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Preface

Origin

The University of Oslo in Norway is one of the first universities to introduce
numerical methods as an integral part of almost all mathematically oriented courses
for science students (first attempts started in 1997). This created the need for
textbooks in physics covering all the topics included in the syllabus. There were
many textbooks on oscillations and waves on the market, but none adhered well
with the learning objectives we adopted.

The Norwegian version of this book was originally written in 2008 for use in the
course “FYS2130 Svingninger og bolger” (Oscillations and Waves) and has
undergone many revisions and expansions since then. The course is given in the
fourth semester to students enrolled in the Department of Physics at the University
of Oslo. These students have taken courses in Python programming, classical
mechanics and electromagnetism, but have had limited education in oscillations and
wave phenomena.

Scope

In the present book, I have mostly adhered to traditional descriptions of the phe-
nomena; however, I have also tried to point towards potential limitations of such
descriptions. When appropriate, analogies between different phenomena are drawn.

The formalism and phenomena are treated quite differently from section to
section. Some sections provide only qualitative descriptions and thus only a
superficial or introductory understanding of the topics while other sections are more
mathematical and demanding. Occasionally, the mathematical derivations are not
essential to understand the material, but are included to show the connection
between basic physical laws and the phenomena discussed in the text.

vii



viii Preface

Principles from numerical methods are employed as they permit us to handle
more realistic problems than pure analytical mathematics alone, and they facilitate
to obtain a deeper understanding of some phenomena.

Program codes are given, ready to use, and is a tool for further exploration of the
phenomena that are covered. Our experience from teaching this topic to students
over years is that, numerical methods based on “hands-on computer code devel-
opment” expand the experimental attitude and facilitate the learning process.

We try in this book to emphasize how so-called algorithmic thinking can
improve understanding. As a personal example, the algorithm for calculating how a
wave evolves over time has given me a much deeper understanding of the wave
phenomena than by working with analytical mathematics over years. Another
example is the realization that all variants of classical interference and diffraction
can be calculated using a single computer program, demonstrating not only that
numerical methods are powerful, but also that the underlying physical mechanism is
identical in all these cases.

We have made an effort to ensure a logical and reader-friendly structure of the
book. Especially important parts of the core material in the text are marked by
coloured background, and various examples show how the core material can be
used in different contexts. Supplementary information and comments are given in
small print. Learning objectives point to the most important sections of each
chapter. Most of the chapters include suggestions to further reading.

There are three types of exercises in the book. The first type of exercise consists
of a list of concepts in each chapter that can be used by students in various ways for
active learning. Thereafter follow comprehension/discussion questions and more
regular problems often including calculations. Best learning outcome is achieved by
trying all the three types of tasks, including oral discussions when working with
understanding concepts and the comprehension/discussion questions. The problems
used in the exercises are taken from daily life experiences, in order to demonstrate
how physics is relevant in many aspects of our everyday life.

For the more regular problems, the aim is to encourage the reader to learn how to
devise a strategy for solving the problem at hand and to select the appropriate laws.
A “correct answer” without an adequate justification and reasoning is worthless. In
many tasks, not all the relevant quantities are supplied, and in these cases, the
reader must search for the necessary information in other books or the Internet. This
is a natural part of working with physics today. A list of answers for the problems is
not worked out yet. Some problems require particular data files to be analyzed that
will be available from a web page advertised by the publisher.

Content

In our daily life, oscillations and waves play an important role. The book covers
sound phenomena, our sense of hearing, and the two sets of measurements of sound
and units that are in use: one for physical purposes solely and the other related to



Preface ix

the sense of hearing. Similarly, the book treats light phenomena and our sense of
vision, as well as the two sets of measurements and units that are in use for these
purposes. In addition, we also discuss colour mixing and important differences
between our senses of hearing and vision.

By introducing Fourier transform, Fourier series and fast Fourier transform, we
introduce important tools for analysis of oscillatory/wave phenomena. Our aim is to
give the reader all necessary details so that she/he can utilize this numeric method to
its full potential. We also point out a common misconception we often find in
connection with Fourier analysis.

We introduce continuous wavelet transform with Morlet wavelets as a kind of
time-resolved Fourier transform and explain why we have chosen this method
instead of a short-term Fourier transform. Much emphasis is put on optimizing the
analysis and how this is closely related to the time-bandwidth product; a classical
analogue to Heisenberg’s uncertainty principle. A computer program is provided
for this topic as well as for many other parts of the book.

One chapter is devoted to numerical method, mainly in how to solve ordinary
and partial differential equations of first or second order. Other topics covered in the
book are geometric optics, interference, diffraction, dispersion and coherence. We
also briefly cover skin effect, waveguides and lasers.

Intended Audience

The reader of the book should have some basic programming experience, prefer-
ably in Matlab or Python, and know basic mechanics and electromagnetism. The
principal ingredients of the book encompassing physical phenomena and formal-
ism, analytical mathematics, numerical methods, focus on everyday phenomena and
state-of-the-art examples are likely to be of interest to a broader group of readers.
For instance, we have experienced that established physicists who want to look up
details within the themes like colour vision, geometrical optics and polarization also
appreciate the book.

Computer Programs

In this book all computer programs are given in Matlab code. However, all the these
programs are available as separate files both in Matlab and in Python code at the
“additional resources” Web page at https://urldefense.proofpoint.com/v2/url?u=http-
3A__www.physics.uio.no_pow_&d=DwIFAg&c=vh6FgFnduejNhPPDOfl_yRaS{Zy
8CWbWnlf4XJhSqx8&r=9V0dbmmXGCupx 1bqsdDysss YngDmbKz79g1diplcPn4
&m=FJQIEp2YVoXlg_zL.nM3m3k9m60a6GBqfvvj68AbJtMO&s=cXDHnCeHU
xv0te6xsUN3OLI9B2L4V3MHfUpay YSP6_gU&e=.
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X Preface

Some introduction is given to programming style, reproducibility and doc-
umentation, but not at a level as is expected for a course fully devoted to pro-
gramming. We do not provide an introduction to “dimensionless variables”.

Acknowledgements

I want to take this opportunity to thank everyone who contributed to this book,
particularly Borys Jagielski, Knut Kvaal, Jan Henrik Wold, Karl A. Maaseide, Irina
Pettersson, Maria Vistnes, Henrik Sveinsson, Cecilie Glittum and colleagues and
students at the Department of Physics; I owe special gratitude to Anders Johnsson
for offering valuable hints and comments. I am also indebted to K. Razi Naqvi, who
translated the book from Norwegian to English and contributed to many substantial
improvements of the material presented in the original version. Many parts of the
book are modified after the translation, so do not blame Prof. Razi Naqvi if you find
bad English sentences here and there.

Morten Hjorth-Jensen is thanked for his perennial support and interest in issues
related to teaching. Thanks are also offered to Hans Petter Langtangen for inspi-
ration and hints regarding programming. I must also thank my former teachers,
among them Svenn Lilledal Andersen and Kristoffer Gjoetterud, for creating an
environment in which my physics understanding grew and developed, and to
Gunnar Handal, who challenged me in a constructive manner as regards university
pedagogy.

A generous grant from The Norwegian Non-fiction Writers and Translators
Association allowed me to be free from teaching obligations for two fall semesters,
during which the first version of the book and some of the illustrations were
prepared. A warm “thank you” to Anders Malthe-Sgrenssen for providing inspi-
ration for teaching in general and for securing financial support for the translation
of the book from Norwegian to English.

Most of all, I thank my dear Kirsten and our children for their loving forbearance
during the periods when I have been busy working with this book. I now look
forward to take more part in family life.

Kurland, Norway Arnt Inge Vistnes
June 2018



Contents

1 Imntroduction ......... ... ... ... .. ... ... 1
1.1 The Multifaceted Physics. . .. ....... ... ............. 1

1.2 Numerical Methods . . ... ... ... .. ... ............ 3
1.2.1 Supporting Material ........................ 4

1.2.2 Supporting Literature . ...................... 5

2 Free and Damped Oscillations . ......................... .. 7
2.1 Introductory Remarks . ............. ... ... ......... 7

2.2 Kinematics . . .......... ... .. i 7

23 Going from One Expression to Another . . .. ............. 10
2.3.1 First Conversion . . . ........... ... .......... 11

2.3.2 Second Conversion . . . ...................... 11

2.33 Third Conversion . .. ....................... 12

2.3.4 Fourth Conversion . ........................ 13

2.4 Dynamical Description of a Mechanical System . .......... 13

2.5 Damped Oscillations . . . . ............ ... ... 16

2.6 Superposition and Nonlinear Equations . ................ 20

2.7 Electrical Oscillations . .. ...................iu.u... 22

2.8 Energy Considerations. . . ............... .o, 25

2.9 Learning Objectives . .............. i, 27
210 EXEICISES . . .ot ittt 28

3  Forced Oscillations and Resonance . . . . ..................... 31
3.1 Introductory Remarks . .. ........ ... ... ... ... .. ... 31

32 Forced Vibrations . . ........ ... .. ... ... ... . ....... 31

33 Resonance . ....... ... ... . ... .. ... ... 35
331 Phasor Description .. ....................... 37

34 The Quality Factor Q ... ...... ... ... ... ... ......... 40

3.5 Oscillations Driven by a Limited-Duration Force . ......... 45

xi



xii

Contents

3.6 Frequency Response of Systems Driven by Temporary
Forces .. ... . 48
3.7 Example: Hearing . . .. ... ... ... ... ... ... 50
3.8 Learning Objectives . ............ ... . 53
3.9 Exercises ... ... ... 54
Reference . .. ... ... .. ... . ... 57
Numerical Methods . . . .. ... ... ... ... .. ... ... .. ... ... 59
4.1 Introductory Remarks .. ............ ... ... ... ..... 59
4.2 Introduction . ...... ... ... . . .. ... 60
43 Basic Idea Behind Numerical Methods . . . ............... 61
44 Euler’s Method and Its Variants. . .. ................... 62
4.5 Runge—Kutta Method ... ...... ... ... ... ... ... ...... 65
4.5.1 Description of the Method. . .. ................ 65
4.6 Partial Differential Equations . . .. ..................... 68
4.7 Example of Numerical Solution: Simple Pendulum . . ... .... 71
4.8 Test of Implementation . . .. ......................... 72
4.9 Reproducibility Requirements . ....................... 74
4.10  Some Hints on the Use of Numerical Methods . ... ........ 75
4.11  Summary and Program Codes ... ..................... 78
4.11.1  Suggestions for Further Reading ... ............ 86
4.12  Learning Objectives . .............. ... ... ... ... .... 86
413  EXEICISES . ..ottt 87
4.13.1  An Exciting Motion (Chaotic) . ... ............. 90
Fourier Amalysis . .. ........ ... ... . . .. ... 93
5.1 Introductory Examples. . ... ... ... ... 93
5.1.1 A Historical Remark . . .. .................... 93
5.1.2 A Harmonic Function . . .. ................... 93
5.1.3 Two Harmonic Functions . ................... 95
5.14 Periodic, Nonharmonic Functions .............. 96
5.1.5 Nonharmonic, Nonperiodic Functions ... ... ... .. 97
5.2 Real Values, Negative Frequencies. . ... ................ 98
53 Fourier Transformation in Mathematics . ................ 100
5.3.1 Fourier Series . . .. ........ ... .. ... ... ... ... 102
5.4 Frequency Analysis. . ............. . ... ... ... .. .. .. 104
5.5 Discrete Fourier Transformation. . .. ................... 106
5.5.1 Fast Fourier Transform (FFT) ................. 108
552 Aliasing/Folding . . .. ....................... 108
5.6 Important Concrete Details ... ....................... 109
5.6.1 Each Single Point . . . ....................... 109
5.6.2 Sampling Theorem .. ........ ... ... ... .. ... 111
5.7 Fourier Transformation of Time-Limited Signals........... 113
5.8 Food for Thought . . . ... ... ... ... ... . ... ... ..... 116



Contents

5.9 Programming Hints . . .. ..... ... ... ... ... ... .. ...,
5.9.1 Indices; Differences Between Matlab
and Python............ ... ... ... .. ... .. ...
5.9.2 Fourier Transformation; Example of a Computer
Program......... ... ... . ... ...
5.10  Appendix: A Useful Point of View ....................
5.10.1  Program for Visualizing the Average of Sin—Cos
Products. . ...... .. ... ... . . ... ..
5.10.2  Program Snippets for Use in the Problems . . . ... ..
5.11 Learning Objectives . .............. ... ... ... ... ....
512 EXEICISES . . oottt et
References . ... ... ... .. .. ...
6  Waves .. ... ...
6.1 Introduction . ...... ... ... .. .. ...
6.2 Plane Waves . . . . ... ... .
6.2.1 Speed of Waves . . ............... ... .. ....
6.2.2 Solution of the Wave Equation? ...............
6.2.3 Which Way? . ......... . ... ... . ...
6.2.4 Other Waveforms . . ........................
6.2.5 Sumof Waves . .......... ... ... ... . ..
6.2.6 Complex Form of a Wave. .. ....... ... ... ...
6.3 Transverse and Longitudinal . ... .....................
6.4 Derivation of Wave Equation. . . ......................
6.4.1 Wavesona String .........................
6.4.2 Waves in Air/Liquids .. ......... ... ... . ...
6.4.3 Concrete Examples . . .. ....... ... ... . L.
6.4.4 Pressure Waves . .............. .. .. .. .. ....
6.5 Learning Objectives ... ... ...,
6.6 EXercises .. ...... ..
T Sound .. ... ...
7.1 Reflection of Waves .. ....... ... .. ... ... ... .........
7.1.1 Acoustic Impedance . ........... ... ... .. .. ..
7.1.2 Ultrasonic Images . . . .......................
7.2 Standing Waves, Musical Instruments, Tones . ............
7.2.1 Standing Waves . ............ ... ... ... ...
722 Quantized Waves . . .......... ... ... ......
7.2.3 Musical Instruments and Frequency Spectra . . . . . ..
7.2.4 Wind Instruments . .. ............ ... . .......
7.2.5 Breach with Tradition . .. .......... ... ... ...
7.2.6 How to Vary the Pitch . . ........ ... ... .. ..
7.2.7 Musical Intervals ... ....... ... .. .. L.
7.3 Sound Intensity . . .. ............. ...

141
143
144



Xiv

Contents
7.3.1 Multiple Simultaneous Frequencies . ............ 189
732 Audio Measurement: The Decibel Scale dB(SPL). .. 190

7.3.3 Sound Intensity Perceived by the Human Ear,
dB(A) ... 191
7.3.4 Audiogram . . ... ... 194
7.4 Other Sound Phenomena You Should Know . ............ 196
7.4.1 Beats .. ... . 196
7.4.2 Sound Intensity Versus Distance and Time. . ... ... 198
7.4.3 Doppler Effect . .......... . ... ... ... ... .. 199
7.4.4 Doppler Effect for Electromagnetic Waves . . . ... .. 202
7.4.5 Shock Waves . . ...... ... .. ... ... .. ... .. 202
7.4.6 An Example: Helicopters . ................... 204

7.4.7 Sources of Nice Details About Music

and Musical Instruments . . ........... ... ... .. 205
7.5 Learning Objectives .. ........ ... .. ... ... 206
7.6 EXercises . ... ... ... 206
References . .. ... ... . .. ... 212
Dispersion and Waves on Water. . . . ....................... 213
8.1 Introduction .. ...... ... ... 213
8.2 Numerical Study of the Time Evolution of a Wave. ... ... .. 214
8.2.1 An Example Wave . . ... .. . o oo oL 219
8.3 Dispersion: Phase Velocity and Group Velocity . .......... 222

8.3.1 Why Is the Velocity of Light in Glass Smaller
Than That in Vacuum? . . ........ ... ... ... ... 225
8.3.2 Numerical Modelling of Dispersion . . .. ......... 227
8.4 Wavesin Water . ........ ... ... ... . . . ... .. 232
8.4.1 Circle Description. . .. ...................... 235
8.4.2 Phase Velocity of Water Waves. . .. ............ 237
8.4.3 Group Velocity of Water Waves .. ............. 241
8.4.4 Wake Pattern for Ships, an Example . ... ... ... .. 243
8.4.5 Capillary Waves . . .. ... .. .. .. o L. 246
8.5 Program Details and Listing . ... ..................... 247
8.6 References ... ... ... . . . . . ... 253
8.7 Learning Objectives .. ... ......... ... 254
8.8 EXercises ... ... 254
References ... ... .. . . . 257
Electromagnetic Waves . . . .. ...... ... ... ... ... ... 259
9.1 Introduction .. ...... .. .. ... 259
9.2 Maxwell’s Equations in Integral Form ... ............... 260
9.3 Differential Form. ... ....... ... ... ... ... ... ... .. 264
94 Derivation of the Wave Equation . . . ................... 268
9.5 A Solution of the Wave Equation ..................... 271



Contents

10

11

9.6 Interesting Details . . .. ...... ... ... . .. . ... ..
9.7 The Electromagnetic Spectrum. . . .. ...................
9.8 Energy Transport ... ......... ... ...
9.8.1 Poynting Vector . . .. ............. .. ........
9.9 Radiation Pressure. . .. ...... ... .. .. ... ...
9.10  MISCONCEPLIONS . .« v v v vt et e e e e
9.10.1 Near Field and Far Field . . .. .................
9.10.2  The Concept of the Photon . . .................
9.103 AChallenge......... ... ...
9.11 Helpful Material . ............. ... .. ... ... ......
9.11.1  Useful Mathematical Relations ................

9.11.2  Useful Relations and Quantities in
Electromagnetism . . . .......................
9.12  Learning Objectives . ... ........... it ..
913 EXEICISES . . oot oottt e
Reference. . . ... ... . .
Reflection, Transmission and Polarization. . . .. ... ... ... ... .
10.1 Introduction ................... ... . .. . ...
10.2  Electromagnetic Wave Normally Incident on An Interface. . . .
10.3  Obliquely Incident Waves . . ........ ... ... ... ... ...
10.3.1  Snel’s Law of Refraction. . ...................
10.3.2 Total Reflection ...........................
10.3.3  More Thorough Analysis of Reflection ..........
10.3.4  Brewster Angle Phenomenon in Practice .........
10.3.5 Fresnel’s Equations. . .......................
104 Polarization. . . . ... ... ..
10.4.1 Birefringence . ................. ... ... ....
10.4.2  The Interaction of Light with a Calcite Crystal . . . . .
10.4.3  Polarization Filters .. .......................
10.4.4  Polariometry. ... .......... ... ... ... ... . ...
10.4.5  Polarization in Astronomy . ...................
10.5 Evanescent Waves. . .. ...
10.6  StereosCOPY . . . v oo vttt et
10.7  Learning Objectives . .................. .. .. .. ......
10.8  EXErCiSes .. .......... i
References ... ... .. . . .
Measurements of Light, Dispersion, Colours. . . ...............
11.1  Photometry . .. ....... ... ..
11.1.1  Lumen Versus Watt . .......................
11.2  DisSpersion ... ....... ..t

11.3  “Colour”. What Is It? .. ...... ... .. ... .. ... ... ......

XV

300



XVi

12

13

Contents
11.3.1  Colourimetry . ............c.oiiuuieennnn... 349

11.3.2  Colours on a Mobile Phone or Computer
Display ......... ... .. . 354
11.3.3  Additive Versus Subtractive Colour Mixing . . . . . .. 355
11.4  Colour Temperature, Adaptation . ..................... 356
11.4.1  Other Comments. . . ........................ 358
11.5  Prismatic Spectra . .................... .. .. .. ...... 358
11.5.1 A Digression: Goethe’s Colour Theory .......... 362
11.6  References ........... ... . .. ... i, 363
11.7  Learning Objectives . ........... ... ... ... .. ...... 363
11.8  EXErCiSes . ... ..ottt 364
References . ... ... ... .. .. ... 369
Geometric Optics .. ........ . ... . ... ... 371
12.1  LightRays . ... . . 371
12.2  Light Through a Curved Surface . ............... ... ... 373
12.3  Lens Makers’ Formula . ............................ 376
124 Light Ray Optics. . ... ... ... ... ... ... .. ... ... 380
12.4.1  Sign Rules for the Lens Formula. ... ........... 383
12.5  Description of Wavefront .. ......................... 384
12.6  Optical Instruments . . . . .......... ... ... . ... 386
126.1 Loupe ........ ... ... . .. i i .. 387
12.6.2 The Telescope . ............... .. ... ....... 389
12.6.3  Reflecting Telescope . . . ..................... 392
12.6.4  The MICrosCOpe . . . ... ovi v et 394
127  Optical Quality . . ....... ... ... ... . 396
12.7.1  Image Quality. ... ............. ... ... .. ... 396
1272 Angleof View . .. ... ... .. ... ... 399
12.7.3  Image Brightness, Aperture, f-Stop . ............ 400
128 Opticsofthe Eye .. ......... ... ... ... ... ... ... 404
129  Summary .......... . 408
12.10 Learning Objectives . ............... ... ... ... .. .... 409
12,11 EXercises . ... .. ... ..o 410
References . . ... ... .. . . ... 417
Interference—Diffraction. . . . . ... ... ... ... 419
13.1  The Nature of Waves—At Its Purest . .................. 419
13.2  Huygens’s Principle .......... ... ... ... ... ... ... 421
13.3  Interference: Double-Slit Pattern. . . ... ................. 422

13.3.1 Interference Filters, Interference from

aThinFilm ......... ... ... ... ... ... .. 427
13.4  Many Parallel Slits (Grating) . ........................ 428
13.4.1  Examples of Interference from a Grating . ... ... .. 433
13.5 Diffraction from One Slit. . .. .......... ... ... ... ..... 435



Contents

14

13.6
13.7
13.8

13.9

13.10

13.11
13.12
13.13
13.14

Combined Effect . . . ...... .. ... .. .. .. ... .. ... .. .. ..
Physical Mechanisms Behind Diffraction . ...............
Diffraction, Other Considerations . . . ... ................

13.8.1

The Arrow of Time ... .....................

Numerical Calculation of Diffraction ...................

13.9.1
13.9.2

The Basic Model . .........................
Different Solutions . ... .....................

Diffraction from a Circular Hole ... ...................

13.10.1
13.10.2
13.10.3
13.10.4
Babinet’s

The Image of Stars in a Telescope. . ... .........
Divergence of a Light Beam . . . ...............
Other Examples .. ........... ... ... ... ...
Diffraction in Two and Three Dimensions . . . .. ...
Principle .. ... ... ... ... .. . ... .

Matlab Code for Diverse Cases of Diffraction. .. ..........

Learning
Exercises

Objectives .. ...t

Wavelet Transform . . .. ... ... ... ... ... ... ... ... ...
Time-Resolved Frequency Analysis . ...................
Historical Glimpse . . .............. ... ...
Brief Remark on Mathematical Underpinnings . . ..........

14.1
14.2
14.3

14.4
14.5

14.6

14.7

14.8
14.9

14.3.1
14.3.2
14.3.3
14.3.4
Example

Refresher on Fourier Transformation . ...........
Formalism of Wavelet Transformation . . . ... ... ..
“Discrete Continuous” Wavelet Transformation . . . .
A Far More Efficient Algorithm. ...............

Important Details .. ........ ... ... . ... .. .........

14.5.1 Phase Information and Scaling of Amplitude . . . . ..
14.5.2  Frequency Resolution Versus Time Resolution. . . . .
14.5.3  Border Distortion . . ................ .. ......
Optimization. . .. ... ... .
14.6.1  Optimization of Frequency Resolution
(Programming Techniques) ...................
14.6.2  Optimization of Time Resolution (Programming

Techniques) .. ........ ... ... ... ... ... ...

Examples of Wavelet Transformation. . .. ...............

14.7.1
14.7.2
14.7.3

LT3

Cuckoo’s “co0-co0” ... ... oo
Chaffinch’s Song .. ...... ... ... ... . ..
Trumpet Sound, Harmonic in Logarithmic Scale. . . .

Matlab Code for Wavelet Transformation. .. .............
Wavelet Resources on the Internet . . .. .................

Xvii

439
439
442
444
444
445
447
449
452
456
457
459
460
461
469
469

475
475
478
479
479
481
483
484
486
488
488
489
492
494

496



XViii Contents

14.10 Learning Objectives .. .............................
14.11 EXercises .. ......... ...
Reference . .. ... ... . . . .. ..
15 Coherence, Dipole Radiation and Laser . ....................
15.1  Coherence, a Qualitative Approach .......... ... ... ...
15.1.1  When Is Coherence Important? ... .............
15.1.2  Mathematical/Statistical Treatment of Coherence . . .
15.1.3  Real Physical Signals .. .....................
15.2  Finer Details of Coherence . .........................
15.2.1 Numerical Model Used . . . ...................
15.2.2  Variegated Wavelet Diagram. . ... .............
15.2.3  Sum of Several Random Signals; Spatial
Coherence ........... ... .. ... ... ... .. .. ..
15.3  Demonstration of Coherence . ........................
15.4  Measurement of Coherence Length for Light .. ......... ..
15.5 Radiation from an Electric Charge . . .. .................
15.5.1 Dipole Radiation. . . ........................
156 Lasers .......... ..o
15.6.1 Population Inversion . . . .....................
157 A Matlab Program for Generating Noise in a Gaussian
Frequency Band .. ....... ... ... ... . .. . ... . ...
15.8  Original and New Work, Hanbury Brown and Twiss . ... ...
159 Learning Objectives ... .. ...t ..
15.10 EXercises . ............. ..
Reference. . . ... ... . . . .
16 Skin Depth and Waveguides . . . . ..........................
16.1 Do You Remember ..7 .. ........ ... .. ... ... ... ... ..
162 SkinDepth ... ....... ... .. . . . . . ..
16.2.1  Electromagnetic Waves Incident on a Metal
Surface. . . ... .
16.2.2  Skin Depth at Near Field ....................
163 Waveguides . ................. ..
16.3.1  Wave Patterns in a Rectangular Waveguide . . . . ...
16.4  Single-Mode Optical Fibre. . ... ......................
16.5 Learning Objectives . ........... ... ... ... ... ......
16,6 EXEICISes . ... . oi ittt
References . .. ... ... .. . .. ...
Appendix A: Front Figure Details. . ... ...... .. .. ... .. ... ...



Chapter 1 ®)
Introduction Check for

Abstract Initially, the introductory chapter deals with different ways people com-
prehend physics. It might provide a better understanding of the structure of the book
and choices of the topics covered. It continues with a description and discussion on
how the introduction of computers and numerical methods has influenced the way
physicists work and think during the last few decades. It is indicated that the develop-
ment of physics is multifaceted and built on close contact with physical phenomena,
development of concepts, mathematical formalism and computer modelling. The
chapter is very short and may be worth reading!

1.1 The Multifaceted Physics

Phenomena associated with oscillations and waves encompass some of the most
beautiful things we can experience in physics. Imagine a world without light and
sound, and then you will appreciate how fundamental oscillations and waves are for
our lives, for our civilization! Oscillations and waves have therefore been a central
part of any physics curriculum, but there is no uniform way of presenting this material.

“Mathematics is the language of physics” is a claim made by many. To some extent,
I agree with them. Physical laws are formulated as mathematical equations, and we
use these formulas to calculate the expected outcomes of experiments. But, in order to
be able to compare the results of our calculations with actual observations, more than
sheer mathematics is needed. Physics is also an edifice founded on concepts, and the
concepts are entwined as much with our world of experience as with mathematics.
Divorced from everyday language, notions and experiences, the profession would
bear little resemblance to what we today call physics. Then we would just have pure
mathematics! The Greek word ¢pvo g (“physis’) means the nature and physics is a
part of natural science.

People are different. My experience is that some are fascinated primarily by
mathematics and the laws of physics, while others are thrilled by the phenomena in
themselves. Some others are equally intrigued by both these facets. In this book, I
will try to present formalism as well as phenomena, because—as stated above—it is
the combination that creates physics (Fig. 1.1)! A good physicist should be in close

© Springer Nature Switzerland AG 2018 1
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2 1 Introduction

Fig. 1.1 Oscillations and waves are woven into a host of phenomena we experience every single
day. Based on fairly general principles, we can explain why the most common rainbow has invariably
a radius of 40—42° and is red outward, and the sky just outside the rainbow is slightly darker than
that just inside. You already knew this, but did you know that you can extinguish the light from
a rainbow almost completely (but not for the full rainbow simultaneously), as in the right part of
the figure, by using a linear polarization filter? The physics behind this is one of the many themes
covered in this textbook

contact with phenomena as well as formalism. For practical reasons and with an eye
on the size of the book, I have chosen to place a lot of emphasis on mathematics
for some of the phenomena presented here, while other parts are almost without
mathematics.

Mathematics comes in two different ways. The movement of, for example, a
guitar string can be described mathematically as a function of position and time. The
function is a solution of a differential equation. Such a description is fine enough
but has an ad hoc role. If we know the amplitude at a certain time, we can predict
the amplitude at a later instant. Such a description is a necessity for further analysis,
but really has little interest beyond this. In the mechanics, this is called a kinematic
description.

It is often said that in physics we try to understand how nature works. We are
therefore not satisfied by a mere mathematical description of the movement of the
guitar string. We want to go a little deeper than this level of description. How can
we “explain” that a thin steel string under such-and-such tension actually gives the
tone C when it is plucked? The fascinating fact is that with the help of relatively
few and simple physical laws we are able to explain many and seemingly diverse
phenomena. That gives an added satisfaction. We will call this a mechanical or
dynamic description.

Mathematics has traditionally been accorded, in my opinion, overmuch space,
compared with the challenge of understanding mechanisms. This is due in part to
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the fact that we have been using, by and large, analytical mathematical methods for
solving the differential equations that emerge. To be sure, when we use analytical
methods, we must penetrate the underlying mechanisms for the sake of deducing the
equations that portray the phenomena. However, the focus is quickly shifted to the
challenges of solving the differential equation and discussing the analytical solution
we deduce.

This approach has several limitations. First of all, the attention is diverted from the
content of the governing equations, wherein lie the crucial mechanisms responsible
for the formation of a wave. Secondly, there are only a handful of simplified cases
we are able to cope with, and most of the other equations are intractable by analytical
means. We often have to settle for solutions satisfying simplified boundary conditions
and/or solutions that only apply after the transient phase has expired.

This means that a worrying fraction of many generations of physicists are left with
simplified images of oscillations and waves and believe that these images are valid
in general. For example, according to my experience, many physicists seem to think
that electromagnetic waves are generally synonymous with plane electromagnetic
waves. They assume that this simplified solution is a general formula that can be used
everywhere. Focusing on numerical methods of solution makes it easier to understand
why this is incorrect.

1.2 Numerical Methods

Since about the year 2000, a dramatic transformation of physical education in the
world has taken place. Students are now used to using computers and just about
everyone has their own or have easy access to a computer. Computer programs and
programming tools have become much better than they were a few decades ago, and
advanced and systematic numerical methods are now widely available. This means
that bachelor students early in their study can apply methods as advanced as those
previously used only in narrow research areas at master’s and Ph.D. level. That means
they can work on physics in a different and more exciting way than before.

Admittedly, we also need to set up and solve differential equations, but numerical
solution methods greatly simplify the work. The consequence is that we can play
around, describing different mechanisms in different ways and studying how the solu-
tions depend on the models we start with. Furthermore, numerical solution methods
open the door to many more real-life issues than was possible before, because an
“ugly” differential equation is not significantly harder to solve numerically than a
simple one. For example, we could write down a nonlinear description of friction
and get the results almost as easily as without friction, whereas the problem is not
amenable to a purely analytical method of solution.

This means that we can now place less emphasis on different solution strategies
for differential equations and spend the time so saved for dealing with more real-
life issues. I myself belong to a generation which learned to find the square root of
a number by direct calculation. After electronic calculators came on the market, I
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have had no need for this knowledge. We are now in a similar phase in physics and
mathematics. For example, if we use the Maple or Mathematica computer programs,
we get analytical expressions for a wealth of differential equations, and if a differential
equation does not have a straightforward analytical solution, the problem can be
solved numerically. Some skills from previous years therefore have less value today,
while other skills have become more valuable.

This book was written during the upheaval period, during which we switched
from using exclusively analytical methods in bachelor courses to a situation where
computers are included as a natural aid both educationally and professionally. We
will benefit directly from this not only for building up a competence that everyone
will be happy to employ in professional life, but also by using it as an educational tool
for enhancing our understanding of the subject matter. With numerical calculations,
we can focus more easily on the algorithms, basic equations, than with analytical
methods. In addition, we can address a wealth of interesting issues we could not study
just by analytical methods, which contributes to increased understanding. Numerical
methods also allow us to analyse functions/signals in an elegant way, so that we can
now get much more relevant information than we could with the methods available
earlier.

Using numerical methods is also more interesting, because it enables us to provide
“research-based teaching” more easily. Students will be able to make calculations
similar to those actually done in research today. There are plenty of themes to address
because a huge development in different wave-based phenomena is underway. For
example, we can use multiple transducers located in an array for ultrasound diag-
nostics, oil leakage, sonar and radar technology. In all these examples, well-defined
phase differences are used to produce spatial variations in elegant ways. Further-
more, in so-called photonic crystals and other hi-tech structures at the nanoscale,
we can achieve better resolution in measurements than before, even better than the
theoretical limits we believed to be unreachable just a few years ago. Furthermore,
today we utilize nonlinear processes that were not known a few decades ago. A lot of
exciting things are happening in physics now, and many of you will meet the topics
and methods treated in this book, even after graduation.

1.2.1 Supporting Material

A “Supplementary material” web page at http://www.physics.uio.no/pow is available
for the readers of this book. The page will offer the code of the computer programs
(both Matlab and Python versions), data files you need for some problems, a few
videos, and we plan to post reported errors and give information on how to report
errors and suggestions for improvements.
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1.2.2 Supporting Literature

Many books have been written about oscillations and waves, but none of the previous
texts covers the same combination of subjects as the present book. It is often useful
to read how other authors have treated a particular topic, and for this reason, we
recommend that you consult, while reading this book, a few other books and check,
for example, Wikipedia and other relatively serious material on the Web. Here are
some books that may be of interest:

Richard Fitzpatrick: “Oscillations and Waves: An introduction”. CRC Press, 2013.
H. J. Pain: “The Physics of Vibrations and Waves”. 6th Ed. Wiley, 2005.

A. P. French: “Vibrations and Waves”. W. W. Norton & Company, 1971.

Daniel Fleisch: “A Student’s Guide to Maxwell’s Equations”. Cambridge
University Press, 2008.

Sir James Jeans: “Science and Music”. Dover, 1968 (first published 1937).
Eugene Hecht: “Optics”, Sth Ed. Addison Wesley, 2016.

Geoffrey Brooker: “Modern Classical Optics”. Oxford University Press, 2003.
Grant R. Fowles: “Introduction to Modern Optics”. 2nd Ed. Dover Publications,
1975.

Ian Kenyon: “The Light Fantastic”. 2nd Ed. Oxford University Press, 2010.

e Ajoy Ghatak: Optics, 6th Ed., McGraw Hill Education, New Delhi, 2017.
e Karl Dieter Moller: “Optics. Learning by Computing, with Model Examples Using

MathCad, Matlab, Mathematica, and Maple”. 2nd Ed. Springer 2007.

e Peter Coles: “From Cosmos to Chaos”. Oxford University Press, 2010.
e Jens Jgorgen Dammerud: “Elektroakustikk, romakustikk, design og evaluering av

lydsystemer”. http://ac4music.wordpress.com, 2014.
Jonas Persson: “Vagrorelseslira, akustik och optik™. Studentlitteratur, 2007.
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Chapter 2 ®)
Free and Damped Oscillations oo

Abstract This chapter introduces several equivalent mathematical expressions for
the oscillation of a physical system and shows how one expression can be transformed
into another. The expressions involve the following concepts: amplitude, frequency
and phase. The motion of a mass attached to one end of a spring is described by
Newton’s laws. The resulting second-order homogeneous differential equation has
three solutions, depending on the extent of energy loss (damping). The difference
between a general and a particular solution is discussed, as well as superposition of
solutions for linear and nonlinear equations. Oscillation in an electrical RCL circuit
is discussed, and energy conservation in an oscillating system which has no energy
dissipation is examined.

2.1 Introductory Remarks

Oscillations and vibrations are a more central part of physics than many people
realize. The regular movement of a pendulum is the best-known example of this kind
of motion. However, oscillations also permeate all wave phenomena. Our vision,
our hearing, even nerve conduction in the body are closely related to oscillations,
not to mention almost all communication via technological aids. In this chapter, we
will look at the simplest mathematical descriptions of oscillations. Their simplicity
should not tempt you into underestimating them. Small details, even if they appear
to be insignificant, are important for understanding the more complex phenomena
we will encounter later in the book.

2.2 Kinematics

In mechanics, we distinguish between kinematics and dynamics, and the distinction
remains relevant when we consider oscillations. Within kinematics, the focus is
primarily on describing motion. The description is usually the solution of differential

© Springer Nature Switzerland AG 2018 7
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equations or experimental measurements. The underlying physical laws are not taken
into consideration.

In dynamics, on the other hand, we set up the differential equations of motion
based on known physical laws. The equations are solved either by analytical or
numerical methods, and we study how the solutions depend on the physical models
we started with. If we seek physical understanding, dynamic considerations are of
greater interest, but the kinematics can also be useful for acquiring familiarity with
the relevant mathematical description and the quantities that are included.

How do we describe an oscillation? Let us take an example: A mass attached to
one end of a spring oscillates vertically up and down. The top of the spring is affixed
to a stationary point.

The kinematic description may go like this: The mass oscillates uniformly
about an equilibrium point with a definite frequency. The maximum displace-
ment A relative to the equilibrium point is called the amplitude of oscillation.
The time taken by the mass to complete one oscillation is called time period
T . The oscillation frequency f is the inverse of the time period, i.e. f = 1/T,
and is measured in reciprocal seconds or hertz (Hz).

Suppose we use a suitably chosen mass and a limited amplitude of displacement
for the spring. By that we mean that the amplitude is such that the spring is always
stretched, and never so much as to suffer deformation. We will be able to observe that
the position of the mass in the vertical direction z (¢) will almost follow a mathematical
sine/cosine function:

z(t) = Acos(2nt/T) .

However, such a description is not complete. There is no absolute position or absolute
time in physics. Therefore, when we specify a position z (along a line), we must also
specify the point with respect to which the measurement is made. In our case, this
reference point is the position of the mass when it is at rest.

Similarly, we must specify the reference point relative to which the progress
of time is measured. In our case, the origin of time is chosen so that the position
has a maximum value at the reference time ¢ = 0. If there is a mismatch, we must
compensate by introducing an initial phase ¢, and use the expression

z(t) = Acos2nt/T + @) .

Since the quantity 277/ T occurs in many descriptions of oscillatory movements,
it proves advantageous to define an angular frequency of w as follows:

w=2n/T =2nf
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Fig. 2.1 A harmonic
oscillation is characterized
by amplitude, frequency and
phase; see the text

Position (cm)

where f is the frequency of oscillation. This is a fairly common way to describe an
oscillation (Fig. 2.1).

However, a “simple harmonic oscillation” can be described in many ways. The most
common mathematically equivalent ways are:

z(t) = A coswt + B sin wt 2.1)
= C cos(wt + ¢) 2.2)
=R {2} (2.3)
=R {E@HP} (2.4)

9 {} indicates that we take the the real part of the complex expression within
the braces, and & is a complex number.

Euler’s formula for the exponential function (complex form) has been used in the
last two expressions. According to Euler’s formula:

e = cosa +isina .
This formula forms the basis for a graphical representation of a harmonic motion:
First, imagine that we draw a vector of unit length in a plane. The starting point of
the vector is placed at the origin and the vector forms an angle « with the x-axis.

The vector can then be written as follows:

Xcosa + ysina
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Fig. 2.2 A phasor is a vector
of a given length. The phasor
rotates at a given angular
frequency and with a definite
initial phase. The figure

A
Imaginary
axis

© 4,
|

shows the position of the Phasi o+ §

phasor at one point in time. L >

See the text A cos(ot + §) Real
axis

where X and y are unit vectors along the x- and y- direction, respectively. The
similarity to the previous expression is striking, assuming that the real part of the
expression is taken to be the component along the x-direction and the imaginary part
as the y-component.

This graphical vector representation can be extended immediately to represent
a harmonic oscillation. We then use a vector with a length corresponding to the
amplitude of the harmonic motion. The vector rotates with a fixed angular frequency
of w about the origin. The angle between the vector and the x axis is always wt + ¢.
Then the x-component of the vector at any given time indicates the instantaneous
amplitude of the harmonic oscillation. Such a graphical description is illustrated in
Fig.2.2 and is called an phasor description of the motion.

Phasors are very useful when multiple contributions to a motion or signal of the
same frequency are to be summed up. The sum of all contributions can be found
by vector addition. Especially in AC power, when voltages over different circuit
components are summed, phasors are of great help. We will come back to their uses
later. Phasors are useful also in other contexts, but mostly when all contributions in
a sum have the same angular frequency.

It is important to learn all the mathematical expressions (2.1)—(2.4) for simple
oscillatory motion so that they can be instantly recognized when they appear. It is
also important to be able to convert quickly from one form to another. This book is
full of such expressions!

2.3 Going from One Expression to Another

Phasors are of immense aid. As mentioned, a phasor is a vector that rotates in the
complex plane as time passes (see Fig.2.3). The vector rotates at an angular velocity
equal to w. The component of this vector along the real axis represents the physical
value of our interest, and it is this component that can be expressed in more than four
equivalent ways.
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Fig. 2.3 Sketch of a phasor
that rotates around the origin
with an angular velocity . iCsin(ot+¢) —>f------_

Imaginary axisA

>
T Real axis

C cos(ot + ¢)
= A4 cos(wt) + B sin(o?)

2.3.1 First Conversion

Let us first show the transition from Egs. (2.2) to (2.1). We use Rottmann’s compi-
lation of mathematical formula (an important tool when working with this book!),
and use the trigonometric addition formula for cosines to get:

z(t) = C cos(wt + ¢)
= C {cos wt cos ¢ — sin wt sin ¢}
= [C cos ¢] cos wt + [—C sin ¢] sin wt.

This expression is formally identical to Eq. (2.1), from which it follows that:

Ccos(wt + ¢) = Acoswt + Bsinwt ifweset A =Ccos¢ and B =—Csing .
2.5)

2.3.2 Second Conversion

We can go the opposite way by utilizing the details given in Eq. (2.5):
A%+ B? = (Ccos ¢)?> + (Csing)? = C*(sin® ¢ + cos’ ¢p) = C?

C=+VA%2+ B2,

And, by dividing the last two relations in Eq. (2.5), we get:

B —Csing

— = — = —t
A Ccos ¢ an ¢
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This is a fraction whose numerator is the y-component and the denominator the
x-component of the phasor at = 0. Then, it follows that

¢ t 5
= —arctan — .
A

It should be noted here that both the tan and arctan have a periodicity of 7, and
one has to be careful about which of the two possible solutions one chooses. What
quadrant ¢ is in depends on the sign of A and B separately. We must keep this in
mind to make sure we choose the correct ¢!

If a computer is used for calculating arctan, the atan2(B, A) variant is recom-
mended for both Matlab and Python. Then the angle comes out in the correct quad-
rant.

With these reservations, we have shown:

B
Acos(wt) + B sin(wt) = C cos(wt + ¢) where C =+ A2+ B2 and ¢ = — arctan T
2.6)

2.3.3 Third Conversion

The transition from Eqs. (2.4) to (2.2) is very simple if we use Euler’s formula:
e = cosa +isina .
From this, it follows that:
R{E @) = R{E [cos(wt + ¢) +isin(wt + $)]} = E cos(wt + ) .

If this is equal to C cos(wt + ¢) one must have:

R{E P} = Ccos(wt +¢) if C=E. 2.7)

This simple relation holds equally well both ways (from Eqs. (2.4) to (2.2) or the
opposite way).
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2.3.4 Fourth Conversion

The last rendering to be considered here is also based on Euler’s formula. It is the
conversion of Egs. (2.3) to (2.1). It is crucial to note that & is complex. We write
this number as a sum of a real and an imaginary part:

9 = Dre +1Din
where D,. and Dj, are both real. This leads (once again through Euler’s formula):
N {2e'} = R{(Dre + iDim)(cos ot + isinwr)}
=N {Dre coS wt + iDye $in wt + 1Dy €08 wt + i Dy, sin a)t}
= D, coswt — Di, sinwt .
When this is compared with
Acoswt + Bsinwt ,

one is led to the simple relation:

N {2} = Acos(wt) + Bsin(wt) if 2=A—iB. (2.8)

This simple relationship also works both ways (from Egs. (2.3) to (2.1) or the
converse).

We could also look at the expression z(¢) = C sin(wt + ¢) instead of z(t) =
C cos(wt + ¢), but with the procedures outlined above it should be easy to navigate
from one form to the next.

When we come to treat waves in later chapters, we will often start with harmonic
waves. The expressions then become almost identical to those we have in Egs. (2.1)—
(2.4). It is important to be familiar with these expressions.

2.4 Dynamical Description of a Mechanical System

Let us come back now to physics. A spring often follows Hooke’s law: the deviation
from the equilibrium point is proportional to the restoring force exerted by the spring.

Suppose that the suspension hangs vertically without any mass at the end. It has
a length of L. If a mass m is attached to the free end, and we wait until the system
has settled, the spring will have a new length, say L, that satisfies the equation
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Fig. 2.4 Definition of
different lengths of the
spring with and without an
attached mass; see the text

Standstill

In motion

k(Ly — Lo) =mg

where the experimentally determined k is called the spring constant, and g, the
acceleration due to gravity, is considered constant (disregarding the variation of g
with the height) (Fig. 2.4).
If the mass is pulled down slightly and released, the force acting on the mass will
always be
F(t) = K[L(1) — Lol — mg

where L(t) is the instantaneous length of the spring. Upon combining the last two
equations, one gets

F(t) = k[L(t) — Lol — k(L — Lo)
= k[L(t) — L] .

Important: The elongation of the spring from length L, to L, is a consequence of
the force of gravity. Therefore, in later expressions, neither L nor g, the acceleration
due to gravity, will enter.

The displacement from the equilibrium point, i.e. L(#) — L is renamed to —z(¢).
The force that acts on the mass will then be

F(t) = —kz(t) .

The negative sign indicates that the restoring force is in the opposite direction with
respect to the displacement.
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According to Newton’s law, the sum of the forces acting on the mass is equal to
the product of the mass and the instantaneous acceleration:

F(t) = mZ(t) = —kz(t) .

Note once more that the gravitational force is not directly included in this expression. This is
because the restoring force due to the spring and the gravitational pull counterbalance each other
when z = 0.

7 is the double derivative of z with respect to time, i.e. acceleration in the vertical
direction:
d?z
dr? -’

(oM
1

The equation of motion can then be written as:

50 = —%20) . 2.9)
m

This is a second-order homogeneous differential equation with constant coef-
ficients, and we know its general solution to be

s [k
z(t) = Bsin —t ) + Ccos —t
m m

where B and C are two constants (with dimensions of length). We can identify this
solution as Eq. (2.1) if we set the angular frequency w in the latter equation to

| k
w=,—.
m

The constants B and C are found by imposing the initial conditions, and the par-
ticular solution for the oscillatory motion is thereby determined with one particular
amplitude and one particular phase.

The angular frequency w is convenient to use in mathematical expressions. How-
ever, when we observe an oscillating system, it is expedient to use frequency f and
period 7. Their interrelationship is stated below:
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For the mechanical mass—spring oscillator one gets:

1 [k
f =,

“2Vm

Im
T =21 |—.
k

‘What have we learned in this section? Well, we have seen that a mass, attached to
a spring and experiencing the forces exerted by the spring and gravity, will oscillate
up and down, executing a simple harmonic motion with a certain amplitude and time
period. We have managed to “explain” the oscillatory motion by combining Hooke’s
law and Newton’s second law.

The kinematic description gave in Sect.2.1 is identical to the solution of the
dynamic equation we set up in this section based on Newton’s law.

2.5 Damped Oscillations

No macroscopic oscillations last ceaselessly without the addition of energy. The
reason is that there are always forces that oppose the movement. We call these
frictional forces.

Frictional forces are often difficult to relate to, because they arise from complicated
physical phenomena occurring in the borderland between atomic and macroscopic
dimensions. A basic understanding of friction has begun to grow during the last
decades, because grappling with this part of physics requires extensive modelling by
means of computers.

Air friction is complex and we need at least two terms to describe it:

Fr= —bv — Dv?

where v is the velocity (with direction), and b and D are positive constants, which
will be called friction coefficients.

An expression that also indicates the correct sign and direction is:

—
P—

F,=—b7 — Dv*—~ = —b% — D 0|7 . (2.10)
v

In other words, the friction force F; works in a direction opposite to that of
the velocity V.
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If we start with a system executing harmonic motion without friction, and we
add friction as given in Eq. (2.10), it is not possible to find a general solution using
analytical mathematics alone. If the problem is simplified by setting the frictional
force to —bv only, it is possible to use analytical methods. The solution is useful for
slow motion in air. For small speeds, the term Dv? will be less than the term bv in
Eq. (2.10) so that the v? term can be neglected.

Remarks: — Dv? is a nonlinear term that is often associated with turbulence, one of the difficult
areas of physics, often associated with chaotic systems. Friction of this type depends on a number of
parameters that can be partially included into the so-called Reynolds number. In some calculations,
the quantity D must be replaced by a function D(v) if Eq. (2.10) is to be used. Alternatively, the
Navier—Stokes equation can be used as a starting point. Reasonably accurate calculations of the
friction of a ball, plane or rocket can be accomplished only by using numerical methods (Those
interested will be able to find more material in Wikipedia under the headings “Reynolds number”
and “Navier—Stokes equation”.).

Since no great skill is needed for solving the simplified differential equation,
we accept the challenge! The solution method will consolidate our familiarity with
complex exponents and will show the elegance of the formalism. Moreover, this is
standard classical physics widely covered in textbooks, and the results are useful in
many contexts. The mathematical approach itself finds applications in many other
parts of physics.

The starting point is, as before, Newton’s second law, and we use it for a mass
that oscillates up and down at the end of a spring in air. The equations can now

be written:
Z F = ma = m?

—kz(t) — bz(t) = mZ(t)
v b . k
Z(t) + ;z(t) + Zz(t) =0. 2.11)

This is a homogeneous second-order differential equation, and we choose a
trial solution of the type:
z(r) = Ae* . (2.12)

Remark: Here, both A and « are assumed to be complex numbers.

Differentiation of the exponential function (2.12), insertion into (2.11) and finally
the abbreviation of exponential terms and the factor A gives the characteristic poly-

nomial b ‘
o+ —a+—=0.
m m
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We rename the fractions to get a tidier expression:

=2y (2.13)

. (2.14)

I 3|
1]
S

The equation now becomes:
o>+ 2ya+w =0.

This is a quadratic equation whose roots can be written as:

ar =—y £y —w?. (2.15)

There arise three different types of solutions, depending on the discriminant:

e y > w : Supercritical damping, overdamping

If the frictional force becomes large, we get what is called overdamping. The
criterion of overdamping y > w is mathematically equivalenttob > 2+/km.
In this case, both A and « in Eq. (2.12) are real numbers, and the general
solution can be written as:

2(0) = ATV
+ ApelrVr=) (2.16)

where A; and A,, determined by the initial conditions, involve the initial
values of velocity and displacement.

e This is a sum of two exponentially decaying functions, one of which goes to zero
faster than the other. There is no trace of oscillatory motion here.
Note that, for certain initial conditions, A; and A, may have different signs, and
the time course of the displacement may hold surprises!

e y = w : Critical damping
The frictional force and the effective spring force now match each other in such
a way that the movement becomes particularly simple. Based on Egs. (2.12) and
(2.15), we find one solution: It can be described as a simple exponential function:

(1) = Ae 7",
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It is known from the theory of differential equations that the general solution of a
second-order differential equation must have rwo arbitrary constants, so that one
may satisfy two initial conditions. This means that we have yet to find the full
solution. To find the missing solution, we will use a simple trial solution of the
type:

2(t) = f(He™" .

If this trial solution 1s substituted into our differential equation (2.11) with y = o,
we find easily that f must be equal to 0. After two integrations with respect to 7,
we find f(r) = A + Br.

Thus the general solution of Eq. (2.11) for critical damping is then:
z(t) = Ae™"" + Bre "' . (2.17)

Critical damping in many cases corresponds to the fastest damping of a
system and is the one sought for, for example, in vehicle shock absorbers.

e ¥ < w: Sub-critical damping; underdamping
In this case, @ in Eq. (2.15) becomes complex, which means that the solution will
contain both an exponential decreasing factor and an oscillating sinusoidal term.
From Eq. (2.15), we get then:

ar = —y £Vy?— o? (2.18)

=—y+iv . (2.19)
where ' = \/w? — y? is a real number. The general solution then becomes:
2() = e ' {szei‘“” + %‘e*iw”}

where o7 and Z are complex numbers, and 9t means that we take the real part of
the expression.

The solution for sub-critical damping can be put in a simpler form:

z72(t) = e "' Acos(w't + ¢) . (2.20)

Here the constant A and ¢ must be assigned such values as to make the particular
solution conform to a given physical system. The mass will oscillate on both sides
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Fig. 2.5 Examples of
overcritical, critical and
sub-critical damping of an
oscillation that would be
simple harmonic in the
absence of friction. The
friction is increased by a
factor of four from one curve
to another: sub-critical, \ ;
critical and overcritical ' Subcritical
damping -0.5 i
0 1 2 3 4 5
Time (s)

Displacement (m)

of the equilibrium point while the amplitude decreases to zero. The oscillation
frequency is lower than when there is no damping (something that is to be expected
since the friction acts to slow down all movement).

It is common in textbooks to present a figure that typically shows the time course
for a damped harmonic motion, and Fig.2.5 perpetuates the tradition. However, it
should be noted that such figures can be very misleading, because they often assume
that the initial velocity is zero (as in our figure). In a task last in this chapter, we
ask you to investigate how an overdamped harmonic motion looks under some other
initial conditions. If you solve that task, you will see that the solution is more diverse
than the traditional figures indicate!

2.6 Superposition and Nonlinear Equations

When we tried to figure out how a damped oscillation changes with time, we assumed
the validity of the differential equation:

(1) + ﬁz'(t) + Ez(t) =0 (2.21)
m m

and found a general solution that consisted of two parts. For overcritical damping,
the solution looks like this:

z4(t) = Ale(*}/+«/}/2,w2)t A, e(,y, /yz,wz)t

where y and w are defined in Egs. (2.13) and (2.14) above.
In the interests of simplicity, we set:

fir) = T
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and

£ty = TV
One solution can then be written as:

za(t) = AL f1() + A2 fo(2) .

Another solution of the differential equation could be:
2g(t) = B fi(1) + B2 fo() .
It is easy then to see that
zag(t) = [A1 f1 (1) + A2 fo(D)] + [B1 f1(1) + B2 f2(1)]
zag(t) = (A1 + B1) f1(1) + (A2 + By) f2(1)

will also be a solution of the differential equation. This is due to the fact that the
differential equation (2.21) is a linear equation.

This is called the “superposition principle”. This principle pervades many parts
of physics (and notably also in quantum mechanics).

Previously, many people considered superposition principles to be a fundamental
property of nature, but it is not. The reason for the misunderstanding is perhaps that
most physicists of those days worked only with linear systems where the superpo-
sition principle holds. Today, thanks to computers and numerical methods, we can
tackle physical systems that were previously inaccessible. This means that there has
been an “explosion” in physics in the last few decades, and the development is far
from over.

Let us see what differences arise when nonlinear descriptions are used. By non-
linear description, for example, we mean that forces describing a system showing a
nonlinear dependence on position or speed. For example, when we described damped
oscillations, we found that friction must often be modelled with at least two terms:

F = —bv— Dv?.

The second term on the right-hand side makes a nonlinear contribution to the force.
The differential equation would then become:

. b. D. ., k
M)+ =2 + —=ZOI + —z(t) =0 (2.22)
m m m

In this case, we can prove the following:
If f4(¢) is one solution of this equation, and fp(¢) is another solution, it is in
general not true that the function f4(¢) + f5(¢) is a solution of Eq. (2.22).
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In other words, when we include a second-order term to complete the friction
description, we see that the superposition principle no longer applies! Even if
we find a possible solution for such an oscillating system, and then another
solution, the sum of these individual solutions will not necessarily be a solution
of the differential equation.

The term Dv? is a nonlinear term, and when the physics is such that nonlinear
terms play a nonnegligible role, the superposition principle does not apply.

Take a look at the “list of nonlinear partial differential equations’ on the Wikipedia
to get an impression of how important nonlinear processes have now become within,
for example, various areas of physics. The overview indirectly shows how many more
issues we can study today compared to what was possible a few decades ago. Despite
this, we still have a regrettable tendency to use formalism and interpret phenomena,
in both classical and quantum physics, as if the world was strictly linear. I dare say,
physicists will have, within a few decades, such a rich store of experience to build
on that the general attitude will change. Time will show!

2.7 Electrical Oscillations

Before we proceed with forced oscillations, we will derive the equation of oscillatory
motion for an electrical circuit. The purpose is to show that the mathematics here is
completely analogous to that used in mechanical system.

In electromagnetism, there are three principal circuit elements: Resistors, induc-
tors (coils) and capacitors. Their behaviours in an electrical circuit are given by
the following relationships (where Q stands for the charge, I = d Q/dt is electric
current, V is voltage, R is resistance, L inductance and C capacitance):

Vg = RI (2.23)
Ve =0Q/C (2.24)
V. = Ldl/dt

= Ld*Q/dr” . (2.25)

If the circuit elements are connected in a closed loop, the total voltage change will
be zero when we go around the loop from any point to the same point (Kirchhoff’s
law). For example, we connect a (charged) capacitor to a resistor (by closing the
switch in Fig. 2.6), the voltage across the capacitor will always be the opposite of the
voltage across the resistor. Thus, it follows that
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RI=-Q/C
o 1
dr ~ RCT’
1
0
C R

Fig. 2.6 The voltage across a charged capacitor will decrease exponentially to zero after the capac-
itor is connected to a resistor

RI=-0Q/C
9 1
o - rc?

If the charge on the capacitor was Qg attime ¢ = 0, the solution of this differential
equation is:

Q — Qoeft/RC .

The charge on the capacitor thus decreases exponentially and goes to zero (The reader
is supposed to be familiar with this.).

In the context of “oscillations and waves”, we will concentrate on oscillating
electrical circuits. An oscillating electrical circuit usually consists of at least one
capacitor and an inductor. If the two elements are connected in series so as to form
a closed loop, Kirchhoff’s law gives:

2
0 dl Ld 0

o G

C dr dr?

d>0 1
- = ——Q .
dt LC

We can write this in the same way as was done for the mechanical system:

N 1
o) = —EQ(t) : (2.26)

If we compare Eq. (2.26) with Eq. (2.9), we see that they are completely analogous.
The coefficient on the right-hand side is k/m for the mechanical system, and 1/LC
in the electrical analogue, but they are both positive constants.

This is oscillation once more, and we know that the overall solution is:
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0 = Qpcos(wt + ¢)

where w = 1/+/LC. Qg and ¢ are two constants whose values are fixed on the basis
of the initial state ( = 0) of the system.

It may be worth reflecting on why there must be two initial conditions to obtain a specific solution
for the LC circuit as compared to the RC circuit. In the RC circuit, the current is uniquely given if
the charge is given. We can then decide, by means of a snapshot, either the charge or the voltage,
will vary with time (assuming that R and C are known). For the LC circuit, this is not the case.
There we must know, for example, both charge and current at a particular instant, or the charge at
two adjacent times, to determine the further development. The reason is that we can not deduce
power from one charge (or voltage) alone. The difference in physical descriptions for the RC and
(R)CL circuit is reflected mathematically by the difference between a first-order and a second-order
differential equations.

An electrical circuit in practice contains some kind of loss/resistance. Let us take
the simplest example, namely that the loss is due to a constant series resistance R in
the closed loop. If Kirchhoff’s law is used again, we get the following differential
equation:

0 d7 do d’Q

== _RI-L—=-R—=—-L—
C dt dr dr?

or

d’Q R dQ 1
— —0=0. 2.27
dr? tI L dt Q 2.27)

This is a homogeneous second-order differential equation that can be solved using
the characteristic polynomial:

whose solution is:

The general solution to the differential equation is:
0 = Qo.e —ari+ ( (5= %) + Qpre —ari— (my. (2.28)

We note that for R = 0, we recover Eq. (2.26), whose solution is
Q = Q0.1 4 Qg pe= (VZIEC)!
= Q0,6 WVEO) 4 0 e (VI/LO)!
= Qpcos(wt + ¢) .
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where w = 1/+/LC. We see again that there are two constants to be determined by
means of the initial conditions.

When R # 0, we get an exponentially decreasing term e~ /25" multiplied by
either an oscillating term or a second exponentially decreasing term, depending on
whether (R/2L)? is less or greater than 1/LC. When (R/2L)* = 1/LC, the term
under the radical in Eq. (2.28) becomes zero, which corresponds to what we have
seen previously with two coincident roots. In such a case, the overall solution turns
out to of the same form as Eq. (2.17). Again, it is natural to talk about sub-critical,
critical and supercritical damping, similar to a mechanical pendulum.

We have seen that electrical circuits are described by equations completely anal-
ogous to those for a mechanical pendulum. Other physical phenomena show similar
oscillating behaviour.

Common to all the systems examined above is the equation for oscillatory
motion, which can be stated, in its simplest form, as

df
Wﬁ-cla +ef=0

where ¢; and c¢; are positive constants.

2.8 Energy Considerations

Let us calculate the energy and its time development in electrical circuits. We limit
ourselves to a loss-less oscillating system, that is, we take R = 0. The solution of
the differential equation is then:

Q = Qo cos(wt + ¢)
where w = \/% Qo and ¢ are two constants whose values are determined by using
the initial conditions (r = 0) of the system.

The energy stored in the capacitor at any particular time is given by:

1 102
T 2cC
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The instantaneous energy is thus:

1 [Qg cos(wt + ¢)]?

Ec(t) = 3 C
1 2
= EQ?Ocosz(wtdeJ).

From electromagnetism we know that the energy stored in an inductor is given

by the expression:
1 1 (do\’
B =oLrr=1r(%2Y |
2 2

Substituting the expression for Q from the general solution, the instantaneous
energy in the inductance is found to be

d[ Qg cos(wt + ¢)]]2

1
EL=3L [ dt

1
= ELQO%U2 sin®(wf + ¢) .

. 1 . .
Since w = ———, the expression can also be written as:

VLC

2
E, (t) = %QTO sin?(wt + ¢) .

The total energy, found by summing the two contributions, is thus:

Ew(t) = Ec(t) + EL(1)

1 Q¢* 2 ;2
=5 [cos (ot + @) + sin”(wt + ¢)]
1 2
E (1) = EQ?O .

We notice that the total energy remains constant, i.e. time-independent.
Although the energy of the capacitor and inductor varies from zero to a maxi-
mum value and back in an oscillatory fashion, these variations are time shifted
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by a quarter period, making the sum independent of time. The energy “flows”
back and forth between the capacitor and inductor. A time shift between two
energy forms seems to be a characteristic feature of all oscillations. Sim-
ple oscillations are often solutions of second-order differential equation, but
oscillations may also originate from phenomena that have to be expressed
mathematically in different way.

For the mechanical system, potential energy (from the conservative spring force)
and kinetic energy are the two energy forms. You are recommended to perform a
similar calculation as we have done in this section for the mechanical system to see
that the result is indeed analogous to what we found for the electrical system (This
is the theme for a calculation task in the end of this chapter.).

The energy calculations we have just completed apply only if there is no loss in
the system. If loss due to resistance (the equivalent of friction) is preset, the energy
will of course decrease over time. The energy loss per unit time pattern will depend
on the extent of damping (supercritical, critical or sub-critical), but in general, the
energy loss will follow an exponential decline.

