaining steps are relatively straightforward. One
establishes the free body diagram for each node and enforces the equilibrium equations. The essential
difference is that now one needs to consider force equilibrium as well as moment equilibrium. We
illustrate the analysis process with the following example.

Consider the frame shown in Fig. 10.14. Under the action of the applied loading, nodes B and C
will displace horizontally an amount A. Both members AB and CD will have chord rotation. There are
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sideway w

Fig. 10.13 Examples of a l
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three displacement unknowns fg, 6, and A. In general, we neglect the axial deformation. The free
body diagrams for the members and nodes are shown in Fig. 10.15. We take the positive sense of
the members to be from A — B, B — C, and C — D. Note that this fixes the sense of the shear

forces. The end moments are always positive when counterclockwise.
Moment equilibrium for nodes B and C requires

"

ZMB =0= Mga+Mpc=0

(10.23a)
> Mc =0= Mcg +Mcp =0
We also need to satisfy horizontal force equilibrium for the entire frame.
S Fi=0—+=—Vag+Vpc+ Y F.=0 (10.23b)

1
where ZFX =P+ P+ Ewlhl'

The latter equation is associated with sideway.
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Fig. 10.14 (a) Loading.
(b) Deflected shape

w2
| R
— PI ; B C bt 1
I3
I L|— P; h,
1
becca 4
D
ll‘] A L
| |
[ [
y
B - i
X C
[ y
y X
D
A

Noting that 05, = 0p = 0, vo = vp = 0, vg = -4, and vc = +A4, the slope-deflection equations

(10.12a, 10.12b) simplify to

2EI —A
Mag = ‘{93 - 3<h>} +ME,

hy 1
2EI —A
Mpa =""3205 —3(-= ) t + ML,
hy hy
2EI
Mgc === {205 +0c} + M}

L

2FEI
Mcp = TS {20c + 0} + M5,

2EI —A
Mcp = =23200 —3(—=) } + M&,
hy hy

2EI —A
Mpc =="290c —3(—— ) ¢ + M}
hy h

(10.24)



688

10 The Displacement Method

Fig. 10.15 Free body
diagrams for members
and nodes of the frame.

(a) Members. (b) Nodes.

(¢) Reactions
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Substituting for the end moments and shear forces in (10.23a, 10.23b) leads to

4El, n 4EIl;
hy L

Op +——0c +

)

L

6EI, Gl
h

— Loy —
i

2EIl 4El,
O 7

> + (Mg +Mg,) =0

> + (M + M) =0 (10.25)

12E1
——2>A ~Vig+Vhe+ > Fo=0

Once the loading and properties are specified, one can solve (10.25) for g, 6¢, and A. The end

actions are then evaluated with (10.24).

10.5.1 Portal Frames: Symmetrical Loading

Consider the symmetrical frame defined in Fig. 10.16. When the loading is also symmetrical, nodes B
and C do not displace laterally, and therefore there is no chord rotation for members AB and
CD. Also, the rotations at B and C are equal in magnitude but opposite in sense (g = —6c). With
these simplifications, the expressions for the end moments reduce to

Fig. 10.16 Portal frame—
symmetrical loading. (a)
Loading. (b) Deflected
shape. (¢) Moment diagram
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2EI
Mpc = T2(HB) +M§C
2EI
Mpa = T‘(zeg) (10.26)
Mas = - M
AB — ) BA

Moment equilibrium for node B requires
Mpc +Mga =0 (10.27)

Substituting for the moments, the equilibrium equation expands to

L I
2E93{2 - +Z} = Mg

We solve for 0g and then evaluate the end moments.

—1
" 1+ (I/L)]2(1, /h) Mac

Mga = 2M g = —Mpc (10.28)

The bending moment diagram is plotted in Fig. 10.16c.