2.9 Learning Objectives

The title of the book is “Physics of Oscillation and Waves”, but just about all basic
theory of oscillations is presented already in this chapter and Chap. 3. Nevertheless,
the basic ideas from these two chapters will resurface many times when we refer to
waves. We therefore think that a thorough study of this chapter and Chap. 3 will pay
handsome dividends when the reader moves to later chapters.

After working through this chapter you should be able to

e Know that a harmonic oscillatory motion can be expressed mathematically
in a variety of ways, both with sines and/or cosine functions, or in complex
form (using Euler’s formula). One goal is to recognize the different forms
and to be able to go mathematically from any of these representations to
another.

e Know that oscillations may occur in systems affected by a force that tries to
bring the system back to equilibrium. Mathematically, this can be described
easily in simple cases:

7= —kz

where x is the displacement from the equilibrium position and k is a real,
positive number.
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e Know that any oscillation must contain the two terms given in the equation
in the previous paragraph, but that other terms may also be included.

e Know how physical laws/relationships are combined by deriving the second-
order differential equation for both a mechanical and an electrical system.

e Know thatin order to find a unique solution to the above-mentioned equation,
two independent initial conditions must be imposed and suggest at least a
few different choices of initial conditions.

e Be able to derive and solve the equation of oscillatory motion both for free
and damped oscillation with linear damping. This means that you must be
able to distinguish between supercritical, critical and sub-critical damping,
and to outline graphically typical features for different initial conditions.

e Be able to deduce the equation for oscillatory motion also for a nonlinearly
damped system and find the solution numerically (after studying Chap. 4).

e Be able to explain why the superposition principle does not apply when
nonlinear terms are included in the equation of motion.

2.10 Exercises

Remark:

For each of the remaining chapters, we suggest concepts to be used for student active
learning activities. Working in groups of two to four students, improved learning
may be achieved if the students discuss these concepts vocally together.

The purpose of the comprehension/discussion tasks is to challenge the student’s
understanding of phenomena or formalism. Even for these tasks, it may be beneficial
for learning that students discuss the tasks vocally in small groups.

The “problems” are more traditional physics problems. However, our apperception
is that the correct answer alone is not considered a satisfactory solution. Full marks are
awarded only if the correct answer is supplemented with sound arguments, underlying
assumptions, and approaches used for arriving at the answer.

Suggested concepts for student active learning activities: Kinematics, dynam-
ics, amplitude, phase, frequency, harmonic, second-order differential equation, gen-
eral solution, particular solution, initial conditions, phasor, damping, characteristic
polynomial, supercritical/critical/sub-critical damping, superposition, linear equa-
tion.

Comprehension/discussion questions

1. Make a sketch similar to Fig. 1.1, which shows a time plot for one oscillation,
but also draw the time course for another oscillation with the same amplitude
and initial phase term, but a different frequency compared to the first one. Repeat
the same for the case where the amplitudes are different, while the phase and
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8.

9.

10.

11.

12.

frequency are the same. Finally, present the third variant of such sketches (Find
out what is meant by this.).

. What demands must we make for a force to be able to form the basis for oscil-

lations?

. If a spring is cut in the middle, what will be the spring constant for each part

compared to that for the original spring? How large is the time period for a mass
at the end of the half-spring compared with the period of the mass in the original
spring?

. Suppose we have a mass in a spring that oscillates up and down with a certain

time period here on earth, and that the spring and the mass are brought to the
moon. Will the time period change?

. Suppose we do as in the previous task, but take a pendulum instead of a mass

and spring. Will the time period change?

. A good bouncing ball can bounce up and down many times against a hard

horizontal surface. Is this a harmonic motion (as we have used the word)?

. Inthe text, a rather vague statement is made about a judicious choice of mass and

maximum extension of the spring to achieve an approximately harmonic oscil-
latory motion. Can you give examples of what conditions will be unfavourable
for a harmonic motion?

Problems

Show mathematically that the total energy of an oscillating mass—spring system
(executing up and down movement only) is constant in time if there is no friction
present (Remember that changes in potential energy in the gravitational field
disappear if you take the equilibrium position of the plot as the starting point for
the calculations.).

It is sometimes advantageous to describe dynamics by plotting velocity versus
position, instead of position versus time, as we have done so far. Create such a
plot for a mass that swings up and down at the end of a spring (plot in phase
plane). What is the shape of the plot?

Make a plot in the phase plane (see previous task) for the movement of a bouncing
ball that bounces vertically up and down on a hard surface (practically without
loss). What s the shape of the plot? Comment on similarities/differences between
the plots in this and the previous task.

A spring hangs vertically in a stand. Without any mass, the spring is 30 cm long.
We attach a 100 g ball at the lower end, stretch the spring by pulling the mass
(and then releasing it) and find, after the ball has come to rest, that the spring
has become 48 cm long. We then pull the ball 8.0 cm vertically downwards, keep
the ball steady, and then let go. Find the oscillation period of the ball. Write a
mathematical expression that can describe the oscillatory movement. Find the
maximum and minimum force between the ball and the spring.

An oscillating mass in a spring moves at a frequency of 0.40 Hz. Attimer = 2.0s,
its position is +2.4cm above the equilibrium position and the velocity of the
mass is —16cm/s. Find the acceleration of the mass at time ¢t = 2.0s. Find a
mathematical description appropriate to the movement.
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13.

14.

15.

16.

17.

18.

19.

2 Free and Damped Oscillations

A mass m hangs in a massless spring with spring constant k. The amplitude is A.
How big is the displacement relative to the equilibrium point when the kinetic
energy is equal to half of the potential energy?

An oscillatory motion can be described by the equation z(¢#) = A cos(wt + ¢)
where A = 1.2m, the frequency f = w/(2mw) = 3.0Hz, and ¢ = 30°. Find out
how this oscillatory motion can be formally specified when we (a) do not use
the phase term, but only a combination of sine and cosine terms, and (b) when
using a complex description based on Euler’s formula.

Another oscillatory motion is given at y(t) = R{(—5.8 + 2.2i)e!'}. Convert the
equation to the same form as Eq. (2.1) and convert further until it has the same
form as Eq. (2.1).

Show that the period of a mathematical pendulum with small amplitude is given
by T = 2m+/L/g where L is the length of the pendulum and g is the acceleration
due to gravity. Hint: Use the relation T = I« where 7 is the torque, / the moment
of inertia (mL?) and « is the angular acceleration, to show that the equation of
motion is § (t) = (g/L) sin 0 and then use the usual approach for sines at small
angles.

A mass weighing 1.00N is hung at the end of a light spring with spring constant
1.50 N/m. If we let the mass swing up and down, the period is 7. If instead we let
the mass settle down and pull it to the side and release it, the resulting movement
will have a period of 27 (the amplitude in the second case is very small). What
is the length of the spring without the mass? (You may need the expression in
the previous assignment.)

Note: We recommend strongly that you make a real mass/spring system with a
length so that the period of the sidewise pendulum oscillation is twice the period
for the vertical mass—spring pendulum. Start the movement of the system by a
pure vertical displacement of the mass, and release it from rest at this position.
Watch the movement. You may be surprised! What you witness is an example
of a so-called parametric oscillator.

Show that the energy loss for a damped pendulum where the frictional force
is Fy = —bv is given by dE /df = —bv?. Here, b is a positive number (friction
coefficient) and v is the velocity (Start from the mechanical energy of the system,
E= Epmential + Exinetic-)-

An object of m = 2.0kg hangs at the end of a spring with the spring constant
k = 50N/m. We ignore the mass of the spring. The system is set in oscillations
and is damped. When the velocity of the mass is 0.50 m/s, the damping force is
8.0N.

(a) what is the system’s natural oscillation frequency f (i.e. if the damping was
not present)?

(b) Determine the frequency of the damped oscillations.

(c) How long does it take before the amplitude is reduced to 1% of the original
value?



Chapter 3 ®)
Forced Oscillations and Resonance Check for

Abstract In this chapter, we study a mechanical system forced to oscillate by the
application of an external force varying harmonically with time. The amplitude of
the oscillations, which is shown to depend on the frequency of the external force,
reaches its peak value when the frequency of the applied force is close to the natural
frequency of the system, a phenomena called resonance. However, details depend
on the energy loss in the system, a property described by a quality factor Q, and the
phase difference is described by so-called phasors. Emphasis is placed on how the
system behaves when the external force starts and vanishes. Numerical calculations
facilitate the analysis. At the end, some relevant details concerning the physiology
of the human ear are briefly mentioned.

3.1 Introductory Remarks

The words “resonance” and “resound” are derived from the Latin root resonare
(to sound again). If we sing with the correct pitch, we can make a cavity to sing
along and, to somehow, augment the sound we emitted. Nowadays, the word is
used in diverse contexts, but it always has the connotation of an impulse causing
reverberation in some medium. When we tune the radio to receive weak signals from
a transmitter, we see to it that other, unwanted signals, also captured by the radio
antenna at the same time, are suppressed. It may seem like pure magic. The physics
behind such phenomena is straightforward when we limit ourselves to the simplest
cases. If we dig a little deeper, we uncover details that make our inquiry much more
demanding and exciting.

3.2 Forced Vibrations

The Foucault pendulum in the foyer of the Physics building at the University of
Oslo oscillates with the same amplitude year after year, although it encounters air
resistance, which, in principle, should have dampened its motion. This is because
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the bob at the end of the pendulum receives a small electromagnetic push each time
it passes the lowest point. When that happens, a small red LED lights up. The push
comes exactly at the time the bob is moving away from the equilibrium point. In this
way, the time period is almost completely determined by the natural oscillation period
of the pendulum itself (determined by the length of the pendulum and acceleration
due to gravity).

In other contexts, “the pushes” come at a rate different from the natural rate of
oscillation of the system. Electrons in an antenna, the diaphragm of the loudspeaker,
the wobble of a boat when waves pass by, are all examples of systems being forced by
a vibratory motion energized by an external force that varies in time independently of
the system in motion. Under such circumstances, the system is said to be executing
forced oscillations.

In principle, an external time-dependent force can vary in infinitely many ways.
The simplest description is given by a harmonic time-varying force, i.e. as a sinusoid
or cosinusoid. In the first part of the chapter, we assume that the harmonic force lasts
for a “long time” (the meaning of the phrase will be explained later).

If we return to the mechanical pendulum examined earlier and confine ourselves to
a simple friction term and a harmonic external force, the movement can be described
analytically.

For a mechanical system, the starting point is Newton’s second law (see Chap.
2): The sum of the forces equals the product of mass with acceleration:

F cos(wrt) — kz(t) — bz(t) = mz(t)

where F cos(wpt) is the external force that oscillates with its own angular
frequency wp. If we put
w(z) =k/m,

(angular frequency of the freely oscillating system), the equation can also be
written as follows:

Z(t) + (b/m)z(t) + wgz(t) = (F/m) cos(wrt) . 3.1

This is an inhomogeneous second-order differential equation, and its general
solution may be written as:

2(t) = zp() + 2, (1)
where 7, is the general solution of the corresponding homogeneous equation

(with F replaced by zero) and z,, is a particular solution to the inhomogeneous
equation itself.
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We have already found in Chap. 2 the general solution of the corresponding
homogeneous equation, so the challenge is to find a particular solution.

We know that the solution of the homogeneous equation decreases with time to
zero. Therefore, after a long time from start, the movement will be dominated by the
external periodic force.

It becomes natural then to investigate if a particular solution may have the
form:
zp(t) = Acos(wrt — @) 3.2)

where A is real.

Here, we have to discuss the choice of the sign of the phase term ¢. Assume ¢
to be positive. In that case, we have: If F' is maximum at time ¢ = #; (for example,
wrt; = 2m), the displacement z,(¢) will reach its maximum value at a time 7' = 1,
(with f, > 1), i.e. at a time later than when F was at its maximum.

We then say that the output z,(¢) is delayed with respect to the applied force.

When the expressions for z,,(t) and F(¢) are inserted into Eq. (3.1) and the terms
are rearranged, the following result is obtained:

(0§ — wk) cos(wpt — ¢) — (b/m)wp sin(wrt — ) = F/(Am) cos(wrt) .

If we use the trigonometric identities for the sines and cosines of difference of angles
(see Rottmann), we find:

(0 — wi){cos(wrt) cos ¢ + sin(wpt) sin g} — (b/m)wp{sin(wrt) cosd — cos(wrt) sin ¢}
= F/(Am)cos(wrt) .
Upon collecting the terms with sin(wgt) and cos(wrt), we get:
[(w§ — @) cos — F/(Am) + (wpb/m) sin ¢] cos(wr1)
+ [(@w§ — @F) sing — (wrb/m) cos ¢ sin(wrt) =0 .

Since sin(wrt) and cos(wpt) are linearly independent functions of ¢, the above
equation can be satisfied only if each term within the square brackets vanishes sepa-
rately. This conclusion gives us two equations which can be used for the determination
of the two unknowns, namely A and ¢.

Equating to zero the terms within the square brackets multiplying sin(wgt), we
find:

(W — wr)sing = (wrpb/m) cos ¢ .
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The phase difference between the output and the applied force can be expressed

as:
cos¢p Wi — v

otgp =

sing  wpb/m (3-3)

We see that when wr = wy, cot ¢ = 0, which means that ¢ = 7 /2 or 37/2. Since
cot ¢ changes from a positive to negative value when wp passes wy from below, only
the choice ¢ = /2 is acceptable.

When we set the expression with the square brackets multiplying cos(wpt) to
zero, we get:

(0§ — w})cosp — F/(Am) — (bop/m)sing =0 .

We use the expression sin x = 4=1/+/1 + cot? x from Rottmann (and a corresponding
expression of cos) together with Eq. (3.3).

After a few intermediate steps, we get the following expressions for the ampli-
tude of the required oscillations:

F/m

A= .
@} = @32 + ooy /m)?

(34

It is time now to sum up what we have done:

When a system obeying an inhomogeneous linear second-order ordinary
differential equation is subjected to a harmonic force that lasts indefinitely, a
particular solution (which applies “long after” the force is applied) is itself a
harmonic oscillation of the same frequency that is phase shifted with respect to
the original force, as given in Eq. (3.2). “Long after” refers to a time many time
constants 1/y long, where y is proportional to the damping of the system. We
refer to the exponential decaying term e ~”’ in the solution of the homogeneous
differential equation discussed in the previous chapter.

The amplitude of the oscillations is then given by Eq. (3.4), and the phase
difference between the output and the applied force (or the input) is given by
Eq. (3.3). Figure 3.1 shows schematically how the amplitude and phase vary
with the frequency of the applied force. The frequency of the force is given
relative to the frequency of the oscillations in the same system if there was no
applied force or no friction/damping.

We see that the amplitude is greatest when the frequency of the applied force is
nearly the same as the natural frequency of oscillation in the same system when the
applied force and damping are both absent. We call this phenomenon resonance, and
it will be discussed in more detail in the next section.
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Fig. 3.1 The amplitude of a forced oscillation (left) and the phase difference between the output
and the applied force (right) as a function of the frequency of the applied force

The phase ¢ appearing in Eq. (3.2) is approximately equal to r /2 atresonance; that
is, the output is lagging behind (in phase) by about 7 /2 with respect to the applied
force. For the spring oscillation, it means that the force is greatest in the upward
direction when the pendulum has its highest speed and passes the equilibrium point
on the way upwards.

Away from resonance, the phase difference is less than (greater than) /2 when
the applied frequency is lower than (higher than) the “natural” frequency. These
relationships can be summarized so that the pendulum “is impatient* and tries to move
faster when the applied force changes too slowly relative to resonance frequency
(“natural frequency*). The movement of the pendulum depends more and more on
the force when the force changes too quickly in relation to resonant frequency.

The phase difference is an important characteristic of forced fluctuations.

3.3 Resonance

One sees from Eq. (3.4) that the amplitude of the forced oscillations varies with the
frequency of the applied force. When the frequency is such that the amplitude is
greatest, the system is said to be at resonance.

It may be useful to reflect a little about what is needed to get the largest possible
output, which corresponds to the highest possible energy for the system.

Let us start with the mechanical mass—spring oscillator again. We then have a
mechanical force that works on a moving system. We remember from mechanics
that the work done by the force is equal to the magnitude of the force multiplied
by how far the system moves under the action of the force. For a constant force,
the power delivered by the force equals the power multiplied by the velocity of the
system experiencing the force. Force and velocity are vectorial forces, and it is their
dot product that counts (Remember P = F - ¥ from the mechanics course.).
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In our case, the force will deliver the greatest possible power to the system
if the power has the highest value while the pendulum bob has the highest
possible velocity. Force and velocity must work in the same direction. This
will happen if the force, for example, is the greatest, while the bob passes the
equilibrium position on the way up. This corresponds to the position is phase
shifted /2 by force. To achieve such a state, the external force must swing
with the resonance frequency.

So far, we have been somewhat imprecise when we have discussed resonance.
Strictly speaking, we must differentiate between two nuances of the term resonance,
namely phase resonance and amplitude resonance. The difference between the two
is often in practice so small that we do not have to worry about it.

Phase resonance is said to occur when the phase difference between the applied
force and the output equals 7 /2. This happens when the frequency of the applied force
(input frequency) coincides with the natural frequency of the (undamped) system.

A close-up view of Fig. 3.1 shown in Fig. 3.2 shows that the amplitude is greatest
at a slightly lower frequency than the natural frequency. The small but significant
difference is due to a detail we mentioned when we discussed damped harmonic
motion in the previous chapter. In the presence of damping, the oscillation frequency
is slightly lower than the natural frequency. The frequency at which amplitude is
greatest indicates amplitude resonance for the system. The two resonance frequencies
are often quite close to each other, as already mentioned.

Let us find mathematical expressions for the two resonance frequencies.

The amplitude resonance frequency can be found by differentiating the expression
for the amplitude given by Eq. (3.4) (acommon procedure for finding extreme values).
We calculate the wr angular frequency at which:

dA
— =0.
d(,()F
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2
wWp = 602 — _b
F = 0 2m2 .

If we want to state the frequency rather than the angular frequency, we use the
expression:

We find that

The amplitude resonance frequency is:

1 b?

famp.res. = E a)(% - ﬁ (3.5)

where wy = +/k/m.

The phase resonance frequency is:

1
fph,res. = Ewo . 3.6)

We observe that the two resonance frequencies coincide only when b = 0 (no
damping).

3.3.1 Phasor Description

We will now consider forced oscillations in an electrical circuit. First, we will pro-
ceed in much the same manner as adopted in dealing with the mechanical system
examined above, but eventually we will go over to an alternative description based
on phasors. The system is a series RCL circuit with a harmonically varying voltage
source Vjcos(wrt), as shown in Fig.3.3. The differential equation for the system
then becomes [compare with Eq. (2.27)]:

20  do |
LF + RE + EQ = Vycos(wrt) . (3.7)

Fig. 3.3 A series RCL ] > )
circuit driven by a 1

harmonically varying applied + R /Q
voltage. The labels +, 7, and %(t) @ C ==
Q indicate the signs chosen L

for our symbols /m&
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This is an inhomogeneous equation, whose solution is found in the same way as
for its mechanical counterpart considered above. The solution consists of a sum of
a particular solution and the general solution of the homogeneous equation (with
Vo = 0). The solution of the homogeneous equation is already known, and it only
remains for us to find a particular solution. We try a similar solution as for the
mechanical system, but adopt a complex representation:

0,(t) = Ae™r! (3.8)

where A can be a complex number.
At the same time, a complex exponential form is chosen for the externally applied
voltage:
V(1) = Vycos(wpt) — Voelr! . 3.9

It goes without saying that the real part of the expressions are to be used for repre-
senting physical quantities.

Inserting the expressions for Q,(t) and V (¢) into Eq. (3.7), and cancelling the
common factor e we get:

1
—¢¢A+mwA+5A=%.
Solving the equation for A, we get:
2 . 1
A| —Lwy +i1Rwr + E =W

Vo

A=+ R .
E—LwF—i—lRwF

A again becomes a complex number (except when R = 0).

The instantaneous current in the RCL circuit is found by applying Ohm’s law to
the resistor:

I— Vg dQ
R dr
If we wait long enough for the solution of the homogeneous equation to die out, only
the particular solution remains, and the current is then given by the expression:
= % iwpt
dr

1 = Aia)pe

Simple manipulations lead one to the following expression:

Vi .
1(t) = 0 el (3.10)
R +1(LC()F — Ca)p)
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This expression should be compared with Vg, the voltage applied to the circuit, which
in complex form is given by: '
Vi(t) = Voe'®' .

It follows from Eq. (3.10) that if R = 0O the current will be phase shifted 90°
relative to applied voltage. If in addition L = 0, the current will lead the voltage by
90°. However, if wpL is much larger than 1/(wrC) (C “shorted”), the current will
be offset 90° after the voltage (In a calculation exercise at the end of the chapter you
are asked to show this.).

If R #0,but Log — c+uf = 0, the current and voltage will be in phase, and I =

Vo/R. This corresponds to wp = ﬁ, which was named phase resonance above.

The connection between R, C, L, current and phase can be elegantly illustrated
by means of phasors. We have already mentioned phasors, but now we extend
the scope by drawing in multiple rotating vectors at the same time. Figure 3.4
shows an example.

Both currents and voltages are displayed in the same plot. We start with a vector
that represents the current generated by the applied voltage. Then we draw vectors
representing voltages across the resistor, capacitor and inductor resulting from the
current flow. The vector which shows the voltage across the capacitor will then be
90° after the vector showing the current, the voltage across the resistor will have the
same direction as the current and the voltage across the inductance will be 90° ahead
of the current. The total voltage across the serial link of R, C and L should then be
the vector sum of the three voltage phasors and correspond to the applied voltage.
We see that the phase difference between current and voltage will be between +90°
and —90°.

A Imaginary axis
compleks
AU] 40]
: » compleks
PR
RAUN
s ot | '
: —» Real axis
o 10 Voltages
Current
[40)

Fig. 3.4 Example of phasor description of an RCL circuit subjected to a harmonically varying
voltage. The current at any time (anywhere in the circuit) is the x components of the vector /(z),
while the voltage across the various circuit components is given by the x component of the vectors
Vr(t), Vc(t) and Vi (¢), and their sum is V (7). See the text for details
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Fig. 3.5 A time plot in Voltage
which the current slightly Current
leads the applied voltage

Phasor diagrams can also be based on quantities other than those we have chosen
here. One variant is to use complex impedances that are added vectorially. The
strength of phasor diagrams is that we can easily understand, for example, how the
phase differences change with frequency. The depiction in Fig.3.4 applies only to
a particular applied angular frequency wp. If the angular frequency increases, the
voltage across the capacitor decreases while the voltage across the inductance will
increase. Phase resonance occurs when the two voltage vectors are exactly the same
size (but oppositely directed) so that their sum is zero.

Figure 3.5 shows the time development of voltage and current in a time plot. The
current in the circuit is slightly leading the applied voltage. For a series RCL circuit
with an applied voltage, this means that the applied frequency is lower than the
resonant frequency of the circuit.

Note that phasors can be used only after the initial rather complicated oscillatory
pattern is over, and we have a steady sinusoidal output corresponding to the particular
solution of differential equation.

3.4 The Quality Factor Q

In the context of forced oscillations, it is customary to characterize oscillating
systems with a Q-factor or Q-value, where the symbol Q, not to be confused
this with the charge Q in an electrical circuit, stands for “quality”, which is
why the Q-factor is also called the quality factor. The factor tells us something
about how easy it is to make the system oscillate, or how long the system will
continue to oscillate after the driving force is removed. This is more or less
equivalent to how small loss/friction is in the system.
The quality factor for a spring oscillator is given by:

0=—2— /= (3.11)

We see from this formula that the smaller the value of b, the larger is the quality
factor Q.

Figure 3.6 shows how the oscillation amplitude varies with the frequency of the
applied force for four different quality factors. A Q-value of 0.5, in this case, cor-
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Fig. 3.6 When the
frequency of the applied
force changes relative to the
system’s own natural
frequency, the amplitude will
be greatest when the two
frequencies are nearly equal.
The higher the quality factor
Q (i.e. smaller loss), the
higher the resonance
amplitude
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Frequency (rel /)

responds to critical damping and we see no hint of any resonance for such a large
damping.

There are two traditional ways of defining Q. The first is:

stored energy _5 E

(3.12)

— =2T
energy loss per period Ejoss-per-period

This definition implies a particular detail which few people are familiar with, but
which is extremely important for forced oscillations in many contexts. Once we have
achieved a steady state (when the applied force has been working for long and is still
present), the loss of energy will be compensated by the work done on the system by
the applied force. We see from Eq. (3.12) that a system with a high Q-value loses
only a tiny part of the total energy per period.

Suppose now we turn off the applied force. Then the system will oscillate at the
amplitude resonance frequency o' = \/w} — (b/2m)* ~ wy”, and the energy will
eventually disappear. It will take the order of Q/(27) periods before the energy is
used up and the oscillations end. Let us look a little more closely at this.

Loss of energy per period is a slightly unfamiliar quantity. Let us consider first
Pioss, which is “energy loss per second” with the unit watt. We know that after the
force has been removed, the loss will be given by:

dE
Pioss = 3 (3.13)
Then we can approximate the loss of energy over a period of time 7" with:

Eloss—per—period = Ploss T.
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Using the definition given in Eq. (3.12), we get:
2
ro

Combining Eqgs. (3.13) and (3.14) and the relation w = 27/ T, we get a differential
equation governing the time development of the stored energy after the removal of
the driving force. The equation is:

Pioss = E. (3.14)

dE_a)()

Pluss =

=0

The solution is:
E(t) = Ege~ /2 .

The energy falls to 1/e of the initial energy after a time

At = g = g . (3.15)
wo 2w

We see that the amplitude of oscillation decreases in a neat exponential manner
after the removal of an applied oscillatory force, with the time constant given in Eq.
(3.15).

It can be shown that nearly the same time constant describes the growth of the
output after the application of oscillating force. Obviously, the time course is not as
simple because it depends, apart from other factors, on whether or not the frequency
of the applied force equals the resonant frequency of the circuit (see Fig. 3.7). Never-
theless, if it takes an interval of the order of 10 ms for an oscillation to die out after an
applied force is removed, it will also take nearly the same interval to build a steady
amplitude after we switch on the applied force.

One might think that the time constant (and thus the Q-value) of the system could
be found by referring to the thin red line in Fig.3.7 and noting how long it takes
from the moment the force is removed till the output falls to 1/e of the value just
before the power was turned off. It turns out, however, that the number so inferred
is twice the expected value! The difference can be traced to the fact that the time
constant deduced in Eq. (3.15) applies to how energy changes over time, whereas
Fig.3.7 shows amplitude and not energy. The energy is proportional to the square
of the amplitude. Note that the stationary amplitude after the force has worked for a
while is greatest at the resonance frequency!

The curves in Fig. 3.7 show that after an applied force is turned on, the amplitude
of the oscillations increases, without becoming infinite. Sooner or later, the loss in
energy is as large as the power applied through the oscillating force. After equilibrium
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Fig. 3.7 Two examples of the build-up of oscillations in an oscillating system after an external
sinusoidal force is coupled and subsequently removed (the force acts only during the interval
indicated by a thick red line at the bottom). The frequency of the applied voltage is equal to the
resonant frequency on the left and slightly lower on the right. While the force is present, the system
oscillates with the frequency of the force. After the force has ceased, the circuit oscillates with its
own resonance frequency. The thin red line marks the value 1/e times the maximum amplitude just
before the applied force was removed. The Q-factor of the circuit is 25

a steady state is achieved, the amplitude of the oscillations will remain constant as
long as the applied force has constant amplitude.

The mathematical solution of an inhomogeneous differential equation for an oscillating system
subjected to an oscillatory force with given initial conditions is rather tedious. However, it is possible
to find such a solution exactly using, for example, Maple or Mathematica. However, we have used
numerical solutions in the preparation of Fig. 3.7; it is a rational approach since complex differential
equations can often be solved numerically about as easily as simple differential equations. More
about this in the next chapter.

In experimental context, a different and important definition of the Q-value is
often used instead of that in Eq. (3.12). If we create a plot that shows energy
(NOTE: not amplitude) in the oscillating system as a function of frequency
(as in Fig. 3.8), the Q-value is defined as:

_fo
-

where the half-width Af, shown in the figure, compared to the resonance
frequency fo.

0 (3.16)

This relationship can be shown to be in accordance with the relationship given in
Eq. (3.12), at least for high Q-values.

The definitions given in Egs. (3.12) and (3.16) apply to all physical oscillating
systems, not just the mechanical ones.
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Fig. 3.8 The Q-value can Enmax
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For the most interested: It is now possible to make a remarkable observation: A resonant circuit
responds significantly to frequencies within a frequency band of width

fo
Af == .
/ 0

However, the circuit needs a certain amount of time

At =

Sl

to build-up the response if we start from zero. It takes about the same time also for a response that
is already built to die out.
The product of Af and At comes out to be:

AtAf =

SIS
ST

AtAf = i . (3.17)

Multiplying this expression with Planck’s constant /, and using the quantum postulate that
the energy of a photon is equal to E = Af, we get:

AtAE = - (3.18)
2

This expression is almost identical to what is known as Heisenberg’s uncertainty relationship
for energy and time. There is a factor 1/2 in front of the term after the equality sign, but such a
factor will depend on how we choose to define widths in frequency and time.

There are certain parallels between a macroscopically oscillating system and the relationships
we know from quantum physics. In quantum physics, Heisenberg’s uncertainty relationship is
interpreted as an “uncertainty” in time and energy: we cannot “measure” the time of an event more
accurately than what is implicit in the relationship

h

At =
2r AE

provided that we do not change the energy of a system by more than AE.
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Our macroscopic variant applies irrespective of whether we do measurements or not, but mea-
surements will of course reflect the relationship that exists. We will return to this relationship later
in the book, but in the form of Eq. (3.17) instead of (3.18).

“Inertia” in a circuit is important for what we can do with measurements. For a high Q oscillation
cavity in the microwave region (called a “cavity”), we can easily achieve Q-values of 10,000 or more.
If such a cavity is used in pulsed microwave spectroscopy, it will take of the order of 60,000 periods
to significantly change the energy in the cavity. If the microwave frequency is 10 GHz (10'° Hz),
the time constant for energy changes will be of the order of 6 s. If we study relatively slow atomic
processes, this may be acceptable, and the sensitivity of the system is usually proportional to the
quality factor. However, if we want to investigate time intervals lasting only a few periods of the
observed oscillations, we must use cavities with much lower Q-value. More will be said about this
in the next chapter.

3.5 Oscillations Driven by a Limited-Duration Force

So far, we have considered a system that is influenced by an oscillating force lasting
“infinitely long”, or a force that has lasted for a long time and ends abruptly. In
such a situation, we can determine a quality factor Q experimentally in terms of
the frequency response of the system as shown in Fig.3.8 and Eq. (3.16). Relative
oscillation energy (relative amplitude squared) must be determined after the system
has reached the stationary state, i.e. when the amplitude no longer changes with time.

How will such a system behave if the oscillatory force lasts only for a short time?
We will now investigate this matter.

When we introduce a limited-duration force (a “temporary force”), we must
choose how the force should be started, maintained and terminated. For a variety
of reasons, we want to avoid sudden changes, and have chosen a force whose overall
amplitude follows a Gaussian shape, but follows, on a finer scale, a cosinuosidal
variation. Mathematically, we shall describe such a force by the function:

F(1) = Fycos[o(t — to)]e 0=0/oT (3.19)

where o indicates the duration of the force (the time during which the amplitude falls
to 1/e of its maximum value). w is the angular frequency of the underlying cosine
function, and ¢, is the time at which the force has the maximum amplitude (peak of
the pulse occurs at time 7). The oscillating system is assumed to be at rest before
the force is applied.

Figure 3.9 shows two examples of temporary forces with different durations. Here,
the force has a frequency equal to 100Hz (period 7 = 10 ms). In the figure on the
left, o is equal to 25ms, i.e. 2.5 x T, and successive peaks have been marked (from
maximum onwards until the amplitude has decreased to 1/e) to highlight the role
played by the size of . In the figure to the right, 0 = 100ms, i.e. 10 x T'; again, the
markings give an indication of the relationship between w (or rather the frequency
or period) and o.
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Fig. 3.9 The force F(¢) for centre frequency 100 Hz and pulse width o equal to 0.025 and 0.10s.
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Fig. 3.10 The temporal response of the system (right) due to the applied force shown in the left
part of the figure

We would now like to study how an oscillating system will behave when it is
subjected to a temporary force. Based on Fig. 3.7, we expect the response to be quite
complicated. Since it is not easy to make headway analytically, we have opted for
numerical calculations instead.

Figure 3.10 shows the time course for one temporary force along with the response
of the system. For simplicity, the frequency of the force has been made equal to the
resonant frequency of the system, and according to the initial conditions chosen, the
system is at rest before the force is applied.

Figure 3.10 shows some interesting features. The system attempts, but fails to keep
pace with the force as it grows. We see that the peak of the response (amplitude)
occurs a little later than the time at which the force reached its maximum value.

The force adds some energy to the system. When the force decreases as quickly as
it does in this case, the system cannot get rid of the supplied energy at the same rate
as that at which the force decreases. Left with surplus energy after the vanishing of
the force, the system executes damped harmonic oscillations at its own rate. It may
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Fig. 3.11 Dependence of the 0.9
maximum amplitude on the
duration of the applied force
(o). Note the logarithmic
scale on both axes

o
3

Log (max rel amplitude)
o o
w [9)]

0.1
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Log (o) (oinms)

be mentioned that o here is 25 ms and that the Q-factor of the oscillating system is
chosen to be 25, which corresponds to a decay time for the energy for the oscillations
of 40 ms.

It may be useful to point out some relationships between various parameters:

e How much energy can be delivered to the system within a given time depends
on the force (proportionality?).

e The amount of energy that can be delivered, for a given input of force, will
depend on how long the force works.

e The loss of energy is independent of the strength of the force after it has
disappeared.

e The loss of energy is proportional to the amplitude of the oscillations.

As mentioned, we expect the amplitude to increase when the force lasts longer
and longer, but the precise relationship is not self-evident. In Fig.3.11 are shown
calculated results for the maximum amplitude attained by the system for different o
values. w always corresponds to the resonance frequency of the system. The figure
has logarithmic axes to get a large enough range of o. The straight line represents
the case that the amplitude increases linearly with o (duration of the force).

We see that for too small o (the power lasting only a few oscillation periods),
the maximum amplitude increases approximately proportionally with the duration
of the force. When the force lasts longer, this does not apply anymore, and beyond
a certain limit, the amplitude of the oscillation does not increase, however long the
duration of the pulse may be. This is due to the fact that at the given amplitude, the
loss is as large as the energy supplied by the power.

If the amplitude of the force is increased, the amplitude of the oscillations will
also increase, but so will the loss. It is therefore found that the duration of the force
required to obtain the maximum amplitude is approximately independent of the
amplitude of the force.
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Fig. 3.12 The frequency response (actually only maximum amplitude) of the oscillating system
for different durations (o) of the force pulse (left part). The o values used are respectively 25, 50,
100, 200, 400 and 800 ms (from blue/widest to red/narrowest curves). In the right part of the figure,
corresponding frequency analyses of the force pulses themselves are shown. See the text for further
explanations

3.6 Frequency Response of Systems Driven
by Temporary Forces *

There is an unexpected consequence of using short-term “force pulses”. We will
address this topic already now,!, but will return to it more than once in other parts of
the book. Full understanding of the phenomenon under discussion is possible only
after a review of Fourier analysis (see Chap. 5).

In Fig. 3.8, we showed how large an oscillation energy (proportional to amplitude
squared) a system gets if it is exposed to a harmonic force with an “infinitely long”
duration. The oscillation energy achieved was plotted as a function of the frequency
of the applied force. A plot like this is usually called “frequency response” of the
system, and the curve can be used to determine the Q-factor of the oscillating system
from Eq. (3.16). The narrower the frequency response, the higher the Q-factor.

It is natural to determine the frequency response also for the case when the force
lasts only a short time. The maximum energy system achieves as a result of the power
is plotted as a function of the centre frequency of the power in a similar manner as
in Fig. 3.8, and the result is given in the left part of Fig.3.12. Relative energy is
proportional to the square of the amplitude of the oscillations.

It turns out (left part of Fig.3.12) that the frequency response of the system
becomes different with temporary “force pulses” than with a harmonic force of
infinitely long duration (as shown in Fig.3.8). The frequency response becomes

I'This sub-chapter is for the most interested readers only.
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wider and wider (spreading over ever greater frequency range on both sides of the
resonant frequency) as duration of the force pulse becomes shorter and shorter.

If, on the other hand, we apply longer and longer “force pulses”, the frequency
response of the system will reach a limiting value. There is a lower limit for the
width of the curve, and thus a maximum limit for the calculated Q-factor. In general,
the term Q-factor is used only for this limiting value. For shorter power pulses, the
frequency response is specified rather than the Q-value.

However, it is possible to make a frequency analysis of the temporary force pulse
itself. We will find out how this is done in Chap. 5 when we come to review Fourier
analysis. To provide already now a rough idea of what a frequency analysis entails,
it will be enough to say that such an analysis yields information about the frequency
content of a signal, and tell us “which frequencies will be needed to reproduce the
signal at hand”.

The right part of Fig. 3.12 shows the frequency analysis of the “force as a function
of time” for the same o values as in the left part of the figure. The figure actually
shows a classical analogy to Heisenberg’s uncertainty relationship also known as the
time-bandwidth product . We already found this in Eq. (3.17), and we will return to
this in Chap. 5.

The two halves of Fig. 3.12 can be condensed into a single plot, and the result will
then be as shown in Fig.3.13.
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Fig. 3.13 The correlation between the frequency response of a system and the frequency of the
driving force when the duration of the force changes. There are two border cases. In one case (I) the
force lasts so long that the response depends only on the system itself (how much loss it is, and thus
which Q-value it has). In the other case (II), the system’s loss is so low in relation to the working
time of the influence that the response to the force depends only on the force itself (how short time
it lasts). The system’s features have the least to say for the response
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Based on these observations, we can say that:

e The quality factor is a parameter/quantity which characterizes the oscillating
system. The smaller the loss in the system, the higher the Q-factor and the
narrower frequency response, well and mark for harmonic forces that last
long.

e When the force lasts for a short time (few oscillations) the frequency of the
force is poorly defined. When an oscillating system is subjected to such a
force, the frequency response is dominated by the frequency characteristic
of the power itself and, to a lesser extent, the system itself.

Figure 3.13 is of some interest in the debate about whether Heisenberg’s uncertainty relationship
is primarily due to the perturbing influence of measurement on a system, or to the system itself. We
do not delve into this issue here, but the result suggests that each point of view has some merit.

3.7 Example: Hearing

Finally in this chapter, we will say a little about our hearing and the mechanisms
behind the process. Forced oscillations occupy the centre state in the present section,
while other aspects associated with hearing will be treated in Chap. 7.

In our ears (see Figs.3.14, 3.15 and 3.16), sound waves in the air cause oscilla-
tions at different frequencies in the auditory canal, tympanic membrane (eardrum),
auditory ossicles (three tiny bones in the middle ear that conduct sound from the
tympanic membrane to the inner ear), and the cochlea (“snailhouse”)—a system of
fluid-filled ducts which makes up the inner ear.

It is the inner ear that is of particular interest for us here, since it exemplifies reso-
nance phenomena and demonstrates how ingenious our hearing sense is. Figure 3.15

Fig. 3.14 Anatomical
structures of the human ear.
Inductiveload, CC BY 2.5,
[1]
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https://commons.wikimedia.org/wiki/File:Anatomy_of_Human_Ear_with_Cochlear_Frequency_Mapping.svg
https://creativecommons.org/licenses/by-sa/2.5/deed.en
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Fig.3.15 The inner ear has a three-channel structure that stretches almost three rounds from bottom
to top. This figure indicates how this would look like if we stretched out the insides of the cochlea.
See the text for details

Tectorial
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Fig. 3.16 Details on the anatomical structure of the basilar and tectorial membrane and their close
connection through the organ of Corti. Note the hair cells that translate mechanical strain to electric
signals. The organ of Corti structures are found along the full length of the basilar membrane with
the result that it is an impressive number of nerve cells going from each ear to the brain
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illustrate a “stretched out” cochlea with the fluid-filled ducts scala vestibuli from the
oval window to the top of the cochlea and scala tympani from the top back to the
round window (which is facing the air filled space of the middle ear).

One wall of the scala tympani has a particular structure called the basilar mem-
brane, and weakly connected to the wall along the scala vestibuli we find the tectorial
membrane. These membranes will oscillate when the ear picks up a sound signal.

Between the basilar and tectorial membranes, we find “hair cells” that respond
to pressure. The amplitude of the oscillations is picked up by these hair cells, and
the information is transmitted through the nerves to the brain (via different signal
processing centres along the way).

It is a fascinating structure of cells named Organ of Corti (see Fig.3.16) that
translate pressure changes into electrical signals in nerves. Figure 3.16 also indicates
how the third duct inside the cochlea, the air filled scala media, is a part of the total
structure.

From our perspective, the important part is the basilar membrane. Earlier in this
chapter, forced oscillations have been analysed. By way of a trial, that analysis will be
applied to oscillations in the basilar membrane, which extends diametrically across
the conical cavity of the cochlea in the inner ear (see Figs.3.15 and 3.16).

The membrane can vibrate, just like the belly (top plate) of a violin, in unison with
the pressure variations generated by the sound. The membrane, however, changes
character from the outer to the inner parts of cochlea. The relative length of some
fibres in the basilar membrane varies from the outer to the inner part as indicated
in Fig.3.15. As a result, if we hear a dark sound (low frequency), only the inner
part of the basilar membrane will vibrate. If we hear a light sound (high frequency),
only the outer part will vibrate. This is a fabulous design that allows us to hear many
different frequencies at the same time as separate audio impressions. We can hear
both a bass sound and a disk rhythm simultaneously, because the two sound stimuli
excite different parts of the basilar membrane. The hair cells and nerve endings pick
up vibrations from different parts of the membrane in parallel.

It was the biophysicist Georg von Békésy from Budapest who found out how the basilar mem-
brane works as a “position-frequency map”’. He received the Nobel Prize in Physiology and Medicine
for this work in 1961.

The basilar membrane is a mechanical oscillation system that behaves in a man-
ner similar to the externally driven mass—spring oscillator and RCL circuit. Different
parts of the membrane have properties that make them responsive to different fre-
quency ranges. We can assign different Q-values to different parts of the basilar
membrane.

Based on what we have learned in this chapter, we should expect that even if we
hear a sound that delivers a harmonic force with a well-defined frequency on the
eardrum, the basilar membrane will vibrate not at one position only along the basilar
membrane, but over a somewhat wider area. Since we have “parallel processing” of
the signals from the hair cells, the brain can still “calculate” a fairly well-defined
centre frequency.
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If, however, we listen to shorter and shorter sound pulses, we expect that wider
and wider parts of the basilar membrane will be excited. This would make it harder
for the brain to determine which centre frequency the sound pulse had. This means
that it is harder to determine the pitch of a sound when the sound lasts very shortly.

When musicians play fast passages on, for example, a violin they can falter a little
with the pitch without the error coming to the notice of a listener. If they stumbled
as much with longer lasting tones, their slips will not escape the attention of the
audience.

When the sound pulse lasts only one period (and this period, for example, corre-
sponds to 1000Hz), we only hear a “click”. It is impossible to tell which frequency
was used to create the sound image itself.

On the other hand, it is easier to perceive the direction of the audio source of a
click than the source of a sustained sound. The ability to determine the time fairly
precisely when a sound occurs, along with the fact that we have two ears, is very
important in order to determine the direction the incoming sound (Nevertheless, it
should be mentioned that there are other mechanisms to determine where a sound
comes from.).

According to Darwin, our ears are the result of millions of years of natural selection
that was beneficial for the survival of our species. The ear has become a system where
there is an optimal relationship between the ability to distinguish between different
frequencies and the ability to follow fairly quick changes over time. Resonance,
time response and frequency response are very important details to understand our
hearing.

An interesting detail with regard to hearing relies on phase sensitivity. Nerve impulses (they
are digital!) cannot be transmitted over nerve fibres with a repetition rate much higher than about
1000 Hz. It is therefore impossible for the ear to send signals to the brain with a better time resolution
than about 1 ms. This means that the ear cannot, in principle, provide information about the phase
of a sound vibration for frequencies higher than a few hundred hertz (Some disagree and claim

that we can follow phases up to 2000 Hz.). The prevalent view is that sound impression become
indifferent to the phase of the various frequency components of a sound signal.

3.8 Learning Objectives

After working through this chapter you should be able to:

e Set up the differential equation for a system subject to forced harmonic
oscillations and find an analytical solution for this when the friction term is
linear.

e Find a numerical solution of the aforementioned differential equation also
for nonlinear friction terms and for nonharmonic forces (after having been
through Chap. 4).



54 3 Forced Oscillations and Resonance

e Derive mathematical expressions for resonance frequency, phase shift and
quality factor for a single mechanical oscillating system or an electrical
oscillating circuit.

e Set up a phasor diagram to explain typical features of an RCL circuit for
different frequencies of an applied voltage.

e Know the time course of the oscillations in a circuit, as an externally applied
force begins and when it ends and how the time course is affected by the
Q-factor.

e Know how the response to an oscillating system changes when the force
lasts for a limited period of time.

e Know the coarse features of the anatomy of the ear well enough to explain
how we can hear many pitches all at the same time.

e Know that in a mechanical system we cannot get both high frequency-
selectivity and high time resolution simultaneously.

Both for the mechanical and electrical oscillating system examined so far, we end up with an
equation where the second derivative of a quantity along with the quantity itself is included. It may
lead to the opinion that all oscillations must be described by a second-degree differential equation.

However, there are also oscillations that are normally described by two or more coupled first-
order differential equation and a significant time delay between the “force” and “the response” in
the differential equations. In biology, such relationships are not uncommon.

3.9 Exercises

Suggested concepts for student active learning activities: Forced oscillation,
resonance, phasor, phase difference, quality factor, initial and terminal transient
behaviour, frequency response, simultaneous multiple frequency detection, basilar
membrane, cochlea, inner ear.

Comprehension/discussion questions

1. For a mass—spring oscillator, the phase difference between the applied force and
the amplitude of the bob change with the frequency of the applied force. How is
the phase difference at the resonance frequency and at frequencies well below
and well above it?

2. How does the phase difference between the applied force and the velocity vary
for a mass—spring oscillator exposed to a harmonic force?

3. It is often easier to achieve a high Q-value in a oscillating system with a high
resonance frequency than with a low one. Can you explain why?

4. If our hearing (through natural selection could distinguish much better between
sound at nearby frequencies than we are able to achieve, what would the disad-
vantage have been?
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10.

11.

12.
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. We operate with two almost equal resonant frequencies. What are their charac-

teristics? Is it possible for these frequencies to coincide?

. What would happen to an oscillating system without damping if it was exposed

to a harmonic applied force at the resonant frequency? What would happen if the
applied force had a frequency slightly different from the resonance frequency?

. In several laboratories attempting to detect gravity waves, oscillating systems

with suitable resonance frequencies and Q-values are used as detectors. For
example, a resonance frequency of about 2—4kHz is chosen when one wants
to detect gravity waves due to instability in rotating neutron stars. What is the
motivation behind using an oscillating system as a detector for this purpose?

. For a mechanical system, the phase shift /2 between the amplitude and the

applied force was explained by the fact that such a phase shift corresponds to
the force supplying the maximum power to the system (maximum force applied
over the longest possible way). Explain in a similar manner the phase shift also
for the electrical RCL circuit with a harmonically varying applied voltage.

. Attempt to explain the phase shift for the RCL series circuit with applied voltage

in case the frequency is far less and far greater than the resonant frequency of
the circuit alone. Based on how the impedance of a capacitor and the impedance
of an inductance change with frequency.

How can the oscillations that led to the collapse of the Tacoma Narrows Bridge
in Washington, USA, in 1940 be explained as a forced oscillation? Do you think
the Q-value was big or small? (May be relevant to watch one of the movies
featured on YouTube.)

An AC voltage V() = V) cos(wrt) is applied to an electrical oscillating circuit,
wr is equal to the resonance (angular) frequency of the circuit. After a long
time, the oscillations in the circuit stabilize and the amplitude of the current
fluctuations is ;. An interval of duration #; elapses between the connection of
the AC voltage to the circuit and the current reaching the value 0.9 x I;. We
then remove the voltage and let the circuit come to rest. We then reconnect to
the AC voltage, but now with twice the amplitude: V () = 2V cos(wpt).

(a) How large is the current in the circuit (relative to /;) a long time after the AC
voltage was reconnected?

(b) How long does it take for the amplitude of the current in the circuit to reach
90% of the limiting, long-time value?

(c) What do we mean by the expression “long-time value” in this context?

Problems

In the case of old-fashioned radio reception in the medium wave range, we
used circuitry consisting of an inductance (coil) and capacitance (capacitor) to
discriminate between two radio stations. The radio stations occupied 9kHz on
the frequency band, and two radio stations could be as close as 9 kHz. In order for
us to choose one radio station from another, the receiver had to have a variable
resonant circuit that suited one radio station, but not another. The frequency of
the Stavanger transmitter was 1313 kHz. Which Q-factor did the radio receiver’s
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resonant circuit need? [These considerations are still applicable in our modern
times, although digital technology makes certain changes.]

Figure 3.17 shows “sensitivity curve” for a “single-photon detector”. Let us con-
sider this curve as a sort of resonance curve, and try to estimate how long a contin-
uous electromagnetic wave (light) will have to illuminate the detector to achieve
maximum/stationary response in the detector? (Imagine a similar response as
in Fig.3.7.) The frequency of the light can be calculated from the relationship
Af = c where A is the wavelength, f the frequency and ¢ the velocity of light.

Search the web and find at least ten different forms of resonance in physics.
Enter a web address, where we can read a little about each of these forms of
resonance.

Derive the expressions given in Eq. (3.11) from Eq. (3.12) and other expressions
for an oscillating mass—spring oscillator.

The Q-value for an oscillating circuit is an important physical parameter.

(a) Give at least three examples of how the Q-value influences the func-
tion/behaviour of a circuit.

(b) Describe at least two procedures as to how the Q-value can be determined
experimentally.

(c) If we use a temporary force, it is more difficult to determine the Q-value
experimentally. Explain why.

A series RCL circuit consists of a resistance R of 1.0 2, a capacitor C of 100nF,
and an inductance L of 25 W H.

(a) Comparing Eq. (3.7) (slightly modified) with Eq. (3.1), we realize that these
equations are completely analogous. Just by replacing a few variables related
to the mechanical mass—spring oscillator, we get the equation for an electrical
series RCL circuit. Using this analogy, we can easily reshape the expressions
for phase shift [Eq. (3.3)], amplitude [Eq. (3.4)], Q-value [Eq. (3.11)] and the
expressions for phase resonance and amplitude resonance for the mass—spring
oscillator, to corresponding formulas for a series RCL circuit. Determine all
these terms for a series RCL circuit.

(b) Calculate the resonant frequencies (both for phase and amplitude resonance)
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of the circuit (based on amplitudes of charge oscillations, not current oscilla-
tions).

(c) Calculate the Q-value of the circuit.

(d) What is the difference in phase between the applied voltage and current in
the circuit at phase resonance and at a frequency corresponding to wg + Aw/2
in Eq. (3.16)?

(e) How wide is the frequency response of the circuit for a “long-lasting” applied
voltage?

(f) How “long” must the applied voltage actually last for the circuit to reach
an almost stationary state (that amplitude no longer changes appreciably with
time)?

(g) Assume that the circuit is subjected to a force pulse with centre frequency
equal to the resonance frequency and that the force pulse has a Gaussian ampli-
tude envelope function [Eq. (3.19)] where o has a value equal to twice the time
period corresponding to the centre frequency of the circuit. Estimate the width
of the frequency response to the circuit with this force pulse.

Reference

1. Inductiveload, https://commons.wikimedia.org/wiki/File:Anatomy_of Human_Ear_with_
Cochlear_Frequency_Mapping.svg. Accessed April 2018
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Chapter 4 ®)
Numerical Methods Geda

Abstract The purpose of this chapter is to provide a brief introduction as to how a
first- or second-order differential equation may be solved to the desired precision by
using numerical methods like Euler’s method and fourth-order Runge—Kutta method.
Emphasis is placed on the difference between an analytical and a numerical solution.
Movement of a pendulum for an arbitrary amplitude is calculated numerically to
exemplify how easily some problems can be solved by numerical methods. Methods
for solving partial differential equations are also described, but are not used until
a later chapter. The importance of testing, reproducibility and documentation of
successive program versions are discussed. Specimen programs are given at the end
of the chapter.

4.1 Introductory Remarks

During my student days (1969-1974), Norway’s largest computer had a memory
capacity (RAM) of 250kB and it filled a whole room. We made programs by punching
holes in a card, one card for each line (see Fig.4.1). The pack of cards was carried
carefully to a separate building; Abel’s House (it was a disaster to drop the pack).
A waiting period of a few hours up to a whole day passed before we could collect
the result in the form of a printout on perforated pages. A punching error meant
that a card had been punched again so that the wrong card in the stack could be
exchanged with the new card. This was followed by a new submission and another
waiting period. Guess if debugging a program took an eternity! Today, the situation is
totally different. Everyone owns a computer. Program development is incomparably
easier and far less time-consuming than in earlier times. And numerical methods
have become a tool as natural as analytical mathematics.

But all tools have one thing in common: training is needed in how they are to be
used. In this chapter, our primary concern will be to see how the equation of motion
for an oscillating system and the wave equation can be solved in a satisfactory manner.
It is not enough to read how things can be done. Practice is needed for acquiring the
requisite skills and mastering the routine.
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Fig. 4.1 Examples of punch cards, along with a modern memory device (sizes indicated) with
storage capacity equivalent to 800 million punch cards (which would have weighed 1900 tons!).
The memory device weighs about 0.5g

Parts of the chapter were written by David Skalid Amundsen as a summer job for CSE 2008.
Amundsen’s text has since been revised and expanded several times by Arnt Inge Vistnes.

4.2 Introduction

When in the “old days” (i.e. more than 30 years ago), we investigated the motion of
a mathematical or physical pendulum in a lower-level physics course, we had to be
content with “small amplitudes”. At that time, with only the rudiments of analytical
mathematics in our toolkit, we could only proceed by imposing the approximation of
small displacements, which implied that the movement is a simple harmonic motion.
Larger amplitudes are much more difficult to handle analytically, and if we consider
complicated friction as well, there is simply no analytical solution to the problem.

Once we have learned to use numerical methods of solution, it is often almost as
easy to use a realistic, nonsimplified description of a moving system as an idealized
simplified description.

This book is based on the premise that the reader already knows something about
solving, for example, differential equations with the aid of numerical methods. Nev-
ertheless, we make a quick survey of some of the simplest solution methods so that
those who have no previous experience with numerical methods would nonetheless
be able to keep pace with the rest. After the quick review of some simple methods, we
spend a little more time on a more robust alternative. Additionally, we will say a little
about how these methods can be generalized to solve partial differential equations.

It should be mentioned here that the simplest numerical methods are often good
enough for calculating, for example, the motion of a projectile, even in the presence
of air resistance. However, the simplest methods often accumulate errors and give
quite a bad result for oscillatory motion. In other words, it is often necessary to use
some advanced numerical methods in dealing with oscillations and waves.
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This chapter is structured along the following lines:

First, a quick review of the simplest numerical methods used for solving dif-
ferential equations is given. Secondly, the fourth-order Runge—Kutta’s method is
presented. This first part of the chapter is rather mathematical. Then comes a prac-
tical example, and finally, we will include examples of program codes that can be
used for solving the problems given in later chapters.

4.3 Basic Idea Behind Numerical Methods

In many parts of physics, we come across the second-order ordinary differential

equations:

2x

5= fx@), 2@, 1) . 4.1

o

X=

o

with the initial conditions x(#y) = x¢ and x(#)) = xo. The symbol f (x (), x(1), t)
means that f (for the case when x is the position variable and ¢ the time) is a function
of time, position and velocity.

In mechanical systems, differential equation often arises when Newton’s second
law is invoked. In electrical circuitry containing resistors, inductors and capacitors,
it is often Kirchhoff’s law together with the generalized Ohm’s law and complex
impedances that are the source of differential equations.

When we solve second-order differential equations numerically, we often con-
sider the equation as a combination of two coupled first-order differential
equations. We rename then the first derivative and let this be a new variable:

o

X

v a 3

The two coupled first-order differential equations then becomes:

dx

= v(x(), 1),

dv
55 Fx@), v(), 1) .

We will shortly see some simple examples of this in practice.
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4.4 Euler’s Method and Its Variants

We can solve a first-order differential equation numerically by specifying a starting
value for the solution we are interested in, using our knowledge of the derivative of
the function to calculate the solution for a short time Az afterwards. We then let the
new value act as a new initial value to calculate the value that follows At after this
(that is, at r = 2At). We repeat the process until we have described the solution in
as many points n as we are interested in.

The challenge is to find out how we can determine the next value from what we
already know. It can be done in a crude or refined method. The easiest method is
perhaps Euler’s method. It is based on the well-known definition of the derivative:

A —
(1) = lim X+ A —x@)
At—0 At

If At is sufficiently small, we can manipulate this expression and write:
x(t + At) = x() + Atx (1) .

Assume the initial values are given by (x,, X,, f,). Then follows the discrete version
of our differential equation (named “difference equations™):

Xptl = Xp + X, AL .

By using such an update equation for both x(¢) and x(¢), we get the famil-
iar Euler method (in our context for the solution of second-order differential
equation):

Fpa1 = oy + By Al

Xpi1l = X + X, Af .

Thus, we have two coupled difference equations.

Figure4.2 outlines how the method works. This is the most common way to
make such an illustration, but in my view it only gives a superficial understanding.
What happens when the discrepancy between the correct solution and the numerical
solution becomes bigger and bigger? Here are some details we should know.

Figure4.3 looks similar to Fig.4.2, but is illustrating a different message. The
mid-blue blue curve (bottom) shows how a projectile thrown obliquely will proceed
with an initial velocity of 1.0 m/s in the horizontal direction and 3.0 m/s in the vertical
direction. The calculation is based on an analytical solution to this simple problem.
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Fig. 4.2 Euler’s simple
method of calculating a
function numerically. The
top (blue) curve is the exact
analytic solution. The lower
(red) curve is calculated
using Euler’s simple method,
while the middle curve is
calculated using the
midpoint method. The time
step is the same in both cases
and is chosen very large to
accentuate the differences
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The figure also shows a plot of the solution found by using Euler’s method (red
curve) with very large time steps (0.2s). Even after the first step, the calculated new
position is quite far from what it should be.

After the first step, new values have been calculated for position and speed in both
horizontal and vertical directions. These values are now plugged into the differential
equation. If we had calculated the path for exactly these values, we would have got
the solution given by a green curve (next to bottom). This is a different solution of
the differential equation than we started with!

Not even now, we manage to follow this new solution closely since the time step
is so big and when we use Euler’s method once more, we get a position (and velocity)
quite far from the second solution of the differential equation we started with.

We keep going along this route. For each new time step, we get a new solution
of differential equation, and in our case, the error, being systematic, becomes bigger
and bigger after each time step.

It can be shown that if we reduce the time step significantly (!) compared to that
used in Fig.4.3, the solution will be far better than in the figure. Nevertheless, it is
not always enough to only reduce the size of the time step.

First of all, we cannot make the step size so small that we run into trouble
with inputting numbers accurately on a computer (without having to use extremely
time-consuming techniques). When we calculate x,,.; = x, + x, At, the contribution
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X, At must not always be so small that it can only affect the least significant digit of
Xn+1-

Another limitation lies in the numerical method itself. If we make systematic
errors which accumulate at each time step, no matter how small the time steps are,
we also get problems. Then we must use other numerical methods instead of this
simplest variant of Euler’s method.

An improved version of Euler’s method is called the Euler-Cromer method.
Assume that the starting values are (x,, X,, #,). The first step is identical to
Euler’s simple method:

Xpt1 = Xy + X, AL .

However, the second step in the Euler-Cromer method differs from that in the
simpler Euler version: To find x,,, we use X,,.; and not x,, as we do in Euler’s
method. It provides the following update equation for x:

Xntl = Xp + Xpp1 AL .

The reason that the Euler-Cromer method works and that it often (but not always)
works better than Euler’s method is not trivial, and we will not go into this. Euler’s
method often causes the energy of the modelled system to become an unconserved
quantity that slowly but steadily increases. This problem becomes dramatically
reduced with the Euler-Cromer method, which in most cases works better.

Another improvement over Euler’s method, which is even better than the Euler-
Cromer method, is Euler midpoint method. Instead of using the gradient at the begin-
ning of the step, and using this for the entire interval, we use the gradient in the middle
of the interval. By using the slope at the midpoint of the interval, we will usually get
a more accurate result than using the slope at the beginning of the interval when we
are looking for the average growth rate.

In Euler’s midpoint method, we first use the gradient at the beginning of the
interval, but instead of using this value for the entire interval, we use it for half
the interval. Then we calculate the gradient at the middle of the interval and
use this for the entire interval. Mathematically, this is done by using the same
notation as before:

).C,H_% =X, + f(xn’ xn,tn)%At >

.1
Xyl = X + X5 AL .
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Here, x,,, 1 and x,,, 1 are the values of the unknown function and its derivative
at the mldpomt of the interval. The update equation for the entire range will
be as follows:

xn+1=xn+f(xn+ s +1,[n+ )éAt,

Xptl = Xy +)'cn+% At .

4.5 Runge-Kutta Method

In Euler’s method, we found the next value by using the slope at the beginning of
the chosen step. In Euler’s midpoint method, we used the slope in the middle of the
chosen step. In either case, it is quite easy to imagine that for some functions we will
be able to get a systematic error that will add up to a significant total error after many
subsequent calculations have been carried out. It can be shown that the error we make
becomes significantly less if we switch to using more refined methods for finding the
next value. One of the most popular methods is called the fourth-order Runge—Kutta
method. A total of four different estimates of the increase, one at the beginning, two
in the middle and one at the end are then used to calculate the average increase in
the interval. This makes the Runge—Kutta method much better than Euler’s midpoint
method, and since it is not much harder to program, this is often used in practice.

Let us see how the fourth-order Runge—Kutta method works and how it can be
used to solve a second-order differential equation (At the end of the chapter one
will find a pseudocode and the full code for a program that uses the fourth-order
Runge—Kutta method.).

4.5.1 Description of the Method

The Runge—Kutta method is not really difficult to understand, but you probably have
to read the details that are included twice to see it. We will first provide a mathematical
review and then try to summarize the method using a figure (Fig.4.4). Let us begin
with a few words about the mathematical notation. Consider the differential equation
given below:

¥@) = f(x@),%@),1) . 4.2)

For the damped mass—spring oscillator considered in Chap. 2 (where ¢ does not
appear explicitly), this equation will take the following form:
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b k

7)) = ——z() — —z(@) . 4.3)
m m

Suppose we are at the point (x,, X,,, t,) and that the duration of the time step is Af.
In what follows we will find estimates for x,,, X, and X,, and it will be convenient
to replace X,, and X, by v, and a,, respectively. An additional numerical index will
be used to indicate the ordinal position of an estimate (first, second, etc.). With this
notation, the kth estimate of a quantity x, (x = x, v = x, a = X) will be represented
by the symbol yy -

We can find the first estimate of X,, by using Eq. (4.1):

ain, = f(xnv ).Cna tn) = f(xn» Un, tn) .
At the same time, the first derivative is known at the beginning of the time step:
Vin = )‘Cn =V .

The next step on the route is to use Euler’s method to find x (#) and x (¢) in the middle
of the step:

At
X200 = Xtn + V107,

2

At
V2,n = VUl +al,n7 .

Furthermore, we can find an estimate of the second derivative at the midpoint of the
step by using v, ,, X2, and Eq. (4.2):

ayn = f(x2,nv V20 In + AI/Z) .
The next step now is to use the new value for the second derivative at the midpoint in

order to find a new estimate of x(¢) and x (¢) at the midpoint of the step using Euler’s
method:

At
X3n = Xl,n + Vn—x >

2

At
V3 = VUln +a2,n7 .

With the new estimate of x(¢) and x () at the midpoint of the step, we can find a new
estimate for the second derivative at the midpoint:

as, = f(x3,nv V3 5, t, + Al/Z) .

Using the new estimate of the second derivative in addition to the estimate of the
first served in the middle range, we can now use Euler’s method to estimate x(¢) and
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X (t) at the end of step. This is done as follows:

Xgp = X1n + U3, AL,

Vi, =V, +az,At .
Finally, in the same way as before, we can estimate X (¢) at the end of the step using
these new values:

aqn = f(x4,n7 V4,n, t, + At) .

We can now calculate a weighted average of the estimates, and then we get reasonable
estimates of the average values of the first and second derivatives in the step:

W = é (al,n + 2“2.}1 + 2“3.:1 + a4,n) s (44)
U_n - é (vl.n + 2”2,11 + 2U3,n + U4,n) . (45)
Using these averages, which are quite good approximations to the mean values of

the slopes over the entire step, we can use Euler’s method of finding a good estimate
of x(¢) and x(¢) at the end of the step:

Xnt1 = X + v, At (46)
Upt1 = Uy + a, At (47)
tpp1 =1, + At (4.8)

These are equivalent to the initial values for the next step.

In the Runge—Kutta method (see Fig. 4.4), we extract much more information
from the differential equation than in Euler’s method. This makes the Runge—
Kutta method significantly more stable than Euler’s method, Euler-Cromer
method and Euler’s midpoint method. The Runge—Kutta method does not make
an excessive demand on the resources of a computer, but it is relatively simple
to program. The Runge—Kutta method, in one or other variant, is therefore
often the method we first turn to when we want to solve ordinary differential
equations numerically.

Programming of the basic part of the Runge—Kutta method is done almost
once and for all. It is usually only a small file that changes from one problem
to another. The file specifies exactly the differential equations that will be used
in exactly the calculations that will be performed. See example code later in
the chapter.
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Fig. 4.4 Summary of the
fourth-order Runge—Kutta
method. See text

Some concentration is required to fully understand Fig. 4.4: In point 1 (x,,, ,), the
slope is k;. We follow the tangent line at point 1 for half a step to point 2 (pink). This
point is based on another solution of differential equation (thin pink line) than the
one we seek. We calculate the slope k; at point 2 for this solution (pink dotted line).
We then draw a line from point 1 again, but now with the gradient we found at point
2. Again we only go half the step length and find point 3 (green). There is yet another
solution of the differential equation that goes through this point (thin green line). We
calculate the slope k3 at point 3 for this solution (dotted green line). We then draw a
line through point 1 again, but now with the slope we just found. Now we go all the
way up to point 4 (brown). Again there is a new solution of the differential equation
that goes through this point. We calculate the slope k4 of this solution at point 4.

The final step is to calculate the weighted mean of four different slopes and use
this from the starting point 1 in the figure a full time span At to get the estimate
(point 5) for the change of our function in the current time interval. The result is
relatively close to the correct value (compare point 5 by a red dot in the figure).

4.6 Partial Differential Equations

Many physical problems are described by partial differential equations, perhaps the
most well known are Maxwell’s equations, Schrodinger equation and wave equation.
The term “partial differential equation” means that the unknown function depends
on two or more variables, and that derivatives with respect to these occur in the
differential equation.

There are several methods for solving partial differential equations, but a key
concept is finite differences. It is about replacing the differentials in the differential
equation with final differences. Consider the simple differential equation

9 9
D _ k¥

= . 4.9
0x Jt (4.9)
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The simplest way to convert the derivatives in this equation into difference quo-
tients is to use the definition of the derivative, as we have done before. The above
equation will then become

ﬂx+AxJ%—ﬂLﬂ__Kﬂmt+A0—y@J)
Ax B At ’

This equation can be solved for y(x, t + At), which gives

At) = Al A
y(x,t+ At) = y(x, 1) + m[y(x + Ax, 1) —y(x, 0] .

Suppose that y(x, #) is known at a time ¢t = t, for the interesting interval in x. The
right-hand side of the above equation gives y(x, fy + At), the value of the function
at a later time ¢ + Af¢. However, note that we also need the value of the function
at a different x from that appearing on the left-hand side. This means that we will
encounter a problem when we come to calculating the value of the function at a point
x near the outer limit of the region over which the calculation is to be performed.
From the equation above, we see that we need to know what the function was at the
next x coordinate at the last instant, and at the extreme x point, this is not feasible.

This means that, in order to find a unique solution to our problem, we must
know the boundary conditions, that is, the state of the system at the boundary
of the region of interest. These must be specified before the calculations can
even begin.

Note: Initial and boundary conditions are two different things and must not be
mixed together. Initial conditions specify the state of the system at the very
beginning of the calculations and must also be used here. Boundary conditions
specify the state of the system at the endpoints of the calculations at all time.

The finite differences introduced above are, however, rarely used, since they can
be replaced by something that is better and not much more difficult to understand.
Instead of using Euler’s method in the above differentials, Euler’s midpoint method,
which significantly reduces the error in the calculations, is used. If we do this, the
discretization of Eq. (4.9) leads to the following result:

yx 4+ Ax, 1) —y(x — Ax, 1) Ky(x, t+ At) — y(x,t — At)
2Ax B 2At '

Itis not hard to understand that the result will now be better, for instead of calculating
the average growth through the current point and the next point, the average growth
is used through the previous and next point. In the same way as before, this equation
can be solved with regard to y(x, t + At), and the result will be:
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At
yx, t+ A =y, t = At)+ —— [y(x + Ax, 1) — y(x — Ax, 1)] .
K Ax

We see that we get the same problem with boundary conditions as above; in fact,
an extra boundary condition is needed, even at the beginning of the x grid. Since
this is a problem that concerns a spatial dimension, we need to set two boundary
conditions to make the solution unique (there are two boundaries). To use the first
one the update equation must therefore take into account the other boundary as well.
In the same way as we replaced first derivative with a finite difference quotient,
the nth derivative can be approximated in the same way. An example is the second
derivative that can be approximated with the following difference quotient:

S+ Ax) =2f(x) + fx — Ax)

£ ~ o (4.10)
Proof
v fx+Ax) =2f(x) 4+ f(x — Ax)
o A by
_ [f(x+ Ax) = f(O)] = [f(x) = f(x — Ax)] 4.11)
(Ax)?

:L Jx+Ax)— f(x)  f(x) - flx—Ax) (4.12)

Ax | Ax L Ax

~f(x) ~f'(x—Ax)

_ ') = f'(x = Ax) ) (end)

Ax

This expression is nothing more than the definition of the derivative; thus, it is a
proof of the validity of Eq. (4.10). The expressions make it clear why we must know
the value of the function at three points (at least) in order to be able to calculate a
second derivative.

As with the ordinary differential equations, we can move on and use methods that
provide an even better result.

There are a number of methods available for different parts of physics. Interested
refer to special courses/books in numerical calculations.
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4.7 Example of Numerical Solution: Simple Pendulum

Let us take a concrete example, namely a pendulum that can swing with arbitrary
large amplitudes (up to &) without collapsing (i.e. the suspending rod is “rigid”).
We expect all mass to be in a tiny ball (or bob) at the end of the rod.
Mechanics tell us that the force that pulls the pendulum along the path towards
the equilibrium point is
Fy = —mgsinf

where 6 denotes the angular amplitude. If the length of the rod is L, the moment of
this force around the pivot (suspension point) is:

T =—mgLsinf .

The torque applied around the pivot can also be written as:

t=Ila=16.
Here o = @ is the angular acceleration and / the moment of inertia about the axis of
rotation (which passes through the pivot and is perpendicular to the plane in which
motion takes place). By using our simplifying assumptions for the pendulum, we
have:

I =mL?
which leads to the differential equation for the motion of the bob:
mL*0 = —mgL sinf
6 = _$ sin6 .
L

In an elementary mechanics course, this equation is usually solved by assuming that

the angle 6 is so small that sinf ~ 6. The solution then turns out to be a simple
harmonic motion with swing frequency (angular frequency) given by:

w =

oo

The approximation sinf ~ 6 was made to use analytical methods. This approach
was not absolutely necessary in just this particular case, because we can solve the
original differential equation analytically also for large angles by utilizing the series
expansion of the sinus function. However, it is by far easier to use numerical methods.

The result of numerical calculations where we use fourth-order Runge—Kutta
method is shown in Fig. 4.5. We see that the motion is near harmonic for small
angular amplitudes, but very different from a sinusoid for a large swing amplitude.
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Fig. 4.5 A pendulum swings harmonically when the amplitude is small, but the swinging motion
changes considerably when the swing angle increases. The swing period changes as well. See also
the text

Moreover, the period has changed a lot. Note that in the right-hand part of the figure,
we have chosen a motion where the pendulum almost reaches the “right-up” direction
both “forward” and “return” (swing angle near 4+ and —).

If we wanted to include friction in the description of the pendulum motion, it
would represent a more complex expression of the effective force than we had in our
case. For nonlinear description of friction, there is no analytical solution.

Since the main structure of a numerical solution would be the same, irrespective
of our description of the effective force acting on the system, the more complicated
physical conditions can often be handled surprisingly easily with numerical solution
methods (see Fig.4.7 in one of the tasks in the problem section below).

This is an added bonus of numerical solutions: the force that works—and thereby
the actual physics of the problem—becomes more central in our search for the solu-
tion! What force produces which result? Numbers are numbers, and there is no need
to figure out different—occasionally intricate—analytical methods and tricks espe-
cially adapted for each functional representation of the force. The focus is where
it should be: basically, the effective force, the governing differential equation, the
pertinent initial condition(s), and the results that emerge from the analysis.

4.8 Test of Implementation

It is so easy to make a mistake, either in analytical calculations or in writing a
computer program for obtaining numerical solutions. We have examples of many
disasters in such contexts.

It is therefore very important to test the results of numerical solutions to detect
as many errors as we can. It is often easier said than done! We often use numerical
methods because we do not have any analytical methods to fall back on.
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Fig. 4.6 Comparison between analytical and numerical solution of a shuttle movement. For expla-
nations: See the text

In the case of the simple pendulum, there happens to be a trick up our sleeve.
There is an analytical solution that is approximately correct for small amplitude. For
this special case, we can test if the numerical solution becomes nearly the same as
the analytical. If there is a serious disagreement between these two solutions, there
must be an error somewhere.

That the numerical solution is close to its analytical counterpart in this special
case, is unfortunately not a proof that the program is flawless! The implementation of
the program beyond the special case may give incorrect results. Here it is necessary to
consider the physical predictions: Do they seem reasonable or otherwise? It is often
impossible to be absolutely sure that a computer program is completely correct.
Within numerical analysis, there are special techniques that can be used in some
cases. We cannot go into these. The main point is that we must be humble and alert
to the possibility of errors and try to test the implementation of numerical methods
every time we develop a computer program.

As an example, we will now try to check the program we used in the calculations
that led to Fig.4.5. We will use only the small amplitude case in our test.

In Fig. 4.6, the results of the numerical calculations (red curve) are shown on the
left with an analytical solution (dashed blue curve) for the special case when the
pendulum swing is small (maximum +0.023 rad). There is no perceptible difference
between the two curves.

Plotting analytical and numerical solutions in the same figure are a common way
to check that two solutions are in agreement with each other. However, this is a very
rough test, because there is limited resolution in a graphical representation. In the
right part of the figure, we have chosen a better test. Here, the difference between
analytical and numeric results is plotted, and we see that there were certainly some
differences, although we did not see this in the left part.

We can now see that the difference is increasing systematically. After six periods,
the difference has increased to 2.7 x 107> rad. Is this an indication that our computer
program is incorrect?
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We know, however, that the analytical solution is itself only an approximation,
and the smaller the swing angle, the smaller will be the error in the approximation.
We can then reduce the amplitude and see what happens. Calculations show that
if the amplitude is reduced to 1/10 of what we have in the figure, the maximum
difference is reduced after six periods to 1/1000 of the earlier value. If we reduce the
amplitude to 1/100 of the original, the maximum difference is reduced to 107 of
the original difference. We see that numerical and analytical solutions are becoming
more and more similar and in a way that we would expect. If we take a look at the
series development for the sine function, it gives us a further clue that our results are
what we would expect.

We can then feel reasonably sure that the program behaves as it should for small
angular displacements, and that it seems to handle larger angles as it should, at least
as long as they remain small.

There is also another test we often have to do in connection with numerical calculations. We
chose to use 1000 steps within each period in the calculations whose results are plotted in Figs. 4.5
and 4.6. For calculations that span very many periods, we cannot use such small time steps. If we go
down to, e.g., 100 calculations per period, the result will still be acceptable usually (depending on
what requirements we impose), but if we go down to, say 10 steps per period, the result will almost
certainly depend markedly on the choice of the step size. We often have to do a set of calculations
to make sure that the “resolution” in the calculations is appropriate and manageable (neither too
high nor too low).

4.9 Reproducibility Requirements

Today it is easy to change a program from one run to another. Ironically, this presents
extra challenges that need to be taken seriously. When we make calculations to be
used in a scientific article, a master’s thesis, a project assignment, and almost in any
context where our program is used, we must know the exact program and parameters
that are used if the results are to have full value. In experimental physics, we know that
itis important to enter in the laboratory journal all details of how the experiments have
been performed. The purpose is that it should be possible to test the results we get.
This is essential for reproducibility and for achieving so-called intersubjectivity (that
the result should be independent of which person actually executes the experiment),
which is extremely important in science and development.

In experimental work, one occasionally succumbs to the temptation of not jotting
down all relevant details while the experiment is underway. Being interested primarily
in the result, we think that when we have come a little further and got even better
results, then we would write down all the details. Such practice often causes some
frustration at a later date, because suddenly we discover that an important piece of
information was never actually noted. At worst, the consequence of this lapse may
be that we have to repeat the experiment, and hunt for the conditions under which
the previous experiment, the results of which proved to be particularly interesting,
was performed.
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Modern use of numerical methods can in many ways be compared to experimental
work in the laboratory. We test how different parameters in the calculation affect
the results, and we use different numerical methods in a similar manner as we use
different measuring instruments and protocols in experiments. This means that there
are stringent requirements for documentation for those who use numerical methods
as for the experimentalist.

In order to comply with this requirement, we should incorporate good habits in
the programming. One way we can comply with reproducibility requirements is to
do the following:

In the program code, insert a ““version number” for your application.

In the result file you generate, the version number must be entered automatically.
Every time you change the program in advance of a calculation that you would
like to make, the version number must be updated.

Each version of the program (actually used in practice) must be saved to disk so
that it is always possible to rerun an application with a given version number.
Parameters which are used and which vary from run to run within the same version
of the program must be printed to a file along with the result of the run.

If we keep to these rules, we will always be able to return and reproduce the
results obtained in the past. It is assumed here that the results are independent of the
computer used for the calculations. If we suspect that a compiler or an underlying
program or an operating system might malfunction, it may be appropriate to provide
additional information about this along with the results (in a result file).

In the specimen programs given in this book, the lines needed for documentation
of parameters and version number are, for the most part, not included in the code. The
reason is that the program pieces provided here are intended primarily for showing
how the calculations can be performed.

4.10 Some Hints on the Use of Numerical Methods

In our context, it is often necessary to create relatively small computer programs to
get a specific type of calculation. There is usually no need to have the fancy interface
to select parameters and fancy presentations of the results as it is for commercial
programs. We need to do a specific task, and the program is usually not used by
many, or very often. This is the starting point for the tips that follow.

Many of the issues we encounter in this book are related to the integration of
differential equations that describe the processes we are interested in. The following
hints are partly influenced by this preoccupation.

Planning

Before we get to the computer, we should have a clear notion of what we want to
achieve. We must have already established the differential equation that describes the
process of our interest and have pondered over the parameters that are to be included
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in the calculations. Current parameter values and initial values need to be looked up
or chosen by ourselves.

It may be useful to outline how we can partition the program into main compo-
nents, each of which has its separate function. We also have to decide the order in
which we will work through the various parts of the program and have thoughts of
how we can test the different parts individually and together.

It is also natural to ask: Do we want to provide parameters while the program is
running or is it sufficient to insert them into the program code before the program
starts? How will we take care of the results? Should it be in the form of plots or
animations or numbers are printed on screen, or should the final results be written to
file(s) for later processing?

Writing of Code

There should be a one-to-one correspondence between the mathematical description
of a problem (algorithm) and the code. It applies to variables, formulas, etc.

It is recommended to adhere to the programming language guidelines, such as
“PEP 8—Style Guide for Python Code” or “MATLAB Style Guidelines 2.0”.

Try to collect the code lines where parameters are given special values already
as part of the code. This makes it easier to change parameters for later runs. Reset
arrays or give arrays values.

Put together all expressions of fixed constants which will be used in that part of
the program that is most frequently run, in order to avoid more calculation operations
than necessary in a loop. For example, it is a good idea to create a parameter

coeff = 4.0*3.141926*epsilon0*epsilonR*mul*muR

and use this coefficient in a loop that is recalled many times, instead of having to
repeat all these multiplications each time the loop is run (the parameters in this
example have been selected randomly).

A code should be broken up into logical functions. In Python, multiple functions
can be added to one and the same file. In Matlab, various functions are often allocated
to separate files (although it is actually possible to use a similar layout in Matlab as
in Python).

Generalize when you are writing a program, unless it seems inadvisable. For
example, when integrating an expression, a general integral of f(x) is programmed
and then a special f is chosen as its argument. This requires frequent use of functions.
Do not overdo it though, because it obstructs a survey and the readability of the
program.

Testing and Debugging

Make an effort to construct test problems for checking that the implementation is
correct. Functions should be tested as they are written. Do not postpone testing until
code writing is finished!

There are several types of errors that may occur. Some errors are detected by the
compiler. Read the error message carefully to see how such errors can be corrected.
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Other errors appear when running the program. For example, we can end up in an
infinite loop and must terminate the program manually. It is not always easy to find
out where in the program code such a fault is located. It is then useful to add dummy
print-to-screen here and there in the code so we can locate that line in the code where
the problem occurs.

While we are going through program development and testing, it is important to
save the program several times along the way, and preferably change names some-
times, in order to avoid a potential catastrophe. Then we will not have to start all
over again if you lose everything in a file.

Check that the program provides the correct result for a simplified version of the
problem, where there is also an analytical solution. This is crucial!

Repeat the calculations using different resolutions (often given by At) to see how
many points are needed to get a good match with the analytical answer or to verify
that the result depends only to a small extent on moderate changes in resolution.

Forms of Presentation

Plot the results or present them in some other form. Save data to file if desired.

Simple plots are often sufficient, but we can rarely read precise details from a
plot, at least not without having chosen a very special plot that displays just what we
want to show. Sometimes, the choice of linear or logarithmic axes in a plot is crucial
for whether we discover interesting relationships or not.

Make sure that the axes in the plot are labelled properly that symbol sizes and line
thicknesses and other details in the presentation meet the expected requirements.

In reports, articles and theses, one is a requirement that numbers and text along
the axes of the plots must be readable without the use of magnifying glass (!) in the
final size the characters have in a document. This means that numbers and letters
should have a size between 9 and 12 pt in final size, and indexes may be even a bit
smaller).

When using Matlab, it is a good idea to save figures which do not fill the entire
screen (use default display of figures on screen). Then the font size will be sufficiently
large even if the figure is reduced to approximately the same format as used in this
book. However, if the image size is reduced too much, the font size in the final
document will become too small. You can choose, for example, line thickness and
font size in plots generated by Matlab and Python. The following code piece indicates
some of the possibilities that exist (the example is in Matlab, but there are similar
solutions in Python):

axes ('LineWidth’,1, 'FontSize’, 14, 'FontName’, 'Arial’);
plot(t,z,’-r’, 'LineWidth’,1);
xlabel (‘Time (s)’, 'FontSize’,16, 'FontName’, 'Arial’);

Learn good habits as early as possible—it will pay off in the long run!
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Reproducibility

When we believe that the program as whole works as it should, we can finally embark
upon the calculations for the particular project we are occupied with. Reproducibility
requirements must be adhered to when the program now receives a solemn version
number, and the program code must be saved and not changed without a new version
number.

Files that document later runs must be preserved in a manner similar to a laboratory
record.

4.11 Summary and Program Codes

Summary of the Chapter

Let us try to summarize the key points in our chapter:

e A second-order differential equation can be considered equivalent to two
coupled first-order differential equations.

e In a single differential equation, we replace the derivative d f/d¢ with the
differential quotient Af/At. Starting from this approximate equation and
initial conditions, we can successively calculate all subsequent values of
f (). This method is called Euler’s method. The method often gives large
errors, especially when we are dealing with oscillations!

e There are better methods for estimating the average slope of the function
during the step At than just using, as we in Euler’s method, the derivative
at the beginning of the interval. One of the most practical and robust meth-
ods is called fourth-order Runge—Kutta method. In this method, a weighted
average of four different calculated increments in the interval Af is used
as the starting point for the calculations. The method often provides good
consistency with analytical solutions where these exist, also for oscillatory
phenomena. However, we must be aware that this method is not exempt
from error, and for some systems it will not work properly.

e For second-order ordinary differential equations, such as the equation for
oscillation, we can find the solution if we know the differential equation and
the initial conditions. For the second-order partial differential equations, for
example, a wave equation, we must in addition know the so-called boundary
conditions not only at the start but also throughout the calculations. This
makes it often far more difficult to solve partial differential equations than
ordinary other order diffusions.

e It is valuable to compare numerical calculations and analytical calculations
(where these exist) to detect errors in our programming. However, even if
the conformity is good in such special cases, there is no guarantee that the
numerical solutions will be correct also for other parameter values (where
analytical solutions are not available).
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e The program code is divided into an appropriate number of separate func-
tions that have their own task. In this way, the logical structure of the program
will clarify. Some features can be made so general that they can be reused
in many different contexts. For example, we can create one general Runge—
Kutta function that calls for a more specialized function that contains the
appropriate differential equation (where only the last small function will
vary from problem to problem).

e Since we can easily change programs and parameters, it is a big challenge
to keep track of how the computer program looked and what parameters
we used when we made calculations and arrived at results we would use.
Some systematic form of documentation is imperative, where program, input
parameters and results can be linked to each other in a clear way.

Pseudocode for Runge-Kutta Method *

The input to this function is x[n-1], v[n-1] and t[n-1] and

returns x[n] and v[n].

1. Use the input parameters in order to find the
acceleration, al, in the start of the interval.
The speed in the start of the interval, vl, is given as
an input parameter.
x1l = x[n-1]
vl = v[n-1]
al =

2. Use this acceleration and speed to find an estimate for
the speed (v2) and position in the middle of the interval.
X2 =

v2 =

3. Use the new position and speed to find an estimate for
the acceleration, a2, in the middle of the interval.
a2 =

4. Use this new acceleration and speed (a2 and v2) to find
a new estimate for position and speed (v3) in the middle
of the interval.
x3 =

v3 =

5. Use the new position, speed and time in the middle of
the interval to find a new estimate for the acceleration,
a3, in the middle of the interval.
a3 =

79
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Use the last estimate for the acceleration and speed in
the middle of the interval to find a new estimate for the
position and speed (v4) in the END of the interval.

x4 =

vd =

Use the last estimate for position and speed to find an
estimate for the acceleration in the END of the interval, a4.
ad =

A mean value for speed and acceleration in the interval
is calculated by a weighted, normalized sum:

vMiddle = 1.0/6.0 * (vl + 2*v2 + 2*v3 + v4)

aMmiddle = 1.0/6.0 * (al + 2*a2 + 2*a3 + a4)

Finally, use these weighted mean values for speed and
acceleration in the interval to calculate the position
and speed in the end of the interval.

The function return this position and speed.

X [n] =

vin] =

return x[n], vI[n]

Matlab Code for Runge-Kutta Method

Important

The code of most of the example programs in this book is available (both for Mat-
lab and Python) at a “Supplementary material” web page. At the same web page,
files required for solving some of the problems are available as well as a list of
reported errors, etc. The address for the “Supplementary material” web page is
http://www.physics.uio.no/pow.

function [xp,vp,tp]l = rkdx(xn,vn,tn,delta_t,param)

o° O 00 P AP P Jd° d° J° d° o°

oe

Runge-Kutta integrator (4th order)

BRI R R R R I R R R R R Rk

This version of a 4th order Runge-Kutta function for Matlab
is written by AIV. Versjon 09282017.
This function can be used for the case where we have two
coupled difference equations

dv/dt = ffa(x,v,t,param)

dx/dt = v NOTE: This part is taken care of automatically

in this fuction.

Input parameters: x,v,t can be position, speed and time,
respectively. delta_t is the step length in time.
param 1s a structure in Matlab (in Python it is called a


http://www.physics.uio.no/pow
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o

class). It contains various parameters that is used to

o

describe the actual second order differential equation.

o

It MUST contain the name of the function that contains

o

the differential equation. The class "param" the user has
to define.

oe

% Input argumentents (n: "now")

% [xn,vn, tn,delta_t,param] = values for x, v and t "now".

% Output argumentets (p : "n plus 1")

% [xp,vp,tp] = new values for x, v and t after one step in
delta_t.

BRI R R R R R S R R R R Sk kI

o°  oe

ffa = eval([’'@’ param.fn]); % Picks up the name of the
% Matlab-code for the second derivative. Given as a text
% string in a structure param.

half_delta_t = 0.5*delta_t;
t_p_half = tn + half_delta_t;

x1l = xXn;
vl = vn;
al = ffa(xl,vl,tn,param);

x2 = x1 + vl*half_delta_t;
v2 = vl + al*half_delta_t;
a2 = ffa(x2,v2,t_p_half,param);

x3 = x1 + v2*half_delta_t;
v3 = vl + a2*half_delta_t;
a3 = ffa(x3,v3,t_p_half,param);

tp = tn + delta_t;

x4 = x1 + v3*delta_t;

vd = vl + a3*delta_t;

ad = ffa(x4,v4,tp,param) ;

% Returns (estimated) (x,v,t) in the end of the interval.
delta_t6 = delta_t/6.0;

xp = xn + delta_t6* (vl + 2.0*(v2+v3) + v4);

vp = vn + delta_t6*(al + 2.0*(a2+a3) + a4);

tp = tn + delta_t;

return;
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The Function that Contains the Differential Equation

function dvdt = forced(y,v,t,param)

%*********************************************************

o

o° oe

o

o° oe

o

o

o° O 00 o° of o°

o

This function is calculating the accelleration of a
mass-spring oscillator that is influenced by an external
periodic force that last only for a limited time interval.
The trivial first order diff.eq. dx/dt = v is taken care
of automatically in rk4x. The function "forced" is used
by a RK4 function, but the necessary parameters are
defined by the main program (given separately).

Written by AIV. Versjon 09282017.

Input parameters:
y = position
v = speed
t = time
Output parameters:
dvdt = Left side of an equation in a difference equation
for v.

%*********************************************************

o° oe

oe

The external periodic force last from the start of
calculation until the time is param.end. See the main
program for explanations of the other param items.

if (t < param.end)
dvdt = - param.A*v - param.B*y + param.C*cos (param.D*t) ;
else
dvdt = - param.A*v - param.B*y;
end;
return;
Example:

Matlab Program that Uses the Runge-Kutta Method

A program for calculating forced mechanical oscillations (spring pendulum) is
given below. It shows how Runge—Kutta method is used in practice if we program
the Runge—Kutta routine itself.

function forcedOscillationsl?7

o0 o° o° o°

o

An example program to study how forced oscillations which
start with a mass-spring oscillator with no motions. The
external force is removed after a while. The program calls
the functions rk4r.m which is also using the function
forced.m.
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global param;

% Constants etc (see theory in previous chapters) in SI units
omega = 100;

= 25;

= 1.0e-2;

= m*omega*omega;

= m*omega/Q;

= 40;

time = 6.0; % Force only present halv of this time, see later

)

% Parameters used in the calculations (rk4.m, tvungen.m)

oo~ 8 0

param.A = b/m;
param.B = omega*omega;
param.C = F/m;

param.D = omega*1.0; % If this value is 1.0, the angular

frequency of the force equals the

o°  of

angular frequency for the system.
param.end = time/2.0;

param.fn = ‘forced’; % Name of Matlab file for 2. derivative
% Choose number steps and step size in the calculations

N = 2e4; % Number calculation points
delta_t = time/N; % Time step in the calculations

oe

Allocate arrays, set initial conditions
= zeros(1,N);

= zeros(1l,N);

= zeros(1l,N);

(1) = 0.0;

(1) = 0.0;
(1) = 0.0;

g K addK

)

% The loop where the calculations actually are done
for j = 1:N-1

ly(3+1), v(3+1), t(3+1)]l=rkdx(y(J),v(J),t(J),delta_t,param);
end;

% Plot the results

plot(t,y,’ -b’");

maxy = max(y);

xlabel ('Time (rel units)’);

ylabel ('Position of the mass (rel. units)’);

axis([-0.2 time -maxy*1.2 maxy*1.2]); % want some
% open space arround the calculated results

We should also have compared our results with the analytical
solution of the differential equation in order to verify

o0 o0 0P

that our program works fine. Not implementet in this

oe

version of the program.
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Using Matlab’s Built-in Runge-Kutta Function *

Finally, here is a specimen program for calculating damped oscillations, if we use
Matlab’s built-in solver of ordinary equations (ode) using the fourth-order Runge—
Kutta method. First, we enter the main program we called dampedOscill.m (the name
is insignificant here) and then follows a small application snap ourDiffEq.m that the
main application calls. Matlab’s equation solver requires a small additional function
that specifies the current differential equation as such and that is the one given in
vaarDiffLign.m.

function dampedOscill
Program for simulation of damped oscillations.
Written by FN. Version 09282017

o0 oe

% Solves two copuled differential equations
% dz/dt = v
% dv/dt = - coefl v - coef2 z

clear all;

% Defines the physical properties for the oscillator
% (in SI units).

b = 3.0; % Friction coefficient

m = 7.0; % Mass

k = 73.0; % Spring constant

% Reminder:

% Overcritical damping : b > 2 sqgrt(k m)

% Critical damping : b = 2 sgrt(k m)

oe

Undercritical damping: b < 2 sqgrt(k m)

coefl = b/m;
coef2 = k/m;

% Initialconditions (in SI-units)

z0 = 0.40; % Position rel. equilibrium point
v0 = 2.50; % Velocity

% Time we want to follow the system [start, end]
TIME = [0,20];

% Initial values
INITIAL=[z0,vO0];

oe

We let Matlab perform a full 4th order Runge-Kutta
integration of the differential equation. Our chosen

o

o

differential equation is specified by the function

oe

ourDiffEqg.

% T is time, F is the solutions [z Vv], corresponding to the
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o

running variable t (time) and f is the running variable
[z(t) v(t)] that Matlab use through the calculations.
Matlab chooses itself the step lengths in order to give

o° oe

o

proper accuracy. Thus, the calculated points are not

oe

equidistant in time!

[T F] = oded45(@(t,f) ourDiffEg(t,f,coefl,coef2),TIME, INITIAL);

)

% Plot the results, we choose to only plot position vs time.
plot(T,F(:,1));

oe

length(T) % Option: Write to sceen how many points Matlab

% actually used in the calculation. Can be useful
% when we compare with our calculations with our
% own Runge-Kutta function.

% We should also compare our results with the analytical

oe

solution of the differential equation in order to verify

oe

that our program works fine. Not implementet so far...

Our Own Differential Equation

Here comes the small function that gives the actual differential equation (in the
form of two coupled difference equations):

function df = ourDiffEqg(~, f,coefl,coef2)

% This function evaluate the functions f, where f(1) = z and
% £(2) = v. As the first variable in our input parameters we
% have written ~ since time does not enter explicitely in our
% expressions.

df = zeros(2,1);

%The important part: The first differential equation: dz/dt = v
df (1) = £(2);

% The second differential equation: dv/dt = -coefl v - coef2 z
df (2) = -coefl*f(2)-coef2*f(1);
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4.11.1 Suggestions for Further Reading

The following sources may be useful for those who want to go a little deeper into

this material:

e Hans Petter Langtangen: A Primer on Scientific Programming with Python. 5th

Ed. Springer, 2016.

e http://en.wikipedia.org/wiki/Semi-implicit_Euler_method (accessed 01.10.2017)

http://en.wikipedia.org/wiki/
Numerical_partial_differential_equations

4.12 Learning Objectives

After working through this chapter, you should be able to:

Know that a second-order differential equation can be considered equivalent
to two coupled first-order differential equations.

Solve a second-order differential equation numerically using the fourth-
order Runge—Kutta method.

Explain why numerical methods can handle, more frequently than analytical
methods, complex physical situations, such as nonlinear friction.

e Point to some factors that could cause numerical calculations to fail.
e Explain in detail why the fourth-order Runge—Kutta method usually works

better than Euler’s method.

Make a reasonably good test that a computer program that uses numerical
solution methods works as it should.

Put into practice your practical experience in using numerical methods to
integrate an ordinary differential equation or a partial differential equation.
Know and have some practical experience working out a computer program
with several functions that interact with each other and could explain the
purpose of such a partitioning of code.

Know and have some experience with troubleshooting and know some prin-
ciples that should be used to avoid postponing comprehensive troubleshoot-
ing until most of the code is written.

Know how we can proceed to consolidate documentation of programs and
parameters associated with the calculated values.

Know why it is a good idea to save a computer program under a new name
just as it is, while one is going through modifications to the program.


http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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4.13 Exercises

Suggested concepts for student active learning activities: Discretizing, algorithm,
numerical method, Euler’s method, Runge—Kutta’s method, accuracy, coupled dif-
ferential equations, partial differential equation, documentation for programming
activities.

1.

2.

Comprehension/discussion questions

Why does the fourth-order Runge—Kutta method usually work better than Euler’s
method?

Figure 4.7 shows the result of calculations of a pendulum motion for the case that
there is some friction present. The figure shows position (angle) as a function of
time (left part) and angular velocity as a function of position (angle) in the right
part (also called a phase plane plot). The two upper figures result from an initial
condition where the pendulum at time ¢+ = O hangs straight down, but at the
same time has a small angular velocity. The lower figures result from an initial
condition which is the same as for the upper part, but that the initial angular
velocity is a good deal greater than in the first case.

Explain what the figures say about the motion (try to bring as many interesting
details as possible). How would the figure look if we increased the initial angular
velocity even more than the one we have in the lower part of the figure?

. Try to outline the working steps involved in analytical calculations of an oblique

projectile throw with or without friction (or planetary motion around the sun).
What do we spend most of the time on, and what do we concentrate on when
we inspect the calculation afterwards? Attempt to outline the work plan for a
numerical calculation and how we examine the result of such a calculation.
What are the pros and cons of each method? Also try to incorporate physical
understanding of the mechanisms of motion.

Problems

Remember: A “Supplementary material” web page for this book is available at

http://www.physics.uio.no/pow.

4 The purpose of this composite task is to create your own program to solve

different order differential equations using the fourth-order Runge—Kutta method
(RK4) and to modify the program to cope with new challenges. Feel free to get
extra help to get started! Specific assignments are as follows:

(a) Write a computer program in Matlab or Python that uses RK4 to calculate
the damped harmonic motion of a spring pendulum. The program should consist
of at least three different parts/functions following a similar scheme outlined
in Sect.4.7. You should not use Matlab’s built-in Runge—Kutta function. The
program should be tested for the case: m = 100g, k = 10N/m, and the friction


http://www.physics.uio.no/pow
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4.7 Motion of a simple pendulum. Position vs time is shown to the left and phase space

presentation of the motion to the right. See the text for a detailed description

is assumed to be linear with the coefficient of friction » = 0.10kg/s. Initial terms
are z(0) = 10cm and [dz/dt];—o = Om/s. Conduct a test of which time steps
are acceptable and check if there is agreement between numerical calculations
and analytical solution. Put correct numbers, text and units along the axes of the
plots. Add a copy of your code.

(b) Modify the program a little and change some parameters so that you can
create a figure similar to Fig.2.5 that shows the time course of the oscillation
when we have subcritical, critical and supercritical damping. Explain how you
chose the parameters. [We assume that the tests you did in (a) with respect to time
resolution and comparison with analytical solutions do not need to be repeated
here.]

(c) Modify the program so that it can also handle forced vibration (may last for
the entire calculation period). Use m = 100g, k = 10N/m, b = 0.040kg/s and
F =0.10Nin Eq. (3.1). Try to get a plot that corresponds to the initial part of
each of the time courses we find in Fig. 3.7.

(d) Use this last version of the program to check that the “frequency response”
of the system (a la Fig. 3.8) comes out to be correct, and that you can actually
read the approximate Q value of the system from a plot made by you.
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5. Write your own program to calculate the time development of a damped oscillator
using the fourth-order Runge—Kutta method. Test that it works by comparing the
results for analytical solution and numerical solution for a case in which they
should be identical. How large is the error in the numerical solution for the
position (relative to maximum amplitude)? If you choose the time step Az, we
ask you to test at least two to three different options for Ar to see how much this
choice means for accuracy.

6. Carry out calculations of forced oscillations for a variety of different applied
frequencies and check that the quality factor expression in Chap. 2 corresponds
to the frequency curve and the alternative calculation of Q based on the half-value
and centre frequency.

7. Study how fast the amplitude grows by forced oscillations when the applied
frequency is slightly different from the resonant frequency. Compare with the
time course at the resonance frequency. Initial conditions: the system starts at
rest from the equilibrium point.

8. Find out how the calculations in the previous tasks have to be modified if, for
example, wanted to incorporate an additional term —cv? x (9 /v) for the friction.
Feel free to comment on why numerical methods have a certain advantage over
analytical mathematical methods alone.

9. This task is to check if the superposition principles apply to a swinging spring

pendulum with damping, first in the case that the friction can be described only
with a —bv, that the friction must be described by —bv — sv?, or rather: —bv —
s|v|v to take account of the direction (see Chap. 2 where this detail is mentioned).
In practice, the task involves making calculations for one swing mode, then for
another, and then checking if the sum of solutions is equal to the solution of the
sum of states.
The physical properties of the spring pendulum are characterized by b = 2.0,
s =4.0, m = 8.0 and k = 73.0, all in SI units. Make calculations first with
the initial conditions zo = 0.40 and vy = 2.50, and then the initial conditions
zo = 0.40 and vy = —2.50. Add the two solutions. Compare this sum with the
solution of differential equation when the initial conditions are equal to the sum
of the initial conditions we used in the first two runs. Remember to check the
superposition principle both for runs where —s|v|v is present and where it is
absent. Can you draw a preliminary conclusion and put forward a hypothesis
about the validity of the superposition principle based on the results you have
achieved?

Note: In case you use Matlab’s built-in solver, the times will not match the two runs. You must
then take into account the time series corresponding to one run and use interpolation when the
addition of the result for the second run is to be performed. Below is an example of how such
an addition can be made. Ask for help if you do not understand the code well enough to use it
or something similar in your own program.

Addition of two functions Zl(t) and Z2(t’), where t is
elements in T1 and t’ in T2. The two series have the same
start value (and end value), but is different elsewhere.
nl = length(T1l) and n2 = length(T2). The function only

o0 o° of o°



90 4 Numerical Methods

% works for n2>=nl. Modify the code if that is not the case.

% Use Tl as basis for for the summation
712 (1)=21(1)+22(1);
for i = 2:nl
% Find index to the last point in T2 less than T1 (i)
j=1;
kL = -1;
while kL<O
if (T2(3)<T1(i)) j=j+1;
else;
kL=j-1;
end;
end;
% The first point in T2 is then larger or equal the
% T1(i) index:

kH = kL+1;
% Summation of the two solutions (linear interpolation)
712 (1) = 21(i)+22 (kL) + (2z2(kH)-22(kL))...

*(T1(i)-T2 (kL)) /(T2 (kH) -T2 (kL)) ;
end;

4.13.1 An Exciting Motion (Chaotic)

11. Letus look at a nonharmonic “swing” that is beyond analytical mathematics. We
consider a ball that is bouncing vertically up and down influenced by gravity, and
we assume, for the sake of simplicity, that there is no loss. The special aspect
here is that the floor oscillates vertically and has much greater mass than the
bouncing ball so that the motion of the floor is not affected by the ball.

The velocity of the floor is described as u(¢) = A cos(wt) = A cos(¢(2)). The
ball has a speed of v; down just before it hits the floor, but according to mechanics,
the speed v;+; = v; + 2u(t) will rise soon after the ball has hit the floor. We
assume that the ball bounces so high in relation to the amplitude of the floor
that we can make the approximation that the time the ball uses from leaving the
floor until it hits the floor again is independent of the position of the floor and
depends only on the speed the ball had when it last left the floor. This time is
At; = 2v; /g where g is the acceleration due to gravity. Note that At varies from
bounce to bounce.

With these approximations, the phase difference between the floor oscillation
and the oscillations of the ball until their next encounter is:

2w
Api = At w="—v, =y (4.13)
g
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where y is a “normalized velocity” that depends on the constants g and w and
varies as v;. The term “velocity” is a little misleading, but since g and w are
both constant in our context, y varies linearly with the velocity of the floor at the
instant the ball hits it. When y; = 2, the bounce will equal exactly one period
in the oscillation of the floor.

We can then set up the following algorithm to calculate a new bounce based on
the knowledge of the previous bounce in the following way:

¢(n+ 1) = [modulo 2] (¢ (n) + y (n)) 4.14)

where [modulo 2] means that we take the modulo of what we calculate (to
ensure that ¢ is in the range of [0, 27 >). And further:

y(n+1)=ym) +acos(p(n+ 1)) 4.15)

where o o< A.

In this description, we operate with “normalized velocity” y (n), which is pro-
portional to the initial velocity of each bounce, and with ¢ (n), which is the phase
of the floor motion just as nth bounce begins. The quantity « is proportional to
the amplitude of the floor, and for simplicity we will choose an amplitude cor-
responding to o = 1.0.

We will plot the results in a form of phase plot, but not quite. We let the phase of
the oscillation ¢ (n) lie along the x-axis and “normalized velocity” y (n) along
the y-axis.

Create a plot showing points (¢ (n), y (n)) for N number of bounces. During the
test you can, for example, take N = 2 x 10, but when the program works with-
out errors, you may want to expand this to e.g. N = 2 x 10° if the calculation
time is still acceptable.

Remember to allocate space to the “phi” and “gamma” array before you enter
the loop using the algorithm in Eqs. (4.14) and (4.15).

Note: Do not connect the points with lines! Plotting of the points can be done in
Matlab, for example, as follows:

plot (phi,gamma, ‘r’, 'MarkerSize’,2);

Try the following initial conditions for (phi, gamma): (0.0, 1.0), (7 /2, 0.0), (1.4,
1.71), (1.4, 1.75). Also try other initial values to create a picture of various
movements that may occur. Try to describe in words different forms of motion.



Chapter 5 ®)
Fourier Analysis oo

Abstract In this chapter, the first major challenge is to understand the difference
between two descriptions of a signal: one in the time domain and another in the
frequency domain. We initially use a gradual increase in complexity to help the
reader grasp the difference. We then use phasors in order to introduce positive and
negative frequencies, a detail that is encountered later. The formal mathematical
Fourier transform and inverse transform are then introduced as well as Fourier series.
The remainder of the chapter is devoted to discrete Fourier transform in the form of
fast Fourier transform (FFT). All exact details on intervals in time and frequency are
stated with great care. Important details like aliasing/folding and sampling theorem
are given. We also analyse a time-limited oscillating signal and get our first encounter
with the bandwidth theorem, and a theme we will recur to in several later chapters
of this book.

5.1 Introductory Examples

5.1.1 A Historical Remark

Fourier transformation and Fourier analysis bear close resemblance to the medieval
use of epicycles for calculating how planets and the sun moved relative to each other.
That gives us an inkling of how powerful Fourier analysis is, but at the same time
it reminds us that Fourier analysis can sometimes hinder a deeper understanding of
the phenomena around us. Several later chapters in this book are based on a good
understanding of Fourier transformation, including the awareness of the danger to
think and argue almost in the same manner as in the Middle Ages.

5.1.2 A Harmonic Function

Before delving into the details about Fourier transformation, it will be useful to take
alook at Chap. 2. We saw that a harmonic function can be written in several different
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Fig. 5.1 Section of a harmonic function plotted, in the left part, as a function of time (“time
domain”) and, in the right part, as a function of frequency (“frequency domain”). See text for other
details

ways: _
z(t) = Ccos(wt + ¢) = Acos(wt) + Bsin(wt) = N {@e’“”} . (5.1)

9 {} means that we take the real part of the complex expression within the braces,
and Z is a complex number.

In the left part of Fig.5.1, we have plotted a section of an arbitrary harmonic
function of time. Amplitude C is 2.2 in some unspecified units and the frequency
f = 440Hz, which corresponds to the period 7 ~ 2.27ms ~ 1/440s. We chose the
phase shift @ = 110°. This means that the value of the function is neither zero nor
at the maximum at time ¢ = 0.

The three parameters C, w = 27 f and ¢ specify the function z(¢) = C cos(wt +
¢) unambiguously. Using the identities in Chap. 2, this function can also be expressed
as A cos(wt) + B sin(wt). In that case, A = C cosp ~ —0.76 and B = —C sin ¢ ~
2.06. The three parameters that specify the function completely are A, B and w.

Usually we plot a function of time as has been done in the left part of Fig.5.1.
However, we can also display the function graphically in an altogether different
way, which is done in the right part of the figure. Here we have frequency along
the x-axis and the coefficients A and B along the y-axis, and colour coding has
been used to distinguish A from B. Since we have fime along the x-axis in the left
part of Fig.5.1, we call this a “time-domain” representation of the function. For the
right part, the frequency is along the x-axis, and we therefore call this a “frequency-
domain” representation. Both representations contain (under certain assumptions)
the same information.

In the frequency-domain picture, we have also displayed C. Occasionally we are
interested only in amplitudes and not phases. Then C = +/A2 + B2 is useful, and C
is always positive (or zero). However, C and w alone are not sufficient to determine
the function unambiguously—phase information is missing.

If we use the last expression in Eq. (5.1), we can also specify the function as
follows:
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Fig. 5.2 A segment of a function that is a sum of two harmonic functions with frequencies 440
and 610Hz plotted, one the left, as a function of time (“time-domain picture”) and on the right
as a function of frequency (“frequency-domain picture”). The colour coding is the same as in the
previous figure. See text for other details

z(t) = R {2e"'} . (5.2)

It is important to remember that & is a complex number, and that ¥ = A — iB so
that & is the detail in Eq. (5.2) that contains the information about the phase of the
harmonic function. The amplitude C is the absolute value of the complex number 2.

If you do not remember all the details in Chap. 2 which are used in transforming
one version to another in Eq. (5.1), it is recommended that you revise that section
now. In the rest of this chapter, we will use the rendering given in Eq. (5.2), and it is
very important to fully understand this expression.

At present we need to refer only to the mathematics in Chap. 2. We will show that,
by using a so-called Fourier transform, we can generate the plot in the right part of
Fig.5.1 completely automatically. The prime purpose of this introductory part is to
find out what are meant by the terms “time-domain picture” and “frequency-domain
picture”.

5.1.3 Two Harmonic Functions

Let us see now what happens when we have a sum of two harmonic functions. The
time-domain picture is given in the left part of Fig.5.2. Since we have generated this
function ourselves, we know that it is described by

z(t) = Cycos(wit + ¢1) + Ca cos(wat + ¢2) (5.3)

where all the six parameters appearing above are known.
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We can also use the alternative form:
z(t) = Ay cos(wit) + By sin(wit) + Ay cos(wat) + By sin(wat) 5.4)

where Aj, Ay, B) are B, are to be found by using Cy, ¢;, C, and ¢,, and, since the
frequencies w; and w; are known, we can make a frequency plot corresponding to
this function. Such a plot is shown in the right part of the figure.

Someone who did not know how the function was generated, and obliged to
evaluate it only from the time plot in the left part of Fig.5.2, would find it difficult
to say with certainty that this a sum of only two harmonic signals. It would be quite
a challenge to determine the amplitudes and phases.

However, with the help of Fourier transformation, which is the subject of this
chapter, we can use the time plot to calculate, automatically, Ay, A, By, By, wi, and
wy and we can confirm that there are no other contributions to the signal. You may
now appreciate how useful Fourier analysis can be!

We recall the rendering based on Euler’s formula and complex coefficients. For
two harmonic functions, this takes the form:

2(t) = R{21e“" + e’} (5.5)

It is important to realize that all three form of writing in Egs. (5.3), (5.4) and (5.5)
are equivalent.

Since the coefficients 2, and %, can be determined by Fourier transformation,
they are commonly called Fourier coefficients of the z(¢) function.

5.1.4 Periodic, Nonharmonic Functions

In the last example, the signal was nonperiodic. In many parts of physics, we deal
with periodic functions. An example is shown in Fig.5.3. Looking at this feature in
the time-domain picture, it is hard to understand that such a signal can be described
in a relatively simple way.

Since we have generated the signal ourselves, we know how it was constructed.
The signal is made as a sum of six harmonic functions, each of which is described
by aset of [A;, B;, w;]-values. In order to get a periodic signal, each w; was taken as
nwy, an integral multiple of the lowest value wy, called “the fundamental frequency”.
In our case, wg = 610Hz and n = 1, 2, ... 6. The right part of Fig.5.3 shows how
the frequency-domain picture in this case looks like.

It is pleasing to note that even in this case we succeeded, thanks to a Fourier
transformation, in analysing the z(¢) signal directly, and in finding how the signal
was composed. It would be almost impossible to extract these details without Fourier
transformation, as there are 18 different parameters to be determined. We will come
back to the details later.
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Fig. 5.3 Time-domain picture on the left shows a section of a periodic, nonharmonic function and
on the right is shown the corresponding frequency-domain picture. See text for other details

It turns out that the more a periodic signal differs from a pure sinusoid, the more
harmonic functions (higher n values) are needed for describing it.

We remind the reader that if we choose Euler’s formula and complex coefficients,
a periodic function would look like this:

N
2(t) =N Z G, et

n=1

In our case N = 6.

5.1.5 Nonharmonic, Nonperiodic Functions

In the end, we look at something rather odd. We have seen in the three previous
examples that it is possible to make many different signals by combining harmonic
functions with different amplitudes and phases. As we shall see immediately, an
arbitrary function, including nonharmonic and nonperiodic functions, can be written
as a sum of harmonic functions as follows:

N N
2(t) = Z C, cos(wut + ¢n) = N Z D eln (5.6)

n=1 n=1

for some large N. Occasionally, we have to use a very large number of frequencies
in the description of a function. We can then replace the summation by an integral
with a continuous function Z(w) that specifies the coefficients:

+00
2(t) =N { @(w)em} (5.7)

w=0
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Fig. 5.4 Left part is a “time-domain picture” of a nonperiodic, nonharmonic function, and on the
right is the “frequency-domain picture” of the same function. See text for other details

In Fig. 5.4, we have created a signal that is built by adding more than 3000 har-
monic functions with frequencies lying in a wide band centred around 610 Hz. The
amplitude varies randomly, but the largest amplitudes occur only for frequencies in
the broad region near 610 Hz. The phases are random. The sum signal is then both
nonharmonic and nonperiodic, as indicated in the time plot on the left. An analysis
similar to that we have done in the previous examples gives the coefficients (and
amplitudes) indicated in the right part of the figure.

5.2 Real Values, Negative Frequencies

It is a little tiresome that when we use the functional form given in Eq. (5.2), we
always have to find the real value N of the complex expression inside the braces on
the right. There is a useful trick to get around this problem.

The basic element is this equation is the exponential term ¢'” and Euler’s formula
€' = cos(wt) +isin(wt). This relation is often illustrated through phasors.

The function z(#) = C cos(wt + ¢) can be described by a phasor which at time
t has an orientation as shown in Fig.5.5. The phasor rotates in a positive direction
(anticlockwise) with the angular frequency w, and it is always the component along
the x-axis (the real axis) that indicates the value of z(7).

If we now create a vector of the same length C, but always reflected about the
x-axis relative to the previous one, rotating in the negative direction (clockwise), the
sum of this phasor and the previous will always be along the x-axis. There will be
no imaginary contribution!

The maximum value of the sum of the two vectors will be equal to 2C, so we need
to enter a factor of 1/2 to correct for this. The maximum of the sum vector occurs
every time wt + ¢ is an integer multiple of 27.

iwt
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Imaginary axis A

i Csin(wt + ¢) —>
A Phasor™
Real axis
—>
Phasor’ + Phasor
=2C cos(ot + ¢)
~ = 2Acos(wt) + 2Bsin(wf)
i Csin(-ot - ) —> Phasor

Fig. 5.5 Common phasor description (in red) of a harmonic function C cos(wt + ¢) at time 7. A
second phasor is also drawn (in green), which is the reflection of the original phasor about the
x-axis, and rotates therefore the opposite way. Adding the two vectors, we get a resultant (blue)
that always lies along the real axis, but has twice the length we are interested in

‘We have now put sufficient pictorial flesh on algebraic bones to make the following
formula palatable:

Ccos(wt + ¢) = % {26 + 7% '} = = | Ze“' +c.c. (5.8)

R =

where the asterisk in Z* and “c.c.” stands for “complex conjugate”.

We see that by introducing “negative frequencies”, we can avoid having to take
the real value of the complex function Ze'“".

Fourier analysis uses the connection given in Eq. (5.8), which means that what
was said in the introductory examples was not the whole truth. If we actually do a
Fourier analysis of the first harmonic function we examined, the frequency-domain
picture will have the appearance shown in the right part of Fig.5.6. We receive
contributions from —440 to 4440 Hz. The coefficients in front of the cosine term have
the same value for positive and negative frequency, but only half of the coefficient
A in Eq. (5.1). However, the coefficients in the sine term, which correspond to the
imaginary axis of the phasor diagrams, have changed sign when we go from positive
to negative frequency. Here too the factor 1/2 comes in. The same also applies to the
C’s since C = +/A? + B2

All Fourier analysers of real signals have in principle this positive and negative
division, where the coefficients are complex conjugate of each other. A little later,
under the heading “folding”, we will see that the negative frequencies appear in a
rather odd way in the so-called fast Fourier transform (FFT).
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Fig. 5.6 Frequency-domain picture obtained when we work with only the positive frequencies
on the left. In that case, we must ourselves extract the real part of the expression in Eq. (5.5) if
we use this representation. With normal Fourier transform of real signals, half of the coefficients
P (w) are apportioned to the frequency w and the other half to the frequency —w; furthermore,
the coefficient at a negative frequency is the complex conjugate of the corresponding coefficient at
positive frequency

5.3 Fourier Transformation in Mathematics

So far in this chapter, we have seen several examples of how a continuous signal or
function of time can be written as a sum (or integral) of harmonic functions. This
actually applies in general, as was shown by the French mathematician and physicist
Joseph Fourier (1768-1830).!

We would like to write Fourier’s relation in the following manner:

Let f(¢) be an integrable function of ¢ (usually time) as a continuous parameter.
In physics, f(¢) is often a real function, but mathematically it may be complex.
The function f () can then be described as an integral of harmonic functions
as the limiting value of a sum:

f@t) = / - F(w)e“ dw. (5.9)

o0

Here F'(w) corresponds to Fourier coefficients and is called the “Fourier trans-
formof /. F(w) forms the so-called frequency-domain picture of the function,
while f () represents the time-domain picture.

On comparing with Egs. (5.6), (5.7) and (5.8), we see that we have now changed
the notation to z(r) — f(T) and Z(w) — F(w) and we have availed ourselves of
negative frequencies by allowing the integration to go from minus infinity to plus
infinity. If f(¢) is a real function, F(w) = F*(—w).

Fourier is also known to have demonstrated/explained the global warming effect in 1824.
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The challenge now is to find F (w), and this is where Fourier lends us a helping hand
of giant proportions. He introduced Fourier transformation in analytical mathematics:

Given f (), anew function F (w) (the Fourier transform of f) can be calculated
as follows:

F(w) = % / - F(e “dr. (5.10)

The parameter w is the angular frequency if ¢ represents time. Both ¢ and w
are continuously variables.

You may have come across Fourier transformation in an earlier course in mathematics. In
mathematics, the transformation is often linked to the inner product between two functions, and
one defines a basis of sine and cosine functions and uses Gram—Schmidt process on a function to
find its Fourier transform. Here, we choose a more practical approach in our context.

It may seem difficult to understand that Eq. (5.10) will work as we would like it
to, but let us look at some basic properties in analytical mathematics.

The harmonic functions sin(wt) and cos(wt) together form a complete set of
integrable functions that can describe any other integrable function. The functions
sin(w;t) are orthogonal to sin(wt) when w # wy, all sin(wt) are orthogonal to all
cos(wt). This is embodied in the familiar expression of the delta function:

1 [>
6(w1—w):2— / e Wi gy (5.11)

™ [}

As an example, we now allow £ () to be the simple harmonic function in Eq. (5.1),
but for the sake of simplicity, skip the details of finding the real value. We then write:

ft) = Qe

Substitution in Eq. (5.10) gives:

1 o0 . .
F(w) = ﬂ/ Derte W gy
—0oQ

1 o
F(w) =92 x 2—/ el@1=i gy

a 00

We recognize the last part as the delta function, and the result is that F(w) is zero
everywhere except when w; = w where F(w;) = Z. We therefore see that, in this
case, Eq. (5.10) does indeed work as desired.
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Equation (5.10) gives what we call the Fourier transform of the function f (¢).
In our context, it amounts to exchanging the time-domain description of a
function with one in the frequency domain.

Equation (5.9) gives what we call an inverse Fourier transformation. It takes
us from the frequency-domain representation of a function to a picture in the
time domain.

Note that in a Fourier transform we integrate over time and the exponent
has a minus sign in front. In the inverse transformation, we integrate over
frequency and the exponent has a plus sign in front. Also note that the factor
1/(2m) is only used in one transformation, as we have chosen to express the
two equations that, in part, belong together. Another choice is to use a 1 /+/27
in both Egs. (5.10) and (5.11).

Remarks: Several reasons account for why Fourier transformation became popular
in mathematics and physics. There are many simple mathematical relationships for
harmonic functions. This means that if we have to deal with a troublesome function
f(t) and do not know how to handle it directly, we can use Fourier transforma-
tion as an intermediate step in the calculation. By Fourier transforming the awkward
function, we obtain a linear sum (or integral) of harmonic functions. We can then per-
form mathematical operations on this alternative expression and use inverse Fourier
transformation on the result to retrieve the result we actually wanted. Fourier trans-
formation is therefore used extensively in analytical mathematics for, among other
purposes, solving differential equations.

We know from mathematics that there are several complete sets of functions (e.g.
polynomials), and in different parts of physics, we prefer to choose a basis set that
is best adapted for the particular system under consideration. Fourier transformation
utilizes probably the most widely used basis set of functions; unfortunately, it is also
applied in situations where it is not particularly beneficial.

5.3.1 Fourier Series

A special case in Fourier transformation is of particular interest, especially when
we study Chap. 7 to analyse sound from musical instruments. If f(¢) is a periodic
function with period T, Fourier transformation can be made more efficient than
through the general transformation in Eq. (5.10). The transformation can be specified
by an infinite but discrete set of numbers, called Fourier coefficients, {c;}, the index
k being a natural number between minus and plus infinity(!).
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The Fourier coefficients are calculated by integrating over a single period 7':

1 to+T .
k= —/ f(e *iiqr (5.12)
T J;

where w; = (27/T), that is to say, the angular frequency corresponding to a
function that has exactly one period in the time interval T, and k is an integer.

Since in this case f () is periodic, the lower limit for integration (#y) can be chosen
freely in principle. It is supposed that f (¢) is piecewise smooth and continuous, and
that [ | f (t)|?dt < 400 when the integration is over an interval of length T.

The inverse transformation is then given by the relation:

+00
fy =) ae* (5.13)

k=—o00

where, once again, w; = 27/ T corresponds to a frequency that has precisely
one sine period within the interval T'.

Should f(r) be real, it is easy to see that the symmetry properties of the sine and
cosine functions lead to the relation

o0
f@) =aop+ Z{ak cos(kwit) + by sin(kwqt)} (5.14)

k=1

where
2 to+T
ay =cy +c_x = ?/ f(t) cos(kwqt)dt, (5.15)
to
to+T
by =i(cy —c_p) = T/ f(t) sin(kwqt)dt. (5.16)
fo

Take note of the factor 2 in the last two expressions! The reason for this factor
is the simple recognition that the mean of both sin?> and cos® is 1/2 and another
factor of 2 that was explained above when we mentioned the inclusion of negative
frequencies.

Equation (5.14) along with the expressions (5.15) and (5.16) are as precious as
gold! They show that any periodic signal with period T can be written as a sum of
harmonic signals having exactly integral number of cycles within the period T .
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5.4 Frequency Analysis

Hitherto there has been a lot of mathematics and little physics in this chapter. It is
therefore high time to give a few examples of the practical use of Fourier transfor-
mation.

Fourier transformation is widely used for so-called frequency analysis where
we determine which frequency components are present in a signal. We often call
the frequency-domain picture a “frequency spectrum”. The frequency spectrum is
useful because it often gives a “fingerprint” of the physical processes that lie behind
the signal under consideration.

The number of sunspots increases and decreases over time regularly with an
approximately 11-year cycle, we are often told. What is the basis for such an asser-
tion? We can plot the number of sunspots per year over a number of years. We then
get a curve like the left part of Fig.5.7 where the curve corresponds to the f(z)
function in the theory above. This is the so-called time picture.

In the right part of Fig. 5.7, an extract of the results is shown after a Fourier trans-
formation of the data in the left part. Actually, the results after a Fourier transfor-
mation are complex numbers. However, if we are not interested in getting A cos(wt)
and B sin(wt) separately for the different frequencies, but are rather interested in
the amplitude C = /A2 + B2, we choose to plot the absolute value of the complex
numbers. It is the absolute values that are plotted in the right part of Fig.5.7.

The peaks near the middle of the figure correspond to a harmonic function with
a frequency of 0.09 or 0.10 per year. Since a frequency of 0.09-0.10 per year corre-
sponds to a period of approximately 10-11 years, we get a satisfactory confirmation
that the sunspots in the 300 years analysed have a considerable periodicity at 10—
11years. At the same time, the noise in the plot shows that the indicated time period
is more poorly defined than what we find for example in the movement of a shuttle!

48 * 11 year period
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Fig. 5.7 Left part shows the number of sunspots that appeared annually over the past three hun-
dred years. The right part shows an excerpt from the corresponding Fourier transformed functions
(absolute values of {cy}-s in Eq. (5.12)). The sunspots data were accessed on 30.1.2012 from http://
sidc.be/silso/datafiles
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Fig.5.8 Anexample of sound from a flute displayed both in the time domain and frequency domain.
Amplitudes in the frequency domain are given as absolute values of {c}-s in Eq. (5.12))

In this book, we often use Fourier transformation to analyse sound. For example,
Fig.5.8 shows a time-domain picture and a frequency-domain picture for a audio
signal from a transverse flute. The figure also shows relative amplitudes in the fre-
quency spectrum. We then lose the phase information, but the “strength” of the
different frequency components shows up well.

The spectrum consists mainly of a number of peaks with different heights. The
peak positions have a certain regularity. There is a frequency fy (might have been
called f;), the so-called fundamental tone, such that the other members of a group
of lines have approximately the frequencies kf,, where k is an integer. We say that
the frequencies kfy for k > 1 are harmonics of the fundamental tone and we refer to
them as “overtones”.

The frequency spectrum shows that when we play a flute, the air will not vibrate
in a harmonic manner (like a pure sine). The signal is periodic, but has a different
time course (shape) than a pure sinusoid. A periodic signal that is not sinusoidal
(harmonic) will automatically lead to overtones in the frequency range. It is a result
of pure mathematics.

The reason that it does not become a pure sinusoid is that the physical process
involved in the production of the sound is complicated and turbulence is involved.
There is no reason why this process should end up in a mathematically perfect
harmonic audio signal. For periodic fluctuations with a time course very different
from a pure sinusoid, there are many overtones. The ear will perceive the vibrations
as sound different from that which has fewer harmonics.