10.5.2 Portal Frames: Anti-symmetrical Loading

Lateral loading produces anti-symmetrical behavior, as indicated in Fig. 10.17, and chord rotation for
members AB and CD. In this case, the nodal rotations at B and C are equal in both magnitude and
sense (fg = 6¢). The chord rotation is related to the lateral displacement of B by

%
PAB = —WB (10.29)

Note that the chord rotation sign convention for the slope-deflection equations (10.12a, 10.12b) is
positive when counterclockwise. Therefore for this choice of the sense of vg, the chord rotation for
AB is negative. The corresponding expressions for the end moments are

1
Mpc = 2E 22(393)
]1 3VB
Mga = 2E Z(MB + 7) (10.30)
o ]1 3VB
MAB_ZEh(HB+ P )
Equilibrium requires
Mpc +Mpa =0
P (10.31)
—Vap+5=0

2
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Fig. 10.17 Portal frame— a p p
anti-symmetric loading. 3 B c >
(a) Loading. (b) Deflected 1 —> oy
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Substituting for the moments and shear in (10.31) leads to two equations with two unknowns, 0y
and vg. The solution has the following form

g _ P 1
BT 4EL 1+ 6(I/L)/ (11 /h)
) 10.33
e (1m0 e
"B 04EL | 1+ (L /h) /62 )L)
We evaluate Mga and M s using (10.30).
Ph 1
Mgp = T i
1+-=(7 I,/L
+eli/h)/(12/L) (10.34)

_ Ph1+1/3(1,/h)/(I/L)
T 4 1+1/6(11/h)/(I/L)

AB

A typical moment diagram is shown in Fig. 10.17c. Note the sign convention for bending moment.
When the girder is very stiff with respect to the column, I, /L >> I /h the solution approaches

HB —0
n’P
-
24EIL

Ph (10.35)
Mpgp — T

Ph
Map — e

VB

Example 10.7: Frame with No Sideway

Given: The frame defined in Fig. E10.7a.

30 kNm 90kN

Y J, ¢
Al 3l B 3l A

I 36m

—

Fig. E10.7a
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Determine: The end actions.

Solution: The fixed end moments are (see Table 9.1)

40(1.5)(4.5)

Mg = 67 e
2
mE = 20ESAS) s iNm
CB (6)°
40 kN
- l 11.25
4 £ )
A B c -
y t

The modified slope-deflection equations (10.22a) which account for moment releases at A, C,
and D are

Map = Mpg = Mcg =0

E(3]
Mga = MpA, 50 = 3 % (0s) = ElO

E(I
Mgp = MBDmodified = 3% (GB) = (083)E193
E(3I 1
Mgc = Mpc, s = 3—( c ) (0g) + {Mgc — EMEB} = (1.5)EIf + 39.375

Moment equilibrium for node B requires (Fig. E10.7b)

30 kNm

Roas
N/

Mgp

Fig. E10.7b
Mpa + Mpc + Mpp +30=0
(8
El0g + (0.83)EI0y + (1.5)EIfy +39.375 +30 = 0

(8
Elfg = —20.83
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The final bending moments at B are
Mga = —20.8 = Mg = 20.8 kN m clockwise
Mgp = —17.3 = Mgp = 17.3kNmclockwise

Myc = 8.1 = Mpc = 8.1kNmcounterclockwise

Noting the free body diagrams below, we find the remaining end actions (Figs. E10.7c and
E10.7d).

40 kN
208kNm 81kNm l
AL ») G 2
_|v_ T 173kNm T
231 kN
s , ry 31.36 kN ?
231kN BETRN | $.64 kKN
B
D
? 33,67 kN
Fig. E10.7c Free body diagrams
40 kN
30kNm
~ | c
\ .
s B e

i 231 kN _‘I. 8.64 kN

D5
} 33.67 kN

Fig. E10.7d Reactions
Example 10.8: Frame with Sideway

Given: The frame defined in Fig. E10.8a.
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6 kip l l

- B 21 C

10 fi I I
4 A D

51 51t

1 +—— 1
20 fi

Fig. E10.8a
Determine: The end actions.

Solution: The fixed end moments are (see Table 9.1)

9(5)(15)*>  9(15)(5)*
Mg = (;(()2) + (ZO>§> = 33.75kipft

MEy = —ME. = —33.75kipft

33.75kip ft g e
. 33.75 kip ft
a3
chR
t

Ctrt—bet

The chord rotations follow from the sketch below (Fig. E10.8b):

y

L.