Different instruments can be characterized by the frequency spectrum of the sound
they generate. Some instruments provide fewer overtones/harmonics, while others
(e.g. oboe) provide many!

The frequency spectrum can be used as a starting point also for synthesis of sound:
Since we know the intensity distribution in the frequency spectrum, we can start with
this distribution and make an inverse Fourier transform to generate vibrations that
sound like a flute.
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It must be noted, however, that our sound impression is determined not only by the
frequency spectrum of a sustained audio signal, but also by how the sound starts and
fades. In this context, Fourier transformation is of little help. Wavelet transformation
of this type of sound discussed later in the book is much more suitable for such an
analysis.

A tiny detail at the end: In Fig. 5.8, we also see a peak at a frequency near zero.
It is located at 50Hz, which is the frequency of the mains supply. This signal has
somehow sneaked in with the sound of the flute, perhaps because the electronics
have picked up electrical or magnetic fields somewhere in the signal path.

Itis important to be able to identify peaks in a frequency spectrum that corresponds
to the fundamental frequency and its harmonics, and features which do not fit into
such a line-up.

5.5 Discrete Fourier Transformation

A general Fourier transformation within analytical mathematics given by Eq. (5.10)
is based on a continuous function f(¢) and a continuous Fourier coefficient function
F(w).

In our modern age, experimental and computer-generated data are only quasi-
continuous. We sample a continuous function and end up with a function described
only through a finite number of data points. Both the sunspot data and the audio
data we just processed were based on a finite number of data points. Assume that
N data points are registered (“sampled”) sequentially with a fixed time difference
At. The total time for data sampling is 7', and the sampling rate is f; = 1/At. Data
points have values x,, where n =0, ..., N — 1. The times corresponding to these
data points are then given as:

T
th=—n for n=0,1,...(N —1).
N

Based on the N numbers we started with, we cannot generate more than N indepen-
dent numbers through a Fourier transformation. The integral of Egs. (5.10) and (5.9)
must then be replaced by summation sign and the sum extends over a finite number
of data points in both the time domain and the frequency domain.

A side effect of discrete Fourier transformation is that when we Fourier trans-
form N data points x,, taken at times fy, 1, ..., ty—1, the result in practice is
the same as if we had one periodic signal which was defined from minus to
plus infinity, with period T'.

We have seen in the theory of Fourier series that for periodic signals only discrete
frequencies are included in the description. These are:
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2
wr = 7k for k=...,-2,—-1,0,1,2,....

When we record the function at only N instants, as mentioned above, the data
cannot encompass a frequency range with infinitely many discrete frequencies. It is
only possible to operate with N frequencies, namely

N -1 N -1 N -1 N -1
—k f = ——+1,...,-2,-1,0,1,2, ..., —— — 1, ———.
Wk k or k 7 5 ,—1,0,1,2, > 3

Note that the highest frequency included is

IN—-1 1IN-1 £

fSN?

wmax
frar =5 = =373 =3 N

for a sufficiently large N. Here f; is the sampling frequency.
In the original Fourier transformation, e~ entered as a factor in the integrand.
For N discrete data points, this is replaced by the following expressions:

. . 27rkn
—lwt > —lwgt, = 1—k X —T =— 5.17)
N N
The discrete Fourier transformation is thus given by the formula:
1 Nl
P
== xe ¥ (5.18)
n=0
fork =0,..., N — 1. If the set x,, consists of values given in the time domain,

X will be the corresponding set of values in the frequency domain.

Note that here we indicate that k£ runs from 0 to N — 1, which corresponds to
frequencies from 0 to % s & fs, while earlier we let k be between —(N — 1)/2
and +(N — 1)/2, corresponding to frequencies from ~ — f; /2 to &~ + f; /2. Since we
only operate with sine and cosine functions with an integral number of wavelengths,
it does not matter whether we use one set or the other. We come back to this page
when we mention folding or aliasing.

Further, take note of the factor 1/N in this expression. This factor is advanta-
geous for the variant of Fourier transformation we will use, because then we get a
simple correlation between Fourier coefficients and amplitudes, as in the introductory
sections of the chapter.

Through the expression in Eq. (5.17), we have shown that the expression for the
discrete Fourier transform in Eq. (5.18) is based squarely on the same expression as
we had in the original Fourier transformation. The difference is that in the discrete
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case we operate with a function described at N points and that only N frequencies
are included in the description.

The inverse discrete Fourier transformation naturally looks like this:

N—-1
=y Xl vk (5.19)
k=0

forn=0,...,N — 1.

5.5.1 Fast Fourier Transform (FFT)

Discrete Fourier transformation will be our choice when we use Fourier transfor-
mation in this book. We could have written a program ourselves to complete the
procedure given in Egs. (5.18) and (5.19), but we will not do that. It would not be a
particularly effective program if we used the expressions directly. There exists nowa-
days a highly effective algorithm for discrete Fourier transformation that utilizes the
symmetry of the sine and cosine functions in a highly effective way to reduce the
number of computational operations. Efficiency has contributed greatly to the fact
that Fourier transformation is widely used in many subjects, not least physics.

The algorithm was apparently discovered already in 1805 by Carl Friedrich Gauss,
but fell into oblivion (it was of little interest as long as we did not have computers).
The algorithm was launched in 1965 by J. W. Cooley and J. Tukey, who worked at
Princeton University. Their four-page article “An algorithm for the machine calcu-
lation of complex Fourier series” in Math. Comput. 19 (1965) 297-301, belongs to
the “classic” articles that changed physics.

In Matlab and Python, we make use of Cooley and Tukey’s algorithm when
we apply FFT (“fast Fourier transform”) or IFFT (“inverse fast Fourier trans-
form™). With this method, it is advantageous that the number of points N is
exactly one of the numbers 2" where # is an integer. Then we will fully utilize
the symmetry of the sine and cosine functions.

5.5.2 Aliasing/Folding

When using FFT, we need to take care of a particular detail. We previously saw
that it was beneficial to introduce negative frequencies in Fourier transformation.
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Fig. 5.9 Left part: A spectrum obtained by a continuous Fourier transformation of an infinite
signal contains all frequencies between —oo and 400, but it is, in fact, a reflection and complex
conjugation about the zero frequency (provided that the original signal was real). The real part of
the Fourier transformed function is marked in red, the imaginary in blue (We have shifted the real
ones relative to the imaginary points in the left part so that the sticks became distinct.). Right part:
By discrete Fourier transformation of a signal, the information for negative frequencies (left part
of the figure) is moved to the range above half the sampling frequency. Due to symmetries in sine
and cosine functions, this also actually corresponds to signals with the frequencies fs — | fnegativel-
For this reason, FFT also receives a reflection/folding and complex conjugation in the analysis of
real signals, but this time around half the sampling rate f;/2. The part of the plots that have a light
background colour contains all the information in the Fourier transformed signal of a real function
since the other half is just the complex conjugate of the first

For a continuous Fourier transform of a real function f(¢), we saw that F(wy) =
F*(—wyp), that is, the Fourier transform at an angular frequency is the complex
conjugate of the Fourier transform at the negative angular frequency. The same also
applies to FFT. The data points after a Fourier transform with FFT are nevertheless
arranged differently. The lower half of the frequency axis, which represents negative
frequencies, is simply moved so that it is above (to the right of) the positive points
along the frequency axis (see Fig.5.9).

When we perform inverse Fourier transformation with IFFT, it is expected that
the negative frequencies are positioned in the same way as they are after a simple
FFT.

5.6 Important Concrete Details

5.6.1 Each Single Point

In Eq. (5.18), mathematically speaking, only a set of {x,} with N numbers can be
transformed into a new set X; with N numbers and back again. All the numbers are
unlabelled.
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Fig. 5.10 A function sampled N = 8 times (/eft) along with the Fourier transform of the function
(right) consisting of N = 8 complex numbers. The real values are given by red circles and the
imaginary values by blue. Each point corresponds to a small time and frequency range (left and
right, respectively). Note the relationship between the sampling rate f; and At and in particular
the relationship between 7 and A f. In order to get a high resolution in the frequency range in the
frequency range, we have to sample a signal for a sufficiently long time T’

We, the users, must connect physics with the numbers. Let us explore what the
indexes k, n and the number N represent.

We imagine that we make N observations of a physical quantity x, over a limited
time interval 7 (a single example is given in the left part of Fig.5.10). If the obser-
vations are made at instants separated by an interval At, we say that sampling rate
(or sampling frequency) is f; = 1/At. The relationship between the quantities is as
follows:

N=Tf, =T/At.

This is an important relationship that we should know by heart!

Note that each sampling corresponds to a very small time interval Atz. In our
figure, the signal in the beginning of each time interval is recorded.

Fourier transformation in Eq. (5.18) gives us the frequency-domain picture (right
part of Fig. 5.10). The frequency-domain picture consists of N complex numbers, and
we must know what they represent in order to properly utilize Fourier transformation!
Here are the important details:

e The first frequency component specifies the mean of all measurements (cor-
responding to frequency 0). The imaginary value is always zero (if f is real).
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e The second frequency component indicates how much we have of a har-
monic wave with a period of time 7 equal to the entire sampling time. The
component is complex, which allows us to find amplitude and phase for this
frequency component.

e Amplitudes calculated by using only the lower half of the frequency spec-
trum must be multiplied by 2 (due to the folding) to get the correct result.
This does not apply to the first component (mean value, frequency zero).

e The nextfrequency components indicate contributions from harmonic waves
with exactly 2, 3, 4,...periods within the total sampling time 7.

e The previous points tell us that the difference in frequency from one point
in a frequency spectrum to the neighbouring pointis Af = 1/T.

e Assuming that the number of samples N is even, the first component after
the centre of all the components will be purely real. This is the component
that corresponds to a harmonic oscillation of N /2 complete periods during
the total sampling time 7'. This corresponds to a frequency equal to half of
the sampling rate f; mentioned above.

e All the remaining frequency components are complex conjugates of the
lower frequency components (assuming that f(¢) is real). There is a “mir-
roring” around the point just above the middle of the numbers (mirroring
about half the sampling rate). We do not get any new information from these
numbers, and therefore we often drop them from the frequency spectrum.

e Since the mirroring occurs around the first point after the middle, the first
point will not be mirrored (the point corresponding to the average value, the
frequency 0).

e The last frequency in a frequency spectrum is f;(N — 1)/N since the fre-
quency ranges are half open.

Why, one may wonder, do we calculate the top N/2 — 1 frequency components when these
correspond to “negative frequencies” in the original formalism (Eq. (5.10)). As long as f is real,
these components are of little/no worth to us.

However, if f happens to be complex, as some users of Fourier transformation take it to be,
these last, almost half of the components, are as significant as the others.

This is related to Euler’s formula and phases. As long as we look at the real value of a phasor,
it corresponds to the cos(wt + ¢) term, and it is identical regardless of whether w is positive or
negative. We can distinguish between positive and negative rotational speed of a phasor only if we
take into account both the real and imaginary part of a complex number.

5.6.2 Sampling Theorem

As mentioned above, the top half of Fourier coefficients correspond to negative
frequencies in the original formalism. However, we suggested that because of the
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Function (au)

Fig. 5.11 Harmonic functions with frequencies f; and fy_x (here k = 1) have exactly the same
value at the times for which the original function was defined (assuming thatk =0, 1,..., N — 1).
Therefore, we cannot distinguish between the two for the sampling rate used. In order to distinguish
functions with different frequencies, the rate must be at least twice as high as the highest frequency
component. If you carefully consider the curves with the highest frequency in the figure, you will
see that there are fewer than two samples per period for these

symmetry of the sine and cosine functions, it is also possible to consider these upper
coefficients as coefficients of frequencies above half the sampling frequency (except
that we get problems with the factor 1/2 mentioned earlier).

We can illustrate this by picking out two sets of Fourier coefficients from a Fourier
transform of an arbitrary signal. We have chosen to include the relative coefficients
fork = 1 (red curves) along withk = N — 1 and the imaginary coefficients fork = 1
and k = N — 1 (blue curves). The result is shown in Fig.5.11.

The functions are drawn at “all” instants, but the times where the original function
is actually defined is marked with vertical dotted lines. We then see that the functions
of very different frequencies still have the exact same value at these times, although
the values beyond these times are widely different. This is in accordance with equation

s 2T s 21
ekan — eflﬁk(an) (520)

forkandn = 1,..., N — 1 in the event that these indices generally range from 0 to
N —1.

The two functions cos(w;?) and cos[(N — 1)w¢] are thus identical at the discrete
times t € {t,} our description is valid (w; corresponds to one period during the time
we have sampled the signal.). Similarly, for cos(2w;#) and cos[(N — 2)w;t] and
beyond for cos(3w;t) and cos[(N — 3)w;t], etc. Then there is really no point in
including the upper part of a Fourier spectrum, since all the information is actually
in the lower half (Remember, this only applies when we transform a real function.).

Looking at the argument we see that at the given sampling rate, we would get
exactly the same result when sampling continuous signal cos[(N — m)wt] as if the
continuous signal was cos(mw;t) (m is an integer). After the sampling, we cannot
determine if the original signal was one or the other of these two possibilities—unless
we have some additional information.
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The additional information we need, we must supply ourselves through experi-
mental design! We must simply ensure that there are no contributions with frequen-
cies above half the sampling frequency of the signal we sampled. If so, we can be sure
that the signal we sampled was cos(mw;t) and not cos[(N — m)w;t]. This means
that we must sample at least twice per period for the highest frequency that is present
in the signal (see Fig.5.11).

This is an example of a general principle:

If we want to represent a harmonic function in an unambiguous manner by a
limited number of measurements, the target density (measurement frequency,
sampling frequency) must be so large that we get at least two measurements
within each period of the harmonic signal. The “Nyquist—-Shannon Sampling
Theorem” says this more succinctly:

The sampling frequency must be at least twice as high as the highest fre-
quency component in a signal for the sampled signal to provide an unambigu-
ous picture of the signal.

If the original signal happens to contain higher frequencies, these must be
filtered by a low-pass filter before sampling to make the result unambiguous.

It is strongly recommended that you complete the second problem at the back of
the chapter. Then you can explore how folding arises in practice, and how we can be
utterly deceived if we are not sufficiently wary.

5.7 Fourier Transformation of Time-Limited Signals

It follows from Eq. (5.10) that a Fourier transform can be viewed as a sum (integral)
of the product of the signal to be transformed with a pure sine or cosine:

1 o .
F(w) = ﬁ/ (e “dt.

Fw) = % /oo f(t)cos(wt)dt —1i x % /oo f () sin(wt)dt.

We assumed, without stating explicitly, that the signal we analysed lasted forever.
Such signals do not exist in physics. It is therefore necessary to explore characteristic
features of Fourier transformation when a signal lasts for a limited time.

We choose a signal that gradually becomes stronger, reaches a maximum value and
then dies out again. Specifically, we choose that the amplitude change follows a so-
called Gaussian envelope. Figure 5.12 shows two different signals (red curves), one
lasting a very short time, and another that lasts considerably longer. Mathematically,
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Fig. 5.12 Fourier transformation of a cosine signal multiplied with a Gaussian function. Only a
small part of the total frequency range is shown. See the text for details

the signal is given as:

f(t) = Ccos[w(t — to)]e” -0/

where o gives the duration of the signal (the time after which the amplitude has
decreased to 1/e of its maximum). w is the angular frequency of the underlying
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cosine function, and 7y is the time at which the signal has maximum amplitude (the
peak of the signal occurs at time #j).

In panels a and b, in Fig.5.12 the signal is of short duration (small o), but in
panels ¢ and d it lasts a little longer (o five times as large as in a and b).

Panels a and ¢ show, in addition to the signal pulse (in red), the cosine signal with
a frequency equal to w/27 (thinner blue line). In panels b and d, the cosine signal
has 10% higher frequency, which explains why we will calculate X} at two adjacent
frequencies.

We see that the integral (sum) of the product between the red and blue curves in
a and b will be about the same. On the other hand, we see that the corresponding
integral of d must be significantly smaller than the integral of ¢ since the signal we
analyse and the cosine signal get out of phase a little bit away from the centre of
the pulse in d. When the phases are opposite, the product becomes negative and the
calculated integral (the Fourier coefficient) becomes smaller.

If we make a Fourier transform (“all frequencies”) of the red curve itself in a
(the short-duration signal) and take the absolute value of the Fourier coefficients,
we get the result shown in e. The Fourier transform of the signal in ¢ (the longer
lasting signal) is displayed in the lower right corner of f. We can see that Fourier
transformation captures the predictions we could make from visual examinations of
a-b.

Note that the short-duration signal yielded a broad frequency spectrum, while
the signal with several periods in the underlying cosine function gave a nar-
rower frequency range. This is again a manifestation of the principle we have
observed in the past, which has a clear resemblance to Heisenberg’s uncer-
tainty relationship. In classical physics, this is called time-bandwidth theorem
or time-bandwidth product: The product of the width (duration) of a signal in
the time domain and the width of the same signal in the frequency domain is
a constant, whose precise value depends on the shape of the envelope of the
signal.
At Af > 1.

The actual magnitude of the number on the right-hand side depends on how
we define the widths Az and Af. We will later find in the chapter the same
relationship with the number 1 replaced by 1/2, but then we use a different
definition for the A’s.

Figure 5.12 illustrates important features of Fourier analysis of a signal.
More precisely, the following applies:

In a frequency analysis, we can distinguish between two signal contributions
with frequencies f; and f, only if the signals last longer than the time 7 =

1/ fi = f2D-
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Even for signals that last a very long time, in experimental situations, we
will have to limit the observation of signal for a time T. If we undertake an
analysis of this signal, we will only be able to distinguish between frequency
components that have a difference in frequency of at least 1/ 7.

The difference we talk about means in both cases that there must be a
difference of at least one period within the time we analyse (or the time the
signal itself lasts) so that we can capture two different signal contributions in
a Fourier transform. Suppose we have N; periods of one signal in time 7" and
N, periods of the second signal. In order to be able to distinguish between the
frequencies of the two signals, we must have |N; — N;| > 1. [Easily derived
from the relationship 7 = 1/(| fi — f2]).]

5.8 Food for Thought

The relationships in the time and frequency domains we see in Fig.5.12 can easily
lead to serious misinterpretations. In a, we see that the oscillation lasts only a very
short time (a few periods). The rest of the time the amplitude is simply zero (or we
could set it exactly to zero with no notable difference in the frequency spectrum).
What does Fourier transformation show? From the panel e, we can see that there
are about 30 frequency components that are clearly different from zero. This means
that we must have of the order of 30 different sine and cosine functions which last all
the time (even when the signal is zero) to describe the original signal. We see this by
writing the inverse Fourier transform in a way that should be familiar to us by now:

=

-1
[R(Xe) cos(witn) — I(Xy) sin(wity) ] (5.21)
0

=
=
1
-
Il

forn =0,...,N — 1. N and 3 stand, as before, for the real and imaginary parts,
respectively.

There are some who conclude that the oscillation, when it appears to be zero, is
not really zero but simply the sum of about 30 different sine and 30 different cosine
functions throughout. This is nonsense!

It is true that we can describe the time-limited oscillation in panel a using all of
these sine and cosine functions, but this is a pure mathematical view that has little to
do with physics. Notwithstanding that, there is a good deal of physics and physical
reality that goes hand in hand with the width of the frequency spectrum. However,
there are other ways to make this point without invoking the presence of something
physical when the amplitude is actually equal to zero. In Chap. 14, we will acquaint
ourselves with the so-called wavelet transformation, and then this will become much
clearer.
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In my own field of research, quantum optics, we see how unfortunate this type of short circuit
is. Some say that we must “use many different photons” to create a light pulse and that each photon
must have the energy E = hf where h is Planck’s constant and f frequency. Then a layer of physical
reality is added to each Fourier coefficient, but one should focus more on what is physics and what
is mathematics.

An important point here is that all time information about a signal disappears
as soon as we take the absolute value of Fourier coefficients. As long as we
retain complex Fourier coefficients, the time information remains intact, but
is often very well hidden. The time information is scattered throughout the
Fourier spectrum. Only a full inverse transformation (with complex Fourier
coefficients!) from the frequency domain to the time domain can retrieve the
temporal information. Fourier transformation, and in particular a frequency
spectrum, has therefore limited value for signals that are zero during certain
periods or completely change character otherwise during the sampling time.

Also in another context, a Fourier analysis can lead to unfortunate conclusions.
Figure 5.13 shows the Fourier transform of a periodic motion. In essence, this figure
resembles Fig. 5.8, which shows the frequency spectrum of sound from a transverse
flute, with fundamental tone and harmonics. On that occasion, we said that the reason
we get overtones is that the signal, though periodic, is not a pure sinusoid.

Some persons speak of the higher harmonics in another way. For example, they say
“when we play a flute, air vibrates not only at one particular frequency, but at multiple
frequencies simultaneously”. Though common, such phraseology is problematic.

If we say that “several frequencies are present simultaneously” in the motion that
lies at the back of the Fourier spectrum in Fig. 5.13, the statement accords poorly with
the underlying physics! The figure was made this way: we first calculated a planet’s
path around the sun. The path was described by a set of coordinate as a function of

Fig. 5.13 Fourier
transformation of a periodic
motion. See the text for
explanation
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time [x;(¢), y;(¢)]. Figure 5.13 is simply the Fourier transform of {x;(¢)} for a time
that is much longer than the solar orbital period of the planet under consideration.

The reason we get a series of “harmonics” in this case is that planetary motion is
periodic but not a pure sinusoid. We know that Fourier transformation is based on
harmonic basis functions, and these correspond to circular motion. But if we think
in terms of “several frequencies existing at the same time”, it is tantamount to saying
that the movement of the planet must be described with multiple circular movements
occurring at the same time! In that case, we are back to the Middle Ages!

Some vicious tongues say that if computers, equipped with an arsenal of Fourier
transform tools, had been around in Kepler’s time, we would still have been working
with the medieval epicycles (see Fig. 5.16). From our Fourier analysis in Fig. 5.13, we
see that we can replace the ellipse with a series of circles with appropriate amplitudes
(and phases). However, most people would agree that it makes more sense to use
a description of planetary motion based on ellipses and not circles. I wish we were
equally open to dropping mathematical formalism based on Fourier analysis also in
some other contexts.

Fourier analysis can be performed for virtually all physical time variables, since
the sine and cosine functions included in the analysis form a complete set of basis
functions. Make sure you that you do not draw the conclusion that “when something
is feasible, it is also beneficial”. In the chapter on wavelet transformation, we will
come back to this issue, since in wavelet analysis we can choose a set of basis
functions totally different from everlasting sines and cosines. We can sum up in the
following words:

Fourier transformation is avery good tool, but it has more or less the same basis
as the medieval description of planetary movements. It is perfectly possible
to describe planetary paths in terms of epicycles, but such an approach is not
particularly fruitful. Similarly, a number of physical phenomena are described
today by Fourier analysis where this formalism is not very suitable. It can lead
to physical pictures that mislead more than they help us. Examples may be
found in fields which include quantum optics.

5.9 Programming Hints

5.9.1 |Indices; Differences Between Matlab and Python

Strings such as {x,} and {X;} are described as arrays in the parlance of numerical
analysis. It is important to remember that in Python, the indexes start with 0, while
in Matlab they start with 1. In {X;}, Kk = 0 and 1 correspond, respectively, to the
frequency O (constant) and the frequency 1/7. In Matlab, their counterparts are
indices 1 and 2.
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The expression for a discreet Fourier transform in Python will then be as follows:

N—-1
1 —i2%kn
&ZN%MCN (5.22)

fork=0,...,N —1.
On the other hand, the expression for a discreet Fourier transform in Matlab takes
the following form:

N
1 2T (k=1 (n—
&zﬁghemm1> (5.23)

fork=1,...,N.
For the inverse discrete Fourier transformation, similar remarks apply.

5.9.2 Fourier Transformation; Example of a Computer
Program

A simple example program which aim is to show how Fourier

o0 oe

transform may be implemented in practice i Matlab. The

oP

example is a modification of an example program at a

o0

tutorial page at Matlab.

Fs = 1000;

delta_t = 1/Fs;
N = 1024; Number of samples
t = (0:N-1)*delta_t; % Time description

Sampling frequency

o0 oe

Time between each sampling

oe

o

Create an artificial signal as a sum of a 50 Hz sine and a

oo

120 Hz cosine signal, plus a random signal:
0.7*sin(2*pi*50*t) + cos(2*pi*120*t);
= x + 1.2*randn(size(t));

XX

plot (Fs*t, x) % Plot the time domain representation
title(’The signal in time domain’)

xlabel ('time (millisec)’)

X = fft(x,N)/N; % Fast Fourier Transformation

frequ = (Fs/2)*linspace(0,1,N/2); % The frequency range

% Plot the absolute value of the frequency components in the
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% frequency domain representation. Plot only frequencies up to
% half the sampling frequency (drop the folded part).

figure; % Avoids overwriting the previous plot
plot (fregv,2*abs (X(1:N/2))) % Plots half the frequency spectrum
title(’Absolute value of the frequency domain representation’)
xlabel ('Frequency (Hz) ')

ylabel (' |X(freq) | ")

5.10 Appendix: A Useful Point of View

There are big differences between how we physicists use and read the contents of
mathematical expressions. In this appendix, I would like to give an example of a way
of thinking that has been useful to me whenever I have wondered why some Fourier
spectra look as they do.

We start with the mathematical expression shown below:

F(w) = % / h f(He “dt (5.24)

or the discrete variant of the same expression:

I, JA, | V=

— 7i%kn _ . - .
X = ;xne =5 ;xn cos(wity) =i X X:(:)x sin(wety)  (5.25)
where wy = 27”76, t, = %n, and T is the total sampling time. Then we simply have

a sum of single products x, cos(wy?,) (or sines) with many n. The integral or the
sum we get by adding a lot of such numbers (with a scaling that we need not discuss
here).

If now {x,} is simply a cosine function with the same frequency and phase as
cos(wgty), the products of these two terms will always be equal to or greater than
zero, being a cos® function. Then the sum will be big and positive.

If {x,} is a cosine function with a frequency different from that of cos(wyt,), the
two cosine functions will sometimes be in phase, yielding a positive product, but at
other times with an opposite phase, resulting in a negative product.

Due to the factor ﬁ the sum of all product terms will be close to zero if we get
many periods of positive and negative contributions in all.

Based on this argument, we find that the Fourier transform of a single harmonic
function when we have integration with limits plus minus infinity is considered
a d-function. But what will happen when the test function is simply zero every-
where except for a limited length of time 7" where the function is a simple harmonic

function?
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Figure 5.14 shows a section of the function:
f(t) = cos(wgyt) fort € [0, T] and O otherwise. (5.26)

In the figure T =2/3 s.

The time interval 7 in the figure is just sufficient to cover the entire window where
£ (¢) differs from zero. Also shown are plots g(1) = R{e ¥} = cos(wyt) for three
different choices of the analysing frequency wy, and the corresponding plots of the
product functions f(¢)g(?).

The integral of the product function now receives contributions only in the time
interval where f is different from zero. We get full contribution from the entire range
when w; = w,. We see that the integral (sum of all values of product function) also
becomes positive in the middle case where the difference between wy and w, is so
small in relation to the length of time interval that the phase of f and the phase of
cos(wy) is always less than 7.

In the bottom case, we have chosen an analysing frequency of wy which is such
that
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(wp — wy)T = 2.

Because of the symmetry, we see that the integral here vanishes, but we realize that
we would get a certain positive or negative value if we had chosen the frequency
difference (in relation to T') as we did in this case.

What has this example shown us? In the first part of the chapter, we explained
that when f(#) = cos(w,t) for all ¢, the Fourier integral will be null in abso-
lutely all cases where wy 7# £w,. In Fig.5.14, we see that when the function
we analyse lasts for a limited time 7', the two frequencies may be slightly
different and yet we may receive contributions to the Fourier integral. The
contribution will be greatest when (wy — w,)T < 7.

It should be noted that we can rename the quantities as follows: (wy — w,) =
2rAf and T = At. In that case, we get that the Fourier integral will have an
appreciable value so long as

Af At < 1)2.

This is again a relation analogous to the Heisenberg uncertainty relation.

We can repeat the same type of calculations of the f g—product function for many
different wy relative to w, and add up positive and negative contributions over T,
the interval we wish to integrate over. Examples of such calculations are shown in
Fig.5.15. When the two frequencies are identical, the area below the middle curve
becomes the maximum, which corresponds to the peak value in the (real part) of the
Fourier spectrum. The area may be positive or negative depending on whether the
mean value of the f g—product function is above or below zero. Time intervals where
the f g—productis positive is marked with blue background colour and intervals with
negative product with red. The integral is just the sum of positive and negative areas
in these plots. In case of 3 and 5, the total area is equal to zero (as much positive as
negative), while in case of 4 the total area is negative.

Deeper red or blue colour is used to mark the areas that are not balanced by
corresponding area with the opposite sign. We see then that the deepest red-marked
areain case 4is greater in absolute value than the deepest blue area in case 6, reflecting
that the peak in the area near the 6 mark in the lower part of the figure is less than
the (absolute) value of the peak in the area near the 4 mark.

Figure 5.15 indicates that the frequency spectrum of a portion of a harmonic
function has a broad and sharp peak in the middle, and characteristic oscillations
with smaller and smaller amplitude the farther away from the peak one moves.
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Fig.5.15 Integrand (the f g—product) in the real part of Fourier calculations for different choices of
the analysing frequency. The real part of a section of the Fourier spectrum of the function appearing
in Eq. (5.26) is given at the bottom. See also the text for details

Remarks: In Chap. 13, we will see that the frequency spectrum in Fig.5.15 appears again when
we consider the diffraction image that emerges when we transmit a laser beam with visible light
through a narrow gap. Within optics, there is a separate field called Fourier optics.

5.10.1 Program for Visualizing the Average of Sin—Cos
Products

function sincosdemo
% Program to visualize the average of sine/cosine product

N = 2000; % Number points in the description

=]
1l

1.0; % The time we describe the signal (1 sec)
t = linspace(0,T* (N-1)/N,N); % Make the timeline t
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freqgl 100.0; % One frequency is kept constant
freg2 = 100.0;

o0

1) Try to vary this from 102 to e.g. 270

o

2) Try also values where |freq2—freql|< 2.0

Q

omegal = 2*pi*freqgl; % Calculate angular frequencies
omega2 = 2*pi*freq2;
f = cos(omegal*t); % Try also sin( )

g = cos(omegal2*t) ;

plot(t,f.*g,’-b’); % Plot the product of f and g
xlabel ('Time (s)’);

vlabel ('Signal (rel.units)’);

null = zeros(N,1);

hold on;

plot(t,null, '-r’); % Draw also the zero line
integral = sum(f.*g); % Drop the normalization 1/N
integral % Write the "integral" (sum) to screen.

5.10.2 Program Snippets for Use in the Problems

Snippet 1: Here is a piece of code that shows how to read data from an audio file in
Matlab:

s = ’'piccoloHigh.wav’; % File name (the file must be in
% the same folder as your program)
N = 2716;
nstart = 1; % First element number you want to use in
% your audio file
nend = N; % last element number you want to use
[£,Fs] = audioread(s, [nstart nend]);

o

o0

sound (f,Fs) ; Play back the sound if you want

% (then remove %) for control purposes

g = f(:,1); % Pick a mono signal out of the stereo
% signal f
X = (1.0/N)*fft(g); % FastFourierTransform of the

% audio signal
Xa = abs (X); % Calculate the absolute value out of the

% fregency domain representation
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Snippet 2: Recording a sound from the PC’s microphone.

T = 2.0; % Duration of sound track in seconds
Fs = 11025; % Chosen sampling frequency (must be

% supported by the system)

N = Fs*T;
t = linspace(0,T*(N-1)/N,N); % For x-axix in plot
recObj = audiorecorder (Fs, 24, 1);

deadtime = 0.13; % Delay. Trick due to Windows-problems
recordblocking (recObj, T+3*deadtime) ;

myRecording = getaudiodata (recObj) ;

stop (recObj) ;

Nstart = floor (Fs*deadtime) ;

Nend = Nstart + N -1;

vy = myRecording (Nstart:Nend, 1) ;

S
Yy = y-s;
plot(t,y, ' -k");

title(’'Time domain representation’);

sum (y) /N; % Removes the mean value

xlabel ('Time (sec)'’);
yvlabel ('Microphone signal (rel units)’);

N.B. The code for sampling the sound does not work perfectly and sometimes leads to irrepro-
ducible results. This is because the sound card is also under control of Windows (or other operating
system), and the result depends on other processes in the computer. Those who are particularly

interested are referred to specially developed solutions via “PortAudio” (www.portaudio.com).

Snippet 3: One possible method to make an animation.

function waveanimationl

clear all;

k = 3;
omega = 8;
N = 1000;

x = linspace(0,20,N) ;
vy = linspace(0,20,N);
p = plot(x,y,’'-', 'EraseMode’, 'xor’) ;
axis ([0 20 -2.5 2.5])
for i=1:200
t = 1*0.01;
v = 2.0*sin(k*x-omega*t) ;
set (p, 'XData’,x, 'YData’,y)
drawnow
pause(0.02); % This is to slow down the animation
end
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Pieces of code will be transferred from the Problems in several chapters to the “Snip-
pet subsection” at the “Supplementary material” web page for this book available at
http://www.physics.uio.no/pow.

5.11 Learning Objectives

After working through this chapter, you should know that:

e An integrable time-dependent continuous function can be transformed
by continuous Fourier transformation into a “frequency-domain picture”,
which can then be uniquely transformed with an inverse Fourier transfor-
mation back to the starting point.

e A discrete function can be transformed by a discrete Fourier transform into a
“frequency-domain picture”, which can then be uniquely transformed with
a discrete inverse Fourier transform back to the starting point.

e Only integers are included in a mathematical/numerical implementation of
a Fourier transformation. We must manually keep track of the sampling
times and the frequencies of the elements in the Fourier spectrum. We must
also take account of normalization of the numerical values (e.g. whether or
not we should divide/multiply the numbers after transformation by N), as
different systems handle this differently.

e The frequency-domain picture in a discrete Fourier transformation consists
of complex numbers, where the real part represents cosine contributions at
the different frequencies, while the imaginary part represents the sine con-
tributions. The absolute value of the complex numbers gives the amplitude
of the contribution at the relevant frequency. The arctan of the ratio between
imaginary and real parts indicates the phase of the frequency component
(relative to a cos(wt + ¢) description).

e For a real signal, the last half of the Fourier coefficients are complex con-
jugate of the first half, and “mirroring” occurs. Therefore, we usually use
only the first half of the frequency spectrum.

e In a discrete Fourier transform, the first element in the data string X; cor-
responds to a constant (zero frequency), second element to the frequency
1/T, third to frequency 2/ T, etc. Here T is the total time function/signal we
start with is described above (total sampling time). It is necessary to sample
for a long time if we are to get a high resolution in the frequency picture.

e If asignal is “sampled” with a sampling frequency f, we will only be able
to process signals with frequencies below half the sampling frequency in an
unambiguous manner.

e In order to avoid “folding” problems, a low-pass filter must be used to
remove signal components that may have a frequency higher than half the
sampling frequency. For numerical calculations, we have to make sure that
the “sampling rate” is high enough for the signal we are processing.
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e Fourier transformation is a great aid in studying stationary time-varying
phenomena in much of physics. For example, Fourier transformation is
extensively used in analysis and synthesis of sound.

e It is possible to implement Fourier transformation of (almost) any signal,
but it does not mean that Fourier transformation is useful in every situation!

e Fourier transformation is (almost) suitable only for analysing signals that
have more or less the same character throughout the sampling time. For tran-
sient signals that change character greatly during sampling time, a Fourier
spectrum sometimes may be more misleading than useful.

e Normally when Fourier transformation is performed numerically, we use
ready-made functions within the programming package we use. If we create
the code ourselves, the calculations take an unduly long time (unless we
code the actual “fast Fourier transform” algorithm). Calculations are most
effective if the number of points in the description is 2".

5.12 Exercises

Suggested concepts for student active learning activities: Periodic/nonperiodic
function, Fourier transformation, time domain, frequency domain, frequency anal-
ysis, fundamental frequency, harmonic frequencies, sampling, sampling frequency,
folding, aliasing, sampling theorem, time-bandwidth product, classical analogue to
Heisenberg’s uncertainty relationship, high-pass/low-pass filters, stationary signal.

Comprehension/discussion questions

1.

In a historical remark first in this chapter, we claimed the Fourier transformation
and Fourier analysis bear close resemblance to the medieval use of epicycles for
calculating how planets and the sun moved relative to each other (see Fig.5.16).
Discuss this claim and how Fourier analysis may lead to unwanted conclusions
if it is used in an uncritical manner.

How can we make a synthetic sound by starting from a frequency spectrum?
Would such sound simulate in a good way the output of a proper instrument?
For CD sound, the sampling rate is 44.1kHz. In the case of sound recording,
we must have a low-pass filter between the microphone amplifiers and sampling
circuits that remove all frequencies above 22 kHz. What could happen to the sound
during playback if we did not take this rule seriously?

After a fast Fourier transform (FFT), we often plot only a part of all the data
produced. Mention examples of what may influence our choices.

Suppose that you Fourier analyse sound from a CD recording of an instrument
and find that the fundamental tone has a frequency of 440 Hz. Where do you find
the folded frequency?
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Fig. 5.16 A drawing of epicycles in an old Arabic document written by Ibn_al-Shatir [1], Public
Domain

6. What are the resemblances between Fourier series and a discrete Fourier trans-
form? Discuss the difference between periodic and nonperiodic signals.

7. Describe in your own words why the Fourier transform of a cosine function that
lasts for a limited time 7 is different than if the cosine function had lasted from
minus to plus infinity.

8. Consider Fig.5.17 and tell us what it means to you.

Problems

Remember: A “Supplementary material” web page for this book is available at http://
www.physics.uio.no/pow.

9. Show both mathematically and in a separate programming example that the first
point in a digital Fourier transform of a signal is equal to the average value of
the signal we started with.

10. Use the computer program provided in “computer software example” on page xxx
to explore how folding works in practice. Let the signal be:


http://www.physics.uio.no/pow
http://www.physics.uio.no/pow

5.12 Exercises 129

s e Ll
SN NI
NN /NN,
NN N N
NANFARVARRVANEA WA

WAV VRV ERV Y,

I e, f\/\/\/\/\m
VRVAVEVI VR VIAVIVIAVARY

X_&W ﬂ\p‘/\p\/\p\N-Z
VY VVYV VVYVIVY

'\ f\'. 1[\"[ ."/\5 .'l[\l ,[\1 rjﬂ'.‘ r,"fr W /\ \
VAVAVAVAYRVAY \/ VRVARY/

Fig. 5.17 Use this figure in Problem 8

11.

freq = 100.0; % Frequency in hertz
x = 0.8 * cos(2*pi*freg*t); % Signal is a simple cosine

and run the program. Be sure to zoom in so much that you can check that the
frequency in the frequency spectrum is correct.

Then run the program, setting the frequency (one by one) equal to 200, 400,
700, 950, 1300 (Hz). Do you find a pattern in where the peaks come out in the
frequency spectrum?

Some people claim that the moon phases influence everything from the weather
to the mood of us humans. Check if you can find indications that the temperature
(maximum and/or minimum daily temperature) varies slightly with the moon
phases (in addition to all other factors)?

The data for the place (and period) you are interested in can be downloaded from
api.met.no. Alternatively, you can use an already downloaded and slightly sim-
plified file tempblindernlOaar.txt from the web pages providing supplementary
material for our book. The file gives the temperature of Blindern, Oslo, Norway
in the period 1 January 2003 through 31 December 2012. The fourth column
in the file provides minimum temperatures, while the fifth column provides the
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maximum values.

Explain carefully how you can draw a conclusion as to whether or not the moon
phase affects the temperature.

Below you will find some lines of Matlab code that shows how data may be read
from our file into a Matlab program (the data file has five columns, and we use
the last two of them):

filename = ’'tempBlindernlOyears.txt’;

fileID = fopen(filename, ’'r’);

A = fscanf (fileID, '%d %d %f %f %f£’,[5,1inf]);
minT = A(4,:);

maxT = A(5,:);

plot (minT, '-r’);

hold on;

plot (maxT, '-b’) ;

Collect sunspot data from the Web and create an updated figure similar to our
Fig.5.7. Pay particular attention to getting correct values along the axes of the
frequency-domain representation. Is there a correspondence between the peak
heights in the time-domain picture and the amplitude of the frequency spectrum?
Below are some lines of Matlab code showing how data can be read into a Matlab
program (two columns):

filename='sundata.txt’;

fileID = fopen(filename, ’'r’);

A = fscanf (fileID, '$f %f’, [2,inf]);
plot (A(1l,:),A(2,:), ' -b");

Pick up a short audio signal from a CD, a wav file or record sound from a
microphone (use, for example, one of the program snippets a few pages before
this one). The sampling rate is 44.1kHz. Save 2'* = 16384 data points (pairs of
points if it is a stereo signal, but use only one of the channels). Perform a “fast
Fourier transformation” and end up with 16384 new data points representing the
frequency spectrum. How do you change your program from point number to
frequency in Hz along the x-axis when the frequency spectrum is to be plotted?
What is the resolution along the x-axis of the plot in the previous task? In other
words, how much change in frequency do we get by moving from one point in
the frequency range to the next? Would the resolution be the same even if we
had used only 1024 points as the starting point for Fourier transformation?
Write a program in Python or Matlab (or any other programming language)
that creates a harmonic signal with exactly 13 periods within 512 points. Use
the built-in FFT function to calculate a frequency range. Will this be what you
expected? Feel free to let the signal be a pure sinusoidal signal or a sum of sine
and cosine signals.

Modity the program so that the signal now has 13.2 periods within the 512 points.
How does the frequency spectrum look now? Describe as well as you can!
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Modify the program to get 16 full periods of FIRKANTsignal within2!* = 16384
points. How does the frequency spectrum look now? Find on the Internet how
the amplitude of different frequency components should be for a square signal
and verify that you get nearly the same output from your numerical calculations.
Modify the program so that you get 16 full sagtenner (triangular signal) within
the 1024 points. Also describe this frequency spectrum!

In an example in Chap. 4, we calculated the angular amplitude of a physical
pendulum executing large displacements. Perform these calculations for 3—4
different angular amplitudes and carry out a Fourier analysis of the motion in
each case. Comment on the results.

AM radio (AM: Amplitude Modulated). Calculate how the signal sent from an
AM transmitter looks like and find the frequency spectrum of the signal. It is
easiest to do this for a radio signal on the long wave band (153-297kHz). Let
the carrier have the frequency f;, = 200kHz and choose the speech signal to
be a simple sine with frequency (in turn) f; = 440Hz and 4400 Hz. The signal
should be sampled at a sampling rate of f; = 3.2 MHz, and it may be appropriate
touse N = 2'® = 65536 points. The AM signal is given by:

F(t) = (1 + Asin@27 f;1)) x sin(27 ft)

where A is the normalized amplitude of the audio signal (the loudest sound
that can be sent without distortion is A = 1.0). Use a slightly smaller value, but
please test how the signal is affected by A).

Plot the AM signal in both the time domain and the frequency domain. Select
appropriate segments from the full data set to focus on what you want to display.
Remember to set correct timing along the x-axis of the time-domain plot and
correct frequency scale along the x-axis of the frequency spectrum.

Each radio station on the medium and long wave may extend over only a 9kHz
frequency band. What are the consequences for the quality of the sound being

transmitted?

FM radio (FM: Frequency Modulated). Calculate how the signal sent from an
FM transmitter looks like and find the frequency spectrum of the signal. Use the
same parameters as in the previous task (although in practice, no long wave FM
is used). The FM signal can be given as follows:

f(t) = sin(phase(t)); % Principally (!)

where the phase is integrated by means of the following loop:

phase(l) = 0.0;
for i=1:(N-1)
phase (i+1)=phase (i) + \cdots
omega_b*delta_t* (1.0 + A*sin(omega_t*t(i)));
end;
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where “omega_b” and “omega_t” are the angular frequencies of the carrier and
the speech signal, respectively. The time string “t(i)” is assumed to be calculated
in advance (distance between the points is “delta_t”, which is determined by the
sampling frequency).

A is again a standard amplitude for the audio signal, which also includes the so-
called degree of modulation. You can choose, for example, A = 0.2 and 0.7 (in
turn), and see how this affects both the time-domain picture and the frequency-
domain picture.

Plot the FM signal in both the time domain and the frequency domain according
to the same guidelines as in the previous task (Hint: It may be easiest to plot the
case where the voice frequency is 4400 Hz and that A = 0.7.).

Are there any clear differences in how the frequency-domain picture appears for
FM signals compared to AM signals?

Use inverse Fourier transformation to generate a simple sinusoid and play the
sound on your computer. Use the inbuilt sound or wavplay function (program
snippet 1 a few pages ahead of this on indicates how). Specifically, the following
is recommended: Use the CD sampling rate f; = 44100Hz and 2'® = 65536
points. The values of the signal f must not exceed the interval [—1, +1]. Attempt
to make sound with frequencies 100, 440, 1000 and 3000 Hz. You may want to
make a signal consisting of several simultaneous sinusoids too? Remember to
scale the total signal before using wavplay or sound.

Read the audio file “transient.wav” and perform Fourier transformation to obtain
the frequency spectrum. The audio file is available from the web pages providing
supplementary material for our book, the sampling rate is f; = 44100Hz. Use
2!7 points in the analysis. You may use program snippet 1 a few pages ahead of
this one for reading the file.

If you listen to the sound and then consider the frequency-domain picture, I
hope that you would pause and reflect on what you have done. Fourier analysis
is sometimes misused. What is the problem with the analysis performed on the
current audio signal?

(a) Perform a frequency analysis of sound from a tuba and from a piccolo flute
(audio files available from the course’s web pages). The sampling frequency is
44100Hz. Use, e.g., 2'° points in the analysis. Plot the absolute value of the
frequency spectrum (see program below). Determine the pitch of the tone on a
tempered scale using the Fig.5.18. Remember to get correct values along the
frequency axis when plotting the frequency spectrum and zoom in to get a fairly
accurate reading of the fundamental tone frequency.

(b) The frequency spectrum shows varying degrees of harmonics as described in
this chapter (we will return to this in later chapters). Zoom into the time signal
so much that you get a few periods. Does the signal look like a harmonic signal,
or is it far more irregular than a sinus? (Comparison must be done only when
considering 3-8 periods in the audio signal.) Does there appear to be some kind
of connection between how close the time signal is to a pure sinusoid and the
number of harmonics in the frequency spectrum?
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Fig. 5.18 Tone scale for a
tempered scale as we find it
on a piano. Frequencies for
the tones are given. The
figure is inspired from [2],
but completely redrawn
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25.

5 Fourier Analysis

(c) Attempt to include data only for such a small time interval that there is only
room for one period in the signal. Carry out the Fourier transform of this small
portion of the signal (need not have 2" data points). Do you find a connection
between the Fourier spectrum here compared to the Fourier spectrum when you
used a long time string containing many periods in the audio signal?

(d) For one of the audio files, you are asked to test that an inverse Fourier trans-
form of the Fourier transform brings us back to the original signal. Remember
that we must keep the Fourier transform as complex numbers when the inverse
transform is carried out. Plot the results.

(e) Perform an inverse Fourier transform on the absolute value of the Fourier
transform signal. Describe the difference between the inverse of the complex
Fourier transform and the one you found now. Try to give the reason for the
difference.

“Open task” (i.e. very few guidelines and hints are given): Fourier transformation
can be used in digital filtering. Explain the principle and how this can be done in
practice. Create a small program that performs self-selected digital filtering of
a real audio file, where it is possible to listen to the sound both before and after
filtering (Be scrupulous in describing the details of what you do!).
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Chapter 6 )
Waves i

Abstract Waves, viewed as phenomena extended in both time and space, are
introduced in this chapter. The mathematical wave equation is presented together
with the concepts of wavelength, period and wave velocity. Also, the mathematical
expressions of a wave, in both real and complex notation, are presented, as well as
the concepts of transverse and longitudinal waves. The transverse equation of motion
of a string, as well as the longitudinal movement of air (or water) molecules when
a sound wave passes through the compressible medium, is shown to follow a wave
equation.

6.1 Introduction

Everyone has seen circular waves propagating along a water surface (see Fig. 6.1).
We are so used to the phenomenon that we barely notice it.

But have you really understood the magic of waves? How come that the wave
migrates along the surface of the water without any matter moving at the wave
speed? If we throw a ball from point A to point B, the ball moves spatially with all its
mass from A to B. But when a wave moves from A to B, there is no corresponding
mass that is transported from A to B. What in heaven’s name is causing the wave to
move along?

Waves are generated when a vibration at one place in space somehow affects the
neighbouring area so that it too starts to vibrate, causing in turn another neighbouring
area to begin to vibrate, and so on. When we describe this interaction and focus on the
explanation of the physics that lies behind wave motion, we study the dynamics of
the system. Nevertheless, we start in the same way as in Chap. 2 with “kinematics”,
that is, with the mathematical description.

A wave can be visualized in three ways:

e We can take a snapshot (“flash image”, a high-speed flash photograph) of how the
wave looks at a selected time in different parts of space (as a function of position).

e We can record the amplitude as a function of time at one place in space as the
wave passes this location and plot the result.

© Springer Nature Switzerland AG 2018 135
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Fig. 6.1 Waves that form on water

e We can use a “movie” (animation) that shows how the wave spreads in space as
time goes by.

Figure 6.2 shows examples of the first two viewing modes. Imagine standing on a
pier and watching waves rolling gently in front of you. You can take a picture of the
waves and get something that corresponds to the left part of Fig. 6.2. Take another
picture a moment later, and you will see that the wave has moved a little (as indicated
in the figure).

Imagine that there is a vertical pole in the water. The water surface then moves
up and down the post, and you can record the height as a function of time. This
corresponds to the right part of Fig. 6.2. If there are two pegs that stand a little apart,
the water surface will not be on top simultaneously on both pins, in general.

For a harmonic wave (with a form like that of a sine or cosine function), the first
two modes of view will both look like harmonic oscillation: the first as harmonic
oscillation as a function of position, the other as harmonic oscillation as a function of
time. We know from before that a harmonic oscillation is a solution of a second-order
differential equation. If we consider how the wave looks like a function of position
(at one point), the result f must be a solution of the differential equation:

d’f
—5 =—Cf.
dx
If we regard the wave as a function of time as it passes one place in the room, the
result must be a solution of the differential equation:

d2f

dr?

= _th~
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Fig. 6.2 A wave can be considered as a function of position at a certain time, or as a function of
time for a particular position. See the text for details

In these equations, x indicates the position and ¢ the time, and C, and C; are positive
real constants that differ in the two cases. In contrast, the amplitude of the harmonic
wave f is the same quantity in each viewing mode. We therefore use the same symbol
f in both equations. The amplitude may be, for example, the air pressure of sound
waves, or the electric field strength of electromagnetic waves or the height of surface
waves at sea.

When we realize that the wave f is the same, regardless of whether we consider
the wave as a function of position in space or as a function of time, we can combine
the two equations and get:

Efan G dfan
2 ¢, dx?

In the above notation, the dependence of the amplitude on space and time has been
explicitly indicated. And when a function depends on more than one independent
variable, we use partial differentiation and write:

P G fn
iz C, ax2

6.1)

Upon renaming the quotient C;/C, as v?, the above equation takes the form:

fn _ H0fG,0
a2 ax2

(6.2)

This equation is called the “wave equation”.
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Since the C’s were positive real constants, v must be real (and positive).

Remark: We take a short detour to recall what we mean by partial differentiation.
Suppose we have a function & = h(kx — wt) and that we wish to find the partial derivative of
this function with respect to x. We define a new variable u = kx — wt and, using the chain rule, we

find:

oh _ dh(u) du

ax  du * ax
It is the second factor on the right-hand side where the implications of partial differentiation strike
us first. We have:

ou _ d(kx — wt)
ax ax ’

Both x and ¢ are variables, but when we calculate the partial derivative with respect to x, we will
treat ¢ as a constant! Consequently, we get:

d(kx — wt
dkx o) _
ax
Similarly, we can go on to deduce the partial derivative with respect to ¢. In this case, we treat x as
constant.

Partial derivatives thus represent the derivative of the function, assuming that all variables are
kept constant, except for the one with respect to which the derivative is to be calculated.

We will come across the “wave equation” Eq. (6.2) quite a few times in the book.
It may therefore be useful to try to understand it forthwith.

When we discussed oscillations in Chap. 1, we saw that if we know the start-
ing position and the starting speed, e.g. for a shuttle, we can unambiguously
calculate how the oscillation will be in the future (so long as the differential
equation governing the motion is known).

For waves, it is totally different. Even when we have the exact same wave
equation and the very same initial conditions, there are infinitely many different
solutions. The reason is that the waves spread out into space, and the shape
of the volume the wave is confined in will affect the wave even though the
basic differential equation is the same. This is easy to understand if we think
of swells rushing towards land. The wave will show enormous local variations,
all depending on the landscape, with its rocks and protrusions and recesses.
Solving the wave equation therefore requires that we know the initial as well
as the boundary conditions. And since there are infinitely many boundary
conditions we can imagine, there will also be infinitely many solutions. But
once we have specified both initial conditions and complete set of boundary
conditions, there is a unique solution.

Since there is such an incredibly wide variety of waves, we often have to resort
to simplified solutions to extract at least some typical features. Some such solutions
are actually serviceable approximations to real waves in special cases. The most
common simplified solution is called plane wave, and we will take a closer look at
1t now.
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6.2 Plane Waves

A wave is said to be plane when its amplitude is constant throughout a plane that
is normal to the direction of propagation in space. If a wave in three-dimensional
space travels in a direction parallel to the x-axis, a planar wave will have an identical
amplitude, at any selected instant, throughout an infinite plane perpendicular to the
X-axis.

For a plane sound wave that moves in the x-direction, this will in practice mean
that, at any time whatsoever, the local air pressure has a maximum everywhere along
a plane perpendicular to the x-axis. We call such a plane a “wavefront”. For plane
waves, the wavefront is plane.

Mathematically, a plane harmonic (monochromatic) wave can be described as:
f(x, 1) = Acos(kx — ot) . (6.3)

In this context, k is called wavenumber and w, the angular frequency. If we
keep the time constant, for example, at # = 0, and start at x = 0, we move a
wavelength when kx = 27. The wavelength X is therefore precisely this value
of x, so that:

A=—.
k
In a similar manner, we can keep the position constant, for example, by setting
x = 0, and starting at t = 0. We find then that, if we want to change the time
function by a period, the time must increase by wt = 2. This time difference
is called the time period T, and we get:

T=—.
w

It may be added that the word “wavenumber” comes from k indicating the number
of wavelengths within the chosen unit of length (“how many wave peaks are there
in a metre?”), but multiplied by 2.

We can also apply a similar idea to the angular frequency w. In that case, we can
say that the w is a “(time) period” which indicates how many periods we have within
the chosen unit of time (“how many periods of vibration are there in one second?”),
but multiplied by 27.

The unit for wavenumber measurement is inverse metre, i.e. m~'. Angular fre-
quency unitis actually inverse second, that s, s~!, butin order to reduce the likelihood
of confusion with frequency, we often give angular frequencies in radians per second.
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6.2.1 Speed of Waves

Let us find out how fast the wave travels in the x-direction. Imagine following a peak
that corresponds, let us say, to the value 6z for the argument in the cosine function,
in which case we will have

kx — ot =61

w 6
X =—t+—.

k k

We differentiate the expression for position with respect to time, so that we
may see how quickly this point moves, and we obtain

=

w
=V =—.
k

The velocity with which the wave travels is thus equal to the ratio between
angular frequency and wavenumber. We can rephrase this relation in terms of
the wavelength and time period as:

2n/T X

V= =—.
2 /A T

But we know that the frequency is given as the inverse of the period, i.e. v =
1/T.If we insert this in the last equation, we get a well-known relationship:

V=AV. (6.4)

The velocity of a plane wave given in Eq. (6.3) is thus the wavelength multiplied
by the frequency (Eq. 6.4). This is a very important relationship!

6.2.2 Solution of the Wave Equation?

So far, we have only asserted that Eq. (6.3) satisfies the wave equation. We will now
verify this, and we get by double differentiation of Eq. (6.3):

2
D s
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and
2 f(x,1) _
ax2

—k>f(x, 1) .

We observe that:
Pf(x.1) @3 f(x.1)
arr k2 9x?

or:
Pf(x,1) Vzazf(x, 1)

912 9x?2 6

We see that the plane wave given in Eq. (6.3) satisfies the wave equation, but
what about the initial and boundary conditions? Well, here some difficulties arise.
If a planar wave should be able to form and remain so, we must initiate a wave
that actually has infinite extent and the same amplitude and initial variation in time
throughout this infinite plane. There must also be no boundary conditions that affect
the wave at any point. If all of these requirements were met, the plane wave would
remain plane, but we realize that this is physically unattainable.

However, if we start by considering a wave many, many wavelengths away from
the location where it was generated—for example, sunlight as it reaches earth—the
so-called wavefront will be quite flat as long as we only consider the light over, for
example, a one square metre flat surface normal to the direction of light. If we then
follow the light a few metres further, the wave will behave approximately like a plane
wave in this limited volume. But if reflected light reaches this volume, we will not
have a plane wave anymore!

Remark: The wavefront of light from the sun will in fact not be plane, as indicated above. Due

to the angular size of the sun in relation to the wavelengths of visible light, the spatial coherence
length is short and the wavefronts irregular. This will be discussed in detail in Chap. 15.

Plane waves are therefore just an idealization that we can never achieve in
practice. The plane-wave description can nevertheless provide a relatively good
account over a limited volume when we are far away from bits and bobs that
can affect the wave in one way or another.

By “far away” one means that the distance is large relative to the wavelength,
from the source of the waves, and from boundaries that distort the wave.

6.2.3 Which Way?

We found above that a plane wave described by the equation
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f(x,t) = Acos(kx — wt)

has a velocity v = +w/k. That is, the wave propagates in positive x-direction as

time passes. With a little practice, we can infer this directly from the argument of the

cosine function: if we stay at the same place on a wave (e.g. a peak), the argument

must remain unchanged as time increases. And increasing the time ¢, we can achieve

the constancy of the argument only if we compensate by letting x also increase. In

other words, the peak of the wave moves towards larger x-values as time increases.
By using similar reasoning, we can easily show that a wave described by:

f(x,t) = Acos(kx + wrt)

propagates towards lower x-values as time increases. Pictorially, for those of us
who are accustomed to the x-axis increasing to the right, we can say that the waves
described in the first of these ways (with the minus sign) move to the right, and waves
described in the other way (with the plus sign) move leftward.

Note that the speed of the wave does not describe speed in the same way as the
speed of a ball after it is thrown. The speed of the ball, a physical body, is defined
as the time derivative of the position of the ball. For the wave, speed is defined as
a more abstract quantity, for example, the time derivative of the position in space
where the wave has its maximum value. For a sound wave in air, the velocity of the
wave is equal to the velocity of, say, a point in space where the local air pressure
has a maximum. This can be described as the speed of a “wavefront”. We will come
back to more complicated relationships later.

Fig. 6.3 Snapshot of s
“amplitude” (y in red), the y ‘
time derivative of the
amplitude (y in blue) and the
double derivative of the

(solid curve)

amplitude (J in green) in y
different positions along a e
Yy
wave. The wave as such
moves to the right (fop) and I
to the left (bottom). The Yy |- A
dashed red curve shows ‘ :
where the wave is a short ! X
time after its current location y E
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Figure 6.3 shows a snapshot of “amplitude”, the single and double time derivatives
of the amplitude at all positions along a wave. The wave as such goes to the right
or to the left as the arrows show (top). Note that for a right-going wave, the time
derivative of the amplitude will lie a quarter period “in front” of the “amplitude” and
the second time derivative a quarter of period “in front” of the first time derivative.
For a leftward wave, exactly the same applies, but “in front” of the wave must now
mean to the left of the wave.

Let’s try to concretize these considerations, but choose a wave on a string (e.g. the one we get
just after we swing one end of a long horizontal string up and down a few times). The “amplitude”
in this case is very concrete because it simply indicates the position of the string at the spot where
the amplitude is measured. The time derivative of the amplitude will then say the vertical velocity
to the point along the string we consider, and the double time derivative for this point will then be
the vertical acceleration of this point. The wave itself moves in the horizontal direction.

Note that for any arbitrary point along the string, the sign of acceleration at all times is the
opposite of the position relative to the equilibrium point. Thus, the effective force on every element
of the wave is always pointing towards the equilibrium state/position. We hope you realize that this
is just as it should be (based on what we learned in Chap. 2).

6.2.4 Other Waveforms

So far, we have considered harmonic waves, i.e. waves with sinusoidal shape. Can
waves of another shape satisfy the wave equation?
Let us investigate a wave described by:

gx,t) = Glkx — wt) .

where G can have any shape (but G must be a differentiable function). We introduce
anew variable u = kx — wt, partially differentiate, use the chain rule and get for the
left-hand side of Eq. (6.5):

Pg(x,1)  d*G(x,1) (du)’
ar du? at

_ pdeen
du?

For the right-hand side, a similar differentiation gives:

8%g(x, 1) 2 d’G(x, 1)
x> du?
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We see that g(x, ) indeed satisfies the wave equation, assuming that k and w
are real constants.

That is, any wave that can be described by a differentiable function and a
single argument (kx — wt), where k and w are constant is a solution of the
wave equation.

6.2.5 Sum of Waves

What if we have a sum of two different functions, one of which has a slightly different
combination of k& and w than the other. The sum function is then given by:

g(x, 1) = Gikix — wit) + Ga(kox — wat)
=Gi(u) + Ga(u2) .
Partial differentiation with respect to time gives:

d’g ,d2Gi(uy) L, d2G2 ()
PV 2 ) 2
Jt duj dus

)

and partial differentiation with respect to position gives:

g ,d*Gi(u)

2 d2G2 (uz)
— =k .
9x2 du?

+k
: du3

If these functions are to satisfy the wave equation

3’g  ,0%g
=y —

012 ax2
We must require that the time derivative should equal v? times the second spatial
derivative. We assume that this demand can be met, and then get the insertion and
arrangement of the terms:
d*G(uy)
(0 — Vi) ———
1 1 du%

d*Ga(ur)

2272
= —(w; — vk
(@ 2) du3
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Since G| and G, can be chosen freely, this equation cannot be satisfied in general
unless
(@} —v?k) = (w3 —v?k3) =0

and this implies that
w1 w2
v —

Tk k

and one is led to conclude that the two waves must travel with the same velocity!

We have now established that the sum of two (or more) waves travelling at the
same speed will satisfy the wave equation if each of the sub-waves does.

We have also shown that if a wave consists of several components that move
with different speeds, we will not be able to describe the time development of
the wave by using a single wave equation. Then the waveform will change as
the wave moves (an effect we call dispersion in Chap. 8).

6.2.6 Complex Form of a Wave

We can use complex description for a wave in the same way we did it for oscillations.

A plane harmonic wave in the x-direction can be descried in terms of complex
quantities as: .
fx, 1) = Aelkx—orte) (6.6)

Similarly, we can describe a plane harmonic wave travelling along an arbi-
trary direction k/|Kk|, where k is a so-called wave vector, in the following
manner:

f(r, 1) = Aeikr—ertd) 6.7)

where k - r is the dot product between the position vector and the wave vector.

Since f should normally be real, we must either take the real part of the
above expressions or seek some other safeguard. An elegant and common way
to avoid this problem is to add the complex conjugate (“c.c.”) of the expression
and divide by 2:

1 .
fr 1) = EAe‘(k'r_“”+¢) +cc.. (6.8)

This form of representation can be used for both real and complex A.
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6.3 Transverse and Longitudinal

There are several types of waves. One classification is based on which direction “the
amplitude” has in relation to the direction of propagation of the wave. But since the
“amplitude” can be almost anything, and not necessarily something that moves in
space, such considerations often turn out to be misleading. It is safer to base the
classification on the symmetry properties of the wave, and we shall attempt to do
this in what follows.