A
A g
B
X C y
10 ft y<—] ,[
A D
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Fig. E10.8b

A

ﬂ:PAB:PCD:*E
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Substituting for the chord rotations in the slope-deflection equations [(10.12a, 10.12b) and (10.22a,
10.22b)] results in (Figs. E10.8c and E10.8d)

Mag=Mpc =0

3E(I
MBA = MBAmodiﬁed = %{93 +p} = O3EIGB + 03E[p
2E(21)
Mpc = 20 {20g + Oc} + 33.75 = 0.4El0g + 0.2EI0c + 33.75
2E(21
Mcp = %{93 +20c} —33.75 = 0.2E16g + 0.4E10c — 33.75
3E(I
MCD = MCDmodiﬁed = %{GC +p} = O3EI€C + 03E]p
Mga
',—) Mep
Ven

By ¢— Via —>

b,
o y
10 ft X B 10 ft
al x
y

«Vap Voc —

Fig. E10.8c
Also
Vg = A%
Vpe = —MI—BD

The end actions are listed in Fig. E10.8c.
Enforcing equilibrium at nodes B and C yields two equations,

Mcp +Mcp = 0 — 0.2E18g + 0.7EI0c + 0.3El p — 33.75 =0

Summing horizontal forces for the entire frame leads to an additional equation,

ZFXZO — 4+ —Vag+Vpc+6=0
!
— 0.3EI0g — 0.3EI0c — 0.6El p +60 =0

Solving these three equations, one obtains

Elfg = —117.5kip ft?
EIOc = 17.5kip ft?
EI p = 150kip ft?
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and then
Mga = +9.75 Mga = 9.75kipft counterclockwise
Mgc = —9.75 Mpc = 9.75kipft clockwise
Mcg = —50.25 Mcp = 50.25kipft  clockwise
=
Mcp = +50.25 Mcp = 50.25kipft  counterclockwise
VAB = 975 VAB = 975klp «—
Vbc = —5.25 Vbe = 5.25kip —
Noting the free body diagrams below, we find the remaining end actions (Figs. E10.8d and
E10.8e).
9.75 kipft 9.75 kip ft 9kip 9 kip  50.25 kip ft
¥ Y ol CY)e— 50.25 kip ft
6kip|  5025kip ~ 1 5025kip ¥\
0975 kip — 6 kip 12 kip 12 kip
c | — 3.025kip
<— 0975 kip
D 4 &+— 5.025 kip
T 6 kip
12 kip ?
Fig. E10.8d Free body diagrams
9kip  9kip
6 kip l

Fig. E10.8e Reactions

10.6 The Moment Distribution Solution Procedure for Multi-span Beams

10.6.1 Introduction

C
D .
&+— 5.025 kip

12 kipff

In the previous sections, we developed an analysis procedure for multi-span beams that is based on
using the slope-deflection equations to establish a set of simultaneous equations relating the nodal
rotations. These equations are equivalent to the nodal moment equilibrium equations. We generated
the solution by solving these equations for the rotations and then, using these values, we determined
the end moments and end shears. The solution procedure is relatively straightforward from a
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Fig. 10.18 Two-span
beam with fixed ends ,/ﬂ— m -

>
ALY
9]

mathematical perspective, but it is difficult to gain some physical insight as to how the structure is
responding during the solution process. This is typical of mathematical procedures which involve
mainly number crunching and are ideally suited for computer-based solution schemes.

The Moment Distribution Method is a solution procedure developed by Structural Engineers to
solve the nodal moment equilibrium equations. The method was originally introduced by Cross [1]
and has proven to be an efficient hand-based computational scheme for beam- and frame-type
structures. Its primary appeal is its computational simplicity.

The solution is generated in an iterative manner. Each iteration cycle involves only two simple
computations. Another attractive feature is the fact that one does not have to formulate the nodal
equilibrium equations expressed in terms of the nodal displacements. The method works directly with
the end moments. This feature allows one to assess convergence by comparing successive values of
the moments as the iteration progresses. In what follows, we illustrate the method with a series of
beam-type examples. Later, we extend the method to frame-type structures.

Consider the two-span beam shown in Fig. 10.18. Supports A and C are fixed, and we assume that
there is no settlement at B.

We assume initially that there is no rotation at B. Noting Fig. 10.19, the net unbalanced
clockwise nodal moment at B is equal to the sum of the fixed end moments for the members incident
on node B.

Fig. 10.19 Nodal
moments
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This unbalanced moment will cause node B to rotate until equilibrium is restored. Using the slope-
deflection equations, we note that the increment in the end moment for a member which is incident on
B due to a counterclockwise rotation at B is proportional to the relative stiffness //L for the member.

The moments acting on the node are of opposite sense, i.e., clockwise, from Newton’s law. The