For sound waves, “the amplitude” is a pressure change. For sound waves in air,
this is a pressure change in air, and likewise for sound in other materials. Pressure
changes occur locally because air molecules move in the same (or opposite) direction
as the direction of propagation of the wave.

It is the local rotational symmetry axis of the air pressure that determines the
direction of propagation of the wave. By saying that one means that the local
air pressure varies in the same manner irrespective of which direction we take
to be the normal to the direction in which the wave travels (thus, we have
cylindrical symmetry). Such a wave is called longitudinal (Ilengthwise).

However, air molecules do not move from, say a speaker to my ear, when I
listen to music. It is tempting to say that each air molecule fluctuates (statistically)
back and forth relative to an equilibrium point. The problem, however, is that there
is no equilibrium point because Brownian displacements of the air molecules are
usually greater than the displacements caused by the passage of sound. However, the
movement due to the sound is “collective” for many air molecules, while individual
movements are more chaotic. That way, the sound wave can survive after all. The
amplitude of the oscillations due to the sound wave alone is usually much smaller
than one millimetre (even smaller for sound in metals).

Transverse waves are the other main type of waves. The best-known example is
that of electromagnetic waves. When the physicists at the beginning of the nineteenth
century realized that light had to be described by waves (and not as particles as
Newton had convinced physicists to believe for over a hundred years), they had
trouble explaining polarization. The reason is that they assumed that light waves
were longitudinal, as they thought all waves to be. Only when Fresnel suggested that
the light waves were transverse, were they able to fathom polarization.

A transverse wave has an “amplitude” perpendicular to the wave propagation
direction (transverse: “turned across”). By that we mean that the physical
parameter we call “the amplitude” does not have local rotational symmetry
about the axis indicating the direction of wave motion. There is no cylindrical
Ssymmetry.
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For electromagnetic waves, the electric and magnetic field is “the amplitude”.
Electrical and magnetic fields are vectors and have a direction in space. That an
electromagnetic wave is transverse means that the electric and magnetic field are in
a direction perpendicular to the direction along which the wave propagates. Then the
rotation symmetry is automatically broken. (It is sufficient with symmetry breaking
within a limited volume in space, of the order one half of the wavelength in all
directions.)

Note that there is no relocation of anything material across an electromagnetic
wave! Many imagine that there is something that moves across an electromagnetic
wave, similar to the water level in a surface wave of water. That is wrong. If we
depict electric fields as vector arrows at points along the propagation direction, then
the arrows will extend and retract. But these arrows are mere aids for thought and
have no existence of their own. They only indicate the size and direction of the
abstract quantities electric and magnetic fields at the different positions in space.
We will discuss common misconceptions when we treat electromagnetic waves in
Chap. 9.

Some waves (proclaim to) have a portmanteau character, lying between longitu-
dinal and transverse. Surface waves on water are an example. Here, water molecules
move back and forth in the direction of propagation, as well as up and down in a
perpendicular direction.

6.4 Derivation of Wave Equation

We have previously given a mathematical expression for a wave and arrived (through
quasi-reverse reasoning) at a differential equation with solutions displaying wave
behaviour. We will now start with a physical system and derive the pertinent wave
equation. We will do this for oscillations on a string and for sound waves in air/liquid.
It is considerably more difficult to derive an equation for surface waves in water, and
we will just settle for an approximate solution without a derivation. Subsequently,
we will also deduce the equation for an electromagnetic wave. Surface waves on
water and electromagnetic waves will be discussed in later chapters.

6.4.1 Waves on a String

The starting point is a wave along a string. We consider a small segment of the
string, more specifically a segment that is small in relation to the effective wavelength.
Figure 6.4 shows the segment along with forces that work on it. The wave is assumed
to propagate in the horizontal direction (x-direction), and the equilibrium position of
the string when there are no waves on it is also horizontal. The wave is assumed to be
purely transverse so that the result is solely in the vertical direction of the figure (y-
direction). It should be noted that the amplitude in the vertical direction is exceedingly
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Fig. 6.4 Forces that act on a
small segment of a string
suffering transverse motion.
See the text for details

small in relation to the length of the piece under consideration. We expand the vertical
scale in the figure to get some visual help when important relationships are to be
entered.

It is assumed that the stiffness of the string is so small that the forces S and S’
that work at each end of the string are tangential aligned along the string.! The mass
centre for the segment will still change position & (x, t) relative to a mean position
(the equilibrium position of the string when there is no wave). The movement of the
segment must be described by Newton’s second law.

Newton’s second law will be applied separately to the horizontal and vertical
directions, and we take the horizontal first. Since the string is assumed to have
a purely transverse movement, the centre of mass of the string segment does not
move (notably) in the x-direction. Consequently, the sum of forces in the horizontal
direction must be equal to zero, in other words:

Sy =Scos¢p =Scos¢p’ =8, .

This is accomplished automatically (to second order in ¢) if S = §, since ¢ is a very
small angle (remember, according to Taylor’s theorem, cos ¢ ~ 1 — ¢> + - - -).
Newton’s second law, when applied in the y-direction, gives:

> Fy=ma,. (6.9)

The string has a linear mass density (mass per length) equal to u, and the length of
the segment is Ax. The mass of the segment is therefore m = puAx.

Let h(x, t) denote the position of the midpoint of the segment relative to the
equilibrium position when there is no wave on the string. Also, since S ~ 5, it
follows from Eq. (6.9):

1For sufficient small wavelengths, this approximation cannot be used. The limiting wavelength
depends on the stiffness of the material of the string.
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Y _ 9%h
Ssing’ — Ssing = uAx | — . (6.10)
a1 midpoint

The subscript of the last parenthesis indicates that the double derivative of the centre
of mass is calculated in the middle of the Ax range, i.e. in the middle of the segment.
Since the ¢ and ¢’ angles are very small, a Taylor expansion provides:

sin ¢ &~ ¢ ~ tan ¢

and likewise for ¢’; further, sin ¢ can be replaced by tan ¢ in the above expression.
But the tangent indicates the slope, which can also be written as 9/ /dx. Since there
is an increase both at the beginning and the end of the segment, we get:

sing’ — sin¢ ~ oh oh
0x (x+Ax) 0x x‘

This can be rephrased as:

<8h> (8h)

0X / (v i Ax ox / 0h

(x+Ax) Y Ax A ( 2) Ax
Ax dx midpoint

Make sure that you recognize the second derivative in the above expression!
If this expression is inserted in Eq. (6.10), one obtains:

g < 0h ) A A <82h )
— X~ UWAX | — .
dx? midpoint ar? midpoint

Since both derivatives refer to the same point (midpoint), this index can now be
dropped. Upon cancelling Ax and carrying out some straightforward manipulations,
one is led to the result:

0%h S o%h
a2 pax?

The desired equation follows as soon as we replace the sign for approximate equality
with an equality sign:

Ph S 9h

—_—== = 6.11
a2 0x2 ©.11)

We have shown that the transverse motion of a strand can be governed by
the wave equation. The speed of the wave is easily deduced:
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v=[=. 6.12)

One solution of this equation is:
h(x,t) = Acos(kx — wt + @)

where A is the amplitude, k the wavenumber, w the angular frequency and ¢ an
arbitrary phase angle. In the first instance, all four quantities can be chosen freely,
apart from the fact that k and w must conform to the relation:

In other words, there are three degrees of freedom in the wave motion, and it is perhaps
most common to choose these as amplitude, frequency and phase (phase indicates in
practice the choice of zero point for time). The initial conditions determine these, but
the boundary conditions too play an enormous role, and they can cause the solution
in practice to become a standing wave even if the initial conditions alone indicate
something completely different.

Before we leave the wave equation that describes the movement of a string, it

may be useful to recall the starting point for our derivation:

e Newton’s second law holds.

e The wave is purely transverse.

e The force acting at each end of a segment of the string is tangentially directed
(i.e. a purely geometric assumption).

e The angle between the tangent line to the string at any point and the equi-
librium line is very small all along the string.

e Only when the angle between the tangent line to the string and the equi-
librium line is different at each end of a segment of the string, do we get a
net force that performs work on this segment. This corresponds to the fact
that there must be a curvature on the segment under consideration for it to
experience a net force.

Based on these simple assumptions, one is able to infer that a delicate interplay
between forces, position and time is responsible for propagating the wave along
the string. You are advised to think about what this interaction is in fact. What is
actually propelling the wave? What makes the amplitude increase, and what causes
it to diminish? It is not only Mona Lisa who conceals something intriguing!
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In Chap. 8, we return to the basic requirements for a wave to move. We then base
ourselves on numerical methods because these provide extra insight precisely into
this context.

6.4.2 Waves in Air/Liquids

Derivation of the wave equation for movement in air/liquids is more complicated than
the case considered in the last section. One reason for this is that we now work with a
three-dimensional medium. To make the derivation manageable, we limit ourselves to
a plane, longitudinal wave, which in effect allows positional changes to be described
in terms of only one spatial dimension (plus time). Even so our presentation will be
only approximative, but will hopefully reveal the two main mechanisms behind the
waves in air and liquids: (1) the mechanical properties of a compressible medium
and (2) Newton’s second law.

Mechanical properties

In our context, the most important property of air and liquids is that they are
relatively compressible; that is, it is possible to compress a certain amount of
gas or liquid to a smaller volume than it originally had. Air can be compressed
relatively more easily than liquids and liquids relatively more easily than solids.
(This was why we did not discuss compressibility of the vibrating string in Sect.
6.4.1.] Figure 6.5 illustrates the nomenclature used in the following derivation.

Suppose that a small amount of gas/liquid with volume V expands or compresses
to a new volume of V +dV as a response of a change in the pressure from P
to P 4+ dP. It is assumed that dV and d P may be positive or negative, but their
magnitudes are always small relative to V and P, respectively.

Fig. 6.5 A gaseous volume
element can be compressed P P+dp
slightly if the external

pressure increases. If d P is 1%

positive, d V will be negative v+dav
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Fig. 6.6 With longitudinal movement of a gas or liquid volume, position, pressure and volume will
change, but only in one spatial dimension (here in the x-direction). In the upper part of the figure,
the gas volume is at equilibrium, but in the lower part a snapshot of a dynamic situation is given
where the same amount of material has moved and changed volume compared to the upper part.
Note that p, x and n are functions of both time and space, while the cross section A and the mass
of gas or liquid are fixed

The ability of a material to withstand volume changes when the pressure is
increased is called the “bulk compressibility module” for the material. It is
defined in the following manner:

k=_4F (6.13)
- dv)v’ '

The unit of both the bulk compressibility module and pressure is pascal (abbre-
viated Pa) where 1pascal = 1Pa = 1N/m?

Let us now apply this point of view to sound waves. Figure 6.6 is based on a
situation where pressure changes and movements of a gas volume occur only in one
direction, namely the x-direction. For a given value of x, there are no changes in
pressure when we move in the y- or z-direction.

We choose to follow the movement of an arbitrary cylinder-shaped portion of
the continuous medium and assume that a negligible number of molecules will be
exchanged between this cylinder and the surroundings while we consider the system.
The cross section of the cylinder will not change in time, but the cylinder will move
in the £ x-direction and will change in length (volume) with time.

Figure 6.6 shows our limited volume at equilibrium (no sound) and at an arbitrary
time of a dynamic situation. The cross section A in the yz-plane is fixed, and the
positions of the bounding surfaces of the cylinder are x; and x; in the equilibrium
and x; + n; and x, + 1, in the dynamic situation.
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In our attempt to arrive at a wave equation, we must find relationships between
positions, pressures and volumes and use Eq. (6.13) for the model in Fig. 6.6. We
choose to write the expression in a slightly different form:

dv
dP=—K=-. (6.14)

where K is the “bulk compressibility modulus”.
We apply the symbols in Fig. 6.6 in Eq. (6.14) and get:

pitp_ (2+m—x1—n)A—(x2—x1)A
2 (x2 —x1) A .

where the mean value of the pressure changes at the two ends of the cylinder is
chosen for the d P term.

We would like to go to the limit where Ax = x, — x| goes to zero. This is strictly
not permitted given the assumptions about the size of the chosen cylinder of gas or
liquid.

We need to make an “acoustic approximation” characterized by the following:

e Ax = x; — x is large relative to the average length of the free paths of
air molecules between collisions with other air molecules in their chaotic
movement.

e Ax is small relative to the wavelength of the sound waves.

e The displacements 7, are small compared to Ax, which means that the sound
is weak.

The first point ensures that the gas or liquid volume under consideration is rea-
sonably well separated from neighbouring areas. It also ensures that there are a large
number of molecules within the selected volume, so that we can disregard individual
molecules and treat the contents of the volume as quasi-continuous.

The next point ensures that pressure differences between the end faces are small
compared to the pressure variation when the wave passes. The last point just ensures
that the displacement of the gas volume is small compared with the length of the gas
volume.

Under these approximations, the statement

dpzuzp(x’t).
2
is justified and yields:
p= _Kﬁz — M
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They also justify that the right side of this expression can be approximated to

9
p=—k. (6.15)
0x

This equation provides a relation between pressure and displacement.
Newton’s second law

We will now apply Newton’s second law on the system. The mass of the volume
element is equal to the mass density pyp multiplied by the equilibrium volume. If the
positive x-axis is also defined as the positive direction for F' and the acceleration a,

one can write:
E F = ma

where we sum over the forces acting on the volume element in the x-direction.
Applied to our cylinder of air or liquid:

2

a°n
(Patm + P1)A — (Pam + p2)A = A(xy — X1)P0W

where the acceleration is the double time derivative of the displacement of the gas
volume. Rearranging the terms give:

(52— x0T

— = (x> — x -1

P1— D2 2 1,008t2
Pz—Pl__p32_7l
Xy — X1 Oalz'

Again, we would happily have gone to the Ax — 0 limit, but with the limitations
we have imposed, that is not permissible. However, as long as we adhere to each of
the last two points of acoustic approximation, the left-hand side would not change
significantly if we made Ax smaller. We get roughly

ap 0°n

— =—po— - 6.16

o v (6.16)
Then, substitution of Eq. (6.15) into Eq. (6.16) and rearranging of terms give:

02 K 32

on_2on (6.17)

ot? £0 0x2

We have thus arrived at the wave equation for this system as well. We then
realize that if small volumes of air (or liquid) molecules are displaced in an
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oscillatory manner, as indicated in the derivation, the result of the displacement
will spread as a wave. The speed of the wave is given by:

K
v= [—. (6.18)
Lo

In other words, the speed of sound increases if the gas/liquid is hard to com-
press, but decreases with the mass density of the medium through which sound
travels.

The expression for the wave velocity bears close resemblances to the comparable
expression for a wave on a string (Eq. 6.12). The wave velocity was then v = /S/u
where S was the force trying to bring the string back to equilibrium. In our case, K
is a measure of the force (pressure) trying to bring the volume back to equilibrium.
For the string, p is the mass per length, while in our case pg is the mass per volume.

It should be borne in mind that the foregoing derivation is based on a number of
approaches. If one uses a more rigorous approach, one arrives not at the simple swing
equation but at a nonlinear equation that can only be solved numerically. However,
for weak sounds and for normal air pressure, the solution of the latter equation would
be quite close to that found by using the simpler wave equation.

We have chosen to ignore another aspect of sound waves in air. When a gas
expands or contracts, there is also a change in temperature. We implicitly assumed
that there has been no exchange of thermal energy from different volume elements
in the gas or the liquid through which the sound wave is transmitted—an adiabatic
approach. It can be justified for weak sounds, and that is precisely what we have
treated above.

It is quite common to use gas laws instead of the definition of compressibility
modulus in the derivation of wave equation for sound waves through a gas. Our
choice was dictated by the consideration that this chapter should be comprehensible
to those without significant knowledge of statistical physics and thermodynamics.
In addition, we think that the concept of compressibility is useful for understanding
the underlying mechanism of wave propagation in gases and liquids.

Remark: It is interesting to note that the speed of sound in air is lower (but still not very much
lower) than the median of the speed of air molecules between intermolecular collisions on account
of their chaotic thermal movement. For nitrogen at room temperature and atmospheric pressure, the
maximum in the probability distribution of the molecular speed is about 450 m/s. Those interested
in the topic can read more about this under “Maxwell-Boltzmann distribution”, e.g. in Wikipedia.

6.4.3 Concrete Examples

The calculation we made to deduce the wave equation for movements in air and
liquids is quite rough. We started out with Newton’s second law, used the validity
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of what that lies in the definition of the compressibility modulus, plus some other
less significant details, and came to the wave equation. Can such an easy description
provide a useful estimate of the speed of sound?

Let’s try to calculate the sound speed in water. The compressibility modulus for
water (at about atmospheric pressure) is given as K = 2.0 x 10° Pa. The density of
water is p & 1.0 x 103 kg/m?>. If these values are entered into the expression of the
sound speed in Eq. (6.18), the result is:

Vwater & 1.43 x 103 m/s

The literature value for sound velocity in water is 1402m/s at 0 °C and 1482 m/s at
20°C. In other words, the conformity is actually good!

Let us then try to calculate the sound speed in air. Then a problem arises because
the compressibility modulus is usually not given as a general table value, since the
value depends on what pressure we consider. Instead, we start with the gas law:

PVY =constant (y =C,/C,),

where C, is the specific heat capacity at constant pressure, and C, is the specific heat
capacity at constant volume. It is assumed that the changes in volume and pressure
take place so that we do not supply energy to the gas (adiabatic conditions). For
sound with normal intensity, this requirement is reasonably well satisfied, but not for
very loud sound.

A general differentiation of the gas law gives:

dPVY+Pd(V")=0
VYdP +yV? ldVvP =0.
Upon combining this with Eq. (6.13), one gets

dP

v
The ratio of the two specific heats for air is known to be
S am
y = c, =L .

Since a pressure of one atmosphere equals 101,325 Pa, it follows that the value of
the bulk modulus for air under atmospheric pressure (under adiabatic conditions) is:

K =1.402 x 101,325 &~ 1.42 x 10° Pa.
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Standard tables show that the mass density of air at atmospheric pressure and about
20°C is p = 1.293kg/m>. With all relevant data at hand, we are able to deduce the
speed of sound in air:

Vair = 331 m/s.

The value turns out to be 344 m/s.

Not all the data used above refer to 20 °C and one atmosphere pressure. No won-
der, then, that the calculated and experimental values are not in complete agreement.
Nevertheless, the calculated value is “only” about 4% too low. It indicates that our
calculations and the formula found for the speed of sound in gases/liquids are rea-
sonably good.

Remarks: The tables also provide the data for the bulk modulus for metals, and by using the same
formula (derived for gases and liquids), we get values that are close to the tabulated values but the
discrepancy is larger than that for air and water. For example, we calculate the speed of sound in
steel to be 4510 m/s, whereas the actual value is 5941 m/s. For aluminium, the calculation leads to
5260m/s, but the experimental value is 6420 m/s.

We should also bear in mind that in metals sound is able to propagate as a transverse wave
instead of or in addition to a longitudinal wave, for example when the metal piece is shaped as a
rod. The speed of a transverse sound wave in a metal depends on the rigidity of the metal, with the
result that transverse waves often have lower speeds than longitudinal waves. If we strike a metal
rod, we usually get transverse and longitudinal waves at the same time, and the latter usually have
a higher frequency (after the standing waves have developed).

6.4.4 Pressure Waves

In the above derivation, we saw that the effective motion of small volumes of gas or
liquid can follow a wave equation. It is interesting to see how much displacement
is undergone by the small volumes of fluids when a wave passes, but usually it is
more interesting to describe the wave in the form of pressure changes. Sound waves
are usually detected with a microphone, and the microphone is sensitive to small
variations in the pressure. The transition can be carried out as follows.

A possible solution of the wave equation Eq.6.17 is as follows:

n(x,t) = nocos(kx — wt) . (6.19)

When switching to pressure waves, we use the definition of the compressibility
modulus again, more specifically Eq. (6.15) that was derived earlier:

Kan(x,t) .

9t = -
px, 1) ox
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By combining Eqgs. (6.19) and (6.15), one gets:
p(x,t) = kKnosin(kx — wt) = pg sin(kx — wt) . (6.20)

The result shows that wave motion in a compressible medium can be described
both as displacements of tiny volumes of the medium or as pressure variations.
There is a phase difference between these waves, and a fixed relationship
between the amplitudes. If the amplitude of displacement of the tiny volumes
(with thicknesses significantly less than the wavelength) is 7o, the amplitude
of the pressure wave is k K 7.

6.5 Learning Objectives

After working through this chapter, you should be able to:

e Write down the standard wave equation (for a plane wave).

e Explain amplitude, wavenumber, wavelength, period, frequency, phase,
wave velocity and the formula fA = v.

e Give a mathematical expression for a harmonic plane wave as well as any
arbitrarily shaped wave, which moves in a specified direction. For a harmonic
plane wave, you should also be able to provide a mathematical description
based on Euler’s formula.

e Explain how a wave can be visualized either as a function of time or as a
function of position.

e Explain the difference between a longitudinal and a transverse wave, and
give at least one example of each.

e Derive the wave equation for a transverse vibration on a string.

e Know the main steps in the derivation of the wave equation for a pressure
wave through, for example, air (sound wave).

e Calculate approximately the speed of sound in water using material/
mechanical properties for water.

6.6 Exercises

Suggested concepts for student active learning activities: Wave velocity, ampli-
tude, wavelength, plane wave, wave equation, transverse, longitudinal, Taylor expan-
sion, compressible medium, compressibility modulus.
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Comprehension/discussion questions

1.

10.
11.

Present an example of the equation for oscillatory motion and an example of
the wave equation. What types of information should we have in order to find a
concrete solution of each of these two types of differential equations?

. Does the velocity of waves as described in Eq. (6.6) depend on the amplitude?

Explain the answer.

. During thunderstorms, we usually see the lightning before we hear the thunder.

Explain this. Some believe that we can determine the distance between us and the
lightning by counting the number of seconds between our seeing the lightning
and hearing the thunder. Can you find the connection?

. Suppose that a long string hangs from a high ceiling almost down to the floor.

Suppose that the string is given a transverse wave motion at the lower end and
that the wave then rises to the ceiling. Will the wave speed be constant on the
way up to the ceiling? Explain the answer.

. If you stretch a rubber band and pluck it, you hear a kind of tone with some pitch.

Suppose you stretch more and pluck again (have a go at it yourself!). How is the
pitch now compared to the previous one? Explain the result. (hint: the length of
a vibrating string is equal to half the wavelength of the fundamental tone.)

. When we discussed sound waves, we said (with a modifying comment) that each

air molecule swings back and forth relative to an equilibrium point. This is in a
way totally wrong, but still the picture has a certain justification. Explain.

. The difference between a longitudinal and a transverse wave is linked in the

chapter to symmetry. How?

. Finally, in Sect. 6.4.1, an overview was given of the essential assumptions made

in the derivation of the wave equation for motion along a string. Attempt to set
up a corresponding list for the derivation of the wave equation in air/water.

. Our derivation of the wave equation for a pressure wave in a fluid is rather

lengthy and full of details. In spite of this, can you actually point out the physical
mechanisms that determines the speed of sound in air or water?

Discuss sound waves with regard to energy.

For surface waves on water: can you determine, if you know the height of
the water surface at one point on the surface as a function of time, (a) where
the wave comes from, (b) wavelength and (c) whether the height (amplitude) is
the result of waves from one or more sources? Use your own experience and the
photograph in Fig. 6.1.

Problems

12.
13.

14.
15.

Check whether the function y(x, t) = A sin(x + vt) satisfies the wave equation.
What characterizes a plane wave? Mention two examples of waves that are not
plane and give an example of an (approximate) plane wave.

State a mathematical expression for a plane moving in the negative z-direction.
Is this a plane wave: S = Asin(k - r — wr)? Here k is the wave vector which
points in the direction of wave propagation at the point r, and r is an arbitrarily
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16.

17.

18.
19.

20.

21.

22.

23.

24.
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chosen position vector, w is the angular frequency and ¢ the time. A is a real
scalar. Justify your answer.

Explain in your own words how we can see from the mathematical expressions
that a wave A cos(kx — wt) moves towards larger x-values as time passes, while
the wave B cos(kx + wt) moves opposite the way.

A standing wave can be expressed as g(x, t) = A sin(kx) sin(wt). Show by direct
substitution that a standing wave is also a solution of the wave equation for
v = w/k (we will return to standing waves in Chap. 7).

What is the wavelength of a 100 Hz sound wave in air and in water?

When we take ultrasound images of foetuses, hearts, etc., the image quality
depends on the wavelength not being more than about 1 mm. Sound waves in
water/tissues have a speed of about 1500 m/s. What frequency must the ultra-
sound have? Is the word “ultrasound” an apt term?

How long is the wavelength of FM broadcast at §88.7 MHz? And what wavelength
does your mobile phone have if it operates on 900, 1800 or 2100 MHz?

A young human ear can hear frequencies in the range of 20-20,000 Hz. What is
the wavelength in air at each of these limits? (The speed of sound in air is about
340m/s.)

A 2m metal string weighing 3 x 10~3kg is held under tension roughly like a
guitar string. Clamped at one end, it is stretched slightly above a table surface
and bent over a smooth round peg at the edge of the table (see Fig. 6.7); the other
end of the string is attached to a freely hanging object weighing 3 kg, which
provides the tension.

(a) Calculate the speed of a transverse wave along the horizontal part of the
string.

(b) Would the velocity of the wave change if we change the length of the hori-
zontal part of the string (i.e. how much of the 2-m-long string is located between
the clamped point and the round edge)?

(c) How long should the horizontal part of the string be in order that it may
vibrate at 280 Hz if you pluck at it? (Hint: Assume that the string is then half a
wavelength long.)

(d) How heavy should the bob be in order to make the frequency twice than that
in the previous task (assuming that the length does not change)?

Write a program in Matlab or Python that samples the sound signal reaching the
microphone input of a PC when a microphone is connected and plot the signal
with the correct timing along the x-axis. You may use program snippet 2 in the
end of Chap. 5 for part of the program.

Sample the sound as you sing a deep “aaaaaa’. Is the sound wave harmonic?
What is its frequency?

In Fig. 6.8, there is a wave along a string (a small section) at three neighbouring
times. Base your answer on the figure and explain:

e What is the direction of the net force acting on each of the eight segments of
the string at time 7 (ignore gravity).
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Fig. 6.7 Experimental setup
in the following problem
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25.

26.

Explain in detail your arguments for finding the force, especially for segments
2,4,5,6and 7.
What is the direction of the velocity of each of these segments at time ¢?

o Atfirst, it may seem that there is a conflict between force and velocity. Explain

the apparent conflict.

The last point is related to the difference between Aristotle’s physics and
Newton’s physics. Do you know the difference?

How does the energy vary for an element along the string when the wave
passes by?

Elaborate on the expression “the wave brings with it the energy”.

Make an animation of the wave A sin(kx — wt) in Matlab or Python. Choose
yourself values for A, k, w, and the ranges for x and ¢. Once you have got this
animation working, try to animate the wave A sin(kx — wt) + A sin(kx + ot).
Describe the result.

You may use program snippet 3 in the end of Chap. 5 for part of the program (also
available at the “Supplementary material” web page for this book is available at
http://www.physics.uio.no/pow).

Read the comment article “What is a wave?”” By John A. Scales and Roel Snieder
in Nature vol. 401, 21 October 1999 page 739-740. How do these authors define
a wave?
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Abstract The prime theme of this chapter is reflection of (sound) waves at
interfaces between two media with different wave velocities (or different acous-
tical impedances). Such reflections are used in, apart from other situations, ultra-
sound imaging in medicine, e.g. of foetuses during pregnancy. If a wave moves in an
extended medium with reflective boundaries at both ends, a wave of arbitrary shape
will go back and forth repeatedly with a fixed time period determined by the wave
velocity and the distance between the reflecting ends. We argue that this lies at the
core of musical instruments, and not pure standing waves, used as the paradigm in
most physics textbooks. We then present the tone scale and go on to define sound
intensity, both physically and in relation to human hearing. The chapter ends with a
discussion of beats, Doppler shifts and shock waves.

7.1 Reflection of Waves

Sound waves are reflected by a concrete wall, and light waves by a mirror, whereas
the waves on a guitar string are reflected at the ends where the string is clamped.
Reflection of waves under different circumstances is a topic that we would encounter
time and again in this book. Mathematically, reflections are treated by the introduction
of so-called boundary conditions. As mentioned earlier, the same differential equation
for wave motion can arise in various contexts, yet the solutions differ markedly
because the boundary conditions are not identical. The first and perhaps the simplest
illustration of this is wave motion along a string of finite length, where physical
conditions at the “boundaries” (the ends of the string) play a decisive role in the
wave motion.

Suppose that we have a taut string, one end of which is attached to a large mass,
and that we produce a transverse “pulse” by providing a sharp blow to the other end
(see Fig.7.1). The pulse will move along the string at the rate /S/u, where S is the
tension and p the mass per unit length. The shape of the pulse is preserved.

When the pulse reaches the clamped end of the string, the amplitude at this end
must necessarily vanish. This means that the pulse close to this end will be com-
pressed and the force across the string will increase significantly. Since the endpoint
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Fig. 7.1 A transverse wave reaches an interface between two media. The wave is drawn for four
successive instants. In a, the wave goes from a region of low impedance (white) to one of much
larger impedance (yellow). The wave is fully reflected and the result gets the opposite sign of the
incoming. In b, the impedance at the interface decreases (the wave comes from a high impedance
region and meets a low impedance region). Here, reflection of energy is near total, but if we consider
only amplitudes, the effect is more modest (indicated by the dotted line). Panels ¢ and d illustrate
a case where the amplitudes of the reflected and transmitted wave are equal

cannot move, the compressed string experiences a force in the opposite direction,
which creates an imbalance between the amplitude and the travel speed, compelling
the pulse to turn back along the string. However, the wave that travels backwards
will have an amplitude opposite to that of the original (incoming) pulse (case a in
Fig.7.1). No energy is lost (to a first approximation) since loss on account of friction
requires the frictional force to work over a certain distance, while we have assumed
that the end point is completely fixed.

Another extreme is that where the end is free to move. This can be achieved, for
example by holding the string at one end and allowing it to fall freely downwards
and let the end move freely in air (disregarding air resistance). However, this is not a
good model, since the tension in the string is not defined. A much better model is a
string of large linear mass density (mass per unit length) connected at the free end to
a string of significantly smaller linear mass density, and subject the entire structure
to a fairly well-defined tensile force. It will be convenient to call the former a thick
and the latter a thin string.

A pulse transmitted along the thick string will move normally until it reaches the
boundary between the two strings. The disturbance that reaches the thin string will
give it a significantly greater impact than if the string were of a uniform density. There
is again a mismatch between amplitude and velocity, resulting in reflection, but the
result in this case is a reflected pulse with same amplitude as the original pulse. In
this case, however, some of the wave (and energy) will also propagate along the thin
string. If the thin part has a significantly smaller density, almost all energy will be
reflected (case b in Fig.7.1).
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The terms “a massive structure” and “a thinner or thicker string” (signifying linear
mass density) are not sufficiently precise word, and it is better, when one is discussing
production and transmission of sound, to use the term “acoustic impedance”, defined
below:

Acoustic impedance is defined as acoustic pressure (sound pressure) divided
by acoustic volume flow rate (details in the next subsection).

Meanwhile, we will content ourselves with qualitative descriptions, but will con-
tinue to employ the term “impedance”, even though our understanding of acoustic
impedance is still vague. Based on this understanding, the rules for reflection and
transmission of waves at an interface can be enunciated as follows:

It can be shown both experimentally and theoretically that:

e Waves that strike an interface beyond which the impedance of the medium
increases, split so that the reflected part is of the opposite sign to that of
the incident wave. The transmitted wave has the same sign as that of the
incoming wave.

e Waves that strike an interface beyond which the impedance of the medium
decreases, split so that the reflected part is of the same sign as that of the
incident wave. The amplitude of the transmitted wave also has the same sign
as that of the incident wave.

e The fraction thatis reflected or transmitted depends on the relative impedance
change in relation to the impedance of the medium the wave originates
from. If there is no impedance change, nothing is reflected; if the relative
impedance change is infinitely large, all energy is reflected.

In Fig. 7.1, the waveform at the instant the wave strikes the interface is not shown
on purpose, but a detailed profile can be constructed using the method outlined in
Fig.7.2. In the figure, total reflection is illustrated. Correct waveform before the
interface is drawn, and we let an upward pulse approach the interface. A downward
virtual pulse is also made to travel towards the interface with the same velocity. The
virtual pulse has an equal and opposite amplitude to that of the incoming pulse if total
reflection occurs against a medium with very high impedance (e.g. by attaching a
string to a massive structure). The shape of the actual wave during and after reflection
is found by adding the waveforms of the original and virtual pulses (the resultant
is indicated by the thick dotted line in the figure). Eventually, only the virtual wave
survives in the region to the left of the interface, and further wave evolution follows
the motion of the virtual pulse alone.

This model can be easily be modified to deal with the case in which the wave
approaches a medium with much lower impedance, which leads to almost total
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Fig. 7.2 A model for portraying the time development of the waveform of the reflected part of a
transverse wave reflected at an interface between two media. See the text for details

reflection with no change in the sign; it can also be modified to handle cases where
a part of the wave is reflected and a part transmitted.

We will return to a more detailed description of reflection and transmission of
electromagnetic waves when they meet an interface between two media.

7.1.1 Acoustic Impedance *

We will in this chapter speak about “acoustic impedance” rather loosely. However,
for the sake of those who wish to acquire greater familiarity with acoustic impedance,
this subsection provides a slightly more detailed description. Go ahead to the next
sub-chapter if you are not interested in spending more time on this topic at this point.

The notion of acoustic impedance arose when we discussed reflection of waves
at the interface of two media. Let us delve a little deeper into this issue. There are
several variants of acoustic impedance.

“Characteristic acoustic impedance” Z is defined as:
Zy = pc (7.1)

where p is the mass density of the medium (kg/m?), and c is the speed (m/s) of sound
in this medium. Z, depends on the material and its units are Ns/m> or Pas/m.

The characteristic impedance of air at room temperature is about 413 Pas/m. For
water, itis about 1.45 x 10° Pas/m, i.e. about 3500 times larger than the characteristic
impedance of air.
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Differences in characteristic acoustic impedance determine what fraction of a
wave is transmitted and what fraction is reflected when a “plane wave” reaches a
plane interface between two media.

The big difference in characteristic acoustic impedance between air and water
means that sound in the air will be transmitted into water only to a small extent, and
sound in water will penetrate into air only to small extent. Most of the sound will be
reflected at the interface between air and water.

In Chap. 6, we found that the sound speed in air or water was given (using ¢

instead of v) as:
c=vK/p

where K is the modulus of compressibility and p is the mass density. Upon elimi-
nating p by using the definition of characteristic impedance in Eq. (7.1), we get:

Zy=K/c. (7.2)

This expression gives us another idea of what influences the characteristic acoustic
impedance. For a particular system, e.g. a musical instrument, an different measure
is often used:

“Acoustic impedance” Z is defined as:

p
7 = — 7.3
oS (7.3)

where p is the sound pressure, v is the particle speed (over and above the contribution
of thermal movements) and S is the pertinent cross-sectional area (e.g. the mouthpiece
of a trumpet).

There is a close analogy between acoustic impedance and impedance in electro-
magnetism. For this reason, the definition of acoustic impedance is often compared
with Ohm’s law, and Z is sometimes called “sound resistance” or “audio impedance”.

If you wish to learn more about acoustic impedance, the following article might
be of interest: “What is acoustic impedance and why is it important?” available on:
http://www.phys.unsw.edu.au/jw/z.html (accessed May 2018).

7.1.2 Ultrasonic Images

Characteristic acoustic impedance will change with mass density and the modulus
of compressibility [see Eqs. (7.1) and (7.2)]. Precise correspondence is not so easy
to obtain from these equations since the speed of sound also depends on the same
quantities.

Nevertheless, there are differences in the characteristic acoustic impedance of,
e.g. blood and heart muscle. The characteristic acoustic impedance of a foetus and
foetal fluid are different. Therefore, if we send sound waves to the body, some of
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Fig.7.3 Ultrasound images of two foetuses. On the leftis a 3D image of a foetus about 11 weeks old.
On the right is a sectional image (2D) of a foetus about 18 weeks old. Reproduced with permission
from the owners (private ownership)

the sounds will be reflected from the interfaces between blood and heart muscle, and
between the placenta and the foetus.

However, there is a huge difference between the characteristic acoustic impedance
of air and body. In order to get sound efficiently in and out of the body during an
ultrasound examination, a gel is applied on the skin, which reduces friction and
acts as a conductor of the ultrasonic waves from the ultrasound probe. This material
should have approximately the same characteristic acoustic impedance as the tissue
the sound is going to enter.

After reflection at interfaces between different impedances, the sound will be
captured as an echo, provided that the original sound pulse has already ceased before
the echo returns. By analyzing the echo as a function of time delay, we will be able
to determine distances. And if we can send sound in well-defined directions, we will
also be able to form images of what is inside the body. Figure 7.3 shows a pair of
ultrasonic images of a foetus.

Much interesting physics goes into the design of the sound probe in ultrasound
surveys. We can control the beam in two directions by causing interference between
many independent transmitters on the surface of the sound probe. Control of the sound
beam is achieved by systematically changing the phase of the sound for each single
transducer on the ultrasound probe. Focusing for the sake of reducing diffraction can
also be done by similar tricks. We will return to this in later chapters.

It should be added that there are major similarities between ultrasound surveys,
for example, of foetuses and mapping of the seabed for oil exploration. In the latter
case, a number of sounders (and microphones) are used along a long cable towed
along the seabed. Echo from different geological layers in the ground with different
acoustic impedances is the starting point for finding out where to expect oil and
where there is no oil and how deep the oil lies.

Many physicists in this country, educated at NTNU, UofO or other institutions,
have helped develop ultrasound and seismic equipment. The Norwegian company
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Vingmed has been a world leader in developing ultrasound diagnostics equipment.
Vingmed has now been purchased by General Electric, but Norwegian scientists
trained in physics and/or informatics still play an important role in the development.
Similarly, we have taken an active part in seismic surveys as well. A great deal of
interesting physics lies behind these methods, and these principles are sure to find
other applications in the years to come. Perhaps you will become one of the future
inventors by exploiting these ideas?

7.2 Standing Waves, Musical Instruments, Tones

7.2.1 Standing Waves

When a persistent wave travels along a taut string that is firmly attached to a massive
object at one end, the wave will be reflected from the endpoint and travel backwards
along the string with an amplitude opposite to that of the incoming wave. If there is
negligible loss, the incident and (an equally strong) reflected wave will add to each
other (superposition principle). Let the incoming wave be a harmonic wave described
in the following form:

y(x,t) = Acos(wt + kx)

for x > 0. That is to say, the wave comes from “the right” (large x) and is moving
toward the origin. The string is tied to a massive object at the origin, which gives
rise to a reflected wave that can be described by the equation:

ye(x,t) = —Acos(wt — kx) .

‘We have chosen to describe the waves in a somewhat unusual way to ensure that
the amplitude at the origin is exactly the same for incoming as reflected wave, but
with the opposite sign. The two contributions will then cancel each other exactly at
the origin.

The superposition principle allows us to express the resultant of the incoming and
reflected waves as follows:

Youm = A cos(ot + kx) + [ — Acos(wt — kx)]

for x > 0.
We have the trigonometric identity

b —b
cosa —cosbh = —2sin at sin a .
2 2
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Fig. 7.4 A travelling (left) and a standing wave (right) as a function of position at various times.
The green arrow shows how the wave changes from one point of time (green curve) to a subsequent
time (blue curve). Pay particular attention to how we use the words “anti-node” and “node” in the
standing wave

By using the above identity for our sum of an incoming and a totally reflected
wave on a string, we find:

Ysum = —2A sin(kx) sin(wt) . (7.4)

In this expression, we have taken account of the fact that the reflection occurs
against a medium with greater impedance, so that the wave is reflected with
the opposite sign.

The important point about Eq. (7.4) is that the coupling between position and
time is broken. Maximum amplitude in a given position is achieved at times for
which sin(wt) = %1, and these times have nothing to do with position. Simi-
larly, the positions where the maximum amplitude occurs is determined solely
by the term sin(kx), which does not change with time. These characteristic
features are displayed in Fig.7.4.

Remark: In the foregoing account, we have assumed that the incoming wave is
harmonic, but beyond this we have not imposed any requirements on the three main
parameters needed to describe a wave: amplitude, phase and frequency. Regardless
of the values chosen for the three parameters, standing waves will result after a total
reflection as described above, but this holds only for a pure harmonic wave!

Standing waves are an important phenomenon when one is dealing with harmonic
waves; they can arise with sound waves, water waves, radio waves, microwaves and
light—indeed, for all approximately harmonic waves!

The addition of several harmonic waves which do not all have the same phase
cannot give rise to standing waves with fixed nodes and anti-nodes like those shown
in the right part of Fig.7.4.
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7.2.2 Quantized Waves

Identical endpoints

Suppose that a string is clamped at both ends and that we manage to create a wave
pulse similar to the one in Fig.7.1. The wave pulse will be reflected each time it
reaches an end, and the wave will travel to and fro indefinitely, provided that there
is no energy loss. The same sequence repeats over and over again with a time period
T, which is the time taken by the wave to go back and forth once.

The time period equals the total distance back and forth divided by the velocity

of the wave; that is:
. 2L

14

T

where L is the distance between the two identical ends of the string. The
frequency of the periodic movement comes out to be f = 1/T, or

v

f=5s.

(7.5)

If we use the general relationship Af = v for a wave, we can assign a kind
of wavelength A to the wave along the string:

A=2L.

This will in general not be a harmonic wave.

It is somewhat artificial to speak of the wavelength inside the instrument, but it
becomes meaningful as soon as we consider the sound created by the instrument in
the surrounding air.

Note that these relationships are generally applicable and are not limited only to
harmonic waves!

A wave moving along a string clamped at both ends will have a “quantized”
time course with a period given by the time the wave needs to travel back and
forth along the string once.

The same regularity will hold also, to take another example, for an air
column inside a flute (where there is low impedance at both ends).

Figure 7.5 attempts to highlight reflection of waves for two equal endpoints. The
figure shows the wave pulse as a function of position at different instants of time
(left). After an interval equal to the time period, we are back to the same situation as
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Fig.7.5 A wave pulse with an arbitrary amplitude travels without loss between two reflecting ends.
The wave pulse may be a pressure pulse in air (to the left) or a mechanical transverse wave pulse
on a string (to the right). There are no change in sign of the wave pulse in the first case, but the sign
is changed for the latter kind of reflection. See explanations in the text

we had at the beginning of the interval. In the case a flute, a (weak) sound wave will
emerge from the flute every time the internal wave reaches the open end (marked
with an asterisk in the figure). The player then has to add to the wave pulse at correct
time once every period to compensate for the loss to the surroundings. The time
period of emitted sound will be the same as the time taken by the wave peak to make
one round trip inside the flute.

One should note that it is completely possible to admit more wave peaks within the
fundamental period of time we have considered so far. Figure 7.6 attempts to specify
a hypothetical case where there are three identical wave peaks evenly distributed
over the fundamental time period. The frequency of the sound emerging from a flute
sustaining such a wave will be three times the fundamental frequency. It is important
to remember that the to and fro movement of a wave does not affect the movement
of other waves, even though the total amplitude is a sum of the several independent
contributions (assuming that a linear wave equation describes the movement).

Nonidentical endpoints

For a wave moving in a musical instrument where one end of an air column has
a high impedance and the other a low impedance, the conditions are different than
when the impedance is the same at both ends. An example is an organ pipe sealed
at one end, the other end being open to ambient air. In such a case, a wave reflected
from the low impedance end will continue in the opposite direction with unchanged
amplitude, while the wave amplitude will change sign when reflection occurs at the
high impedance end.

In such a situation, the wave as a whole will experience a sign reversal by travelling
up and down the pipe once. If the wave makes a second round trip, its sign will change
again. This means that a wave must make two journeys back and forth twice (cover a
distance 4 L) for it to repeat itself. Figure 7.7 provides an illustration of this principle.
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Fig. 7.6 A wave that travels back and forth between two identical ends a distance L apart will
have a fundamental frequency v/2L. However, it is possible to add more than one wave peak to the
fundamental wave. In this figure, three equivalent peaks equally spaced within the 2L distance are
depicted at one instant of time (a) and at a slightly later time (b). Wave peaks travelling to the right
are indicated by red, and peaks travelling to the left by blue. The resulting wave is always the sum
of these two contributions. In this case, the sound will have a frequency three times the fundamental
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Fig.7.7 A wave peak must travel twice back and forth in order to regain its initial amplitude when
one end of an air string has a high acoustic impedance and the other end low. The massive blocks
drawn to the left indicate high acoustic impedance. At this end, the wave undergoes a sign reversal
upon reflection
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The period for a wave that is reflected at two unlike ends is

4L
T=—.
v
The corresponding frequency is
v
== 7.6
f=17 (7.6)

The wave can also have any shape whatever; it is only the duration of the
period that counts in this context.

As in the case when both ends have the same impedance, we can have an
integral multiple of the fundamental frequency, but with one notable exception.
We cannot have an even number of identical sequences during the fundamental
period of time (you can verify this yourself by making a drawing similar to
Fig.7.7). We can therefore have only an odd multiple of the fundamental
frequency given in Eq. (7.6). We usually write this in the form:

_ @n—1y

! 4L

(7.7)

wheren =1,2,3, ...

7.2.3 Musical Instruments and Frequency Spectra

Some musical instruments, such as a drum, provide transient sounds, while other
instruments emit more or less persistent “tones”. A tone can be characterized as
deep/dark or high/light. The pitch height depends on the frequency of the fundamental
tone. The sound of an instrument can be “sampled” and displayed as a time series
(a plot of the signal strength in the time domain). The frequency content can be
determined experimentally, for example, by Fourier transformation of the time series.

Pure sinusoidal form occurs rarely in the time series of sounds from real instru-
ments. Why is it so difficult to generate harmonic waves from a musical instrument?

It becomes easy to understand that the waveform is not harmonious when we look
into the mechanism for the production of sound in a musical instrument. When we
pluck a guitar string, it becomes obvious that we are unable to produce a perfect
sinusoidal wave. The deviation from a sinusoidal shape will depend on where the
string was plucked. This can be easily seen from a Fourier analysis of the sound,
since the intensity distribution among the different harmonics depends on where the
string is plucked.
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Fig. 7.8 In a musical instrument, a wave goes back and forth with the speed of sound in air and is
reflected at each end of the instrument. If we analyse the sound signal with Fourier transformation,
we can get many harmonics in addition to the fundamental tone. The harmonics are not independent
of each other, and their existence only means that the pressure wave is not harmonious

We know that when someone plays the trumpet, the air passes through the tight-
ened lips of the player in small puffs, and it is obvious that these puffs will not lead
to sinusoidal variations for the resultant pressure waves (illustrated in Fig.7.8). In a
clarinet or oboe or a transverse flute, we create air currents and vibrations where tur-
bulence plays an important role. The air eddies are nonlinear phenomena and will not
lead to sinusoidal timescales for the pressure waves. It is therefore quite natural that
the pressure waves in the instrument do not become harmonic. Nonharmonic waves
inevitably lead to more harmonics in the frequency spectrum, something already
pointed out in the chapter on Fourier transformation. There is no mystery about it.

Nonlinear effects are present in virtually all musical instruments. For string instru-
ments, the vibration and rotation of the string affect in return the contact between the
(violin) bow and the string. This results in continuous small changes in the vibration
pattern, even though the salient features last long. It is the nonlinearity that gives life
to the sound of the instrument and makes it difficult to generate synthetic sound that
is as lively as that which emanates from musical instruments.

When the sound waves in the instrument are almost periodic but do not have
sinusoidal time periods, the frequency spectrum will consist of several discrete peaks
separated by the fundamental tone frequency. How should we determine the tone of
the sound? It is the fundamental tone that determines the pitch we perceive with our
hearing.

Curiously enough, it is possible that a frequency spectrum may lack the peak
corresponding to the fundamental tone and still our ear will perceive the pitch of the
fundamental tone. Figure 7.9 shows a small segment of a time signal from a tuba, an
instrument that plays low-frequency tones. The time display shows a periodic signal,
but a waveform that is far from a pure sine. The frequency spectrum shows a number
of peaks, and it is clear that the peaks have frequencies that are integer multiples of
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Fig. 7.9 It may happen that the intensity of the fundamental tone is much less than any of the
harmonics. In such cases, we can remove the fundamental tone completely without the time signal
changing noticeably. Also when we listen to the sound, the pitch will be determined by the periodicity
of the time signal rather than the frequency of the harmonics

the fundamental frequency. However, the intensity of the fundamental frequency is
quite small.

For the sake of a little amusement, the fundamental tone was completely removed
from the frequency spectrum' and an inverse Fourier transform was calculated over
the entire frequency domain. The result was a time profile visually indistinguishable
from the original time signal of the tuba sound (see Fig.7.9). If we listen to the
filtered signal, we do not hear any difference either (at least not easily).

Let us use Fig.7.9 to point out an important message regarding our perception
of the pitch of a tone. The fundamental tone is found by requiring all peaks in
the frequency spectrum to have frequencies equal to an integral multiple of the
fundamental frequency. The fundamental frequency does not have to be present.

1Both from the positive and the negative half of the frequency domain, due to folding in Fourier
transform.
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There can also be “holes” in the series of harmonics (e.g. only third, fifth and seventh
harmonics exist). Nevertheless, only one frequency satisfies the requirement that the
frequency spectrum consists of components that are harmonics of the fundamental.

7.2.4 Wind Instruments

When we pluck on a guitar string, the resulting wave will travel back and forth along
the string, and the total movement (at each time and each instant) will be the sum
of the forward and reverse wave.> However, the energy imparted to the string by the
act of plucking eventually changes to sound that disappears in the surroundings and
it also heats the string, since it bends a bit here and there and is not fully elastic. The
oscillations of the string will die out in a matter of seconds, which is several hundred
times longer than the time the wave needs to make one round trip along the string.

A wind instrument (such as a flute, trumpet, clarinet, oboe) is a little different from
a guitar string. With such an instrument, a musician can keep a steady volume of the
sound for a long time—until he/she has to pause for breath. For wind instruments,
therefore, we have a (quasi)-steady-state excitation of the instrument as long as we
keep blowing air into it.

In a trumpet, 40-50% of the energy in a wave disappears when the wave reaches
the funnel-like opening of the instrument. This means that only 50-60% of the sound
energy of the wave is reflected, and the musician must supplement the reflected wave
to uphold a steady state situation.

The pace at which the musician blows air must have proper timing relative to the
reflected waves, in order to get good sound intensity. This may seem like a difficult
task, but sound waves reflected from the end of the instrument back to the mouthpiece
of a brass wind instrument impress on the musician’s lips, making it easy to provide
new puffs at the right time. Finesse is achieved by tightening and shaping the lips
and how forcefully the musician squeezes air through the lips.

For a flute, the reflected wave will affect the formation of new air eddies, which
ensures proper timing also for such instruments.

There is some leeway with respect to timing (a slightly higher or lower frequency
of air blows than that corresponding to the wave speed and the length of the instru-
ment), but too great a departure will not lead to a sonorous success, because new air
blows will not work in unison with the reflected waves.

2There are details to the movement of a wave on a guitar string not mentioned here. These are easier
to understand when we use numerical methods to calculate wave movements in Chap. 8.
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7.2.5 Breach with Tradition

In this subsection, we will discuss a traditional way of presenting the physics behind
different instruments. The purpose is to show that such an approach can easily lead
to misunderstandings.

Figure 7.10 shows a traditional representation of what characterizes the physics
behind an organ pipe. The organ pipe is chosen as a concrete example. The same
conditions apply to all instruments with corresponding impedance termination at the
end of an air column. The illustration focuses on the notion of standing waves, as
described in Eq. (7.4). The wavelength is determined by the requirement that there be
either an anti-node or a node in the standing waves at the end of the air column inside
the instrument (“anti-node” corresponds to maximum and ‘“node” to zero amplitude).
‘We must distinguish between the pressure and the displacement, since we know that
in a harmonic sound wave there is a phase difference of 90° between the two.
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Fig. 7.10 Ostensible displacement amplitude (dashed blue curve) and pressure amplitude (solid
red curve) for sound waves in an open and closed organ pipe (or instrument with corresponding
acoustic endpoints). This is a standard illustration found in most textbooks in this field. However,
the figure is liable to misunderstanding, which is why it has been marked with a large cross. See
the text for details
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For an instrument that is closed at one end and opens in the other, there will be an
anti-node for pressure and a node for displacement at the closed end. The converse
holds for open ends, that is, a node for the pressure and anti-node the displacement.

The conventional account is correct, provided that there is a pure harmonic wave
in the instrument (only one frequency component), which provides a perfect standing
wave. The problem is that the proviso is seldom met in practice!

This is compensated by drawing standing waves also for the higher harmonics,
and the figure shows how these waves appear in addition to the wave of the funda-
mental frequency. One is given the impression that one need only add the separate
contributions to get the correct result.

However, the recipe cannot work. There are phase differences between the har-
monic frequency components in a Fourier analysis of the sound. These phase dif-
ferences are vital for reproducing the original time profile of the sound. The phase
differences are conspicuously absent in Fig.7.10.

The phase difference means that there will be no standing wave inside the instru-
ment! It becomes meaningless to talk about anti-nodes and nodes inside the instru-
ment. Application of these terms at the endpoints does have a certain justification.
However, in our explanatory model, it is more natural to associate this with the rules
for reflection of waves.

An the open ends, the air molecules move more easily than inside the pipe.
Impedance outside the pipe being lower than that inside, we demand that waves
reflected at such an interface do not change sign upon reflection. This means that
there is maximum movement of the air molecules at ends that are open.

Similarly, air molecules will find it difficult to move against a massive wall, for
example, at the close ends of a closed organ pipe. Accordingly, waves reflected at
the closed end will have a sign opposite to that of the incoming wave, with the result
that the displacement of the molecules at the boundary becomes zero.

For the pressure wave, the argument is reversed.

We are led to the same conclusion, but for the end faces only, whether we base our
argument on reflection of waves or on standing waves for the fundamental frequency,
but there is disagreement everywhere else.

Animation

It may be instructive to see how a wave evolves inside a wind instrument. We can
make an animation in a simple way and the procedure is shown in Fig. 7.11. We have
chosen an animation based on a wave travelling back and forth inside the instrument
with negligible loss (but still sufficient to permit detection of the sound emitted by
the instrument). We have also chosen a situation where both ends have the same
impedance, and the impedance is lower at the ends than inside the instrument, so that
a wave is reflected without a sign reversal.

We have chosen a real audio signal from an instrument (French Horn) and picked
exactly one period of the signal. The starting point and endpoint are arbitrary, and
the signal has been divided so that one half indicates the wave amplitude at different
positions for the part of the wave moving toward the opening (where some of the
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Fig.7.11 Total sound pressure at different positions within an instrument can be found by summing
the sound pressure of the forward and backward waves. One whole period of the sound output from
the instrument must be divided equally between the forward and backward waves, as shown at the
bottom. By moving forward the waveform (cyclically), keeping pace with the wave, we create an
animation of total sound pressure vs position with the passage of time. We see that it is meaningless
to talk of standing waves in a case where the frequency spectrum has many harmonics (the time
profile is very different from a that of pure sinusoid)

sounds are released). The other half represents the reflected wave. The part that has
just been reflected is very close to the opening of the instrument. The part that was
reflected half a period earlier has travelled all the way back to the mouthpiece of the
instrument.

The wave inside the instrument can be found by adding the forward wave and the
backward wave at each point.

Animation is achieved by cyclic stepwise movement of the waveform, each step
or frame representing a later instant. The last point of the forward wave becomes, as
we move to the next instant, the first point in the backward, while the last point in
the backward wave becomes the first point in the forward wave.

Figure 7.11 shows some examples of how the wave looks at six instants (separated
by a fifth of the period). We can follow the dominant wave peak and see that it first
travels towards the open end of the instrument, but is reflected and moves away from
this end during the next half of a period, at the end of which a new reflection occurs.
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The animation is meant to show that there is really nothing here that would evoke
standing waves, as described by Eq. (7.4) and in the left part of Fig.7.4. The model
based on a wave that travels back and forth provides by far the more faithful descrip-
tion of the state of affairs.

The upshot of the foregoing discussion is that it is more appropriate, when
one is describing the process underlying the production of sound in a musical
instrument, to speak of a “trapped moving wave” than of a “standing wave”.
Joe Wolfe at The University of New South Wales, Australia, focuses on trapped
moving waves in his outstanding Web pages about audio and musical instru-
ments (see references at the end of the chapter).

Concrete examples of quantization

It may be useful to look at some concrete examples of quantization (or lack of
quantization) of frequencies from different “musical instruments”.

For a 94-cm-long brass tube (internal diameter about 15 mm) two series of mea-
surements were made. In the first, one end of the tube was placed just next to a speaker
where a pure tone was played with a tunable frequency. At the other end of the tube,
a small microphone was placed for monitoring the signal strength. When the fre-
quency was varied from about 150 to about 1400 Hz, resonances (sound intensity at
the location of the microphone) were observed at frequencies of approximately 181,
361, 538, 722, 903, 1085 and 1270Hz. This corresponds to nf; (n =1,2,...,7),
with f] calculated from a tube open at both ends [Eq. (7.5)].

When we used the tube as a makeshift trumpet, we could turn (by tightening our
lips more from one variant to the next) generating sound with frequencies (ground
tone) of about 269, 452, 622, 830 and 932 Hz, that is, to say completely different
frequencies than the resonant frequencies at both ends open! The frequencies here
correspond approximately to %n f1 (n =3,5,7), with f; pertaining to a tube open
at both ends [Eq. (7.5)]. This is in perfect accord with the frequencies predicted by
Eq. (7.7) for an instrument closed at one end and opened at the other.

For a trumpet, the situation is a little different. The trunk of the tube in a trumpet
results in nonlinear effects because the effective length of the tube is slightly different
for different frequency sounds. The tract also causes the sound to come into the
surroundings in a more efficient manner than with instruments made hundreds of
years ago. The mouthpiece also has complicated acoustic features, but we will not
go into these details here.

In Fig.7.12 is shown an example of a continuous sound from a trumpet, both con-
sidered in the time domain and the frequency domain. In this case, the fundamental
tone and higher harmonics are present at the same time, and the amplitude ratio
between them appears in the frequency domain (often called “frequency spectrum”
or “Fourier spectrum”).



182 7 Sound

10 Time domain Frequency domain
X
10
2 — q
g g
= 1 ] fundamental =
. S 6 // 1. harmonic
7] = .
o O = 2. harmonic =
S % 4 \1. overtone
< o
Q () i~ =
-1 2 3. harmonic =
_8 3 2 /*{2. overtone
[T
= -2 0 Il | Y
200 205 210 215 220 0 500 1000 1500 2000
Time (ms) Frequency (Hz)

Fig. 7.12 Example of time frame and frequency picture of the sound of a B trumpet playing a
“C” note (which is really a B, see next sub-chapter). It is obvious that the time signal is not a pure
sinusoid, but a mixture of several frequencies, as revealed by the frequency spectrum. Note that
the fundamental frequency is a part of the harmonic range, while the fundamental frequency is not
counted in the numbering of so-called overharmonics

Note the asymmetry in the time frame of the sound from the trumpet. The maxi-
mum peak is found once again to be as large as the negative peak half a period later.
Similar to the second largest peak. This corresponds well with the picture that a wave
peak undergoes a sign change after one round trip, but the wave peak returns to the
original after two round trips.

It is this asymmetry of the signal itself that causes integer harmonics to almost
disappear in the Fourier analysis of the sound, as we see in the right part of Fig.7.12.

Examples of nonquantization

The importance of reflection of waves and wave velocity within the instrument for
obtaining a given (quantized) frequency can be grasped by referring to Fig.7.13.
Here, we have sampled the sound of a mouthpiece from a trumpet (removed from
the trumpet itself) while the musician has changed the tightening of the lips slightly
up and down. The time signal is analysed by a form of time-resolved Fourier trans-
formation (wavelet analysis, which we will return to later in the book). In such a
diagram, peaks in the frequency spectrum are shown as a function of time. We can
see that the pitch of the fundamental tone here can be varied continuously. There is no
quantization, because there is no reflection of the sound waves of some importance.
Frequency is determined exclusively by the rate of air blows through the lips, and
here there is no physical process that could impose quantization on frequency.

The harmonics also appear in the wavelet diagram, but since we use a logarithmic
frequency scale (y-axis), it does not become the same distance between the different
harmonics.

It is interesting to note that we get many harmonics even when the mouthpiece is
used alone. This means that it is the slightly chaotic opening/closing of the lips that
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Fig. 7.13 An advanced form of time-resolved Fourier transformation (wavelet transformation) of
the sound from the mouthpiece of a trumpet. Time is measured along the x-axis, the logarithm of
the frequency along the y-axis. The intensity of the frequency spectrum is highlighted with colours.
See also the text for comments

Fig. 7.14 A slice of the time
picture of the sound from a
mouthpiece shows that the
sound pressure does not vary
harmoniously with time.
Note that the asymmetry
seen in the trumpet signal in
the left part of Fig.7.12 is no
longer present, even though
the same mouthpiece was
used in both cases -10
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make sure the airflow does not acquire a sinusoidal time course. This is confirmed
by Fig.7.14, which shows a small section of the time signal from the mouthpiece
sound. In other words, it is not the trumpet itself that creates the harmonics. What
matters more is the action of the tight lips whereby small air puffs are ejected in a
rather erratic manner. On the other hand, back and forth passage of the wave in the
trumpet leads to the quantization of whatever tones are emitted by the instrument.
Later in the book, we will use wavelet transformation for further analysis of sound.
It will then be seen that Fourier transformation often furnishes a picture that lacks
life and nuance. In reality, the harmonics do not exist at the same intensity all the
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Fig. 7.15 The air column in a trumpet is slightly funnel shaped from the mouthpiece to the outer
opening. Valves permit changing the length of the air column. For a B-trumpet (the fundamental
tone is a B when no valves are pressed) the length of the air column is about as long as specified

time. The intensity distribution of the harmonics varies as shown in Fig.7.13. This
is one reason why sound from real musical instruments has often more life in it than
synthetically produced sound.

7.2.6 How to Vary the Pitch

It is interesting to see how we may change the pitch in different instruments. For
a guitar, it is obvious that we should change the length of the vibrating part of the
string. Since the fension is largely unchanged when we press a string against a fret
in the neck of the guitar, the velocity of the waves remains unchanged. When we
choose to reduce the length of the string, the time taken by a wave to go back and
forth decreases proportionally, and the frequency rises according to the relationship
f=v/2L.

In a brass wind instrument, such as a trumpet, the length of the air column in the
instrument changes when the valves are pressed. For a trumpet, when the middle
valve is pressed, the air is diverted to a small extra loop. If only the first valve is
pressed, the extra loop is about twice as long if only the middle valve is pressed,
and if only the third valve is pressed, the extra loop is about three times as long. In
Fig.7.15, the data for the effective air column length for different single valves are
given in bold letters. Several valves can be pressed simultaneously, and then the total
air extension will equal the sum of all the additional loops that are inserted.
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Fig. 7.16 Tones on a piano along with calculated frequency on a tempered scale. The figure is
inspired from [1] but completely redrawn

7.2.7 Musical Intervals

In the Western musical tradition, tones are graded on a scale of 12 semitones,
which together span a frequency range over which the frequency increases by
a factor of 2.0. This means that for a tone C there is a new tone C with a base
tone of a frequency twice as large as that of the first one. The tone range is
called an octave.

The semitones (or half-tones) in-between are chosen so that there is a con-
stant frequency ratio between a tone and the lower semitone. Since there are
12 such steps to achieve an octave, it follows that the ratio of the frequency of
one tone and the lower semitone must be

2112 ~ 1.0595

provided that all steps are equal. A scale defined in this way is called tempered.
Figure 7.16 shows the frequencies on a tempered scale if we assume that one-
stroke A should have a frequency of 440.00 Hz.

Two tones from, for example, a violin can together sound particularly pleasant
if their frequency ratio equals an integer fraction (where only numbers up to 5 are
included). The ratio between the frequency of an E relative to the C below on a
tempered scale is about 1.260. This is close to 5:4, and the leap is called a (major)
third. Similarly, the frequency of an F relative to the C is equal to 1.335, which is
close to 4:3, and the jump is called fourth. Finally, we may note that the relationship
between a G and the C below is 1.4987 which is very close to 3:2, a leap called fifth.
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It is feasible to create a scale where the tones are exactly equal to the integer
fractions mentioned above for selected tones. Such a scale is called “just”. Certain
combinations of tones sound more melodious than on a tempered scale, but the
drawback is that we cannot transpose a melody (displace all the tones by a certain
number of semitones) and maintain the melodious character.

In Fig.7.16, some interesting inscriptions can be seen at the bottom. If we start with a low A
with frequency 55 Hz (n = 1), the frequency of the first overtone (n = 2) will be twice as large (110
Hz). The difference between the fundamental tone and the first overtone is a whole octave.

The frequency of the second overtone (n = 3) will have 3 x 55Hz = 165 Hz, which almost
corresponds to an E, and the third overtone (n = 4) will have the frequency 4 x 55Hz = 220 Hz,
which is the next A. This amounts to two overtones within one and the same octave.

Continuing in the same vein, one sees that there are four overtones within the next octave and
eight within the following octave. In other words, the higher harmonics will eventually stay closer
than the semitones. That is why we can almost play a full scale without the use of valves in a lur,
by forcing the instrument to emit sound mostly at the higher harmonics.

On a trumpet, the fundamental tone (which corresponds to n = 1) is achieved if the lips are
pressed together only moderately. The frequency of the fundamental tone can be increased in leaps
(n increases) by tightening/pressing the lips more and more. The air that escapes through the lips
will then come in a tighter bunches than when the lips are more relaxed.

In Fig.7.12, we saw that the frequency of the fundamental tone for a B trumpet
was about 231.5 Hz. This should be a B, and those familiar with the tone scale will
know that a B is the semitone that lies between A and H. From Fig. 7.16, we see that
this is as it should be. By slightly varying lip tension, the tone from the trumpet can
be changed quite a bit (even I can vary the frequency between about 225 and 237Hz
for the current B). Good musicians take advantage of this fine-tuning of the pitch
when they play.

7.3 Sound Intensity

Sound may be so weak that we do not hear it, or so powerful as to become painful.
The difference is in the intensity of the sound, and the sound intensity is defined as:

Sound intensity is the time-averaged energy transported per unit time and area
in the direction of the sound.

Alternatively, the sound intensity can be defined as the time-averaged energy
per unit area and time flowing normally across a surface in the direction of
propagation of the wave.

Sound intensity is measured in units of watt per square metre: W/m?.
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It is also possible to work with an “instantaneous” intensity (as opposed to the
time average), but this will depend on both position and time. For sound waves, the
local instantaneous intensity I, will be given by:

Lins(F, 1) = (P, ). V(7 1) (7.8)

where P is the local pressure (strictly, the pressure deviation relative to the mean)
and V is here the local velocity of air molecules at the same place and time (not the
speed of sound!).

Remark: A useful rule of thumb will now be derived. Instead of looking at the amount of energy, we
may consider what work the sound wave is able to perform. Work is force times distance, and the
force that can work on a cross-sectional area A is the local pressure in the sound wave multiplied
by the area (actually the excess or deficit pressure in the sound wave multiplied by the area).
Work is “force times distance”, and if the wave moves a distance Ax in a time A¢, then it follows

that:
work that can be performed

Instantaneous intensity = -
area and time

pAAx
A At

Iins =

I Ax
s = P— X pv
ms p At p

which is the desired rule of thumb.

In the previous chapter, a harmonic sound wave was described in terms of 7, the
local displacement of the molecules, by the following equation:

n(x,t) = nocos(kx — wt)

where 7 is the maximum displacement relative the equilibrium position (in addition
to the thermal movements!).
The speed of the molecules executing in the motion is the time derivative of the
displacement n:
an :
m = wno sin(kx — wt) .
It was also shown that the same wave can also be described as a pressure wave
by using the equation:
p(x,t) = kKnosin(kx — wt) .

where K is the compressibility module for the medium in which the sound wave is
moving.

The instantaneous intensity will now be the product of the local velocity of the
molecules and the local pressure as described in Eq.(7.8). The wave is assumed to
be longitudinal and moving in the x-direction, so that velocity and pressure have the
same direction. Accordingly:
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d
I, = pa—? = kwK ny? sin®(kx — wt) . (7.9)

The wavenumber k and the angular velocity w must satisfy the relation

where v now stands for the speed of sound, K is the modulus for bulk elasticity and
p the mass density.

Whence follows the expression for the time-averaged intensity:
1 2 2 » K 2
1= Eka)Kno = kwKnms~ = 4w V(fnms)

since the time-averaged value of sin? equals 1/2. Here, 1 is the root mean
square displacement of the air molecules, or 7,s = 71/ /2. [The reader is
reminded that we are speaking here of the collective displacement of the
molecules over and above the thermal motion of “individual” molecules.]

It will be useful to eliminate K, the bulk modulus for compressibility, and
use the amplitudes of displacement and pressure, together with mass density,
sound speed, wavelength and frequency. After some trivial manipulation of
the above expression, one can show that:

_ (prms)2
oV

1

(7.10)

where pmys is the root mean square deviation of the pressure fluctuation, p is
the mass density of air and v is now the speed of sound in air.
Further, it can be shown that:

I =472 pv(f ims)* (7.11)

where A is the wavelength of the sound in air, that is, A = v/f where f is the
frequency of the sound.

Equation (7.10) shows that sound with different frequencies will have the same
intensity if the pressure amplitude is the same.

Equation (7.11) shows that sounds of the same intensity, but different frequencies,
have displacement amplitudes 7;ms Which are inversely proportional to the frequency,
hence proportional to the wavelength.



7.3 Sound Intensity 189

Itis much easier to measure pressure fluctuations than displacements of molecules.
Therefore, Eq. (7.10) is the version that finds practical applications when sound
intensities are to be measured and reported.

Before looking at some examples of intensity values, let us return briefly to Eq. (7.9). The
equation shows the instantaneous value of energy transport as a function of position and time.
The expression is always positive (since sin®> > 0). It is an important characteristic of waves! The
molecules that propagate the wave swing back and forth, but their mean position remains fixed, and
does not move with the wave (apart from thermal movement). Yet, energy is transported onward
from the source of the wave, and it normally never returns to the source.

It is of some interest therefore to integrate over time all energy transmitted from the source to
the wave. We can do that by looking, for example, at total energy per time going through a spherical
shell around the source of the waves. The unit for such integrated intensity is watts.

A human voice during normal conversation produces a total power of about 107> W. If one
shouts, the power may amount to about 3 x 10~2W. In other words, the production of a usable
sound wave does not require an unusual expenditure of power.

The figures for the human voice may seem strange when we know that a stereo system can
produce powers at 6-100 W. Of course, a stereo system used at 100 W produces a sound far more
powerful than human voice can provide. Nevertheless, the difference in intensities of sound from a
human voice and a stereo system is striking.

The reason for the big difference is that only a small part—a few per cent for ordinary speakers—
of the power supplied to the speakers is converted into sound energy. For special horn speakers, the
efficiency can reach up to about 25%. The rest of the energy is converted to heat.

7.3.1 Multiple Simultaneous Frequencies

In the derivation of Eq. (7.10), we assumed a single harmonic wave. We will now
consider waves with many different frequencies occurring simultaneously?

We must distinguish between correlated and uncorrelated waves. If we send one
and the same harmonic signal simultaneously to two stereo speakers, the sound waves
from the two sources will be correlated. At some places in the room, the waves will
be added constructively. The amplitude can be twice as large as that from a single
speaker, in which case the intensity would increase by a factor of four. Elsewhere in
the room, the waves will be added destructively and, in the extreme case, will nullify
each other. The intensity at such a place would be zero.

For uncorrelated waves (no temporal coherence, see Chap. 15), there will be no
fixed pattern of intencifying an nullifying waves at various positions in the room. It
will change all the time. For those cases, the following applies:

When we measure sound intensities, the contributions are usually uncorrelated.
The sound intensity is then equal to the sum of the intensities of the separate
contributions.
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7.3.2 Audio Measurement: The Decibel Scale dB(SPL)

Sound intensity can be specified in watts per square metre, as described above. How-
ever, it is not a convenient scale. One reason for this is that human hearing has a more
logarithmic than linear response. This means that the ear perceives changes in vol-
ume based on percentage change compared to the existing sound level. Increases the
sound intensity from 10~ to 10~* W/m?, the change is perceived to be approximately
as large as when the sound intensity increases from 1073 to 10~2 W/m?.

Therefore, a logarithmic scale for sound intensity, the so-called decibel scale,
has been introduced. The sound intensity / relative to a reference intensity Iy
is given in the number of decibels as follows:

I
B =L;=(10dB)log T (7.12)
0

The unit “bel” is named after Alexander Graham Bell, the inventor of the tele-
phone. The prefix “deci” comes from the factor of 10 that is introduced to get simple
working values. The decibel scale is used in many parts of physics, not just when we
deal with sound intensity.

In principle, we can choose any reference value and can say, for example, that the
sound intensity 10 m away from the speakers in the example above is 26 dB higher
than the sound intensity 200 m away (check that you understand how the number 26
arises).

In some contexts, it becomes necessary to specify sound intensity on an abso-
lute scale. This can be achieved by using a well-defined reference value spec-
ified on an absolute scale. For sound, the following absolute scale is often
used:

2

Ly.ps = 10 dB(SPL) log = 10 dB(SPL) log —

abs.ref pabs.ref

(7.13)

SPL stands for sound pressure level and the reference value is 1000 Hz audio
with sound pressure pyys = 20 wPa (rms). This sound pressure corresponds
approximately to an intensity of 10~'2 W/m? and represents about the lowest
intensity a 1000Hz sound may have for a human being to perceive it. This
corresponds to approximately the sound intensity 3 m away from a flying
mosquito.

It is amazing that the displacements 7 (x, t) of tiny volumes of air molecules
for such a weak sound wave is only of the order an atomic diameter. Our ear
is a very sensitive instrument!
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Although dB(SPL) has been chosen with reference to human hearing, this
is nevertheless a purely physical measure of intensity, based solely on W/m?.
dB(SPL) can be used for virtually all frequencies, regardless of whether a
human being can hear the sound or not.

The conversion from intensity to the square of sound pressure is given by
Eq. (7.10).

In practice, the term SPL is frequently omitted when sound intensity is specified.
This is unfortunate, for when one says that the sound intensity is 55 dB, the statement
is, in principle, incomplete because the reference has not been specified. If it had
been stated instead that the sound intensity is 55 dB(SPL), it would have implied that
the reference level is as indicated above, and that the sound level has been specified
on an absolute scale.

7.3.3 Sound Intensity Perceived by the Human Ear, dB(A)

Several factors must be taken into account when sound intensities are specified. The
definition in Eq. (7.13) is based on a reference sound with a frequency of 1000 Hz.
However, we hear sound in a wide range of frequencies, and the ear does not perceive
sound with different frequencies as equally intense, even if the number of watts per
square metre remains unchanged. We find it harder to hear sounds of frequencies
which are lower and higher than sound with average frequencies. The dB(SPL)
decibel scale refers to intensity values of sound, irrespective frequencies. In order to
get a measure of perceived loudness of a sound, we need to take into the consideration
the properties of the human ear.

Figure7.17 shows equal-loudness contours for different frequencies, that is, the
physical intensity in dB(SPL) required to give the same perceived loudness as the
frequency varies. Several curves are recorded, since the relative change in frequency
varies somewhat with how loud the sound is initially.

The unit phon device indicates the intensity of pure tones. 1 phon corresponds to
1dB(SPL) at the frequency 1000 Hz. The sound intensity corresponding to a given
number of phon varies greatly with the frequency of the pure tones. For example, we
see from Fig.7.17 that a pure 20Hz sound of 100dB(SPL) volume is perceived to
be equally intense as a pure 1000 Hz sound of 40 dB(SPL). We further see that the
sound intensity at 100 Hz must be about 25 dB(SPL) to be audible. Furthermore, an
audio intensity of 40 dB(SPL) at 1000 Hz corresponds to the intensity of 55 dB(SPL)
for sound of 10,000 Hz.

The curves, issued by the International Organization for Standardization (ISO),
were updated in 2003. The year indicates that it is not easy to determine such curves
as long as there are significant individual variations. People with obvious hearing
deficiencies are probably not used when the data for such curves are collected!
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It goes without saying that the decibels scale as presented in Eq. (7.13) cannot
be used to indicate perceived sound intensity in humans, which becomes par-
ticularly demanding when the sound is composed of multiple frequencies. For
this reason, an intensity measure is introduced so that different frequencies are
weighted according to how intense the sound appears to the ear. There are var-
ious weight functions, giving rise to dB(A)-scale, dB(B)-scale, etc. Figure 7.18
shows examples of the most common weighting curves.

The curves show that low frequencies count much less than average frequencies
when dB(A)-scales are to be determined, as compared to a pure dB-scale as defined
in Egs. (7.12) or (7.13).

The reason for employing different weight functions is based on the phon curves
in Fig.7.18. If the intensity is high, the ear weights various frequencies a little dif-
ferently than if the intensity is low. dB(A) is best suited for mean and low-intensity
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levels, whereas, for example, dB(C) or dB(D) is best suited for measurements at high
intensities.

Concrete example of calculation

Let us go through an example of the slightly more appropriate procedure that needs
to be used when sound contains multiple frequencies.

Suppose that a sound consists of a pure 100 Hz signal and a pure 1000 Hz signal and
that the signals are uncorrelated. Assume that, taken individually, the two components
are of equal strength on the dB(SPL) scale, for example, 80 dB(SPL) each. The sound
intensity of the composite signal on a dB(SPL) scale would then be:

2 2 2
L = 10dB(SPL) log 22— — 10 dB(SPL) log 2100tz * Ploco 1z
pabs.ref pahs.ref

2
= 10 dB(SPL) log 2% —= 3 + 80 dB(SPL) = 83 dB(SPL) .
pahsfef

However, in a dB(A) scale, the calculation would go like this: The contribution from
the 1000 Hz signal should be weighted with a weight factor 1.0, that is, effectively
as 80dB(SPL). However, the contribution from the 100 Hz signal is to be weighted
by a factor of —20dB, that is, we must subtract 20dB from the 80dB the sound
would have on a dB(SPL) scale, because it is placed on a dB(A)-scale. 80dB(SPL)

corresponds to
2

ZP — 108
pabs.ref
and 60 dB(weighted) corresponds to
2
ST
pahsmef
The sum comes out to be:
Pt wei pi ; pi ;
L =10 dB(A) log tot,zwezghted = 10 dB(A) IOg ( 100 l;z, weighted + 1000 l;lz, wetghted)
pabs.ref pabs.ref pab&ref

=10 dB(A) log(10° + 10%) = 80.04 dB(A) .

In other words, sound at 100 Hz contributes hardly anything to the perceived intensity
as compared with sound at 1000 Hz.

We often see tables with sound intensities in different circumstances, and a typical
example is shown below:
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Audibility threshold at 1000 Hz . . .0 dB(A)

Whispering 20dB(A)
Quiet radio at home 40dB(A)
Conversation 60 dB(A)
General city traffic 70 dB(A)
Loud music 100 dB(A)

It is most common in such overviews to use the dB(A) scale, but presented just as
“dB”. In principle, we should state the intensities in dB(A), dB(B), etc., instead of
just dB, to point out, first, that the values refer to an absolute scale, and second, that
the contributions from different frequencies have been weighted, in order to show
the perceived sound intensity and not a measurement of sheer physical intensity.

For our ear to experience that the sound level has doubled, the sound intensity
must increased by 8—10dB(A).

As for large sound intensities, we know that:

85dB(A) prolonged exposure can lead to hearing loss
120 dB(A) acute exposure can cause hearing loss

130 dB(A) causes pain (“Pain threshold”)

185 dB(A) causes tissue damage.

Data like these vary from source to source and must be taken with a pinch of salt.
It is clear, however, that loud noise can destroy the hairs in contact with the basilar
membrane in the inner ear (see Chap. 3). Too many persons regret that they were
tempted to listen to such powerful music that hearing impairment became permanent.
Also note that with very powerful sound, ordinary tissue is torn apart and shredded,
so that the body as such degenerates completely. Powerful sound is not something
to play with!

7.3.4 Audiogram

We can test our hearing by visiting an audiologist, or by using available computer
programs and the computer’s sound card (but the accuracy is often dubious). In fact,
there even are smartphone apps for this type of test. The result of a hearing test is
often displayed as a so-called audiogram, and an example is given in Fig.7.19. An
audiogram is constructed such that if a person has normal hearing, her/his audiogram
should be a horizontal straight line at the 0 dB level (or at least within the blue band
the figure between —20 and +10dB). If the person has impaired hearing for some
frequencies, the curve will be below the O level. The distance from the null line
indicates the difference in the sensitivity of the test person at a particular frequency
compared with the norm.
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Fig. 7.19 Example of an audiogram recorded by an audiologist. The curves show age-related
hearing loss in a 68-year-old man. R and L stand for the right and left ear, respectively. Normal
hearing is within the blue area between —10 and +20dB

Figure 7.19 shows that the person tested has normal hearing for 500 and 1000 Hz
in the left ear but has impaired hearing loss for all other frequencies. The hearing
loss is 80-90dB in both ears at 8 kHz. This means that the person is practically
deaf at high frequencies. This is an example of age-related hearing impairment. It is
small wonder that older people have trouble understanding conversations between

people because the most important frequency range in this context is between 500
and 4000 Hz.

Remarks: You have previously worked with Fourier transformation of sound. If the Fourier transform
with appropriate calibration provides a measure of the sound intensity at different frequencies, you
should be able to calculate dB(A) values, dB(B) values, etc. using the curves in Fig.7.18. As you
can see, you can create your own sound-measuring instrument! (But calibration must be done!)

dBm

Finally, another dB-scale will be defined that is widely used in physics, namely
the dBm scale. This is an absolute scale where [ is selected equal to I mW. The
dBm scale is used in many parts of physics, often associated with electronics,
but rarely when the sound level is reported. The scale is generally used to
specify radiated power from, for example, an antenna. If a source yields 6 dBm,
it means that the radiated power is

1091 MW = 4 mW .
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7.4 Other Sound Phenomena You Should Know

7.4.1 Beats

When we listen to two simultaneous sounds with approximately the same
frequency, it may sometimes appear that the strength of the sound varies in a
regular manner. Such a phenomenon is called “beating” or “producing beats”.
The word “beat” is used because the resulting sound appears to the listener as
a regular beat.

Mathematically, this can be displayed in approximately the same way as in the
expression of a standing wave. However, for our new phenomenon, it is not interesting
to follow the wave’s propagation in space. The interesting thing is to consider how
the sound is heard at one spot in the room.

The first step is to add two sinusoidal oscillations:

Ysum = A cos(wit) + A cos(wat) .
This sum is mathematically equivalent to a formula similar to that found earlier:
Ysum = 2A cos [ 3 (w1 + wr)t] cos [1(w) — w)1] .

If the two (angular) frequencies are nearly equal, a mean and differential value can
be inserted as w and Aw in the formula, which yields the following result:

_ Aw
Ysum = 2A cos(wt) cos (7> t. (7.14)

This expression is mathematically speaking a product of a “mean frequency oscil-
lation” factor and a “difference frequency oscillation” factor, which is nearly inde-
pendent on each other.

If the frequency differences are too small to be distinguished by the ear, the mean
frequency oscillation factor cos wt in Eq. (7.14) will correspond to approximately the
same auditory experience as if only one of the two sounds was present. The differ-
ence frequency oscillation factor cos(% Awt), however, oscillates with a much lower
frequency than the original. For example, if we listen to two equally sounds simul-
taneously, with frequencies of 400 and 401 Hz, the difference frequency oscillation
factor will be a cos(irt). Once a second, this factor will vanish, and the total sound
will disappear. The listener will experience a sound of almost the same frequency as
that of a single original sound, but with a volume fluctuating at a frequency of 1 Hz.
This pulsation in the volume is known as “beating”.
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Fig. 7.20 When two sound 20 Hz
signals with nearly the same
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Figure 7.20 shows an example of beating. There are two signals with 20 and 23 Hz
respectively, and we follow each of the signals and their sum over a period of one
second. We see that in the sum signal there are three “periods” with strong and weak
sound within the interval we consider. Note the factor cos(% Awt) in Eq. (7.14), and
that half of the difference of the two frequencies (that are added) corresponds, in our
case, to 1.5 Hz. Why does one see three “periods” in the intensity of the beat plot in
Fig.7.20? This is a detail you should notice and understand, because it creeps into
several different contexts (Hint: How many times is a sine curve equal to zero during
one period?).

There are more puzzles to the beat sound phenomenon. A Fourier analysis of the signal described
by Eq. (7.14) gives two peaks corresponding to w; and w; only. There are no peak corresponding
to the difference frequency. Why do we then experience beating and not two simultaneous sounds
with slightly different pitch?

If the difference in the two frequencies is increased, we will eventually hear two separate tones
and no beat. Thus, the beat phenomenon is a result of our ear and further processing in the brain.
Detailed explanations are found in textbooks in auditory physiology and perception.

However, we suggest a numerical experiment: Make a sum of two sine signals with identical
amplitudes and the frequencies 100 and 110Hz. Let the signal last for at least hundred 100Hz
periods. Calculate the Fourier transform. The result is as expected.

Calculate then the signal squared (each element is the square of the same element in the previous
signal) and perform the Fourier transformation. Notice the frequencies of the peaks now!

This numeric experiment is of interest since many detectors for oscillatory phenomena in physics
do not respond to the momentary amplitude of the signal, but to the square of the amplitude (to
the intensity instead of the amplitude). Whether or not this is applicable to the beat sensation is
just a speculation. Our ears are mainly “square law detectors” since phase information is lost for
frequencies higher than ~1 kHz.
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7.4.2 Sound Intensity Versus Distance and Time

When sound propagates in air, little energy is lost along the way. This means that the
amount of energy crossing a spherical shell of radius of r| will be nearly the same as
crosses a spherical shell of radius r, (> r;). The local sound intensity is the amount
of energy per unit area and time. Since the area of a spherical shell of radius r is
4712, the intensity will decrease as 1/ rZ where r is the distance from the source.

Now, sound rarely spreads out in totally spherical wavefronts. The distance to
the ground is usually significantly shorter than the extent of propagation in the
horizontal plane. However, the relationship

I(r)) _ ( " )2

1(r1) r

applies reasonably well also to limited solid angles (as long as interference
phenomena do not play a significant role).

This implies that if, at a concert, we are 10 m from the speakers, the intensity will
be 400 times greater than for the audience 200 m away.

However, inside a room an audio pulse will be damped with the passage of time.
The pressure waves lead to oscillations in objects, and many objects have a built-in
friction where the sound energy is converted to heat. Various materials dampen sound
more or less efficiently. A smooth concrete wall is not set into oscillation by sound
waves, and sound is reflected from such a surface without much loss of energy. Walls
covered with mineral wool or other materials that are more easily set into vibratory
motion in response to a sound wave can dampen the sound much more effectively.

Walls and interior in a room can lead to major differences in damping. They affect
the so-called reverberation time. In the Trinity Church (in Norwegian, Trefoldighet-
skirken) in Oslo, with bare stone walls and few textiles, the reverberation time is so
long that music with fast passages becomes fuzzy to listen to, especially when the
audience is thin. In a room with a lot of textiles and furniture and people in relation to
the overall space, the sound will die out appreciably faster. In an echo-free room, the
floor, walls and ceiling are covered with damping materials, and the reverberation
time is extremely short. For concert venues and theatre venues, it matters a great
deal for a good overall sound experience that the reverberation time is adapted to
the sound images that occur. Building acoustics are a separate part of physics, where
good professionals are hard to find and therefore much sought after.
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7.4.3 Doppler Effect

Most of us know that the sound of an ambulance siren changes pitch when
the vehicle passes us. The phenomenon is called Doppler effect. We will now
derive a mathematical expression for the observed frequency change.

Sound waves travel at a certain speed in relation to the transporting medium. No
matter what speed the source has, and no matter what speed an observer has, the
sound wave passes through, for example, air at rate v = +/K/p (symbols defined
earlier).

To the left in Fig.7.21, the wavefront is shown to be the maximum in the air
pressure waves from a source that is at rest. The sound spreads smoothly in all
directions, and as long as the source does not move, all wavefronts will have the
same centre. To the right of the same figure, the wavefront is shown when the source
of the sound has moved between each time a pressure wave started. Thereafter each
pressure wave progresses unabated with the sound speed (e.g. in air).

This means that an observer positioned so that the source of sound approaches
her/him will find that the wave peaks are more frequent (more wave peaks per second)
than if the source were at rest. For an observer from whom the source of sound is
receding, the opposite will be true. This means that the frequency experienced by an
observe will differ in the two situations.

When the observer is at rest with respect to the air, the sound waves will approach
her/him with the speed v. When the effective wavelength is as shown in the right part
of the figure, it follows that the frequency as heard by the observer is f,:

Fig.7.21 Sound waves spread with the same speed in all directions in the medium through which
the sound waves pass. The wavy peaks are equally far apart if the source is at rest in relation to the
air. If the source moves relative to the air at the speed vs, the wave peaks are closer together one
side than on the other. The sound speed is set as v
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When a source of sound with period 7" and frequency f; = 1/T approaches
the observer with a speed v, one has:

v
o= v —v)T

= ! 7.15
fo—mfs (7.15)

where v is the speed of sound in air. For an observer from whom the source is
receding, the minus sign is to be changed into plus.

This version of Doppler effect can be described by saying that the wave speed
relative to the observer (who is at rest) equals the speed of sound in air, while the
effective wavelength is different from a situation where both source and observer are
at rest.

A variant of Doppler effect is that when the source is at rest, but the observer is
in motion. Then the velocity of the wave peaks relative to the observer is different
from the sound velocity in air in general. However, the wavelength is unchanged.

The frequency experienced by the observer will then be proportional to the effec-
tive velocity of the wave peaks relative to the observer, compared with the speed
with which the waves would have reached the observer if he/she and the source were
at rest. For a stationary source, and an observer in motion with the speed v, towards
the source, we have the relation:

Jo= A +ve/v) fs (7.16)

where f; is again the frequency of the source.

It is perfectly possible to combine the two variants of Doppler effect discussed
above, so that we get a more general expression that applies to situations where
both the observer and the source are moving in relation to the air where the
sound is spreading.

In Eq. (7.16), the frequency f; can be replaced by the frequency an observer
(suffix o) would have experienced if the source (index s) were in motion, i.e.
with f, given by Eq. (7.15). The result will then be:

= erV"fs. (7.17)

Vv — Vg

Here v is the speed of sound in air (e.g. 344 m/s), and v5 and v, are, respectively,
the speeds of the source and the observer relative to the air through which the
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Fig.7.22 Ultrasound picture of a human heart, superimposed with an ultrasound Doppler image of
the blood flow, at a particular point in the heart rhythm. The picture reveals that a heart valve does
not close properly during a ventricular compression. The picture is reproduced with a permission
from Vingmed. It is difficult to understand a single picture like this. It is recommended to watch a
video (search at YouTube with the search words: cardiac ultrasound Doppler heart)

sound is transmitted. In the equation, the following sign convention is observed:
If the source moves towards the observer at a rate of v relative to air, vg is
positive. If the observer moves toward the source at the rate v, relative to the
air, v, 1S positive.

Note that the sign is based on the relative motion between the source and
observer as noted above, while the actual magnitude of the velocity is specified
relative to air (or the medium through which the sound waves propagate).

Note that it is not irrelevant which is moving, the source or the observer. If the
source approaches the observer at a speed close to the speed of sound in air, the
denominator will tend to zero and the frequency perceived by the observer will tend
to infinity. On the other hand, if the observer approaches the source at a speed equal
to the speed of sound in air, he/she will perceive a frequency that is only twice the
frequency of the source of sound.

Doppler shift is utilized today in ultrasound diagnostics. In Fig. 7.22, a combined
ultrasound and ultrasound Doppler image of a heart is shown. The black and white
picture shows the ultrasound picture, while the sector with colours indicates blood
flow towards or away from us. The subject has a heart valve that does not close
properly when the ventricle compresses.
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7.4.4 Doppler Effect for Electromagnetic Waves

Applications of the Doppler effect for sound waves are based on a constant sound
speed relative to the medium which the sound passes through. For electromagnetic
waves, the situation is completely different. The velocity of light is linked in a not
easily comprehensible way to our entire space/time concept, and the velocity of light
in vacuum is the same regardless of the speed of the source and how an observer
moves. When wavelengths are measured, length contractions are observed due to
relativistic effects, and time dilation/contraction take place due to relativistic effects.
Therefore, the derivation of Doppler effect for electromagnetic waves becomes a little
more complicated than for sound; we will content ourselves by merely reproducing
the final expression.

Doppler shift for electromagnetic waves in vacuum is given by the relation:

fo: C+vfs- (7.18)

c—V

Here c is the velocity of light, and v the velocity of the source relative to
observer, v > 0 if the two approach each other. As before, f; is the frequency
of the wave emanating from the source.

This relation shows that light from distant galaxies will be observed to have a
lower frequency if the galaxies are moving away from us. The effect is well known
and is termed “red shift” in the observed spectra.

Redshift is more pronounced in the light from distant galaxies, as these (in accord
with the Big Bang model for the universe) are moving away from us at high speed.
The effect is so strong that parts of the visible spectrum are shifted into the infrared
region.

This is one reason why the space telescope James Webb is equipped with infrared
detectors.

7.4.5 Shock Waves *

From the right part of Fig.7.21, it appears that the pressure waves lie closer to an
sound source moving relative to air than if the source had been at rest. However,
the figure was based on an implicit assumption, namely that the source of sound
does not catch up with the sound waves generated by it. In other words, the sound
source moves at a speed less than the speed of sound in air (or the medium under
consideration).
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What happens if the audio source moves faster than the speed of sound? This
state of affairs is depicted in Fig.7.23. To go from the case at the right of Figs.7.21,
7.22 and 7.23, we must, however, consider the situation where the source moves at
precisely the speed of the sound. In this situation, the pressure waves at the front
of the source pile up on each other, and we can have enormous pressure variations
within relatively short distances. Such a situation is called a shock wave, a shock
front or even a “sound barrier”.

Considerable energy is needed to penetrate the sound barrier. The intensity of the
shock front can reach 160-170 MW/m?. And, perhaps more importantly, the object
that is “going through the sound barrier” must be robust enough to withstand the
stresses when the pressure variations over the object become very large. The sound
intensity of the shock wave is about 200dB, so that persons aboard a plane passing
through the sound wall must be shielded significantly to avoid permanent damage.

Remark: It is not the noise of the engine on the plane that gives rise to the shock
wave. Itis simply the pressure wave due to the airplane getting through the air. Engine
noise comes as an addition to this main component of the pressure wave.

The speed of sound in air is usually taken as 340 or 344 m/s, which comes out
to be around 1230km/h. Fighter planes can fly faster than this, breaking the sound
barrier on their way to the highest speeds.

The speed of a supersonic aircraft is given in terms of the Mach number, where:

. Vplane
v measured in Mach = 2= |
Vsound

The Concorde aircraft had a normal transatlantic cruising speed of about 1.75
Mach, but a peak speed of approximately 2.02 Mach. The space shuttle had a speed
of 27 Mach. Remember, in this connection, that the speed of sound in the rarefied air
at high altitudes differs from the speed of sound at the ground level.

From Fig.7.23, one sees that the shock wave forms the surface of a cone after
the plane that is the source of the waves. The opening angle of the conical
surface is given by:

9 Vsound X £ Vsound
sino = =

Vairplane X I Vairplane

When a supersonic plane is flying at high altitudes, the aircraft will have gone past
an observer on the ground several seconds before the observer hears the sound from
the plane. Only when the shock wave reaches the earth-based, will he/she hear the
plane, and that as a bang, which indicates that the pressure wave on the expanding
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Fig. 7.23 Behind a
supersonic plane, a shock
waveforms (also called a
shock front or a “sound
barrier”) with a conical
surface with the plane at the
vertex. The angle of the cone
depends on how much faster
the plane moves with respect
to the speed of sound

cone surface has reached the ground. The instant at which the bang is heard is not
the moment when the plane crosses the sound barrier, but when the shock wave cone
hits the observer.

In the case of the Concorde aircraft, the shock wave had a pressure of about 50 Pa
at the ground when the plane flew at an altitude of 12,000 m. It was easy to hear the
noise from the shock wave shortly after the plane had flown past. Similarly, in the
Los Angeles district, we could hear a bang when the spaceship came in for landing
on the desert strip a little northeast of the city.

Historically, the American Bell X-1 rocket-powered aircraft was the first vehicle
to break the sound barrier. This happened on 14 October 1947; the aircraft then
achieved a speed of 1.06 Mach.

7.4.6 An Example: Helicopters *

Few would think of helicopters in the context of supersonic speed, but we must.
A Black Hawk helicopter has blades that rotate about 258 times per minute, which
corresponds to about 4.3 rotations per second.

The rotor blades have a length of 27 feet, which corresponds to about 9 m.

The speed at the tip of the blade for a stationary helicopter (with the rotor running)

is then:
2rr
—— m/s = 243 m/s.
1/4.3

If the helicopter is flying at a speed of 100 km/h relative to the air, the speed of the
blades relative to the air will be 360 m/s on one side of the helicopter. This is about
equal to the sound speed!

Manufacturers of helicopters must find a balance between blade speed, the rotation
rate and the flight speed in order to avoid problems with the sound barrier. The fact
that the speed of the outer edge of the blade does not have the same speed relative
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to the air through a full rotation makes the task a little easier than with a supersonic
plane.

Anyway, it is interesting to calculate the radial acceleration for a point at the
extreme end of a helicopter rotor blade. On the basis of the figures above, it follows
that: ) 5

a, = v — ﬁ m/s2
r 9

a, = 6561 m/s> ~ 670 g.

In other words, enormous forces work on the rotor, and the material must be
flawless to avoid accidents. It is not uncommon for a rotor blade to cost more than
100,000 < per piece.

7.4.7 Sources of Nice Details About Music and Musical
Instruments

There is much fun associated with musical instruments. Physicists have contributed to
better understanding of many details and continue to do so. Here are some interesting
sources you can look at:

Joe Wolfe, Music Acoustics: Basics, The University New South Wales, Australia.
http://newt.phys.unsw.edu.au/jw/basics.html (accessed May 2018). Highly recom-
mended!

Alexander Mayer, RIAM (Reed Instrument Artificial Mouth). Institute of Music
Acoustics,  University of Music and  Performing Arts  Vienna.
http://iwk.mdw.ac.at/?page_id=104&sprache=2 (accessed May 2018).

Seona Bromage, Visualisation of the Lip Motion of Brass Instrument Players, and
Investigations of an Artificial Mouth as a Tool for Comparative Studies of Instru-
ments. Ph.D. thesis, University of Edinburgh, 2007.

H. Lloyd Leno, Larry Fulkerson, George Roberts, Stewart Dempster and Bill
Watrous: Lip Vibration of Trombone Embrouchures. YouTube video showing lip
vibrations when playing trombone: Lip Vibration of Trombone Enbouchures, Leno,
(accessed May 2018).

Barry Parker, Good Vibrations. The Physics of Music. The John Hopkins University
Press, Baltimore, 2009.


http://newt.phys.unsw.edu.au/jw/basics.html
https://iwk.mdw.ac.at/?page_id=104&sprache=2
http://www.acoustics.ed.ac.uk/wp-content/uploads/Theses/Bromage_Seona__PhDThesis_UniversityOfEdinburgh_2007.pdf
https://www.youtube.com/watch?feature=player_embedded&v=CoxnhjLMVBo
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7.5 Learning Objectives

After working through this chapter you should be able to:

e Explain general features of reflection and transmission of waves at an inter-
face between two different impedance media.

e Explain conditions for the formation of standing waves, and how such waves
are characterized, including the terms nodes and anti-nodes.

e Explain what determines the pitch of some different musical instruments,
and how we can achieve different pitches with one and the same instrument.

e Calculate the frequency (approximate) for a vibrating string and for a wind
instrument.

e Explain the concept “trapped moving wave” (as opposed to the traditional
“standing wave pattern”) and explain advantages by this concept.

e Explain what we mean by frequency spectrum, fundamental frequency and
harmonics when sound is analysed using, for example, Fourier transforma-
tion.

e Explain a tempered scale and calculate the frequency of any tone on a piano.

e Explain what is meant by beats, and derive a mathematical expression that
shows that beating has something to do with the sound intensity.

e Calculate (when formulas are given) the amplitude of motion of air molecules
and the amplitude of the pressure wave created by a harmonic sound wave
with a specified dB value.

e Explain dB, dB(SPL), dB(A) and dBm scales.

e Explain the causes of Doppler shift in different contexts, derive formulas
that apply to Doppler shift in air, and perform calculations based on these
formulas.

e Explain shock waves, especially the “sound barrier” of supersonic aircraft
and the like.

7.6 Exercises

Suggested concepts for student active learning activities: Acoustic impedance,
reflective boundaries/interfaces, standing wave, node and anti-node, quantized
wave, trapped moving wave, pitch, musical interval, tone scale, octave, sound inten-
sity, difference between physical and phonetic intensity units, sound pressure limit,
frequency dependency, decibel scale, dB(SPL), dB(A), audiogram, ultrasound, beat-
ing, Doppler effect, shock waves.
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Comprehension/Discussion questions

1.

10.

11.

12.

For ultrasound examinations of, for example, a foetus, there must be at least
as much sound reflected from the interface between the uterine wall and the
amniotic fluid as from the interface between the amniotic fluid and the foetus.
Why will not reflected sound from the first interface blur the image of the foetus?
Some piano tuners base their tuning on a frequency counter alone. Many believe
that this is not a good way to tune. Can you give a reasonable explanation for
such scepticism?

. Try to give a verbal description of what is going on physically as we begin to

blow air into an organ pipe and until the sound becomes stable.
We can create a tone by blowing air through a straight tube. By changing the
tightening of the lips, we can produce different pitches. How is it related? What
is the wave pattern inside the tube made by some of the sounds that can be
generated? How do you suppose the spectrum would look like?

. Can we get a standing wave by adding two waves moving in the opposite direc-

tion to each other, one having greater amplitude than the other, but the same
frequency? Can we get a standing wave if we add two waves that move in the
opposite direction to each other, where one has greater frequency than the other,
but the same amplitude?

Are standing waves always quantized? Explain.

In music, an octave is characterized such that the frequency, for example, of a
high C being twice the frequency of a C that is an octave lower. Suppose we
have a properly tuned guitar, and we will amuse ourselves by tightening a string
so that it will give an octave higher than it normally should be. How much more
tightening do you need? [Is this a party game that can be recommended?]

. A violinist sometimes touches the midpoint of a string while stroking the bow

over the string. What does she accomplish with this trick?

. When sound goes from air to water, which one of the following quantities stays

constant: Wavelength, wave speed, frequency, amplitude of displacement of the
molecules that propagate sound?

On a trumpet we can play different tones by pushing valves that cause air to
pass through tubular loops (of different lengths) that extend the effective length
of the air string within the instrument. How can we play different tones on a
“post horn” or similar instruments where we cannot change the effective length?
Can we play the same type of tunes on such an instrument as, for example, on a
trumpet?

If we inhale helium and talk, we get a “Donald Duck voice” that is light and
shrill. What is the reason for that? [Remember that inhaling too much helium can
damage health and cause death, so be careful if you want to try this yourself!]
When we play an acoustic guitar (see Fig.7.24), the sound becomes different
depending on whether we strum the strings all the way down to near the saddle
where the strings end or near the sound hole (or even closer to the middle of the
string). What is the reason for the difference in tonal quality? And how would
you characterize the difference?
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2. fret

3. fret 1. fret

If the string is pressed down here ...

... the string is effectively this long

7.24 On a classic guitar, a string is shortened if pressed against the first fret. The tone will

then be a half-tone higher than with an open string. If the string is clamped at the second fret, the
tone becomes two semitones higher, etc.

13.

14.
15.

Does it make sense to say: Adding X dB to the sound corresponds to multiplying
the intensity of the original sound wave with a definite factor?

Explain briefly the difference between dB, dB(SPL), dB(A) and dBm.

At an organ concert a listener noticed that after the organist had finished playing,
it took a few seconds for the sound to subside totally. What is the reason that the
sound dies out slowly? And what happened to the energy that was in the original
sound?

Problems

16.

17.

18.

19.

An organ pipe is 3.9 m long, and open at the end. What tone do you suppose it
emits (compare with Fig.7.16).

The length of the free part of the strings on an acoustic guitar is 65 cm (that is,
the part that can vibrate). If we clamp down the G-string on the fifth fret, we get
a C (see Fig.7.24). Where must the fifth fret be located on the guitar neck? The
G has a frequency of about 196.1 Hz and the C about 261.7 Hz.

Use the information and answers from the previous assignment. For every semi-
tone we go up from where we are, the frequency must increase by a factor of
1.0595. Calculate the position of the first fret, and to the sixth fret. Is the dis-
tance between the frets (measured in millimetres) identical along the guitar neck?
Show that the distance between the frets is 0.0561 times the length of the string
when it was clamped at the previous fret.

Check the frequencies indicated in Fig.7.16. Supposed that we determined the
frequency content of the sound data using Fourier transformation. For how long
did we have to sample the sound to reach such precision? Is this a realistic
way to determine the frequency accurately? Would it be more realistic to report
the frequency with five significant digits for the highest frequencies than for
the lowest? (Hint: Use the time-bandwidth product from the Fourier transform
chapter.)
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20. Assume (for the time being) that the intensity of the sound that comes from a

21.

22.

23.

24.

choir is proportional to the number of singers. How much more powerful, on a
decibel scale, will a choir of 100 persons sound compared to a four-person choir
(a quartet)?

Figure 7.25 shows the frequency spectrum of a trumpet sound.

(a) Estimate the frequency and relative pressure amplitude of the first five har-
monics.

(b) What is the frequency of the fifth overtone?

(c) Assume that the intensity of the fundamental tone is 50 dB(SPL). Calculate
the sound intensity in dB(SPL) for the entire trumpet sound (enough to include
the first four (or five) harmonics).

(d) Calculate the sound intensity in dB(A) for the entire trumpet sound (enough
to include the first four (or five) harmonics).

Suppose a person is lying on a beach and listening to a CD player placed 1 m from
the head, and that the music has an intensity of 90 dB. How powerful will the
music sound to someone who is 4 m away from the speaker? If the neighbour
complains about the noise level, what can the first person do to resolve the
conflict? Feel free to present a calculation to support your proposal.

Two strings on an instrument are both tuned to vibrate at 440Hz. After a few
hours, we notice that they no longer have the same frequency, because we hear
a 2Hz beat when we let both strings vibrate at the same time. Suppose one of
the strings still vibrates at 440 Hz. Which frequency or frequencies can the other
string have? How much has the tension changed on the string that has lost its
tuning?

In this assignment, we will compare sound intensities, displacement amplitudes
and pressure amplitudes. Remember to comment on the results you get in every
part!

(a) What is the amplitude of air molecules when the sound intensity is 0 dB(SPL)
at 1000 Hz? Repeat the same calculation for sound with intensity 100 dB(SPL).
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25.

26.

27.

28.
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(b) What is the sound pressure amplitude (both in Pascal and in atmospheric
pressure) when the sound intensity is 0 dB(SPL) at 1000 Hz? Repeat the calcu-
lation for sound with intensity 100 dB(SPL).

(c) What is the displacement amplitude and the pressure amplitude for sound
with the frequency 100 Hz and the intensity 100dB(A)?

(d) There is an upper limit for how large the sound pressure amplitude may be if
the sound wave is to be approximately harmonic (sinusoidal). What is this limit?
How powerful would the sound be at this limit (specified in dB(SPL))?
Suppose you drive a car at 60km/h and hear that a police car with sirens
approaches from behind and drives past. You notice the usual change in sound
as the police car passes. Assume that the speed of the police car is 110km/h and
that the upper limit for the frequency of the siren (when heard inside the police
car) is 600 Hz. What frequencies do we hear before and after the police car has
passed us?

Suppose a fighter plane takes off from Bodg airport and reaches 1.75Mach
already at 950 m altitude. What angle does the shockwave have? How long does
it take from the moment the plane passes directly above a person on the ground
till the moment the person notices the shock wave? Disregard changes in the
speed of sound with the height.

In an ultrasound examination of a foetus, the Doppler effect is used for mea-
suring the rate of cardiac movement in the foetus. The sound has a fre-
quency of 2.000000MHz (2MHz sharp), but the sound back has a frequency
of 2.000170 MHz. How much speed had that part of the foster heart where the
sound was reflected from, in the short period in which this measurement was
made. Sound travels in the foetus with a speed of about 1500 m/s. [Optional addi-
tional question: How much time resolution is it possible to achieve for mapping
cardiac movement in cases like this?]

The Crab Nebula is a gas cloud that can be observed even with small telescopes. It
is the remnant of a supernova explosion that was seen on Earth July 4, 1054. Gas
in the outermost layers of the cloud has a red colour that comes from hot hydrogen
gas. On earth, the hydrogen alpha line H-« has a wavelength of 6562.82 A. When
studying the light from the Crab Nebula, the H-« line has a width of 56,942 A.
(a) Calculate the rate at which the gas in the outer part of the Crab Nebula
moves. [Assume that the velocity of light is 3.0 x 10® m/s and that the relativistic
Doppler shift for electromagnetic waves can be given approximately as fypsery =
(1 = v/c) fsource if the source moves away from the observer with speed v.]

(b) Assume that the gas in the outer part of the nebula has moved at the same
speed ever since the supernova explosion. Estimate the size of the Crab Nebula
as it appears now. State the answer both in metres and in light years.

(c) The angular diameter of the Crab Nebula when we see it from Earth is about
Sarc minute. An arc minute is 1/60 of a degree. Estimate the distance (in light
years) to the Crab Nebula.

(d) When did the explosion of the star actually take place (approximately).

(e) In reality, the Crab Nebula is not spherical. Viewed from the Earth, it looks
more elliptical with the largest and smallest angular diameters of 420 and 290 arc
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seconds, respectively. Even today, we do not know the distance to the Crab
Nebula very accurately. Can you give a good reason for the inaccuracy based on
the calculation you have made?

29. Perform a Fourier transform frequency analysis of the sound of two different
musical instruments (record sound yourself via microphone and sound card on
a PC, on a mobile phone, or use wav-files made available from our Web pages).
Determine the frequency of the sound (fundamental tone) and find which tone
on the scale it corresponds to. State approximately how many harmonics you
find.

30. The left part of Fig. 7.26 shows a time plot of the sound from a tuba. One student
used Fourier transform to convert this signal to the frequency spectrum including
the harmonics. The student then conducted an inverse Fourier transformation of
the frequency spectrum and expected to recover the original time signal. He did
not. The result is shown in the right part of the figure. What went wrong?

31. A piano tuner first selects all three C-strings (all of which are activated by
one key) to produce the 261.63 Hz frequency. [She actually starts with another
frequency, but let’s take this starting point here.] She now wishes to tune the
F-strings by starting from C and using “re-tuning” where the frequency of F is
exactly 4/3 of the frequency of C. This she does for all three F-strings that are
struck when we press the key. She then intercepts one of the three F-strings by
listening to the beat frequency she gets when she presses the key. By adjusting
the beat frequency correctly, she ensures that the string gets the correct frequency
on a tempered scale (and can adjust the frequency of the other two F strings after
the first). What beat frequency should she choose?

32. Use the numbers for the length of the air column in a trumpet given in Fig.7.15
to check that:

(a) the fundamental tone is about a B (indicate the frequency).

(b) that the elongation of the air column resulting from the depression of valve
1 corresponds approximately to a complete compared with that when no valves
are pressed. Does the frequency go up or down when we press a valve?

Microphone signal (rel)

After incorrect use of FFT+IFFT

0 0.5 1.0 15 0 0.5 1.0 15
Time (s) Time (s)

Fig. 7.26 See problem text
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33. Suggested Project: We invite you to make your own “sound meter”. The pro-
cedure could be as follows:

e Sample sound from your laptop using, for example the program snippet 2 at
the end of Chap. 5.

e Perform a Fourier transformation and get the frequency spectrum of the sound.
The intensity for the different frequency components are then proportional to
the square of the Fourier coefficients.

e Reduce the relative intensities for various frequency components according
to for example the weight function for dB(A).

e Add the weighted intensities for the frequency components.

e Calculate the dB(A) value for your sound, using an arbitrary reference inten-
sity.

e Borrow a sound meter from someone who has one and adjusts the reference
intensity in the calculations until you get a similar reading on your own sound
meter as for the commercial instrument.

In fact, it is reasonably easy to make your own sound meter in this manner.
However, remember that the microphone on the computer as well as the digitizing
circuit have their limitations. Especially, it is difficult to get a good determination
of weak signals.

For strong signals, it is another serious problem: The sound may produce signals
larger than the digitizing circuit can manage. In those cases, “clipping” will
occur. It can be discovered if you plot the sampled signal in time domain. Sinus
signals will then have a flat top, and no signal can exceed this limit.

For such signals, the sound meter will give wrong readings! However, it is
reasonably easy to let your program display a warning in those cases.
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Chapter 8 ()
Dispersion and Waves on Water i

Abstract This chapter asks how the time development of a wave may be described
numerically. The algorithm may offer a better understanding of wave motion than
the traditional treatment of the topic. We proceed by discriminating between phase
and group velocities and introduce the concept of dispersion. Numerical modelling
of dispersion is described in detail, computer programs are provided, and the calcula-
tions demonstrate distortion of pulses of waves when they pass through a dispersive
medium. Finally, we discuss various phenomena related to gravity-driven surface
waves on water, based on a formula for phase velocity of waves on water. As a
curiosity, we present at the very end a fun experiment with an oscillating water drop
on a hot surface.

8.1 Introduction

Waves on water and sea have fascinated people through the ages. There exists a
panoply of waveforms, and the underlying physics is so complex that even today it
is almost impossible to make calculations on swirling waves like those illustrated by
Katsushika Hokusai almost 200 years ago; see Fig. 8.1.

The waves we treat in this chapter are extremely simple in comparison. Neverthe-
less, we hope that even our simple descriptions can give you a much deeper under-
standing of the phenomenon of waves than you had prior to reading this chapter,
which has three main themes: numerical calculation of the time evolution of a wave,
dispersion including differences between phase and group velocities, and a review
of gravity-driven waves on water.

Before starting a more thorough analysis, we will undertake a brief recapitulation
of oscillations and waves in general. A feature common to all such phenomena is
that:

e There is an equilibrium state of the system when oscillations and waves have died
out.

e There is a “restoring force” that tries to bring the system back to equilibrium when
it is not at equilibrium.
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Fig. 8.1 Real waves are extremely complex, like “The Great Wave off Kanagawa”. Katsushika
Hokusai, Public Domain [1]

e There is an “inertial force” that causes the system to go past the equilibrium state
even though the restoring force here is equal to zero.

For a swinging pendulum, the restoring force is a component of gravity; for waves
on a string, the tension on the string acts as the restoring force. For sound waves in air
or a liquid, pressure differences provide the restoring force through the compression
of parts of the volume. The “inertial force” in all these examples is that expressed
by Newton’s first law. For surface waves on water, there are two restoring forces,
namely gravity and surface tension.

8.2 Numerical Study of the Time Evolution of a Wave

It is very difficult to understand the mechanisms that lie behind the temporal devel-
opment of a wave by starting from the wave equation and relying solely on analytical
mathematics. If your repertoire consists of only analytical mathematics, you will find
it difficult to understand why initial conditions are so crucial to how a wave develops,
and how the boundary conditions affect the time development of the wave in detail.
Instead, we will use numerical methods to review the mechanisms that govern the
time evolution of a wave.
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Fig. 8.2 Using numerical A Uiy
methods, a wave is described u |
only at discrete positions in
space and at discrete instants
in time. Here one and the
same wave are indicated at
three different times. The
first subscript specifies the
position index, and the
second subscript specifies
the time index

There are several reasons for presenting such a review. The most important is to
bring to the fore the underlying algorithm because it can provide a better understand-
ing of wave motion in general.

The starting point is the one-dimensional wave equation for a nondispersing
medium (explained later in the chapter):

0°u ,0%u

[T

In anumerical calculation, the solution is stated only at discrete instants and positions:
u(x,t) - ulx;, lj) = U

where
x; =xo+iAx, (=0,1,2,...,N—1),

and
ti=to+ jAt, (j=0,1,2,.... M —=1).

Figure 8.2 illustrates how a wave is described numerically. For each instant of
time, a numerical string describes the amplitude at the selected spatial positions. In
the figure, parts of the position data points are displayed for three different instants.

In the chapter on numerical methods earlier in the book, it was shown that the
second derivative can be expressed in discrete form as follows:

9%u
ﬁ = uxx(xia tj)
w(xip1, ) — 2ux;, t;) +u(x;—1, t;)

Ax?

This can be expressed more succinctly as:



216 8 Dispersion and Waves on Water

Uitr,j — 2 j + U1,
i) = =2 . (8.1)

In a similar way, the double derivative with respect to time can be expressed as:

N e e
I/l”'[’j —_ A[z . (8.2)

The discretized version of the whole wave equation takes the form:
2
Urrij = UV Uxx,iyj - (8.3)
Setting Eq. (8.2) in Eq. (8.3) and rearrangement of the terms gives:
wijp1 =uij+ W —u;j—1) + (At U)zuxx,i,j .

The expression shows that if we know the wave at an instant and at the preceding
instant, we can calculate the amplitude of the wave at the next instant by using our
prescription. This is an important formula that we should dwell on:

The algorithm to calculate how a wave evolves in time and space is given by
the equation:

Wi o1 =i+ Wi g —uij1) + (A 0) U, - (8.4)

These terms are actually quite easy to understand:

e The first term on the right-hand side states that we must begin with the
current amplitude at a point in the wave when we calculate the amplitude
for the next instant.

e The second term corresponds to the assumption that the time derivative of
the amplitude at our given point of the wave will be about the same at the next
instant as it was in the previous one. This is the “inertial term” corresponding
to Newton’s first law.

e The third term states that if the wave in our given point bulges (often bulging
away from the equilibrium state), there is a “restoring force” that tries to pull
the system back to the equilibrium state. See Fig. 8.2. This restoring force
is closely related to the phase velocity of the wave. In the expression, the
phase velocity appears in the second power. The phase velocity is therefore
determined by how powerfully the neighbourhood affects the motion of any
selected point in the wave. The algorithm can be visualized as shown in
Fig.8.3.

The algorithm in Eq. (8.4) shows that if we know the wave at all positions at an
instant ¢; and the wave as it was at the preceding ¢;_1, then can we calculate the wave



8.2 Numerical Study of the Time Evolution of a Wave 217

| | u>0 *F>0
\S\_e_/ 8
tin 3 3 5
J 4“ F=0 “5_)
t / 2“”/1 \ 2=0 £
J —
o
\ J——

120
Xia X X i1 ! *F<O

Fig. 8.3 TIllustration of the cardinal algorithm that can be used for calculating the time development
of a one-dimensional wave when the initial and boundary conditions are given. New amplitude at
a particular point is determined by: (1) the amplitude “now” at that point; (2) the approximation
that the velocity at the point will be the same at the next instant as in the previous; and (3) the
restoring force from the nearest neighbours to the point, which will increase or decrease the change
in position according to the sign of the curvature of the restoring force

as it will be at the next instant ;1. There are hurdles to be jumped over, presented by
the initial conditions and boundary conditions, and we will get back to these shortly.

Equation (8.4) is probably the easiest expression to use, if we want to understand
the rationale behind the algorithm developed below. The expression on the right-
hand side of Eq. (8.4) is not suitable for the design of the program code itself. It is
advantageous to put Eq. (8.1) into Eq. (8.4), and the result, after some rearrangement,
comes out to be:

vAL\?
Ui jr1 = 21— E Ui j — U j—1

vAL\?
+ VN (igr,j +ui—1,j) -

(8.5)

Problem at the boundary of the region under consideration

Equation (8.5) is the central expression we use to calculate how a wave evolves in
time, but the expression contains some important details that we need to look into.
When we start the calculations, we assume that we know the initial conditions along
the part of the wave we describe at the start of the calculations. For example, the
amplitude at the instant j = 0 given by {u; ¢} fori =0, 1,2, ..., N. But Eq. (8.5)
also includes x;1; o and x;_; 0. The points x_; ¢ and xy4;,0 do not exist, so our
algorithm must employ some artifice for dealing with these terms. In other words,
we must supply so-called boundary conditions for the particular problem at hand.
These conditions apply at all instants in the calculations.

In practice, it may be almost impossible to find boundary conditions that are perfect
for the calculations we want to make. The most common boundary conditions are
“open/free” and “closed/fixed”. In the former case, we put x_; ; = X j and xy41,; =
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Xy, j,in the latter case we setx_; ; = xy41,; = 0. Fora concrete calculation, we must
choose how to set the boundary conditions, and in many cases, the response depends
strongly on the physical system we try to describe.

For a wave that has zero amplitude at the boundary, we can consider, without
incurring any error, the time evolution of the wave until the wave has spread to the
edge of the calculation range. By making the calculation region large enough and
limiting the time for which we consider the wave evolution, calculations of localized
waves can be good even without worrying about boundary effects.

Problem with the starting instant

Another source of difficulty in Eq. (8.5) is the term u; ;_;. If we start the calcu-
lations at time ¢ = 0, there is no u; _;. Therefore, we get trouble already at the start
of the calculations.

On the other hand, in all differential equations, we must use the initial conditions
to arrive at the particular solution we seek. For a wave, it means that the initial
conditions, for example, may be stated as the amplitude at all positions at ¢ = 0,
along with the time derivative of the amplitude at all positions at the same time.
Based on this information, we can calculate positions at the starting instant and
approximate positions one time-step earlier.

There are also other ways to specify initial conditions and procedures that can be
followed for taking advantage of the initial conditions. We confine ourselves to the
amplitude and its time derivative, both as a function of position.

The time derivative of the result at the point i can be specified as follows:

g (M) o g T Mo
e\ ) At '

Wij—1 =ujj— At il . (8.6)

Consequently,

For j = 0 we get:
Ui 1 = Ujo— At I/.ti,o . (8.7)

Threading together

Assume that the initial conditions are given by the amplitude {u; o} at all positions
along the wave and the time derivative of the amplitude {i; ¢} at all positions along
the wave at the start time. Then Eq. (8.5) in combination with Eq. (8.7) can be used for
the starting instant in the calculations. Equation (8.5) can be used for the remaining
instants as many times as we wish. Along the way, one must take account of the
boundary conditions.
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8.2.1 An Example Wave

As an example, let us calculate how a Gaussian wave moves on a string. The initial
conditions are a snapshot of the wave as it is at one point (both position and speed!),
and we will follow its development in time.
The displacement as a function of position along the string is given analytically
by: ,
u(x, 1) = Aexp [—%} — Aexp[f(x,0)] (8.8)

where we have used the notation exp [ f (x, 7)] instead of the notation e/ gince
the expressions in this chapter are more complex than in previous chapters.
The time derivative of u(x, t) comes out to be:

u_ ¥ _ (x — vr)? el v

S =ii= Aexplf(x. 0] 5o = Aexp [‘T] - )< V2o ) (_ﬁo>
(x —vt)v |: (x — ”t)z]

= —F—Aexp|——5—1| ,

o2 202

v
= ;(x —vu . (8.9)

We choose to describe the wave on a string that is long in relation to the width of
the Gaussian function, and we choose to follow the wave only so long that it does
not come too close to a boundary. We use in the program a complete adherence to
the endpoints along the way in the calculations.

We select the following parameters A = 1, 0 = 2«/5, v = 0.3 and allow x to
cover the range from —20 through +20 in 400 equal steps. We try with Az = 0.1
and follow the movement for 300 time increments. No units are provided, but we
assume that all units are SI devices.

A computer program written in Matlab is given below. The code is also available at
the “Supplementary material” web page for this book at http://www.physics.uio.no/
pow. The program performs the calculations based on the expressions given above.

function waveAnimationX

% Generate position array

delta_x = 0.1;

x = -20:delta_x:20;

n = length(x);

nx = 1:1:n; % Just for plotting purposes

% Generate and plot the wave at t=0

sigma = 2.0*sqgrt(2.0);

u = exp(-(x/sigma).*(x/sigma)/2.0); % Gaussian shape
plot (nx,u, '-xr’);
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Fig. 8.4 Profiles of the wave
at the start of the calculation
and after a lapse of 300
time-steps for initial
conditions that ensure a
constant wave shape as the
wave evolves in time

axis([1 n+l -0.3 1.2])

figure;

% Generate parameters and time derivative of the wave at t=0
v = 0.5; delta_t =

= (delta_t*v/delta_x)"2;
dudt = (v/(sigma*sigma)) *x.*u;

% Calculate effective initial conditions:
u_jminusl = u - delta_t*dudt;

u_j = u;

)

for £t = 1:1000

u_jplusl(2:n-1)
u_jminusl (2:n-1)

% Handle boundary problem
% u_j(-1) = u_j(n+l)

u_jplusl(l) =

(2* (1-factor) ) .*u_7j (1)

u_jplusl(n) =

(2* (1-factor)) .*u_7j (n)

plot(u_j);

axis ([0 n+l -0.3 1.2])

drawnow;

u_jminusl = u_j;
u_j = u_jplusl;

end;

Displacement (arbr. units)

o
)

1.0
0.8
0.6
0.4
0.2
0.0

% The animation (one thousand time steps):

- u_jminusl (n)
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300A¢

100 200 300
Position (arbr. units)

% Ease comparison with animation

(2* (1-factor)) *u_j(2:n-1) -
+ factor.*(u_j(3:n)+u_j(1l:n-2));

(fixed boundary)

- u_jminusl (1) + factor.*u_j(2)

+ factor.*u_j (n-

400

7

1);

Figure 8.4 shows the wave at the start and after the passage of 300 time-steps.
We see that the wave moves to the right (positive v) and that the waveform remains

unchanged.
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Fig. 8.5 Profiles of the
initial position of the string
on a guitar just before it is
released and made to
oscillate

Displacement

0 100 200 300 400
Position (arbr. units)

In an exercise at the end of the chapter, you are asked to investigate how the
wave evolves if we use a i which is either too small or too large compared to what it
should have been. Which term in Eq. (8.9) is now incorrect if we want to preserve the
waveform as the wave evolves? Would it be possible to explain the pattern observed
in the simulations if you consider the initial condition as a sum of two different
waves? It is crucial that you carry out this exercise and try to explain in your own
words the mechanisms behind time evolution of a wave.

You are also urged to modify the code so that you can handle a case where the
wave hits an interface between two media with different impedances (different phase
velocities). It is recommended that you complete the exercise, for that would provide
you with a significantly better understanding of waves.

Finally, another highly recommended exercise: When we play the guitar, we pull
at the string so that the initial condition is a slanted triangle (with straight edges, see
Fig. 8.5) and no motion before we release the string. Use the reasoning and algorithm
that lies behind Fig. 8.3 to suggest how the string will move afterwards! It will reveal
whether you have understood the algorithm or not!

Then perform a numerical calculation of the motion of the guitar string. It is easy
since the string is at rest before you release it, and the endpoints are fixed (no motion
is permitted). You may be surprised by the result!

It should be noted that the algorithm we use does not allow for any rigidity in
the string. If the string has a certain stiffness, segments a little further than the
neighbouring point will also affect the motion. A true guitar string will therefore
get a little different motion than our calculations show, at least if we follow the
motion over several periods. However, if we use a rubber band as a guitar string, we
will observe a pretty close fit with the calculation, because the band has negligible
stiffness. There are nice YouTube videos (shot with high-speed camera) showing the
motion of a rubber band. Examples are “Motion of Plucked String” by Dan Russell
and “Slow motion: Rubber string pulled and released” by Ravel Radzivilovsky. It is
fun to compare your own calculations with these videos!
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8.3 Dispersion: Phase Velocity and Group Velocity

In the previous section, we studied the mechanisms which govern the time develop-
ment of a one-dimensional wave. We initially said that the calculations dealt with
an idealized situation in which there was no dispersion. “No dispersion” means that
a wave moves at the same speed no matter what its wavelength. In the calculations,
the wave rate v was a constant.

For many physical wave phenomena, the restoring force will vary with the wave-
length. In such situations, we say that the medium is dispersive. The multicoloured
band we get when we send white light through a glass prism is an example of the
phenomenon called dispersion. The spectrum is a consequence of the fact that light
of different wavelengths travels with different speeds through the glass. This is the
dispersion property of glass for light.

Let us take a closer look at this. We know that the refractive index of glass varies
with the wavelength of light (see Fig. 8.6 for different types of glass). The refractive
index increases as the frequency increases (wavelength decreases).

In Chap. 9, we will show at the phase velocity of the electromagnetic waves (light)
in glass is given by the relation

Up = Cglass = co/n(A)

where ¢ is the light velocity in vacuum, c,j.ss = vp is the light velocity in glass,
which by definition is the phase velocity of light in glass. n(2) is the refractive index
which is wavelength dependent [see Eq.(9.36)].

Phase velocity is the velocity a constant intensity laser beam (or a perfect
harmonic wave) will have when it travels through a medium.

It follows from the data plotted in Fig. 8.6 that the phase velocity decreases as the
wavelength decreases. Such a behaviour is called normal dispersion.

A slightly different graphic representation is often used to display dispersive
behaviour. The alternative is to plot the angular frequency w as a function of the
wavenumber k. For a usual monochromatic wave A cos(kx — wt), the velocity (i.e.,
phase velocity) is given by: »

Up = ;

If we want to send information from one place to another, we cannot just send
a constant intensity laser beam. We must make changes in the light output, and the
information is conveyed through the changes.
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Fig. 8.6 Refractive index of 19
light, from UV to IR, in
various types of glass
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In an optical fibre, we often send a number of light pulses one after the other.
In the case of radio telecommunications, we also make variations in the radio
wave that causes the wave to be seen as different “groups” of waves that
come one after the other. It is remarkable that these pulses or wave groups
propagate through the fibre or the atmosphere at slightly different velocities
than a constant intensity laser beam would propagate. The pulses or wave
groups propagate with what is called group velocity.

There is usually little difference between phase velocity and group velocity for
electromagnetic waves. However, when we throw a pebble in a still body of water,
the group velocity will only be half the velocity of water waves if a wave-making
machine had generated continuous waves of about the same wavelength as we saw in
the rings after the stone hit the water. It is therefore important to distinguish between
phase velocity and group velocity!

It is dispersion that accounts for the difference between phase and group velocity.
The connection between phase velocity vy, (angular) frequency w and wavenumber
k is:

w = vpk

When there is no dispersion, v, is independent of k, and if we plot w as a function
of k, we get a straight line.
With dispersion, however, v, will be a function of the wavelength and hence k.

We can then write:
wk) = F k).
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Fig. 8.7 Relation between
the angular frequency w and
the wavenumber k for a
given medium is called the
dispersion relation for the
medium. We distinguish
between three different
classes of media, as
indicated in the figure. Note:
The three curves represent
completely different physical
action mechanisms, so the
three curves do not have to
coincide for low k values. It
is the form (curvature) that is
important!
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where .7 is some function. Then a plot of @ will no longer be a straight line.

We call .7, which gives us the relationship between w (k) and k, the dispersion
relation for the medium in question. For a dispersive medium, an w versus k plot
will be a curved line, as shown in Fig. 8.7. When the curve bends downwards,
the phase velocity decreases with the wavenumber (the wavelength becoming
smaller). This is called normal dispersion. When the curve bends upwards,
the phase velocity increases with the wavenumber (the wavelength becoming
smaller). This is called anomalous dispersion.

It can be shown that the group velocity is determined by the slope of the
dispersion relation in the region under consideration:

_Bw

= (8.10)

Ug

It can be shown that such a definition corresponds to the velocity of the “envelope”
of a composite wave packet, at least where the envelope has a Gaussian shape.
This corresponds to what we associate with “group velocity”. For more complicated
“envelopes” it is not always easy to specify a group velocity precisely, since the
actual shape of the envelope will change as it moves.

The fact that the group velocity is the derivative of the dispersion relation w (k)
opens up interesting possibilities. We will use it several times in this book.

For example, let us find an expression for the variation of group velocity with the
refractive index. The starting point is then the relationship:

w Co

k otk
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Whence follows the relations:

dw coon ¢y
Vo=—=———+—,
£ 9k n2dk n
k on
UgZUp(a)) <] _;ﬁ) . (811)

In normal dispersion, dn/dw > 0, which means that v, < vp, that is, the group
velocity is less than the phase velocity. If we use the data from Fig.8.6, we see
that there is very little difference between the phase velocity and the group velocity
when we transmit light through glass—at least as long as the wavelength is greater
than 400 nm (visible light and IR). On the other hand, dispersion becomes a major
problem if we try to send light of shorter wavelengths through glass.

In modern communication, we use optical fibres and wavelengths in the IR region,
where the refractive index is almost completely independent of the wavelength. Then
dispersion is very small, and it allows the use of short pulses, which ensures a high
data transfer rate.

8.3.1 Why Is the Velocity of Light in Glass Smaller Than
That in Vacuum?

This may be an appropriate moment for injecting a small aside, since in practice
it has been found that relatively few know why light travels more slowly in glass
than in vacuum. A clear indication is obtained by examining the expression for the
velocity of light through a medium. This expression, usually given in books of general
electromagnetism, is also discussed in detail in Chap. 9 in our book, and it reads:

1
A/ E0Er oMLy

where ¢ is the light velocity in vacuum,  is the refractive index, € is the permittivity
in vacuum, &, is the relative permittivity, g is the magnetic permeability of vacuum
and p, is the relative magnetic permeability. In glass, which is diamagnetic, u, is
approximately equal to 1, and we get:

c=co/n=

1 1
c=—=¢cp—— .
W E0Er L0 VEr

When we remember that ¢, is a measure of how much polarization (shifting of positive
and negative charges in each direction) we can achieve when we put a material into
an electric field, we realize that polarization of glass is the reason that light goes
slower through glass than in vacuum.
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Fig. 8.8 When an electromagnetic wave passes through a slab of glass, the electromagnetic field in
the wave will cause the electrons in the electron cloud around each nuclear core to shift as expected
from the Coulomb force

Figure 8.8 shows what happens when an electromagnetic wave passes through
glass. The electric field will alternate in a harmonic manner, with a value sometimes
in one direction (across the direction of motion of the light), sometimes zero, and
sometimes in the opposite direction. The electrons in the glass atoms will be affected
by the electric field, and the entire “electron cloud” around each nuclear core will
shift slightly relative to the core as indicated in the figure. In reality, the displacement
is extremely small, since the electromagnetic field from the electromagnetic wave is
usually small compared to the electrical forces between the core and electrons.! Yet,
even in weak light, there will be a collective displacement of the electrons relative
to the nuclei, and that is what really matters.

The collective displacement results in the glass being almost regarded as an
antenna with oscillating currents. This oscillation in charges leads to the transmission
of electromagnetic waves at the same frequency as the wave that started it all. How-
ever, we have seen in Chap. 3 (forced fluctuations) that there is generally a phase
difference between the movement and the applied force. It is the combination of
the original wave and the phase shifted resonant wave from the oscillating electron
clouds, which ensures that the light velocity in glass is less than in vacuum.

It goes without saying that when the electromagnetic wave has passed the glass
and gets into the air (almost like vacuum in our context), there will be no noteworthy
polarization of the medium and the wave will not be delayed by the re-emitted wave.
The velocity of light speed returns, of course, to (almost) the velocity of light in
vacuum.

If we recall what was said in Chap. 3 about forced oscillations, we will also think
of the resonance phenomenon. At certain frequencies, the amplitude became par-
ticularly large under the influence of the applied force. If you look at Fig. 8.6, you
can see clear indications that something special happens to wavelengths just under
200nm (0.2 pwm). Then we are in the UV region. Several different physical processes
will take place at the same time, but it may be useful to think that there will be
some form of resonance in the electron oscillations around the nuclei. By thinking
about the form of the resonance curve in Chap. 3, you can hopefully also imagine

'In a rapid pulse laser experiment in Germany in 2013, however, the electric field was so powerful
that many electrons were stripped away from the core. Then the glass is transformed from being an
insulator to a good electric conductor within a few femtoseconds!.
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what happens if we go through resonance and reach even shorter wavelengths. Then
curves in a diagram similar to Fig. 8.6 will slope the opposite way and we get the
so-called anomalous dispersion. For some materials, the supposed resonance fre-
quency will be at much longer wavelengths, and then we can achieve anomalous
dispersion even for common visible light. However, it is somewhat strained to com-
pare dispersion unequivocally with resonance in such phenomena, because more
physical interactions usually contribute.

This is one of many aspects of physics where the simple laws and patterns dis-
cussed in the early chapters of the book appear. Simple principles are often part
of the explanation even for more complicated phenomena, but seldom the whole
explanation!

A nice little historical episode in this context:

In Newton’s corpuscular model of light, diffraction was explained by the particles being faster
through glass than in air, but the wave description gave the opposite prediction. Measurement of
the velocity of light in glass was therefore regarded, during a certain period, as an important test
for seeing whether a wave model or particle model accorded better with experiments. However, we
cannot measure the velocity of light velocity in a coherent monochromatic wave. We must have a
“structure” in the wave that we can recognize in order to be able to measure the velocity of light.
This translates into the measurement of group velocity.

However, no one was able to measure the velocity of light in this way in the eighteenth and early
nineteenth centuries. Foucault was the first to carry out the experiment. That happened in 1850, and
the result showed that the velocity of light in glass was smaller than that in air, which supported the
wave model for light. By this time, however, most physicists had reluctantly abandoned Newton’s
particle model for light. Experiments of Thomas Young (1801 double-slit experiment) and a work
of Fresnel around 1820 (first opposed by Poisson, but corroborated by an experiment conducted by
Arago), eventually convinced physicists that the wave model of light gave a better description than
particle model. Please read about “Arago spot” in Wikipedia.

8.3.2 Numerical Modelling of Dispersion

Dispersion is a phenomenon that is somewhat difficult to understand. We present
here a method which can be used to model dispersion numerically. We hope that,
by reading the description of the method and the results furnished by it, you will
understand dispersion better. We recommend that you run the computer program
and watch how the waves within a group are moving forward, backward or stand still
compared to the envelope of the wave group. It is fascinating, and you can easily
observe such a pattern in real life when you look, for example, at the wake behind a
boat on the sea.

We start this section by pointing out that a frequency analysis of a wave may be
carried out both in time domain and in space domain. It is related to Fig. 6.2 in
Chap. 6.



228 8 Dispersion and Waves on Water

We often use the word “wave” rather uncritically, and seldom think that a real
physical wave must have a limited extent in time and space. This means that when
we describe a wave, for example, with the following expressions:

y(x,t) = Acos(kox — wpt) ,

this is at best just an approximate description of reality within a limited range of time
and space. The velocity such a wave moves with is the phase velocity v = wy/ ko.
A Fourier analysis of the time variation of the amplitude (meaning the displacement
from the rest position) of such a wave at one fixed position x = xo would be

1 [ A
Y(w) = —/ y(xo, t)e ' dt (8.12)
27 J_o

and Y would give one sharp peak in the frequency domain for w = wy. This tells us
that the amplitude of the wave varies harmonically with time at the fixed position
x = xo and the frequency is f = wy/2m and the time periodicity is T = 1/f.

We could equally well have described the wave as a snapshot at one particular
time ¢t = fy. A Fourier analysis can be carried out of the amplitude as a function of
position for this particular time. We would then have a slightly different expression:

1 [ .
Y(k) = — f y(x, to)e ®dx . (8.13)
27 J_oo

The numbers we put into the calculation would be almost identical with the numbers
describing the amplitude as a function of time. So mathematically, there will be no
difference (in the numbers used). As physicists, however, we need to keep track of
the difference and how the analysis should be used. Even in this case Y would give
one sharp peak for k = ky. We call k “the wavenumber”, but that is the number of
wavelengths within 27 metres and can equally well be called 2 times the “spatial
frequency”. This tells us that the amplitude of the wave varies harmonically with
position at the particular time ¢ = #; and that the spatial frequency is f; = k/2m and
the spatial periodicity is the wavelength A = 1/f;.

In our numerical simulations of dispersion, we will use a description based on
spatial frequencies, as will be apparent in the following.

Our chosen model of a real physical wave

As mentioned above, dispersion will have no influence on the motion of a pure
harmonic wave. At the same time, it is also impossible to define a “group” for a pure
harmonic wave. Thus, for a simulation of dispersion, we need a different model for
a physical wave.

A physical wave changes character (form) from one region in space-time to
another, and it can in general be very complicated indeed.

We have chosen to base our discussion on a “wave packet” that is formed by
multiplying a harmonic wave with a Gaussian envelope. We describe the wave at a
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Fig. 8.9 Frequency analysis
of our wave packet (absolute
values). Only the small
region where the coefficients
are clearly different from
zero is shown. Along the
horizontal axis, only element
number has been given, in
order to pick out the indices
we are interested in
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(8.14)

Here x, is the position where the wave packet has its maximum and the 1/e width
of the envelope equals 20,. For our choice of parameters, the wave at the starting
instant (¢ = 0) is shown in the upper left of Fig. 8.10.

‘We may Fourier transform this description of our wave packet as described in Eq.
(8.13). From Fig. 5.12 in Chap. 5 and the description in that chapter, we know that
the Fourier transform of Eq. (8.14) will have contributions mainly within a band of
(spatial) frequencies, which correspond to a band of wavelengths. The band for our
chosen model (discrete version) is shown in Fig. 8.9.

If we also bring the inverse Fourier transform into play, we can then state that

Our model of a physical wave y(x, fy) can be described as a sum (integral)
of harmonic spatial waves with different wavelengths, for wavelengths in a
limited wavelength band.

The key element in our simulation of dispersion

e We now know that the wave at t =ty = 0 can be described as a sum of
spatial harmonic waves with different wavelengths.

e We also know that a harmonic wave will evolve in time as if dispersion was
not present.

e However, dispersion implies that the phase velocity will depend on the wave-
length.
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Fig.8.10 Evolution of the wave packet with different dispersions is shown in blue. The green curve
shows a wave with a wavelength corresponding to the maximum in Fig. 8.9 and is only included to
show the difference between phase rate and group velocity in an animation. The wave packet at the
start of time development is shown at the top left, and the next three graphs show the wave packet
after it has been 1.4 s. S and L indicate shorter or larger wavelengths than the dominant one. See
the text for details

o The time evolution of the total wave packet can then be calculated by adding
a number of spatial harmonic waves that evolve in time with different phase
velocities.

To be more specific, the last step can be implemented by replacing summation
of spatial harmonic waves at one instant of time cos[k(i)x + 6(i)] followed by a
common time evolution—with summation of harmonic waves in space and time
with individual time evolution and arguments cos[k(i)x — w (i)t + 6(i)]. However,
the challenge is to determine w (i ). This is explained in the more detailed description
of the actual simulation program at the end of this chapter, and it is illustrated in the
Fig.8.21 there.

Later in this chapter, we will discuss some physical wave phenomena in which
the chosen behaviour is manifested.
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Fig. 8.11 Wave packet at the start, after it has moved (with anomalous dispersion) for a short time,
and after a much longer time. Note the difference in wavelength in the front of the wave packet

]

Wave velocity direction

A
>

compared to the end. It is a fingerprint of dispersion

The results of our animation are given in three of the four plots in Fig.8.10. A

number of details emerge from the modelling/animation:

Figure 8.10 shows the important characteristics of dispersion:

The waveform of the envelope curve does not change over time when there
is no dispersion.

When there is dispersion, the wave packet “spreads”, its shape changes and
the peak amplitude decreases, as shown in Fig. 8.11.

When there is no dispersion, the group velocity equals the phase velocity,
i.e. vy = vp.

With normal dispersion, the group velocity is less than the phase velocity,
more specifically v, = %vp < vp in our case.

With anomalous dispersion, group velocity is greater than the phase velocity,

more specifically v, = 3v, > vy in our case.

e Group velocities are exactly as expected on the basis of Eq. (8.10).
o Although the wave packet (“the group”) moves with a different velocity than

the phase velocity, the individual wave peaks within the envelope moves
approximately with the phase velocity of a wave whose wavelength corre-
sponds to the dominant component in the frequency spectrum (shown green
in Fig.8.10).

This means that the wave packet under the envelope curve moves forward
relative to the envelope with normal dispersion and backward with anoma-
lous dispersion.

This means that at normal dispersion, wave packets will apparently disappear
at the front of a wave packet as time passes and appear to grow out of
nothingat the rear end of the wave packet. For anomalous dispersion, the
opposite holds. See Fig. 8.12.

231
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Fig. 8.12 Wave packet after —>

it has moved for a while with Vg
. . amN

normal dispersion. The \

phase and group velocities, 1

v, and vg, respectively, are ! \

indicated by arrows
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e In normal dispersion, the phase velocity for small wavenumbers, i.e. long
wavelengths, is greater than the phase velocity for short wavelengths. Then
the longest wavelengths will dominate the fastest part of the group, and the
shortest wavelengths will dominate the last (slowest) part of the group. For
anomalous dispersion, it is the opposite. In Fig.8.10, long wavelengths are
marked with L and short with S.

8.4 Waves in Water

It is time now to describe waves on the surface of water. However, we will start with
qualitative descriptions before we grapple with a mathematical description where it
is possible to go into more detail.

In Chap. 6, we derived the wave equation for waves on a string and waves in a
medium. It would have been nice to go through a similar derivation for surface waves
in water, but this will not be attempted here, since the task is rather demanding.
The interested reader is referred instead to books in hydrodynamics or geophysics.
We will nevertheless look at some details. In Fig. 8.13 is shown one possible model,
which can be used as a basis (the model is the starting point for the derivation in, for
example, the book by Persson, reference at the end of this chapter).

Here we consider a vertical volume element parallel to the wavefront has the same
volume, regardless of whether it is in a trough (valley) or a crest (top). In the figure,
this would mean that V; = V,. However, since the pressure is equal to the air pressure
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Fig. 8.13 One wave model envisages that vertical volume along the wavefront preserves its value,
regardless of whether the column is in a trough (valley) or a crest (peak). The surface area of the
cross sections will change, but we ignore that at first

above the water surface (approximately the same above all volume elements) and
the pressure increases with the depth inside the water, the pressure at a given height
above the bottom is higher in the volume element corresponding to the wave peak
compared with that in the wave valley. In this way, we can regard the wave as a
longitudinal pressure wave that moves with the velocity of the wave.

In Chap. 6, sound waves in air and water were described as pressure waves. The
model in Fig. 8.13 looks similar to that description, but is still quite different!

For sound waves, we considered the gas or liquid as compressible fluids, that is,
if we increase the pressure, the volume will decrease. The compressibility modulus
was central to the derivation. Gravity, on the other hand, played no role whatsoever.

When surface waves on water are modelled, we completely ignore the compress-
ibility. Regardless of pressure changes, a volume element retains the same volume.

In surface waves, large pressures will mean that the volume element is compressed
across the wavefront, that is, in a volume element below a wave peak.

We may wonder whether it is reasonable to operate with completely different
models of sound waves and surface waves, and of course there are transition zones
where these descriptions will be at variance with each other. However, there are
physically good reasons to operate with different models.

In the case of sound waves, we are most interested in frequencies in the audible
region (and possibly ultrasound). That is, from about 20 Hz and upwards. The period
is 50ms or less (in part much less). If sound would lead to surface waves as described
in this chapter, we must move significant amounts of water up to several metres in
25 ms or less! It would require enormous powers (according to Newton’s second law).

On the other hand, we can transfer large amounts of water a few microns within
25 ms as required for sound waves, and still shorter times (higher audio frequencies).
The powers that are needed for this task are achievable.

Surface waves on water have a much lower frequency (at least for large wave
heights). Then we get time to move large amounts of water from a wave bottom to a
wave peak with the available power.

One must also take into account the time scale and Newton’s second law, which
means that we operate with completely different models of sound waves in water
and gravity-driven surface waves on water.
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A better model

All in all, the model given in Fig.8.13 does not provide a good description of
surface waves. For a better description, we would like to base ourselves on one of
the basic equations in fluid mechanics, namely Navier—Stokes equation:

-
p(%—;}+7~V7> = -Vp+V.-T+%
where p is mass density, ¥ is the flow rate, p is hydrostatic pressure, 7 is a stress
vector (may include surface tension) and % stands for “body forces” that work per
unit volume in the fluid. V is the del operator.

It may be useful to look closely at Navier—Stokes equation and recognize that it
is largely a further development of Newton’s second law for a continuum fluid.

Navier—Stokes equation is nonlinear, which means that solutions of this equation
do not necessarily follow the superposition principle. If two functions separately are
solutions of the equation, the sum of these functions will not necessarily be a solution
of the equation. Another characteristic feature of nonlinear equations is that they can
have chaotic solutions, that is, solutions where we cannot predict how the solution
will develop in time (in a purely deterministic way). Even the slightest change in
initial conditions or boundary conditions could result in the solution after a time being
having wildly different values. This has come to be called “the butterfly effect”. The
flap of a butterfly’s wings can cause weather development after a long while to be
completely different from what it would have been had the butterfly not flapped its
wings.

There are some interesting mathematical challenges associated with Navier—Stokes equation
today, but we will not mention it here.

My main concern is to point out that there is a wealth of different phenomena related to motion
in fluids, and amazingly many physicists and mathematicians have been interested in water waves.
These include Newton, Euler, Bernoulli, Laplace, Lagrange, de la Coudraye, Gerstner, Cauchy,
Poisson, Fourier, Navier, Stokes, Airy, Russell, Boussinesq, Koertweg, de Vries, Zabusky, Kruskal,
Beaufort, Benjamin, Feir and others. We are talking about monster waves, tsunamis, solitary waves,
etc. The field has a rich tradition, also in the Norwegian research milieu, and there is still a lot to
be tackled!

In our time, computers have become so powerful and so many numerical methods have been
developed for use in mathematics and physics that we can now grab wave descriptions in a com-
pletely different way than could be done a few decades earlier. As an example of the development
that has taken place, Professor Ron Fedkiw (born 1968), as working with Computer Sciences at
Stanford University, received an Oscar award in 2008 for his efforts to animate realistic water waves
for use in the film industry (including the film “Poseidon”). For those who are students today and
will become familiar with numerical methods for solving mathematical and physical problems, this
is extra fun. After completing your studies you will have the skills that would enable you to produce,
only with modest effort, realistic animations of similar to those of Ron Fedkiw!
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8.4.1 Circle Description

Let’s now give a picture-and-word description of the waves themselves. Figure 8.14
shows a vertical cross-section of the wavefront. The solid curve shows the wave at
a given moment, and the dotted curve shows the wave a short while later. The wave
moves to the right in this case.

In the figure, arrows are drawn to show which direction the water must move in
order to let the wave as it is now to become what it will be. The arrows in the upper
half are quite easy to understand, while the arrows in the lower half may be harder
to get hold of. However, we recall that the wave does not necessarily lead to a net
transport of water in the direction of the wave, so water that moves forward in a part
of the wave must move backwards into another part of the wave. And water that
moves upward in part of the wave must move down in another part. If we keep these
facts in mind, the directions of the arrows begin to make sense.

Note that the water must move both along the wave propagation direction and
across it. This means that the wave is a mixture of a longitudinal and a transverse
wave.

If we draw the direction of motion and relative position of the same small volume
element at different times while a wave peak passes, we get a chart as in the lower
part of the figure. It appears that the water in the surface moves along a vertical circle
across the wavefront.

Fig. 8.14 Upper part indicates in which direction the water at the surface moves when the wave
rolls to the right. In the lower part, the position and speed of one and the same volume element are
drawn as a wave peak passes. The current wave element is that at position 8 at the beginning, but
at the next moment it is located on the part of the wave that is in line with point 7 in the upper part.
At the next moment, it has a location in the waveform that corresponds to point 6, etc. The result is
that the volume element we follow appears to move in the clockwise direction as time passes
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Fig. 8.15 When we want to
indicate how the water
moves between the surface
and the bottom, simple
sketches like this are used. PN
However, sketches like this \ )
give a rather simplistic ==
picture of what is happening
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Further down into the water, the circular motion will change from being near-
circular (as in the surface) to a more and more flattened ellipse, as shown in Fig. 8.15.
At the bottom of the bottom, the movement is almost a pure horizontal movement
back and forth. We can notice that when we snorkel at the bottom of a lake, and see
aquatic plants and weeds swing slowly back and forth as waves pass on the surface.

This description, however, applies only to shallow water, that is for water that is
not much deeper than the wavelength (the distance between the wave crests).

For deeper water, the waves on the surface will only propagate downwards a short
distance, but near the bottom, the waves on the surface will not be noticed at all.

It is possible to see the circular motion by spraying small droplets of coloured oil
into the water, provided that the mass density of these drops is about the same as
that for water. We can then follow the movement of the drops in water waves, as is
done in the basement of Abel’s House at UiO and in Sintef’s wave tanks in Norway.
Howeyver, I have been told that it is harder to show these circular motions than we
might infer from the textbooks.

When we portray water waves by drawing circles and ellipses at different depths,
we must recognize that such a description can be easily misunderstood. How should
we look at the circles and the ellipses for subsequent volumes in the wave direction?
Here there must be some sort of synchronization that does not emerge from the figure
and which necessarily has to give a more detailed description than can be conveyed
through simple sketches.

The sinusoidal form is by no means the best model for surface waves on water.
Often the wave tops are more pointed than the bottoms, as indicated in Fig. 8.16. The
larger the amplitude, the steeper the top becomes. However, there is a limit to this
tendency. When the wave peak becomes larger than about 1/7 of the wavelength, the
wave is often unstable and can, e.g., go over to a breaking wave. At the border, the
angle between the upward and downward part of the wave peak is about 120° (an
angle that of course does not fully apply to the actual vertex).
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Fig.8.16 Waveform is usually such that the top is more pointed than the bottom. The effect becomes
clearer as amplitude increases. When the peak to peak amplitude is 1/7 of the wavelength, we reach
a limiting value after which further increase in amplitude often gives an unstable wave

8.4.2 Phase Velocity of Water Waves

Although we have not shown how the wave equation will actually look for sur-
face waves, we can establish an approximate expression of one characteristic
of the solutions, namely the phase velocity of water waves. The expression is:

v2(k) = [5 + T—k} tanh(k#) (8.15)
kK p

where k is the wavenumber, g the acceleration due to gravity, 7' the surface
tension, p the mass density and % the depth of water. The formula applies to a
practically flat bottom (compared to the wavelength).

The first term inside the square brackets indicates the contribution of gravity to
the restoring force, while the second indicates the contribution of surface tension.
The first term thus corresponds to so-called gravity-driven waves, while the second
term corresponds to what we call “capillary waves”.

Since the wavenumber k occurs in the denominator of one term and in the numer-
ator of the other, it follows that the gravitational term will dominate for small
wavenumbers (long wavelengths), while the surface tension will dominate at large
wavenumbers (small wavelengths). It may be interesting to find the wavelength where
the two terms are about the same magnitude. We put then:

g Tk

ke p

The subscript ¢ indicates a “critical” wavenumber where the two contributions are
equal. The result is:
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Fig. 8.17 Phase velocity of surface waves on water. The red curve in this figure is taken from R.
Nave, (water depth was not specified). The blue curve is calculated using Eq. (8.15) with 2 = 1000
m. Inspired by [2]

Since k = 27 /A we find finally:

For pure water at about 25 °C and 1 atmosphere, 7 = 7.197 x 10~2N/m. Then
the critical wavelength becomes:

Ae = 1.7 cm.

In other words, the surface tension will dominate the phase velocity of waves
of wavelength appreciably smaller than 1.7 cm, while gravity will dominate
for wavelengths considerably larger than 1.7 cm.

The phase velocity is actually smallest when the wavelength is about 1.7 cm,
being only 0.231 m/s. Both shorter and longer wavelengths increase the phase veloc-
ity, and at very long wavelengths, the phase velocity can reach more than 100 m/s.
Figure 8.17 shows the calculated phase velocity for wavelengths from 1 mm to 10 km.
The calculations are essentially based on the fact that the water depth is large relative
to the wavelength (something that cannot be attained here on earth for the longest
wavelengths!).

We will immediately look at the expression for phase velocity, but first of all
remind us of some features of the hyperbolic tangent function. The entire range of
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hyperbole trigonometric functions can be defined in an analogous manner to normal
sine, cosine, etc. (all of which can be described by exponential functions with complex
exponents). For the hyperbolic functions, the expressions look like this:

inh(x) = &<

sinh(x) = ——
2

et +e*

cosh = —
(x) >

. h() X —e "

anh(x) = ——— .

eX e+

In what follows, we focus on how hyperbolic tangent behaves when the argument is
much smaller or much larger than 1. Then it applies:

tanh(x) ~ x for x| < 1,
tanh(x) ~ 1 forx > 1.

In Eq. (8.15), the argument for tanh is equal to hk. The argument can also be

written as
2mh

A

hk

It is then natural to distinguish between ‘““shallow water” characterized by & < A /20
and “deep water” characterized by & > X /2. These limits mean that the shallow water

condition corresponds to:

27 A
il =£<1.0

hk < —
201 10

and deep water condition corresponds to:

2w A
hk > — =7 >1.0.
2\

It is time now to discuss some main features of Eq. (8.15). For shallow water
first and wavelengths well above 1.7 cm (so that we may ignore the surface
tension term) follow:

2.y 8 ~Sn —
vp(k) = tanh(kh) ~ Ekh =gh,

vp(k) = /gh .
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We see that the phase velocity is independent of the wavelength (wavenum-
ber). Furthermore, we notice that phase velocity decreases as the depth
decreases.

This gives a good effect. When waves come from the ocean towards a longshore
beach, waves that are inclined inward will move fastest in the part where the depth is
greatest. That is, the part of the longest wave will go faster than the part of the wave
that is farther in. Generally, this causes the wavefront to become quite parallel to the
shoreline, no matter what direction the waves had before approaching the beach.

For a deep water coast all the way down to the mountain cliffs down to the water,
there is no equivalent effect and the waves can come in towards the cliffs in any
direction.

For deep water waves, the phase velocity (assuming that the surface tension
plays a negligible role):

g 8 gA
vi(k) = %tanh(kh) ~ El =

ve (k) = /%«/X ~ 1.25\/[(A) mss .

where {A} means the value of A (without units) measured in the number of
metres.

Thus, in deep water the phase velocity will change with the wavenumber
(wavelength). Such a relationship has been called dispersion earlier in the
chapter.

Increasing the wavelength by two decades in our case, the phase velocity
will increase with a decade. This is reflected approximately in Fig. 8.17.

Something to ponder over

It may be interesting to know that the ocean wave with the highest wavelength here
on earth has a wavelength of 20,000 km. It rolls and goes all the time. Can you guess
what sort of wave it is? Do you want to characterize it as a surface wave that is gravity
driven? If so, does it fall under our description above and will it have a wavenumber
given by our formulas? You can think about it for a while!

When we treated Eq. (8.15), we said that for wavelengths well over 1.7 cm, gravity dominated
the wave motion. For capillary waves with wavelength significantly less than 1.7 cm, the surface
tension dominated. These numbers apply at the ground surface.

A water drop will have a shape that is determined by both gravity and the surface tension. When
the gravitational force disappears, such as, for example, in the weightless state of Spacelab, it is
possible to make water droplets that are almost perfectly spherical, even with a diameter up to
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10cm. Waves on the surface of such water balls will in weightless state be dominated by surface
tension even at wavelengths greater than 1.7 cm.

8.4.3 Group Velocity of Water Waves

We have previously given in Eq. (8.15), an expression for the phase velocity of surface
waves in water, but reproduce the formula here to refresh the reader’s memory.

v2(k) = [5 + T—k] tanh(kh) .
kK p

As usual, here & is the wavenumber, g the acceleration due to gravity, 7' the surface
tension, p the mass density and # is the depth of the water. The expression can be
derived if we start by just taking into account gravity and surface tension, and we
ignore viscosity, wind and a tiny but final compressibility to the water.

We have previously found expression of the phase velocity for gravity-driven
waves for shallow and deep water. Now we will also discuss group velocity and
describe three of the four possible simple special cases a little more in depth:

1. Gravity-driven waves with a small depth relative to the wavelength, i.e.
the product 1k << 1:

The wavelength is assumed to be large relative to the critical (1.7 cm) and from
Eq. (8.15) follows:

2 8
vp(k) ~ %hk ,

v~ \/gh .

This has been shown earlier, but let us also look at the group velocity. We then use
the relationship v, = w/k and get:

= =eh,

k:
w=+/ghk,
d

vg:—w: gh=v,.

dk
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Therefore,

In this case, we found: ¢
2 ~
Up (k) ~ z .

We set again v, = w/k and get:

This leads to the following dispersion relation:

The group velocity is thus seen to be:

Wake pattern from ships often fall into this category. The single waves seem to
roll faster than the “plow” or “fan” that follows the boat (see Fig.8.18). As a result,
the single waves roll in a way past the “fan” and disappear soon afterwards. We will
look into this in some respects.
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Here the wavelength of the waves is small relative to the critical wavelength of 1.7
cm. At the same time, the wavelength is much less than the depth of the water. Then
we get surface tension-driven waves and

Tk
k)~ —xl=—.
0

The dispersion relation is easily seen to be:

The group velocity in this case becomes:

dw T\3 . 3Tk
= = \Ye )2 Ty
o p

Vg = ZVp .

In this case, the group velocity is actually greater than the phase velocity (corre-
sponding to anomalous dispersion). In this case, individual waves seems to appear
from nothing at the front of the group of waves, and then move “backwards” through
the group and disappear. However, relative to the water, the single waves will always
propagate away from the source that created the waves (as long as we do not have
reflection), but the illusion of walking backwards is because the group velocity is
even greater than the phase velocity.

8.4.4 Wake Pattern for Ships, an Example

Many are not used to identifying what is meant by a group of waves and what is
meant by single waves. Left part of Fig. 8.19 attempts to show this. The figure refers
to the photograph in Fig. 8.18. The fan with many single waves that extends slightly
across the outer edge of the fan forms the group of waves. This fan is expanding at a
speed that is the group velocity. However, each single wave will wander in a different
direction than the fan as such and with a different wave velocity which is now the
phase velocity.

We have previously concluded that for deep water waves, the group velocity is
about half the phase velocity [see Eq. (8.16)]. This means that the single waves move
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Fig. 8.18 Photograph of a boat with waves forming a V-shaped wake behind it. See further discus-
sion in the next section. Arpingstone, Public Domain, [3]

~s Phase velocity Movement of one
_8r _‘?A\:\ / - \; & single wave
\\.A - \ \

Single wave

4 ,,7' ‘7 Group of waves
/7 \ Group velocity

Fig. 8.19 To the left: Identification of the group moving with group velocity and single waves
moving at phase velocity in waves from a boat. The figure is a continuation of Fig.8.18. To the
right: Detail showing how far the wave group and how far a single wave has moved across each
of its wavefronts over a certain period of time. The figure clearly shows that the group velocity is
lower than the phase velocity of these water waves

Movement of the
group of waves

faster than the group. The single waves therefore appear to arise of almost nothing
on the inside of the group, and scroll across the group, and almost disappear when
they reach the outer edge of the group.

If you have ever paddled a canoe and watched a bit nervously how fast single
waves approach the canoe after a boat has passed, you might have wondered that the
waves which looked so scary seem to have vanished on their own before reaching the
canoe. Only much later than we first became aware of them do the waves reach the
canoe. The waves make it to the canoe only when the group reaches there, and the
group moves half as fast as the single waves. This time course comes out beautifully


https://commons.wikimedia.org/wiki/File:Wake.avon.gorge.arp.750pix.jpg
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in the animation of how a wave packet evolves in time using the computer program
discussed earlier in the chapter (listed at the end, just before “Learning objectives”).
In the right part of Fig.8.19, the waves are drawn at one point and a little later.
Then it becomes clear that the group has gone a much shorter distance than the single
waves in the period we are studying. It always remains true that the wave pattern
behind the boat is stationary relative to the boat. When the boat has moved 10 m
forward, the entire wave pattern behind the boat has also moved 10 m ahead.

Lord Kelvin (W. Thomson) claimed long time ago (1887) that wakes pattern from ships are
fanning out at a constant angle of 19.47°, no matter the speed of the vessel. This was regarded
as an established truth. This has lately been shown not to be true. Especially, the wake pattern is
quite different from what is seen in Fig.8.18 for high-speed boats. The subject is described by
Ceri Perkins in an easily readable article in Physics World May 30, 2013, and in more details,
for example, in the paper “A solution to the Kelvin wake angle controversy” by A. Darmon, M.
Benzaquen and E. Paphal, 2013, available at https://www.gulliver.espci.fr/sites/www.gulliver.espci.
fr/IMG/pdf/darmonbenzaquen2013.pdf. It is fascinating to see the broad range of pattern a ship
wake can take.

Additional comments for the most interested:
There has been a lot of research on phase and group velocities since about 1980. Much of this is
related to light.

InFebruary 2015, Giovannini and colleagues published an article in Science that shows taking the
velocity of light in vacuum is not necessarily ¢ as Einstein’s relativity theory indicates. Light velocity
equal to ¢ applies only to light in the form of plane waves. For some other wave configurations,
which the authors designate as “spatially structured photons”, the velocity of light in vacuum is
slightly lower than ¢ (not a big difference, but demonstrably smaller).

We have long known that when light goes through glass (or a water drop for that matter), light
of different wavelengths travels at different speeds. The refractive index is wavelength dependent,
n(A), which is again the expression of dispersion. Light in glass shows normal dispersion.

However, in the last few decades a number of special materials have been developed, and some
of these have a highly varying phase velocity for light with different wavelengths. Therefore, we
can get widely varying phase and group velocities, and even materials where phase velocity has
one direction and group velocity has the opposite direction.

There are also artificial materials and experimental relationships where we can slow down the
light enormously, even “stop” it for shorter periods, then start it again (search for Lene Hau at
Harvard University to get an insight into an exciting research field. Lene is Danish and is a favourite
for the Danish press).

In some materials, a light pulse can travel—according to some people—faster than light in the
vacuum, and in principle, we threaten Einstein’s relativity theory in this way. When we look at what
happens, we see that the claim of “faster than the light speed in vacuum” can be defeated. It all
depends on how we define this or that, but Einstein’s relativity theory is not exactly threatened by
these experiments, on the whole. What the future will bring is something harder to contemplate!

Dispersion is also relevant to matter waves in quantum physics. Group velocity is defined
through dispersion relations where w (k) is described and we use vy = dw/dk. For matter waves,
the wavelength through the Broglie relationship is related to the momentum and the frequency of
energy. For matter waves, therefore, we have dispersion if the energy does not increase with the
momentum in the expected manner.

Dispersion turns up in many other contexts, among them the so-called Kramers—Kronig relation
that shows that dispersion is related to the amount of absorption for different wavelengths in the
medium. To a certain extent, this is linked to forced oscillations and Q-values, as we have mentioned
earlier, but we do not have the time to go further in depth.


https://www.gulliver.espci.fr/sites/www.gulliver.espci.fr/IMG/pdf/darmonbenzaquen2013.pdf
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8.4.5 Capillary Waves

We all know waves at sea. Less commonly known are oscillations in small water
droplets where surface tension is the dominant restoring force. When a drop falls
from a tap, it will oscillate while it falls. Examples of this are found in references 1
and 2 at the end of the chapter.

Standing waves in a water drop we can observe when we place some water in the
pit of an old-fashioned electric stove, provided that the plate is so hot that the drop
floats atop a cushion (steam cushion) that forms. We can get beautiful quantized
oscillations with an asterisk shape where an integer number of arms swings back
and forth (see Fig.8.20). Slight variation in heat or size of the drop may cause it
to suddenly change the swing pattern from, for example, a five-arm to a four-arm
star. The arms are shot out and pulled back in such a way that we will perceive an
octagonal star (since we cannot follow the rapid movement with the unaided eye).

The purpose of this description is to recall that classical physics is full of quanti-
fied states, in an analogous manner to what is found on the atomic scale described in
quantum physics. We have already seen in other chapters other examples of quanti-
zation on macroscopic scale, such as oscillations on a string and sound waves in a
musical instrument.

The reason for quantization is that we are dealing with waves and the associated
boundary conditions. For waves on a guitar string, the quantization is a consequence
of the fact that the amplitude at the endpoints must be equal to zero. This is completely
analogous to quantization of the wave function in quantum physics (e.g. for a “particle
in box™).

Fig. 8.20 Pictures of an oscillating water drop. The picture to the left is taken a few milliseconds
before the image to the right. The two pictures show the extremes of the oscillation of this drop.
The movement can be considered as a standing wave in the drop. The images are selected from a
video taken by high-speed camera at the Department of Physics, University of Oslo (M. Baziewich
and A. I. Vistnes). The video is available at the “Supplementary material” web page for this book
at http://www.physics.uio.no/pow
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8.5 Program Details and Listing

Given below is a Matlab program that can be used to explore how dispersion affects
the time development of a wave packet (a wave group). The program consists of a
main program that calls on four functions. One must find out oneself which param-
eters are to be changed when one wants to switch between no dispersion, normal
dispersion and anomalous dispersion. It is natural to change several of the functions
if you want to enter the appropriate parameters to model completely specific physical
wave phenomena. However, it is imperative to understand the parts of the program
that you want to change; otherwise, the result may turn out to be meaningless.

A description of the different parts of the actual program

The function/script pg3 is the main program that activates the different modules in
the complete program. We have to choose in the program code whether we want
normal, anomal or no dispersion.

The wave packet is calculated in function pg_wpack.

Since the wave is limited in extent, a Fourier analysis of y(x) in the function pg_fft
will yield a range of spatial frequencies. For our selection of parameters, the result is
illustrated in Fig. 8.9. The components with indices 23-59 (marked with blue vertical
lines) contain all the components that are notably different from zero (compared to
the value of the most powerful component). The different indices correspond to each
(spatial) frequency (as explained in detail in the chapter on Fourier analysis). This
range of components has to be stated in the code of fg3.

Fourier analysis gives us (spatial) frequency, amplitude and phase of each com-
ponents of interest.

k(i) =31 — 1)% A(@) =2abs(Y(@)) 6(i) = atan2(imag(Y (i)), real(Y (i)))

where Y (i) is the ith element in the Fourier transform of y(x), and x,,x and N are,
respectively, the greatest value of the position and number of points in our description.
The factor of 2 in A is because we use only the lower half of the Fourier spectrum (not
the folded part). The expressions “abs”, “atan2”, “imag” and “real” are all Matlab
functions.

We know from Chap. 5 on Fourier transformation that we can describe the same
function as in Eq. (8.14) by a “reverse Fourier transform™:

59

2(x) = > AG) cos[k(i)x + 0()] (8.17)

i=23

where we have included only the components that are worth mentioning for the
result. Plotting z(x) calculated with Eq. (8.17) and comparing it to a plot based on
Eq. (8.14) will not reveal any difference visually.
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Note that in Eq. (8.17), we add cosine functions, each contribution having the
same amplitude over the entire region for which we calculate. There is no specific
information about where the peak of the wave packet should be or how wide it is.
All of this is information hidden in amplitudes and phases of the various frequency
components that are included.

Both Egs. (8.14) and (8.17) describe the wave at time ¢t = 0. Equation (8.17) is
most useful in our context because it is well suited to describe how the wave will
evolve over time when we have dispersion. Then the algorithm we used first in the
chapter will not suffice because there is no simple wave equation when the phase
velocity is not constant.

If we use Eq. (8.17), we can get the time evolution simply by replacing cos[k(i)x +
0(i)] with cos[k(i)x — w(i)t + 6(i)]. Then each spatial frequency component will
evolve with its individual phase velocity. This demonstrates why Fourier analysis
sometimes is very useful! However, the challenge is to determine w (7). The function
pg_omega takes care of that challenge.

We have chosen the following three variants:

k
w (k) = vp No dispersion
kdom
w (k) = Kk1vp Normal dispersion
dom

3/2
) Anomalous dispersion

w (k) = Kkavp (k

dom

where v, is the phase velocity of a contemplated harmonic wave with wavenumber
kdom (dominant wavenumber in our Fig. 8.21). Note: We have chosen the parameters
so that the group velocities are roughly the same for all three cases. The phase
velocities are quite different. x| and k, are small correction factors (1.04 and 1.10)

180 280 140
0
S 140 240 100
e
3 100 200 60
no normal anomalous
dispersion dispersion dispersion
60 160 20
3 5 7 9 3 5 7 9 3 5 7 9
k (rel. units) k (rel. units) k (rel. units)

Fig. 8.21 Relation between frequency and wavenumber used in our calculations for the next figure
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to optimize Fig.8.10 and do not matter for the argument that follows. Figure 8.21)
shows how w varies with the wavenumber k.

In the function fg_omega, we also defines a parameter “deltat” that is used in the
animation of the time evolution of the wave packet. The numbers in the computer
code at the end of this chapter are chosen just so that the final position of the wave
packet is convenient for plotting. Can be adjusted as wanted to have a different time
at the end of the animation.

The animation including plotting is carried out by the function pg_animer. This
function uses the function pg_wave to generate a complete spatial wave for each
wavelength component and time in the animation.

Main Program

The code is available at the “Supplementary material” web page for this book at
http://www.physics.uio.no/pow.

function pg3

Program to illustrate the difference between phase and group
velocity. Movement of a wave package is animated (blue). To
ease the understanding of the difference between phase and
group velocity, a pure monochromatic wave with the central
wavelength is animated along with the wave package (in green) .
This will move with the phase velocity.

Version: 5. October 2017, AIV

o0 0P 0P of o° of

oe

NOTE: Due to the periodicity buried in a FFT, the wave pattern
will only be valid if the animation stops before the wave
pattern reaches the right end of the animation plot. If it
turns up again at the left, the result is not valid.

o0 0P d° of

NOTE 2: You have to choose several values for the parameters
in the program listing below!

oe o

)

% Choose first type of dispersion:
disp = -1.0; % -1,0,+1: normal, no, anomal dispersion

% Create a wave package IN SPACE (!)

N = 4000;

xmax = 40.0;

xlambda = 1.0; % Spatial wavelength
xsigma = 2.0; % Width of the package
[x,2z] = pg_wpack (N, xmax,xlambda,xsigma) ;

plot(x,z,’'-b");

% Spatial frequency analysis, find amplitude and phase as a
% function of the wavenumber k
[A,phase, k] = pg_fft(z,N,xmax) ;

oe

Pick manually those points in the frequency plot with
% considerable amplitude (use pg_fft, last part).
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imin = 23;
imax 59;

% Determines omega (k) using the dispersion relation
[omega,deltat] = pg_omega (imin, imax, k,disp) ;

% Now the movement can be animated
[xavt] =
pg_animer (x,deltat,N, A, phase, k, omega, imin, imax, xmax, disp) ;

o0

Position to a peak in a monochromatic wave (moving at
the phase velocity) after finishing the animation.
Start value is xmax/8.Remove the semicolon to have
this value written to the screen.

xavt;

oe

o0 o

Create Wave Package in Space (at t = 0)

function [x,z] = pg_wpack (N, xmax,xlambda,xsigma)

o°

Create a wave package in space (!). Version Oct 5 2017 AIV
Input parameters: N: Points in the description,

xmax: Defines the interval x is defined ( |0,xmax>),
xlambda: spatial wavelength for the central wavelengh,
xsigma: the width in the gaussian shaped wave package.
Returns: x array as well as the wave package array.

o

o0 o

o0 o

x = linspace(0,xmax* (N-1)/N,N) ;

xr = xmax/8.0; % Startpoint for the centre of the wave package
xfreq = 1/xlambda; % Spatial frequency

v = cos((x-xr)*2*pi*xfreq) ;

convol = exp(-((x-xr)/xsigma) .* ((x-xr)/xsigma)) ;

z = y.*convol;

return;

Frequency Analysis of Wave Package in Space

function [A,theta,k] = pg_fft(z,N,xmax)

% Frequency analysis of a wave package in space.

% Version Oct 5 2017 AIV

% Input parameters: z: the array describing the wave package,
% N: number point in this description, xmax: describe the x
% interval |0, xmax>. Returns: Amplitude A and phase (theta)

oe

in the frequency analysis as a function of the wavenumber k.

zf = fft(z)/N;

A = 2.0%*abs (zf); % Ignore the error in Zf(1l), don’t use it
theta = atan2 (imag(zf),real (Zf));
xsamplf = N/xmax; % Spatial sampling frequency

)

xfreq = linspace(0,xsamplf* (N-1)/N,N); % Spatial frequency
k = zeros(1,N);
k = 2.0*pi*xfreq;
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% NOTE: Use the reminder of this function when you need to
% pick frequency components for your wave package. You need
% this in order to choose imin and imax in the program pg3.m

sfigure;

gplot(A,’.-r’); % Plot to be able to choose points to be used
%plot (xfreq,A,’.-r’); % Alternative plot

gplot (xfreq, fase, ' .-k’");

return;

Generate the Dispersion Relation omega(k)

function [omega,deltat] = pg_omega (imin, imax,k,disp)

oe

Generate the dispersion relation omega (k).

Version Oct 5 2017, AIV

Input parameters: imin, imax: first and last index that
will be used in the function that creates the animation,
k: the wavenumber array created by the function pg_ fft,
disp: -1, 0, or +1 represent normal, no and anomalous
dispersion.

Returns: omega: the dispersion relation omega (k),
deltat: a suitable delta_t for the animation in order to
get useful animation/plots.

o0 0P o° oe

00 d° o° of o°

if (disp==-1) % Normal dispersion (here vg = vp/2)
deltat = 0.015;
omegafactor = 44.0;

for i = imin:imax
omega (i) = omegafactor*sqgrt(k(i));
end;
end;
if (disp==0) % No dispersion (here vf = const)
deltat = 0.015;
omegafactor = 9.5;
for i = imin:imax
omega (i) = omegafactor*k(i);
end;
end;
if (disp==1) % Anomal dispersion (here vg = 3vp/2)
deltat = 0.0065;
omegafactor = 5.5;
for i = imin:imax
omega (i) = omegafactor*(k(i)"1.5);
end;
end;
figure;
plot(k(imin:imax) ,omega (imin:imax),’.-b");

xlabel ('k (rel. units)’);
yvlabel (‘omega (rel. units)’);
return;
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Create a Sum of Harmonic Spatial Waves at a Given Time t

function [zrecon] = pg_wave(x,t,N,A,phase,k,omega,imin, imax)

Generate the complete spatial wave using the Fourier
coefficients. Version Oct 5 2017 AIV

Input parameters: x: position array, t: current time,

N: number of points, [A, phase, k]: amplitude, phase and
wavenumber arrays, respectively, omega: the dispersion
relation omega(k), [imin, imax]: minimum andmaximum index
that will be used in the arrays A, phase and k.

Returns: zrecon: the position of the marker which gives the
position to where a peak with the central wavelength would
have ended up (for verification of proper functioning).

e o°

o0 0P o° oe

o0 o o° of

zrecon = zeros(1l,N);

for i = imin:imax % Sum over Fourier elements
arg = k(i)*x - omega(i)*t + phase(i);
zrecon = zrecon + A(i)*cos(arg);

end;

return;

Make an Animation of All Spatial waves

function [xavt] =
pg_animer (x,deltat,N,A,phase, k, omega, imin, imax, xmax, disp)

Animation of a wave package during some time. To ease the
understanding of the difference between phase and group
velocity, a pure monochromatic wave with the central
wavelength is animated along with the wave package.
Returns how far the monochromatic wave has moved during
the animation (indicates the phase velocity) .

Input parameters: See the explanations given in the
functions pg3.m, pd:wpack.m, pg_fft.m, pg_omega.m and
pg:wave.m Version: Oct 5 2017 AIV

00 0° A° P 0P d° oP o° o°

figure;
count=1;
% The animation loop
for n = 1:200
% Calculate the wave at time t (manual IFFT)
t = deltat*n;
[zrecon] = pg_wave(x,t,N,A,phase, k,omega, imin, imax) ;
% Calculate also the wave with central spatial frequency
% in the distribution
imean = round( (imin+imax)/2.0);
[zrecon0] = pg_wave(x,t,N,A,phase, k,omega, imean, imean) ;
% Calculate marking positions, start and end of movement
% at phase velocity
x00 = xmax/8.0;
xavt = x00 + t*omega (imean) /k (imean) ;
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[

% Plots everything
plot(x,2.5*zrecon0, '-g’, x,zrecon,’'-b’, x00,0.25, +xr’",
xavt,0.25, '+r’");
xlabel ('Position (rel)’);
vlabel ('Amplitude (rel)’);
axis([0,xmax,-1.04,1.04])
title(’'Movement to a blue wave package’);
S = sprintf('Time: %.2f s’,t);
text (3.0, 0.8,S);
S = sprintf ('Xref: %.2f’,xavt);
text (3.0, 0.65,9);
S = sprintf(’'Dispersion code: %.1f’,disp);
text (3.0, -0.8,9);
M (count)=getframe;
count=count+1;
M(count) =getframe;
count=count+1;
end;
% Animation is played with (1 x 20 frames per sec)
movie(M,1,20);
return;
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8 Dispersion and Waves on Water

Learning Objectives

After going through this chapter, you should be able to:

Perform numerical calculations of the time course of a one-dimensional
wave (with arbitrary shape) when there is no dispersion, based directly on
the wave equation.

e Explain the contents of the algorithm for such calculations.
e Explain the difference between phase and group velocity in general and

know how each is calculated.

e Explain how we can animate the time development of a wave packet.
e Know typical characteristics of how a wave packet develops over time when

there is no dispersion, normal dispersion and anomalous dispersion.
Provide examples of physical systems with dispersive behaviour, both nor-
mal and anomalous.

Perform numerical calculations of the time course for a one-dimensional
wave in dispersive media.

e Explain the contents of the algorithm for such calculations.
e Explain differences in gravity-driven waves in water and sound waves

through water.

e Explain the two different “restoring forces” of surface waves on water.
o Enter an approximate criterion for whether it is the surface tension or gravity

that dominates in a given case.

e Give examples of surface tension-driven waves and gravity-driven waves.
e Explain a model where we explain/describe waves by (small volumes of)

8.8

Suggested concepts for student active learning activities: Dispersion, group veloc-
ity, phase velocity, anomal/normal/no dispersion, mechanism for wavelength depen-
dence of the speed of light in glass, wave packet, wave envelope, gravity-driven

water following a circular motion.
Find approximate expression of phase velocity and group velocity of waves
both in shallow and deep water, starting from the formula

8

Tk
vi (k) = [k + 7} tanh(kh) .

Recapitulate the main features in Fig. 8.17.

Exercises

waves, capillary waves, high-speed camera, V-shaped wake.
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11.

12.

13.

Comprehension/discussion questions

. What do we mean by a dispersive medium? How will dispersion affect the wave

motion of a) a harmonic wave and b) a nonharmonic wave?
What is the difference between normal and anomalous dispersion?

. What characterizes dispersion? What is a dispersion relation? Is the dispersion

responsible for the phenomenon that waves often come in almost parallel to a
sandy beach?

Indicate how a guitar string looks (amplitude vs position) just before we release
the string. Use the algorithm given in Fig. 8.3 to tell which parts of the string
will move in the first time step, second time step and third time step. Perhaps
you can guess how the string will actually vibrate?

. The oscillatory pattern we encounter in the previous task (and in our calcula-

tions based on the program bolgeanimationX) corresponds to the real motion
of a guitar string during the first few oscillations. Eventually, sharp transitions
disappear. Can you imagine what physical characteristics of the string, not taken
into account here, would affect the fluctuations quite quickly? (Hint: Videos on
YouTube, which show a motion entirely in accord with our calculations, use
a rubber band rather than a proper guitar string to get the particular vibrating
behaviour found in our calculations.)

. A common misconception about why light goes slower through glass than in

vacuum is that the photons are impeded by the glass. Such a view is confronted
with a problem when we come to explain that the velocity returns to its value in
air as soon as the light has passed the glass. Why is this hard to explain with the
aforementioned explanation/model?

. Why do we use a wave packet in the calculations that give us animation of

dispersion?

. Could you give some kind of explanation that the wavelength is different at the

beginning of a wave packet compared to the wavelength at the end of the pack
if we have normal or anomalous dispersion?
Are surface waves in water transverse or longitudinal waves? Explain.

. Try to explain why we do not notice any effect of surface waves on water at a

depth that is large relative to the wavelength.

Explain why waves roll in with the wave peaks parallel to the water’s edge on a
longshore beach.

See the video of Chang and coworkers in Reference 3 above. Find a diagram
from the web that shows electron orbitals for the hydrogen atom. Compare the
diagrams of Chang et al. with quantum descriptions of atomic orbitals. Comment
on similarities and dissimilarities (Hint 1: 2D vs 3D; Hint 2: Quantum Physics
operates with wave functions; Hint 3: Quantization).

Problems

Set up a mathematical expression (based on wavenumber and angular frequency)
for a plane, monochromatic harmonic wave. Comment on the phase velocity and
group velocity to the extent they are defined.



256

14.

15.

16.

17.

18.

8 Dispersion and Waves on Water

Create your own program to calculate numerical solutions of the wave equation.
Feel free to take a look at the program shown under point Sect. 8.2.1 above. Test
that a wave described by Eqs.(8.8) and (8.9) appears as shown in Fig. 8.4. Then
make the following changes:

(a) Change the time derivative of the amplitude at the starting instant to the
negative of what it should have been. Complete the calculations and describe
what you observe.

(b) Reduce the time derivative of the amplitude at the starting instant to a half
of what it should have been. Complete the calculations and describe what you
observe.

(c) Use instead twice the time derivative of the amplitude instead of the correct
one at the starting instant. Complete the calculations and see what you observe
this time, paying attention to both amplitudes and phases.

(d) How do you want to create the initial conditions to simulate standing waves?
[Optional]

(e) What conclusion can you deduce from all the calculations in this task? With
a pendulum motion, we can choose position and velocity independently and
always get an oscillatory motion that is easy to understand. Does the same apply
to waves?

Modify the program you used in the previous task so that it can handle the case
of a one-dimensional wave along a string meets a material with a different phase
velocity. The wave should be able to continue into the new material and may
also be reflected at the point where the string changes property (may correspond
to the string changing mass per unit length). Attempt both with a 30% increase
in phase velocity and a 30% reduction in phase velocity. Describe the results and
comment on whether the results are consistent with what is described in Chap. 7
or not.

Make some simple sketches that show how you, before you do the calculations
(or get to know the results found by fellow students), envisage a guitar string
to vibrate. Write afterwards a computer program that calculates the motion of
a guitar string for at least a couple of vibration periods after the string has been
pulled, by means of a plectrum or fingernail, at a point that is at a distance of
about 1/3 of the string length from one end, and released from there (after being
at rest). Feel free to look at the program shown under point Sect. 8.2.1 above.
Describe the motion.

[Check after you have done the calculations, whether there is a match between
your calculations and YouTube movies mentioned in the text.]

Try to modify the computer program waveAnimationX based on the algorithm
in Eq. (8.5) early in this chapter so that it can be used to describe the movement
of a triangular wave as depicted in Fig.8.22 for the case where the waveform
is conserved during the movement. The wave will eventually hit a fixed/closed
boundary and is reflected. Compare the result with the left side of Fig.7.2.

Try to describe how the triangular wave in the previous problem will develop if
it runs through a dispersive medium. In this case, a procedure based on Fourier
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Fig. 8.22 A triangular wave A
. y
that moves towards higher
x-values. Suppose that the
shape is unchanged at first V
until it hits a wall. See the —
problem text

decomposition in spatial components described in the end of this chapter should
be used. Do not include the reflecting wall in this case.

19. Check through your own calculation that the wavelength is about 1.7cm when
surface waves on water are controlled as much by surface tension as by gravity.
Surface tension for clean water at 25°C is 7.197 x 1072 N/m.

20. Determine the phase velocity of surface waves on “deep” water at a wavelength
of 1.7cm (Tip: Use the information from the previous task.).
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Chapter 9 ®)
Electromagnetic Waves oo

Abstract This chapter starts with the integral form of Maxwell’s equations—one of
the greatest achievements in physics. The equations are transformed to differential
form and used, in concert with important assumptions, to derive the wave equation for
a plane, linearly polarized electromagnetic wave. The wave velocity is determined
by electric and magnetic constants valid also at static/stationary conditions. The
electromagnetic spectrum is presented as well as expressions for energy transport
and radiation pressure. It is emphasized that the simple plane-wave solution is often
invalid due to the effect of boundary conditions; we need to discriminate between
near- and far-field conditions. At the end, a brief comment on the photon picture of
light is given.

9.1 Introduction

Of all the wave phenomena that are consequential to us humans, sound waves and
electromagnetic waves occupy a prominent position. Technologically speaking, the
electromagnetic waves rank the highest.

We are going to meet, in many of the remaining chapters, electromagnetic waves
in various contexts. It is therefore natural that we go into some depth for the sake
of describing these waves; it is not true that all electromagnetism can be reduced to
electromagnetic waves. That means, we must be careful to avoid mistakes when we
treat this material.

Of all the chapters in the book, this is the most mathematical. We start with
Maxwell’s equations in integral form and show how their differential versions may
be deduced. It will then be shown that Maxwell’s equations can lead, under certain
conditions, to a simple wave equation. Electromagnetic waves are transverse, which
means that the complexity of the treatment is somewhat larger than for longitudinal
sound waves.

The chapter takes it for granted that the reader has previously taken a course in
electromagnetism, and is familiar with such relevant mathematical concepts as line
integrals and surface integrals. It is also a great advantage to know Stokes’s theorem,
the divergence theorem and those parts of vector calculus which relate to divergence,
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gradient and curl, and it is vital that the reader knows the difference between scalar
and vector fields before embarking on the chapter.

As already mentioned, mathematics pervades this chapter. Nonetheless, we have
tried to point to the physics behind mathematics, and we recommend that you too
devote much time for grappling with this part. It is a challenge to grasp the orderliness
of Maxwell’s equations in its entirety.

Experience has shown that misunderstandings related to electromagnetism arise
frequently. A common misconception, incredibly enough, is that an electromagnetic
wave is an electron that oscillates up and down in a direction perpendicular to the
direction of propagation of the wave. Other misapprehensions are harder to dispel.
For example, many believe that the solution of the wave equation is “plane waves”
and that the Poynting vector always describes energy transport in the wave. We spend
some time discussing such misunderstandings and hope that some readers will find
this material useful.

At the end of the chapter is a list of useful mathematical relations and a memo-
randum of how electrical and magnetic fields and flux densities relate to each other.
It may be useful for a quick reference and for refreshing material previously learned.

Let us kick off with Maxwell’s stupendous systematization (and extension) of all
that was known about electrical and magnetic laws in 1864.

9.2 Maxwell’s Equations in Integral Form

Four equations connect electric and magnetic fields:
1. Gauss’s law for electric field:

%E’ . dZ _ Qinside (91)
Eré€0

2. Gauss’s law for magnetic field:
f B-dA =0 9.2)
3. The Faraday—Henry law:

- - d(pB
E.-dl =—- | —= 9.3
% ( ds >inside ( )

3. The Ampere—-Maxwell law:

- - do
75 B-dl = p,po [if + &80 <—E) ] 9.4
dr inside
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We expect that you are familiar with these laws, and therefore do not go into
great detail about how to interpret them or what the symbols mean. In the first
two equations, the flux is integrated over a closed surface and compared with the
source within the enclosed volume (electrical monopole, i.e. charge, and magnetic
monopole, which are non-existent). The vector dA is positive if it points outward of
the enclosed volume.

In the last two equations, the line integral is calculated for electrical or magnetic
fields along a curve that limits an open surface. The line integral is compared with
the flux of magnetic flux density or electrical flux density as well as flux of electrical
currents due to free charges through the open surface. The signs are then determined
by the right-hand rule (when the four fingers on the right hand point in the direction
of integration along the curve, the thumb points in the direction corresponding to the
positive flux).

Prior knowledge of these details is taken for granted.

The symmetry is best revealed if the last equation is written in the following form:

dop
frar=lo ()] o

Here, use has been made of the f0110w1n§ relationship between the magnetic field
strength H and the magnetic flux density B:

H = B/(u10)

where ¢ is (magnetic) permeability in vacuum and u, is relative permeability.
Use has also been made of the followmg relationship between the electric field
strength E and the electric flux density D (also called “displacement vector”):

E = D/(s,)

where g is the (electrical) permittivity in vacuum and ¢, the relative perm1tt1v1ty

The left-hand sides of Eqs. (9.3) and (9.5) are line integrals of field strengths (E
and H ), whereas the right-hand sides are the time derivative of the flux through the
enclosed surface plus, for the latter equation, the current density due to free charges.
The flux is obtained by integrating the pertinent flux density (B or D) over the
surface.

The contents of Maxwell’s equations are given an approximate verbal rendering
below:

e There are two sources of electric field. One source is the existence of electrical
charges (which may be regarded as monopoles). Electric fields due to charges are
radially directed away from or towards the charge, depending on the signs of the
charges. (This is the content of Gauss’s law for electric field.)

e The second source of electric field is a time-varying magnetic field. Electrical
fields that arise in this way have a curl (or circulation); that is, the field lines tend
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Fig. 9.1 James Clerk
Maxwell (1831-1879).
Public domain [1]

to form circles across the direction along which the magnetic field changes in time.
Whether there are circles or some other shape in space depends on the boundary
conditions. (This is the content of Faraday’s law.)

e There are two contributions to magnetic fields as well, but there are no magnetic
monopoles. Therefore, magnetic fields will never flow out radially from a source
point similar to electric field lines near an electrical charge. (This is the content of
Gauss’s law for magnetic fields.)

e Onthe other hand, magnetic fields can arise, as in the case of electric fields, because
an electric field varies over time. An alternative way of generating a magnetic field
is to have free charges in motion that form a net electric current. Both these sources
provide magnetic fields that tend to form closed curves across the direction of the
time variation of the electric field or the direction of the net electrical current.
However, the shape of these closed curves in practice is entirely dependent on the
boundary conditions. (This is the content of the Ampere—Maxwell law.)

It was the physicist and mathematician James Clerk Maxwell (1831-1879,
Fig.9.1)) who distilled all knowledge of electrical and magnetic laws then avail-
able in one comprehensive formalism. His publication “A Dynamical Theory of
Electromagnetic Field”, published in 1865, shows that it is possible to generate elec-
tromagnetic waves and that they travel with the speed of light. His electromagnetic
theory is considered to be on a par with Newton’s laws and Einstein’s relativity the-
ory. The original 54-page long article (https://doi.org/10.1098/rstl.1865.0008 Phil.
Trans. R. Soc. Lond. 1865 vol. 155, pp. 459-512) can be downloaded for free from:
The Royal Society.

Maxwell-Heaviside—Hertz: However, the four Maxwell’s equations, as we know them today,
are far from the equations Maxwell himself presented in “A Treatise on Electricity and Magnetism”


https://doi.org/10.1098/rstl.1865.0008
http://rstl.royalsocietypublishing.org/content/155/459
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Fig. 9.2 Michael Faraday (1791-1897). Parts of an old 10-pound banknote from Great Britain

in 1865. His original article consisted of 20 equations with 20 unknowns. Maxwell did not use the
vector field formalism familiar to us.

Oliver Heaviside (1850-1925) gave in 1884 the equations in about the form we use today.
Heaviside, who was from a poor home, left school when he was 16 and receive no formal education
subsequently. Nevertheless, he made a number of important contributions to physics. Itis fascinating
to read about him, for example, in Wikipedia. (There are certain similarities between Heaviside and
Faraday. Faraday’s story is also fascinating, and highly recommended to read, and is even honoured
on a British banknote; see Fig.9.2. Heaviside did not receive similar recognition.)

The German physicist Heinrich Hertz (1857-1894) was the first to demonstrate how we can
send and receive electromagnetic waves. It happened in 1887 when Hertz was 30 years old.

It is interesting that Hertz is honoured by a number of stamps from many different countries,
while Maxwell is far from getting the same honour.

Recapitulation from electromagnetism: It might be appropriate to begin with a little repetition
of some details here. We will later see that magnetic permeability and, in particular, electrical
permittivity play an important role in electromagnetic waves. The values in vacuum ¢ and &g are
rather uninteresting. They are primarily related to the choice of units for electrical and magnetic
fields.

The relative values, however, are of far more interest. The relative (magnetic) permeability is
related to how much magnetic field is generated in a material when it is exposed to an external
magnetic field. In a diamagnetic material, a tiny magnetic field is generated in the material, and the
field is directed opposite the external magnetic field. Even in a paramagnetic material, only a tiny
magnetic field is generated, but it is in the same direction as the extraneous field. The magnetic field
generated in the material is only of the order of 10~ times the external magnetic field in each of
these cases. In a ferromagnetic material, a significant magnetic field is generated inside the material,
and it is in the same direction as the applied field. There are many details related to these processes,
and we do not deal with these here.

Since most of the substances we come in contact with are either diamagnetic or paramagnetic,
we can simply set the relative permeability equal to 1.0 and ignore the interaction of the magnetic
field with materials in the processes we are going to discuss.

Forthe electrical field, it is different. The relative (electrical) permittivity tells us something about
the amount of electrical field that occurs inside a material when subjected to an external electric
field. In Fig. 9.3, a schematic representation of what is happening is given. An external electric field
will cause the electron cloud around an atomic core to shift slightly. However, since there are so
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Fig. 9.3 In a material such as glass, an external electric field can easily cause a polarization of the
charge distribution in each individual atom of the material. This polarization leads to an electric
field inside the material directed opposite to the applied electric field

many atoms, even an almost negligible shift in position of the negatively charged electron clouds
relative to the positively charged nuclei, the generated electric field inside the material can easily
reach the same magnitude as the outer electric field (e.g. half the size).

There is no talk of moving free charges here, only of a local distortion of the charge distribution
of each individual atom, which imparts, nonetheless, a polarization to the entire material. Note that
we are talking about “polarization” in a certain sense. We will soon talk about polarization in a
completely different context, so it is imperative that you do not mix different terms with the same
name!.

9.3 Differential Form

We will now show how we can go from the integral form of Maxwell’s equations to
the differential form. The integral form can be applied to macroscopic geometries,
for example to find the magnetic field at a distance of 5 m from a straight conductor
where there is a net electrical current. The differential form applies to a small region
of space. How “small” this might be is a matter for discussion. Maxwell’s equations
were developed before we had a proper knowledge of the structure of atoms and
substances on the microscopic level. Maxwell’s equations in differential form are
often used in practice on an intermediate length scale that is small in relation to the
macroscopic world and yet large compared to atomic dimensions.

In going over from the integral to differential form, two mathematical relationships
are invoked that apply to an arbitrary vector field G in general:

Stokes’s theorem (more correctly the Kelvin—Stokes theorem, since the theorem
first became known through a letter from Lord Kelvin. George Stokes (1819-1903)
was a British mathematician/physicist. Lord Kelvin (1824—-1907), whose real name
was William Thomson, was a physicist/mathematician contemporary of Stokes.)



9.3 Differential Form 265

Stokes’s theorem:
f&-d?:/(Vxﬁ)-dZ. (9.6)
A

The theorem provides a relation between the line integral of a vector field and
the flux of the curl of the vector field through the plane limited by the line.

The second relationship we use is the divergence theorem (discovered by Lagrange
and rediscovered by several others). Joseph Louis Lagrange (1736-1813) was an
Italian/French mathematician and astronomer:

Divergence theorem:

/V-?;@:f@-dﬁ’. ©.7)
A

The divergence theorem provides the connection between divergence to a
vector field in a volume and the flux of the vector field through the surface
which bounds the volume.

Gauss’s law for electric field:
We start with Gauss’s law for electric field.

€r8oy§ E-dA = Qinsice -
By using the divergence theorem, we get:

%Ewoﬁ LA = / V- (6,60E) dv = Qingice -

We now choose such a small volume that V - (g, if) is approximately constant
over the entire volume. This constant can then be taken outside the integral sign,
and integration over the volume element simply gives the small volume Av under
consideration. Accordingly:

/ V- (e,60 E)dv ~ (V- D)Av = Qingide

V. B _ Qinside =
Av
where p is the local charge density. We are led thereby to Gauss’s law for electric
fields in differential form:
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V.-D=p. (9.8)

Gauss’s law for magnetic field:
The same approach leads us to the differential form of Gauss’s law for magnetic
field: R

V-B=0. (9.9)

The Faraday—Henry law:
We will now rephrase Faraday’s law. The starting point is thus:

> - 103
%E-dl = _ <d_3> )
dr inside

The application of Stokes’s theorem now gives:

- - - — dop
E-dl = | (VxE)-dd=— (28 .
A dr /inside

The magnetic flux through the surface can be expressed as:

@BZ/E-dX.
A
Hence,
- — d —
f(VxE)~dA:—— B-dA
A dr Ju
3B -
=— | —-dA.
Aat

In taking the last step, we have assumed that the area element dA does not change
with time. In addition, we have _c)hanged the ordinary derivative to partial derivative
since the magnetic flux density B depends on both time and spatial relationships, but
we assume that spatial conditions do not change in time. Again, for a small enough
area A, the functions to be integrated can be regarded as constants and placed outside
the integral signs, which leads to the result:

-~ 9B
VxE=-2" (9.10)
31

This is Faraday’s law in differential form.

The Ampere—Maxwell law:
The same procedure can be used to show the last of Maxwell’s equations in a differ-
ential form, namely the Ampere-Maxwell law. The result is:
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Fig. 9.4 Maxwell’s equations on a T-shirt

-
where j ; is the electric current density of the free charges.
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©.11)

Einstein had pictures of Newton, Maxwell and Faraday in his office, indicating
how important he thought their works to be. It is therefore not surprising that the
Physics Association at UofO has chosen Maxwell’s equations on their T-shirts (see
picture 9.4) as a symbol of a high point in physics, a high point as regards both how
powerful equations are and how mathematically elegant they are! (It should be noted,
however, that mathematical elegance did not seem to be as polished at Maxwell’s

time as it is today.)

Collected:

Let us assemble all of Maxwell’s equations in differential form:

vV.D

0

9.12)

(9.13)

9.14)

(9.15)
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Maxwell’s equations in the presence of the Lorentz force

F=q(E+7 x B)

form the full basis for classical electrodynamic theory.

9.4 Derivation of the Wave Equation

The wave equation can be derived from Maxwell’s equations using primarily the last
two equations along with a general relation that applies to an arbitrary vector field G:

VX (VxG)=—VG+V(V-G). (9.16)

In words, the relation states that “the curl of the curl of a vector field is equal
to the negative of the Laplacian applied to the vector field plus the gradient of the
divergence of the vector field” (pause for breath).

Application of this relation to the electric field yields:

Vx(VxE)=-VE+V(V-E).
We recognize the curl of the electric field in the expression on the left-hand side.

Replacing it by Faraday’s law, interchanging the right and left side of the equation,
and changing the sign, we get:

- o 9B
VE-V(V-E)=-Vx (-] (9.17)

On the right-hand side, we change the order of differentiation to find:
0 -
= —(VxB).
o7 ( )

Applying now the Ampere—Maxwell law, and using the relation

—>

B = p,pnoH

=2 D (9.18)
Y Mr o 9t Jr : .

we get:
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For the left-hand side of Eq. (9.17), Gauss’s law is used for electric field to replace
the divergence of electric field in the second link on the left side with charge density
p divided by total permittivity.

(9.19)

By equating the right-hand side of (9.19) to the left-hand side of (9.18), and
transposing some terms, we end up with:

o 32E  Vp E¥i
V2E — eroprtto——5 = + o=t (9.20)
ot £,80 at

This is a nonhomogeneous wave equation for electric fields. The source terms are
on the right side of the equality sign.

In areas where the gradient of charge density p is equal to zero (i.e. no change
in electrical charge density), while there is no time variation in electrical current
density j s of free charges, the inhomogeneous equation is reduced to one simple
wave equation: R

V2E — &80, 10 82—E:O
r r 10 912

or in the more familiar form:

E 1 .
- V2E . 9.21)
12 ErEoMr Lo

Well, to be honest, this is not an ordinary wave equation, as we have seen before,
since we have used the Laplacian on the right-hand field. In detail, we have:

VB O’E, N O’E, N ’E,\ -
= l
0x2 dy? 072

’E, J’E, N ’E,\ -
9x? dy? 072
d%E, N 9’E, N 9%E, e
0x2 dy? 072

(9.22)

We search now for the simplest possible solution and investigate if there is a
solution where E is independent of both x and y. In that case, all terms of the type
9%E, /dv? will vanish, where u = x, y, z and v = x, y. If such a solution is possible,
it will involve a planar wave that moves in the z-direction, since a plane wave is just
unchanged in an entire plane perpendicular to the wave direction of motion.

Equation (9.22) then reduces to the following simplified form:
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v (2E\ »  [(0%E,\ - (0*E.\ > 3°E
VE=(5)i+(52)7 + k=7 (9.23)

972
and Eq. (9.21) along with Eq. (9.23) finally gives us a common wave equation:

PE  ,0°E

where |
c= — . (9.25)
A/ Er€oMr Lo

is the phase velocity of the wave.
We already know that one solution of the wave equation, Eq. (9.24), is

E = Eycos(kz — wt) (9.26)

-
where E is a constant vector whose direction can be chosen arbitrarily within the
Xx — y-plane.

Let us now see whether we are able to derive a wave equation for the magnetic
field. To this end, we start with Eq. (9.16), but apply it to the magnetic flux density
and write

—V2B+V(V-B)=V x (VxB).

We use next the Ampere—Maxwell law in order to replace the curl of B with the time
derivative of the electric flux density D plus the current density of free charges. As in
the corresponding derivation for the electric field, we interchange the order of time
and space derivatives, obtaining thereby a term containing the curl of E. We invoke
Faraday’s law and the vanishing of the divergence of B (Gauss’s law for magnetic
fields), to arrive finally at the following equation for B:

B

rr e —MrioV X Jg . 9.27)

V2B — &80, o

We observe that the magnetic flux density also satisfies an inhomogeneous wave
equation, in which the source term is the curl of the current density of free charges.
For regions of space which are source-free, we obtain a homogeneous wave equation.
We seek the simplest solution to the equation, and ask, as we did in the case of the
electric field, whether a plane-wave solution exists for a wave propagating in the
z-direction. With the same simplifications as those used earlier, we obtain
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3B 9B
= Cza_z2 (9.28)

where the wave velocity c is precisely that given in Eq. (9.25), applicable to the
electric field.

We already know that, in this case as well, the equation does have a solution,
which can be written in the form:

B = By cos(kz — wt) (9.29)

—
where B is a constant vector whose direction is essentially arbitrary.

9.5 A Solution of the Wave Equation

Equations (9.26) and (9.29) are valid solutions of the two wave Eqgs. (9.24) and (9.28),
respectively. But the solutions must also satisfy Maxwell’s equations individually,
in practice the Ampere—Maxwell law and Faraday’s law.

We start with Faraday’s law

-~ OB
VxE=-22
ot

and substitute the solution for the electric field (9.26) (in determinant form):

TF K N
o 9 o | 0B
ox dy 0z at
E. E, E

=
<
o]

IE. OE,\ > (0E. OJE.\— (0E, 0E,\ - IB
— —— )i — -—)J+ = — ki=——.
ay 9z ox 9z ax ay ot
For the plane-wave solution sought by us, partial derivatives with respect to x or
y will vanish, and the expression takes the simpler form shown below:

IEy 7, DEc IB
— 1 = ——.
0z 0z J at

-
We already notice that B cannot have any component in the z-direction, that is, the
direction of propagation of the wave. A similar analysis using Ampere—Maxwell’s
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-
law shows that nor can E have a z-component (except for a static homogeneous field,
which is of no interest in the present context)._)

We choose now the following solution for E:

E = Egcos(kz — a)t)? (9.30)

which means that £, = 0, hence also £, =0 and also 0E,/dz =0
Consequently,

= sin(kz — w =——.
op J T RO Tl =Ty
This equation will be satisfied if
B = Bycostkz —wt) ] . 9.31)
Furthermore, since N
oB . 2
a7 = wBy sin(kz — wt) j

and the (phase) velocity of this plane wave is w/k which must be equal to ¢ from
Eq. (9.25), we also get an important connection between electric and magnetic field
in an electromagnetic wave:

E() = CB() . (932)

We have then shown that one possible solution to Maxwell’s equations for a
space where no charges are present is a planar electromagnetic wave

E = Eycos(kz — o) i (9.33a)
B = Bycos(kz — wt) (9.33b)
where
E() = CB()

You are reminded that solutions of wave equations generally depend on a
great extent on boundary conditions. In our derivation, we have searched for a
solution that gives a planar wave. In practice, this amounts to assuming that the
area under consideration is located far from the source of the wave, as well as
free charges and currents generated by such charges. The plane-wave solution
is therefore, in principle, never a perfect solution of Maxwell’s equations, but
an exact solution may in some cases be quite close to a planar wave solution.
It is our task as physicists to decide whether or not we can model real field
distribution with a plane-wave description in each case. See the description of
the near field and far field given below.
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Fig. 9.5 A snapshot of the simplest form of electromagnetic wave, namely a plane wave. Such a
wave can be realized sufficiently far from the source of the wave and from materials that can perturb
the wave. Experience has shown that figures of this type cause many misunderstandings, which are
discussed in the last part of this chapter

Since Maxwell’s equations are linear, we can have plane electromagnetic waves
in addition to other electrical or magnetic fields with completely different character-
istics. The sum of all contributions will then not follow the relationships given in the
blue box above!

Figure 9.5 shows a snapshot of an electromagnetic wave with properties as given in
Eq. (9.33). Such a static figure does not give a good picture of the wave. It is therefore
advisable to consider an animation to get an understanding of time development.
There are several animations of a simple electromagnetic wave on the Web (but
some of them have wrong directions of the vectors!).

9.6 Interesting Details

What determines the speed of light?
We saw in the derivation of the wave equation that electromagnetic waves have a
phase velocity

1
N

CcC =

(9.34)
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In vacuum, ¢, = 1 and u, = 1, and the velocity of the wave becomes

1
W EOMO '

This is simply an expression for the velocity of light in vacuum.

(9.35)

co =

It must have been a wonderful experience for Maxwell when he first understood
this. The speed of light was known, but not associated with any other physical param-
eters. Then, Maxwell derives the wave equation and finds that the equations allow for
the existence of electromagnetic waves, and—as it happens—these waves will prop-
agate with the familiar speed of light! The surprise must have been particularly high
because the speed of light closely follows the electrical and magnetic constants &
and 19, which were determined by static electrical and static magnetic phenomena.

In glass, the velocity of light is given by Eq. (9.34), but for glass u, is practically
equal to 1. That means that it is simply the relative electrical permittivity of the
glass, which causes light to be slower in glass than in vacuum. This too is surprising
since the relative permittivity can be determined by putting a glass plate between two
metal plates and measuring change in capacitance between the metal plates. Even
this measurement can be made by using static fields, and equally this quantity plays
an important role for light oscillating with a frequency of the order of 10'3 times per
second!

There is no dispersion in vacuum, but in a dielectric material dispersion may occur
because ¢, (and/or p,) is wavelength dependent. We discussed this in Chap. 8§ when
treated dispersion and the difference between phase velocity and group velocity.

It will be noted that when we discuss the passage of light through glass, we are
dealing with a material constant called refractive index n which varies slightly from
one glass to another. The phase velocity of light is lower in glass than in vacuum.
The refractive index n can be defined as the ratio of the light velocity in vacuum to
the light velocity in glass: n = ¢o/c. The word refractive index will be explained in
detail when we in Chap. 10 describe how light rays change direction when the beam
is inclined towards an interface between air and glass or the other way round (Snel’s
law).

Glass is diamagnetic and w, ~ 1.0. From the above expressions, then the
refractive index is approximately equal to the square root of the relative per-
mittivity:

n~ Je . (9.36)

Relative permittivity is also called dielectric constant.
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Plane wave

The wave we have described is plane because the electric field at a given instant is
identical everywhere in an infinite plane normal to the wave propagation direction z.
Another way of expressing this is to say that the “wavefront” is plane. The wavefront
of a plane wave is a surface of constant phase (i.e. the argument of the sine or cosine
function is identical at all points of the surface at a given time).

The fact that the electric field everywhere is directed in the *x-direction is a
characteristic feature of the solution we have found. We say that the wave is lin-
early polarized in the x-direction. We return to polarization in Chap. 10, but already
mention here that another solution to Maxwell’s equations is a so-called circularly
polarized wave. For such a solution, the electric field vectors in a snapshot corre-
sponding to Fig.9.5 will look like the steps in a spiral staircase, and the arrows
themselves will form a “spiral” whose axis coincides with the z-axis. The magnetic
field will also form a spiral, and in this case too the electric and magnetic fields will
be perpendicular to each other and perpendicular to the direction of propagation. You
can find nice animations of circularly polarized electromagnetic waves on the Web.

In addition, we will return later to an important discussion of the validity of the
simple electromagnetic waves we have described so far.

9.7 The Electromagnetic Spectrum

In deriving the wave equation for electromagnetic waves, we placed (initially) no
restrictions on the frequencies and wavelengths. In principle, more or less “all”
frequencies (with the corresponding wavelengths) were eligible for consideration.

It turns out also in practice that we can generate electromagnetic waves for a wide
range of frequencies (and wavelengths). Figure 9.6 shows an approximate overview
of the frequency ranges/wavelength ranges we operate in, what we call the waves at
different frequencies and what such waves are used for. We say that figures like 9.6
present “the electromagnetic spectrum’.

Figures of this type must be taken with a large pinch of salt. They seduce many
people into thinking that there exist tidy plane waves at each of the specified fre-
quencies, but that is not the case. The spreading of waves in time and space, energy
transport (or its absence) and several other factors vary widely from one frequency
to another. We will come back to this a little later in this chapter.

9.8 Energy Transport

When we discussed sound, we saw that a sound wave carry energy many metres
away from the source, although the molecules that contributed to the transmission
through oscillatory motion only moved back and forth over distances of the order of
1 pm or less (when we ignore the diffusive motion of the molecules).
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Fig. 9.6 Electromagnetic waves can exist in an impressive range of frequencies (and corresponding
wavelengths). Surveys such as this may, however, give an impression of a greater degree of similarity
between different phenomena than it is in practice. We will come back to this, for example, when
we discuss the difference between near field and far field later in the chapter

In a similar manner, an electromagnetic wave can carry energy, something we all
experience when we bask in the Easter sun on a mountain or when we lie on a sunny
beach in summer.

An electric field has an energy density given by:

up(z, 1) = 3E(@z, 1)D(z,1) .
Similarly, the energy density of a magnetic field is given by:
up(z,1) = $H(z, 1)B(z,1) .

When a plane electromagnetic wave (as described above) passes, the instantaneous
energy density will be:
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wo(z, 1) = SE(z,)D(z, 1) + Y H(z, 1) B(z, 1)

1 1 By
= —Eycos() eEgcos() + =Bycos() — cos() .
2 2 o

The arguments of the cosine function have been omitted in order to avoid clutter.

But we know that Ey = c¢By. In addition, we want to look at the time-averaged
energy density, and we know that the mean value of cos?() is equal to half. Conse-
quently, we find for the time-averaged energy density:

i 1 1 (Ep\’
0=_E2 U .
ot = 3¢ 0+4M<C>

Now, energy density is energy per unit volume. How much energy will cross a
hypothetical surface A perpendicular to the direction of wave motion over a time
At? Such a quantity defines the (time-averaged) wave intensity:

. . Energy passed by
I =intensity = ———————— = Uy X C.
Area x Time

The expression is relevant only when we consider a long time compared to the
time a wavelength needs to pass our surface. Intended for the energy density we
found in town, we get:

1 2 1 2
I:Z C€E0 +C@EO .

But we know that

c =
JVER
from which follows the relation
—_— =
c2u

and we see that the energy contributions from the electric field and the from the
magnetic field are precisely equal!

Consequently, the intensity of an electromagnetic wave is given by the expres-
sion:
I = jceE} = 3cEyDy . (9.37)

By using the familiar ratio between electric and magnetic fields, the result can
also be written as follows:



278 9 Electromagnetic Waves

I R |
I = —-—c—Bj = —CHOB() . (938)
2 u 2

If we choose to specify the strength of the electric and magnetic fields in terms of the
effective values instead of the amplitudes, Egs. (9.37) and (9.38) can be recast as:

I = ceE%; = cEegt De (9.39)
and c
I= ;Bgff = ¢ Heit Befr - (9.40)

A small digression: The term “effective value” can be traced to alternating current terminology.
We can then state the amplitudes of harmonically varying current and voltage, but we can also specify
the equivalent value of direct current and direct voltage that supply the same power to a given load;
these direct current/voltage values are called effective values. In our case of electromagnetic waves,
it is rather artificial to speak of direct currents and suchlike, yet we speak of effective values in the
same way as for alternating currents and voltages in a wire.

We can also derive another expression that connects electrical and magnetic fields
to an electromagnetic wave in the remote field. Going back to Egs. (9.39) and (9.40),
and using the relationship B = uH, we get:

C
2 2 2
ceEgy = ;Beff = cuHg;

and are led thereby to the relation:

E
eff _ /M/E .
Heff
For vacuum, we obtain:
E
HEff = V1to/g0 = Zo = 376.7 2 9.41)
eff

where Z is called the (intrinsic) impedance of free space.

The expressions have a greater scope than that warranted by our derivation. How-
ever, we must be careful about using the terms of electromagnetic waves in regions
near sources and near materials that can interfere with the waves. We refer to the
so-called near field and far field a little later in this chapter.
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9.8.1 Poynting Vector

There is a more elegant way to specify energy density (equivalent to intensity) than
the expressions presented in the previous section. The elegance is a consequence
of the fact that plane electromagnetic waves are transverse, with the electrical and
magnetic vectors perpendicular to each other and to the direction of propagation of
the wave.

We saw that if the electric field was directed in x-direction and magnetic field
in y-direction, the wave moved in z-direction. We know that for the cross-product,
the relation 7 x ] =% holds, which suggests that we may be able to utilize this
relationship in a smart way.

We try to calculate:

= > Ep -
E x B =Eycos()i x —cos()j
c
.E2 N
= c_20 cos’(O k
c
= u(csEg) cos’(Ok .

The time-averaged values are (using Eq. (9.37) in the last part):

— — 1 - —
ExB:Mgm%w=um.

Since B = wH, it follows that:

—

—ExH. (9.42)

Here, we have introduced an intensity vector that points in the same direction as the
energy flow.

More often, we operate with the instantaneous intensity in the form of a “Poynt-
ing vector”. This is usually designated by the symbol S or P. We choose the
first variant and write:

S—ExH. (9.43)

Poynting vector provides us with a nice expression of energy flow in an elec-
tromagnetic wave.

However, the Poynting vector can be used only in the trouble-free cases
where we have a simple plane electromagnetic wave far from the source and
far away from disturbing elements. Put in another way: it can only be used
in the far-field region (see below) where the electromagnetic fields are totally
dominated by pure electrodynamics.
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The English physicist John Henry Poynting (1852—1914) deduced this expression
in 1884, 20 years after Maxwell wrote his most famous work.

9.9 Radiation Pressure

The electric and magnetic fields will exert a force on particles/objects struck by
an electromagnetic wave. It is possible to argue that the electric field in the wave
causes “forced oscillations” of charges, and that moving charge, in turn, experiences
a force F = q ¥ x B. This force works in the same direction as that in which the
electromagnetic wave moves.

It can be shown that an electromagnetic wave causes a radiation pressure given
by:
Pradiation = Stime—avg/ c=1/c

if the wave is completely absorbed by the body being taken. If the body reflects
the waves completely, the radiation pressure becomes twice as large, i.e.

Pradiation = 2Stime»avg/c = 21/C o

In both of these terms, Sime-ave 1S the absolute value of the time-averaged
Poynting vector. The direction of the radiation pressure is usually identical to
the direction of the Poynting vector.

It is the radiation pressure that causes the dust in a comet to always turn away
from the sun. The gravitational pull exerted by sun on the dust is proportional to the
mass, which in turn is proportional to the cube of the radius. The force due to the
radiation pressure is proportional to the surface (cross section) that can absorb or
reflect the wave, and the cross section goes as the square of the radius. This results
in gravity dominating over radiation pressure for large particles, while the converse
happens for small particles.

Itis possible to regard radiation pressure as a flow rate of electromagnetic momen-
tum. In such a picture, it can be said that the momentum per time and per unit surface
moving with the wave is equal

Stime-avg/ c

which is the same expression as for radiation pressure when the body absorbs the
wave completely.

The description above applies in the event that light is either absorbed or totally reflected on
the surface of a material. The situation is different for light passing through a transparent medium.
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There are two different descriptions of how the momentum of light changes when light enters a
transparent medium. In one description, it is claimed that the momentum increases, and in another
description, the opposite is claimed. This is an optical dilemma that partly depends on whether light
is regarded as waves or as particles. In this way, there is a clear parallel between the dilemma we
have today and the dilemma that existed from the seventeenth century to about 1850 mentioned in
the previous chapter, where we wondered whether the group velocity of light in glass was larger or
smaller than the phase velocity.

If you want to learn a little more about today’s dilemma, start by reading a popular scientific
article by Edwin Cartlidge in Physics World.

9.10 Misconceptions

First: A small reminder ...

Note that nothing actually protrudes from an electromagnetic wave. For any
arbitrary point in space, the field itself changes the value. The field has a
direction in space, but no arrows shoot out to the side and no sinusoidal
curves are found along the wave. It is therefore a totally different situation
than when, for example, we pluck a guitar string where the string actually
moves across the longitudinal direction.

9.10.1 Near Field and Far Field

We have repeatedly reminded the reader of this chapter that the electromagnetic
waves we have derived in Eq. (9.33) and illustrated in Fig. 9.5 are the simplest wave
solutions of Maxwell’s equations. Usually, these relationships do not apply to time-
dependent electromagnetic phenomena in general! To understand this, we need to
look more closely at the details in our derivation.

First, we ended up with inhomogeneous differential equations in Egs. (9.20) and
(9.27) as a result of combining Maxwell’s equations. Only by ignoring the source
terms did we arrive at the simple homogeneous wave equations that became the
starting point for the plane-wave solution.

Even if there are no charges and currents in the region of our interest, fields from
nearby regions can have a big influence. For example, will electric fields from charge
distributions in an antenna and magnetic fields from electric currents in an antenna
dominate the electromagnetic fields pattern nearby the antenna, even if it is placed
in vacuum. This pattern is not what we find in an electromagnetic wave.

A rule of thumb in this context is that we use the word “nearby” for distances
up to a few times the calculated wavelength (A = c/f), and/or up to several times
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Fig. 9.7 “Near fields” dominate the electromagnetic field pattern at a distance up to the order of
a calculated wavelength A = ¢/f away from charges/electrical currents. In the near-field zone, the
solution of Maxwell’s equations is often very different from the solution in the far-field zone (far
from the source of the fields and far from disturbing elements)

the extent of the object in space away from a region where there are free charges
or currents. In regions that are influenced by boundary conditions in the broadest
sense, we find “near fields”, as opposed to “far fields”, which we find in areas where
boundary conditions have almost no influence (Fig. 9.7).

It may be useful to think about how far the near-field region extends from different
sources. For a light source, the wavelength is about 500 nm. The near-field range
extends a few times this distance away from the source, i.e. of the order of a few
microns (thousands of millimetres) away from the source.

For a mobile phone that operates at 1800 MHz, the calculated wavelength is about
16cm. A few times this distance takes one over to the far-field zone.

To sum up:

For the far-field region, the following relationships we have established for
simple plane electromagnetic waves are:
1. The electric and magnetic fields are perpendicular to each other.
2. There is a fixed ratio between electric and magnetic fields.
3. The Poynting vector provides a measure of transport of electromagnetic
energy.
4. The energy that passes a cross section has left the source once and for all
and does not (normally) return.
5. Itmay therefore be natural to use the word “radiation” for energy transport.
For the near-field zone, however, the following applies:

1. The electric and magnetic fields are normally not perpendicular to each
other.
2. There is no a fixed ratio between electrical and magnetic fields.
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3. The Poynting vector does not provide a measure of transport of electro-
magnetic energy.

4. Energy can build up in the vicinity of the source for some periods of time,
but retracts again in other periods of time. Only, a tiny part of the energy
that goes back and forth to the vicinity will leave the source like waves
(and this energy transport is generally not apparent before we get into the
far-field zone).

5. It is therefore not natural to use the word “radiation”. We describe the
situation more like “fields”.

9.10.2 The Concept of the Photon

I would like to append a few comments concerning the term “photon”.

The majority of today’s physicists believe that light is best described as elementary
particles, called photons.

A photon is perceived as an “indivisible wave packet or energy packet” with a
limited extension in time and space. The word photon was originally used for visible
light where the wavelength is of the order of 500 nm (the Greek word “phos” means
“light”). This means that even a wave packet containing quite a few wavelengths will
be tiny compared to macroscopic dimensions. In this case, then, it is not particularly
odd that we perceive this as a “particle”. The notion of the indivisible energy packet is
assigned the energy E = hv where / denotes Planck’s constant and v is the frequency.

Problems soon arise with “photons” in the realm of mobile telephony (and radio
waves). In that case, a wave packet consisting of a few wavelengths will inevitably
occupy a spatial extent of several metres (up to kilometres). Does it make sense to
regard such a packet as “indivisible” and to think that energy is exchanged instanta-
neously from the antenna to the packet and from the latter to surrounding space?

For power lines and 50 Hz fields, the problem is even worse. For 50 Hz, a wave
packet of several times the wavelength would soon extend to dimensions comparable
to the perimeter of the earth! We then get serious problems imagining a photon that
extends several times the wavelength. And if we consider the photon as small particles
instead of an extended wave packet, it will be problematic to explain wavelengths
and a variety of other properties. Furthermore, the distribution of electrical and
magnetic fields near power lines is significantly different from that of light. This
can be grafted into a quantum mechanical description, but then one has to resort
to strange special variants where the quantum mechanical description really only
mimics classic electromagnetism.

A description based on Maxwell’s equations gives us a formalism that scales
smoothly from STATIC electric and magnetic fields to electromagnetic waves with
frequencies even larger than the frequency of visible light. Electromagnetism also
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provides a powerful explanation of the speed of light and what affects it, and the
transformations of the special theory of relativity also come naturally out of electro-
magnetism.

Nevertheless, problems arise with the description of the interaction between a
classical electromagnetic wave (or an electromagnetic field) and atomic processes.
This is because classical electromagnetism cannot be used to describe atomic tran-
sitions.

In spite of this, I am among the physicists who believe that Maxwell’s equations
and electromagnetism are by far preferable to the photon concept for describing
the vast majority of currently known phenomena, but not those involving atomic
transitions. In my opinion, we have so far not reviewed the interaction between elec-
tromagnetic waves and atomic transitions with sufficient thoroughness. I represent a
minority, but this minority is not getting smaller—quite the contrary, in fact. I mean
that the last word has not been written about how physicists will think in the coming
50 years.

In a separate tract, I will explore this knotty issue and will not delve into it here.

9.10.3 A Challenge

Hitherto, we have seen that for both oscillations and mechanical waves there is an
alternation between two energy forms as the oscillation/wave evolves. For example,
for the mass—spring oscillator the energy changed in time between potential and
kinetic energy, and the sum was always constant. In a travelling sound wave, at
every point in space where the wave is passing, the energy density changes between
potential energy (pressure) and kinetic energy, and the sum is always constant. For
a travelling wave along a string, it is likewise.

For a travelling electromagnetic wave, it is not easy to see the same pattern. The
electric field has the maximum at the same time and place as the magnetic field, at
least for a plane. Have we overlooked something?

I suspect something is missing in our standard descriptions of electromagnetic
waves. [ have an idea I will follow up in the coming years. Perhaps this is a gauntlet
you too want to take up?

9.11 Helpful Material

9.11.1 Useful Mathematical Relations

Here, we list some useful relationships from the mathematics you have hopefully
met earlier:
Common to all expressions is that we operate with a scale field:

¢=¢(x,y,2)
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and a vector field

E’:ax7+a\,7+azz
A gradient is defined as:
00> 0> P>
grad¢zv¢z—¢i +—¢j+—¢k.
ox ay 0z

The divergence is defined as:

N — 0Oay da, Oa,
diva=V-.-a= — + —
ox ay 9z
The divergence of a gradient is:
3¢ *¢ 9%
di dop=V - V)= — 4+ —+ — = Ao .
vernd ¢ =V (V9) = 55+ 554 o5 = 0
The curl is defined as:
culd =V xd=
i Tx
d 9 9|
dx dy 0z -
ay a, a;

da; day\ —» da, da;\ —» da, 0day\ >
-2 i+ — j+=- k.
ay 9z 0z ax ax ay

Notice what are vector fields and what are scalar fields. In general:

e A gradient converts a scalar field into a vector field.

A divergence works the other way.

Div-grad starts with a scalar field, passes through a vector field and ends with a
scalar field again.

e A curl, in contrast, starts with a vector field and ends with a vector field.

The symbol V is involved in different operations depending on whether it works
on a scalar field or a vector field, and it is especially challenging to use V2 on a
vector since we must then use the Laplacian on each of the components in the vector

separately: ) , ,
el x el x el x \ 7
Via= (S 2% D) G

0x? dy2 072

82ay n 82ay n 82ay -
0x? dy? 072 J
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n 0%a. " 0%a, n 0%a, 7
ax2  3y? 92 ’

Some other useful relations appear below:
curl gradp =V x (V¢) =0,
divcurla=V(V xa)=0,

curl(curla) = grad(diva) — Aa=V x (V xa)=V(V.a) — Via.

9.11.2 Useful Relations and Quantities in Electromagnetism

Here are some relationships from electromagnetism as a refresher of prior knowledge:

Electric field strength E is measured in V/m.

Electric flux density D is measured in C/m?.

Magnetic field strength_)H is measured in A/m.

Magnetic flux density B is measured in T.

E-flux density is also often referred to as electric displacement.

Free space electrical permittivity &, is measured in F/m = (As)/(Vm) and defined
as

1
g0 = — ~ 8.854188 x 107> F/m

HoCy

The relative permittivity &, is usually a number larger than 1.0.
Free space magnetic permeability j1( is measured in H/m and defined as:

o = 4 x 107" H/m ~ 1.256637 x 10~° H/m

e The relative permeability pu, is close to 1.0 for most materials. Ferromagnetic
materials are an exception.
The speed of light in vacuum is given exactly as:

co = 299,792,458 m/s
The SI basic units are now the speed of light in vacuum and the second. The length
1 metre is no longer one of the basic units!
e The relation between field strengths and flux densities is as follows:

—> —
D = SrSOE

= prioH

=
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9.12 Learning Objectives

After working through this chapter, you should be able to:

e Convert Maxwell’s equations from integral to differential form (assuming
Stokes’s theorem and divergence theorem are given).

e Derive the wave equation for electromagnetic field in vacuum provided that
Eq. (9.16) is given.

e Explain what simplifications are introduced in the derivation of the wave
equation for electromagnetic fields in vacuum.

e Explain which part of Maxwell’s equations is responsible for an electro-

magnetic wave to travel through free space.

Explain carefully the difference between “plane wave” and polarization.

Specify the amount of energy transport in a plane electromagnetic wave.

Apply the Poynting vector and know the limitations of this concept.

State and apply expression of radiation pressure in an electromagnetic field

in a plane wave.

e Explain what we mean by near field and far field and why these sometimes
are very different.

e Explain the characteristics of electromagnetic fields that differ in the two
zones.

e Explain some problems using the photon term for all electromagnetic
fields/waves.

9.13 Exercises

Suggested concepts for student active learning activities: Electromagnetic wave,
line integral, surface integral, vector field, near field, far field, pure electrodynam-
ics, polarization, dielectric, index of refraction, relative permittivity, electromagnetic
spectrum, energy density, energy transport, radiation pressure.

Comprehension/discussion questions

1. Itis not easy to comprehend Fig. 9.5 correctly. It is so easy to think of waves in
a material way, similar to surface waves on water. However, an electromagnetic
wave is much more abstract, since it is just the abstract quantities of electric and
magnetic fields that changes with position and time. Discuss if it becomes easier
to comprehend Fig. 9.5 if we state that an electric and magnetic field actually
change the property of the space locally (even in vacuum) and that it is this
changed property of space that moves as the electromagnetic wave passes by.

2. Explain briefly how to characterize a region in space where the divergence of the
electric field is different from zero. Similarly, explain briefly how to characterize
aregion in space where the curl of the electric field is different from zero.
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11.

12.

13.

14.

9 Electromagnetic Waves

In going from the integral form of Maxwell’s equations to the differential form,
we use an argument based on the “intermediate” scale of length/volume. What
do we mean by this?

. Suppose we measure the electric and magnetic fields in an electromagnetic wave

in the far-field zone. Can we determine the direction of the waves from these
measurements?

. We apply an alternating voltage across a capacitor, or we send an alternating

current through a solenoid. Attempt to find the direction of the electric and
magnetic fields and relative magnitudes. Will these fields follow the well-known
laws that apply to the electric and magnetic fields for plane electromagnetic
waves?

. It is sometimes said that for an electromagnetic wave in vacuum, the electric

and magnetic fields are perpendicular to each other. Magnetic fields and electric
fields do not have this relationship to one another a short distance from a solenoid
(“coil”), even if it is in vacuum and high-frequency electric and magnetic fields
are present. What causes this?

. Is polarization a property of all electromagnetic waves, not just light waves? Can

sound waves have a polarization? By the way: What do we mean by “polariza-
tion”?

. An electromagnetic wave (e.g. strong light) may have an electric field of about

1000 V/m. Could it lead to electric shock if one is exposed to this powerful light?

. The magnetic field in intense laser light can be up to 100 times as powerful as

the earth’s magnet field. What will happen if we shine with this laser light on
the needle of a compass?

Poynting vector indicates the power in an electromagnetic wave. Can we use the
Poynting vector to calculate the power that springs from a power line to residents
nearby? Explain your answer.

If you flash with the light from an electric torch, would you experience a recoil
similar to that one gets on firing a gun? Discuss your answer.

In any physical system/phenomenon, one may identify a length scale and a
timescale. What is meant by such a statement when we consider electromagnetic
waves?

A person measures the electric field £ and the magnetic field B in vacuum for
the same frequency f and position, but finds that E//c >> B. Is this an indication
of malfunction for one of the two instruments used in the measurements?

In several equations in this chapter, the relative electrical permittivity &, is
included.

(a) The speed of light is linked to this quantity. How?

(b) The relative permittivity tells us something about what physical processes
take place when light travels through glass. What processes are we thinking
about?

(c) Many think that it makes sense that light slows down on going from air or
vacuum to glass, but they find it hard to understand that light regains the original
speed upon leaving the glass. What, in your opinion, accounts for their difficulty?
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Problems

15. Show that a plane electromagnetic wave in vacuum satisfies all four Maxwell’s
equations.

16. Write down Maxwell’s equations in integral form, and state the correct names
for them. Give a detailed derivation of Ampére’s law in differential form.

17. The derivation of the wave equation from Maxwell’s equations follows about the
same tricks whether one uses them to arrive at the wave equation for the electric
field or for the magnetic field. Make a list showing which steps/tricks are used (a
relatively short account based on essential points without going into detail will
suffice).

18. Find the frequency of yellow light of wavelength 580nm. Do the same with
wavelength of about 1 nm. The fastest oscilloscopes available now have a sam-
pling rate in the range of 10-100 GHz. Can we use this kind of oscilloscope
to see the oscillations in electric fields in the X-ray waves? What about yellow
light? N

19. An electromagnetic wave has an electric field given by E(y, 1) = Eq cos(ky —
o) k. Ey = 6.3 x 10*V/m, and o = 4.33 x 103 rad/s. Determine the wave-
length of the wave. In which direction does the wave move? Determine B (vec-
tor). If you make any particular assumptions in the calculations, these must be
stated.

20. An electromagnetic wave of frequency 65.0Hz passes through an insulating
material with a relative permittivity of 3.64 and relative permeability of 5.18 for
this frequency. The electric field has an amplitude of 7.20 x 1073 V/m. What is
the wave speed in this medium? What is the wavelength in the medium? What
is the amplitude of the magnetic field? What is the intensity of the wave? Are
the calculations you have made really valid? Explain your answer.

21. An intense light source radiates light equally in all directions. At a distance of
5.0m from the source, the radiation pressure on a surface that absorbs the light
is approximately 9.0 x 10~ Pa. What is the power of the emitted light?

22. A ground surface measurement shows that the intensity of sunlightis 0.78 kW/m?.
Estimate the power the radiation pressure will exert on a 1 m? large solar panel?
State the assumptions you make. As a matter of interest, we may mention that
the atmospheric pressure is about 101,325 Pa (about 10° Pa).

23. For an electromagnetic wave, it is assumed that the electric field at one point
is aligned in the x-direction and magnetic field in the —z-direction. What is
the direction of propagation of the wave? What if the fields were in the —z- and
y-direction, respectively? Did you make any assumption for finding the answers?

24. An ordinary helium—neon laser in the laboratory has a power of 12mW, and the
beam has a diameter of 2.0 mm. Suppose the intensity is uniform over the cross
section (which is completely wrong, but it can simplify the calculations). What
are the amplitudes of the electric and magnetic fields in the beam? What is the
average energy density of the electric field in the beam? What about the energy
density in the magnetic field? How much energy do we have in a 1.0m long
section of the beam?
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Measurements made a few hundred metres from a base station indicated an elec-
tric field of 1.9 V/m and a magnetic field of 1.2 mA/m (both at about 900 MHz).
A knowledgeable person concluded that the measurements were not mutually
consistent. What do you think was the reason for this conclusion?
Measurements at the ground just a few tens of metres from a power line registered
an electric field of 1.2kV/m and a “magnetic field” of 2.6 wT (microtesla) (both at
50Hz). In practice, it is often magnetic flux density reported at low frequencies,
but we can convert from B to H, and then find that 2.6 wT corresponds to the
magnetic field value 2.1 A/m. Is there correspondence between electric field and
magnetic field in this case? Comment on similarities/differences between the
situations in the previous task and in this task.

One day, the electric and magnetic fields are measured at the same location near
the power line as in the previous task, and the values are found to be 1.2kV/m
and 0.04 A/m. Can we conclude that there is something wrong with one of the
measuring instruments in this case?

According to Radiation Protection Info 10-11: Radio Frequency Fields
in our Environment (Norwegian Radiation Protection Agency)
(http://www.nrpa.no/filer/5c¢7f10ca06.pdf, available 10 May 2018), the “radi-
ation” from base stations, wireless networks, radio, etc., is less than 0.01 W/m?
across our country. Calculate the electric field and magnetic field equivalent to
0.01 W/m? if we think that the radiation is dominated by mobile phone commu-
nications from a base station at 1800 MHz.

When we use a mobile phone somewhere where the coverage is poor so that
the phone gives maximum power, the mobile phone supplies about 0.7-1.0 W
power while communicating. Calculate the intensity 5 cm from the mobile phone
if you assume an isotropic intensity around the phone. Compare the value with
measured intensities from base stations, wireless networks, etc., given in the
previous task.

It is not customary to report the “radiation” from a mobile phone in terms of
power density (intensity) measured in W/m?, but in Specific Absorption Rate
(SAR).

(a) Search the Web to find out about SAR. State the URL for the source you are
using.

(b) Explain what SAR implies and what is the SAR unit?

(c) What do you think is the reason why such a unit has been adopted in this
case, even though we use power density from base stations and suchlike, with
about the same frequency as the mobile phone?

Let us consider interplanetary dust in our solar system. Suppose the dust is
spherical and has a radius of r and a density of p. Suppose all radiation that
hits the dust grain is absorbed. The sun has a total radiated power of Py and
a mass M. The gravity constant is G. The distance from the sun is R. Derive
an expression that indicates the relationship between the power exerted by the
radiation pressure from the sun rays to the dust grain and the gravitational force
between the sun and the dust grain. Determine the radius of the dust when
the two forces are equal as we insert realistic values for the quantities that are
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involved. (p = 2.5 x 103kg/m, Py = 3.9 x 102°W, M = 1.99 x 10*°kg, G =
6.67 x 107" Nm? /kg?).

32. Relate the gravitational force between the earth and the sun, and the force on
the earth due to the radiation pressure from the sun. The earth’s mass is 5.98 x
10%*kg. You can estimate the radius of the earth by recalling that the distance
between a pole and the equator is about 10,000 km.

Reference

1. PD, https://commons.wikimedia.org/wiki/File:James_Clerk_Maxwell_big.jpg. Accessed April
2018
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Chapter 10 ()
Reflection, Transmission and Polarization | ¢

Abstract In this chapter, Maxwell’s equations are used for deducing laws of
reflection/transmission of an electromagnetic wave entering an idealized plane
boundary between two insulators, e.g. air (or vacuum) and glass. The expression
for the Brewster angle is derived and Fresnel’s equations are presented. Snel’s law is
derived using the principle of minimum time. Emphasis in the last part of the chapter
is put on polarization and how it may be changed by the use of birefringent material
like calcite or polarization filters. Use of polarization in polariometry as well as in
stereoscopy is mentioned, and a brief comment on evanescent waves is given.

10.1 Introduction

In Chap. 9, we found that a plane electromagnetic wave with the phase velocity

1
C= ——
VEOEF oMy
1 1 (&)

B EOMO A/Er Ly B Er iy

is a possible solution of Maxwell’s equations in an infinite homogeneous medium
containing no “free charges”. The symbols have their usual meanings.

The speed of light in a medium (without free charges) is the quotient of the speed
of light in vacuum ¢ and the refractive index n for the medium:

cC=—.

n

The vast majority of media we are going to consider are diamagnetic or paramagnetic.
This applies, for example, to optical glass, for which u, ~ 1.00. As a result, we may

write:
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In other words, the index of refraction is, in a manner of speaking, directly related
to the “polarization susceptibility” of the medium, and the relative permittivity is a
measure of this. The more easily an external electric field can distort the electron
cloud around the atoms from their equilibrium positions, the slower is the speed of
light in that medium.

For substances whose atoms are arranged in a regular and special way, as in a
calcite crystal, it is easier to displace the electron clouds away from equilibrium
when the electric field has one particular direction relative to the crystal than other
directions. This causes light to travel more slowly (through the crystal) for one
orientation of the crystal relative to the direction of light polarization than for other
orientations. Calcite crystals, which have this property, are said to be birefringent.
Doubly refracting materials are widely used in modern optics.

Other substances have the property that they only transmit light with the electric
field in a particular orientation. Such substances can be used as so-called polarization
filters, which are used in photography, material characterization, viewing 3D movies,
and in astronomy.

We will treat birefringence and polarization filters in this chapter, but we start
by analyzing how waves are partially reflected and partially transmitted when they
strike an interface between two different media (in contact with each other). Again,
Maxwell’s equations are central to the calculations.

A running topic throughout the chapter is polarization, but polarization appears
in two quite different contexts. Be careful not to confuse them!

10.2 Electromagnetic Wave Normally Incident
on An Interface

Generally, there are infinitely many different geometries and as many different solu-
tions of Maxwell’s equations when an electromagnetic wave reaches an interface
between two media. We need to simplify enormously in order to extract regularities
that can be described in a mathematically closed form.

In this section, we will use the Faraday—Henry law together with an energy
balance sheet to find out what fraction of an electromagnetic wave is reflected
and what is transmitted when the wave enters, for example, from air into glass.
We assume that the electromagnetic wave is approximately plane and strikes
normally a plane interface between two different homogeneous media without
free charges. We make the following assumptions for the second medium and
the interface:
1. Assume that the medium itself is homogeneous within a volume of A3
where A is the wavelength.
2. Assume that the interface is flat over an area much greater than A2.
3. Assume that the thickness of the interface is much less than the wavelength
A.
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As long as we consider light of wavelength in the 400-800 nm range travelling
through glass, where the atoms are a few tenths of a nanometre apart, these three
assumptions are reasonably well fulfilled. But the conditions are certainly not met in
all common cases. When light goes through raindrops, the drops are often so large
that we can almost use the formalism that will be derived presently. But when the
drops are so small that the above conditions are not met, Maxwell’s equations must
be used directly. For drops that are small, we get the so-called Mie scattering, which
produces not a regular rainbow but an almost colourless arc.

Also for electromagnetic waves in completely different wavelength ranges than
light, it is difficult to satisfy the three assumptions. Take for example X-rays with
wavelength around 0.1 nm. Then, the wavelength is about the same as the distance
between the atoms. For radio waves as well, the assumptions cannot be easily sat-
isfied. This means that the laws to be deduced in this chapter are often limited in
practice to electromagnetic waves in the form of visible light, or in any case nearby
wavelengths.

The purpose of the following mathematics in this chapter is to derive useful expres-
sions, but also to point out clearly the assumptions we base the calculation on. This
is important so that we can judge the validity of the formulas in different contexts.
Within the rapid growing field of nanotechnology, it becomes clear that common
expressions are not applicable everywhere.

So, let us study what happens when an electromagnetic wave meets an interface
head on. Let us suppose that the three above assumptions are satisfied and that we send
electromagnetic waves normally to the interface. Part of the wave will be reflected
at the interface and travel back in the original medium, while the rest of the wave is
transmitted into the next medium and continues there. In Fig. 10.1, the three waves
are drawn in a manner that brings out their main features. The waves that are drawn
in can be considered, for example, as one component of the electric field (in a given
direction perpendicular to the normal to the interface). The index of refraction on
the left side of the figure is n; and that on the right side n,, and we have not yet
said anything about which of these is the larger. For the same reason, we have not
considered whether the reflected wave would have the opposite sign to the incoming

Fig. 10.1 An
electromagnetic wave
travelling perpendicular to
another medium is partially
reflected and partially
transmitted. The waves are
depicted separately in order
to indicate instantaneous
electric fields for each of
them - - - - E
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Fig. 10.2 Integration path n
(blue arrows) and electric b
field (red arrows) defining |
positive directions when
applying Faraday’s law to E, T+dl
find relations between I l
electric fields from different ’ :
components. See the text for r
details !

wave at the interface itself. We proceed tentatively, and calculate the signs shown in
the figure, and we will discuss the details later.

First step: Faraday’s law

We choose the rectangular integration path shown in Fig. 10.2 with a length L and
width w. The integration path is oriented so that the long sides are parallel to the
electric fields of the electromagnetic wave. We are ready to apply Faraday’s law:

— — d@B
E.-dl =—(— . 10.1
f ( dr )inside ( )

We deal with the line integral first:

fﬁ-d?:/ +f + +f
ab be cd da
— | I—

=0 =0

= (E;+E)L — E,L .

The integrals along bc and da contribute nothing because the paths are perpendicular
to the electric fields; the first integral is positive, and the last negative, because, as
shown in Fig. 10.2, the field is oppositely directed to the line element in the latter
case.

As for the right-hand side of Eq. (10.1), our assumption that the interface is
infinitely thin makes it permissible to choose w, and therefore the area A = Lw, to
be arbitrarily small. Next, we express @p as a surface integral, and get the simple
result:

dop d -
(=2 -S| B-dd~o0
dr inside dr A

the last step being a consequence of the smallness of the area A.
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The foregoing manipulations of Eq. (10.1) lead us to the result:
E.L+E.L—EL=0

which implies that

E,+E =E,. (10.2)

We can apply a similar reasoning to the Ampére-Maxwell law to get
Hi+H, =H, .

Second step: Energy conservation

We can also set up an energy balance sheet: All energy incident per unit time on the
interface must be equal to the energy that leaves the interface per unit time. We know
from Chap. 9, that the intensity of an electromagnetic wave is given by:

7 D 1 2
cE - D = jcepe E

1
I =cup =5

where uy is the energy density in the wave, and c is the speed of light in the medium
under consideration. The energy balance sheet comes out to be:

%6‘1808”Ei2 = %61808r1Er2 + %CZSOSrQEZZ s
cien(E; — E}) = caepnE7
c1er1(E; + E)(E; — E,) = c2en E}
But, since E; + E, = E;:
c1&1(E; — E;) = 26 E; .

Let us examine the constants appearing above. To this end, we recall the expression,
given earlier in this chapter, for the speed of light:

Co Co
cl=—=

_I’ll ,/81'

Multiplying by &, and replacing the ~ sign with equality, we get
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co
VEérl
= CoA/Er1 = CoNq .

C1ér1 = Erl

Substituting this expression (and its counterpart for medium 2) in Eq. (10.2), we
obtain
ni(E; — E,) =mkE, . (10.3)

Third step: Combine

We combine now Eqs. (10.2) and (10.3) and eliminate, to begin with, E; in order to
find a relation between E; and E,:

mkE; —mE, =mE; + nE,

(ny —n))E; = (n1 +m)E, .

The ratio between the amplitudes of the reflected and transmitted waves is

found to be:
Er . ny —np

Ei  ni+ny

(10.4)

We see that the right-hand side can be positive (rn; > n,), negative (n; < ny)
or zero (n; = ny).

For n, > ny, the ratio is negative, which means that £, has a sign opposite
to that of E; (i.e. to say, E, is in the opposite direction to that indicated in
Fig. 10.1).

For n, < ny, the expression in Eq. (10.4) is positive, which means that E, has the
same sign as E; (i.e. E, has the direction shown in Fig. 10.1).

Let us conclude by combining Egs. (10.2) and (10.3) by eliminating E, in order
to find a relation between E; and E,. This gives:

I’l]E,‘ —nlE,—i—n]E,- =712El .

The ratio between the amplitudes of transmitted and incident waves is easily

found:
E_ _2m (10.5)
E; ni+ny’ ;
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We see that the electric field of transmitted wave has always the same sign as
that of the incident wave.

Equations (10.4) and (10.5) provide the relationship between electric fields on
both sides of the interface. When we judge how much of the light is reflected and
transmitted, we want to look at the intensities. We have already seen that the intensities
are given by expressions of the type:

1
. 2 0 . 2
1,' = §c1808,’1Ei ~ 56080}’11Ei .

We are led to the following relation between the intensities:

I E? —n2\?
L _m r = T (10.6)
Ii nlEi ny+np
and , 5
i E 2
N R (10.7)
I; ni E; ny+np ni

If we choose to look at what happens at the interface between air and glass
(refractive index 1.00 and 1.54, respectively), we get:

Reflected:

I;

2
I 0.54 ~ 0.045 .
2.54

Transmitted:

I 2 \°

Thus, we see that about 4.5% of the intensity of light normally incident on an
air—glass surface is reflected, while about 95.5% is transmitted. This is the case
when the glass surface has not received any special treatment (“anti-reflection
coating”).

Finally, it may be noted that the reflection at the surface leads to the creation of
some standing waves in the area in front of the interface.
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10.3 Obliquely Incident Waves

10.3.1 Snel’s Law of Refraction

Willebrord Snel of Royen was born in the Netherlands in 1580. He later changed his name to
Willebrord Snellius and died in 1626. His name should be written either as Snel or Snellius, but it
is most commonly spelled as Snell. We have chosen the original name Snel.

Snel’s law of refraction gives us the relation between the inclination of a light
ray before it strikes an interface between two materials and its inclination after
the interface.

The law of refraction can be derived in several ways. We will use “Fermat’s
principle” which is also called principle of minimum time. Fermat’s principle is
expressed in our times by saying that the optical path length must be stationary.
Speaking a little imprecisely, this means that for the route along which light
transports energy (“where light actually goes”), optical path length is the same
(in the first approximation) for an array of optical paths that are close to one
another. This means that the optical path length must be a maximum, minimum
or stationary for small variations in the selected path. When we deduce Snel’s
law of refraction, we use the minimum as the criterion.

We refer to Fig. 10.3. A beam of light is sent from the point P in a medium
with refractive index n; to P’ in a medium with refractive index n,. We assume in
the figure that n, > n;. Since light travels faster in medium 1 than in medium 2,
the shortest time to cover the distance between the two points will be achieved by
travelling a little longer in medium 1, instead of travelling along the straight line
connecting the two points. If we use the symbols in the figure, it follows that the time
for travel is:

Fig. 10.3 In the derivation (0,)

of Snel’s law of refraction, pi !

we use the coordinates given | !

in this figure. The angles 6; |

and 6, are called the |
I

“incident angle” and the i 1(x,0)

“refraction angle”, n, U I

respectively. See also the text 9 |
I
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t_\/x2_|_y2+\/(x_x)2+y2

co/ni co/na

1
= (nl\/xz + 2+ (X —x)2 + Y2> .
0

The independent variable here is x and the minimum time can be determined by
setting d¢/dx = 0, and this gives:
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sin 6, 1/sin 6,

We arrive finally at the refraction law commonly attributed to Snel:

ni _ Sin92
ny,  sin6
or
ni;sin@; = n,sin 6, . (10.8)

Fermat’s principle has clear links to Huygen’s principle and also the thinking
behind quantum electrodynamics (CED). The waves follow all possible ways, but
in some cases the waves reinforce each other, and in other cases, they will oppose
each other. In other words, it is interference that is actually running the show, and
the central idea behind this phenomenon is the role played by the relative phases
of the different contributions. The “minimum time” criterion achieves the desired
result automatically, since minimum time means that many waves, which we can
imagine to have been sent from P, will take close to the minimum travel time
and all these waves will automatically have the same phase and therefore interfere
constructively.



302 10 Reflection, Transmission and Polarization

10.3.2 Total Reflection

Total reflection is of course an important effect that anyone who likes to dive under-
water knows well. The point is that if light goes from a medium with refractive
index n; to a medium with index n, and n; > n,, the “incidence angle” 6; will be
smaller than the “refraction angle” 6, for the transmitted beam. We can first send the
beam normally to the interface and then gradually increase the angle of incidence.
The refraction angle will then gradually increase and will always be greater than the
incidence angle.

Sooner or later, we will have an angle of incidence that leads to a refraction angle
of almost 90°. If we increase the angle of incidence further, we will not be able to
satisfy Snel’s law, because the sine of an angle cannot exceed unity.

The incidence angle (6. ) for which the angle of refraction is 90°, called the “critical
angle”, is found by setting 6; = 6. and 6, = 90° in Snel’s law:

nysinf, = nysinf, = n, sin90° = n, .

The critical angle of incidence can be expressed as:

. ny
sinf, = — . (10.9)
ny

If the angle of incidence is increased beyond the critical angle, there will no
longer be a transmitted beam. Everything will be reflected from the interface
back into the original medium, leading to a phenomenon called fotal reflection.

If we are underwater and look up at the surface, the critical angle will be given
by:

. 1.00
sinf, = —
1.33

6. = 48.8° .

If we try to look at the surface along a greater angle than this (relative to the
vertical), the water surface will merely act as a mirror.

Total reflection is used to a large extent in today’s society. Signal cables for the
Internet and telephony and almost all information transfer now largely take place via
optical fibres. For optical fibres having a diameter that is many times the wavelength
(so-called multimode fibres), it is permissible to say that total reflection is at work
here.

An optical fibre consists of a thin core of super-clean glass. Outside this core is
a layer of glass whose refractive index is very close to, but slightly less than that of
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the core, the difference being about 1%. The consequence is that the critical angle
becomes very close to 90°. This means that only the light that moves very nearly
parallel to the fibre axis is reflected at the interface between the inner core and the
next layer of glass outside. It is important that the waves are as parallel as possible
to the axis so that pulses transmitted into the fibre should retain their shape before
being relayed.

In many optical fibres, the diameter of the inner glass core is only a few times
the wavelength. Such fibres are called single-mode fibres, and most are used in
telecommunications and similar applications. For single-mode fibres, it is really
misleading to explain the waveform in the fibre with total reflection. Instead, we
must use Maxwell’s equations directly with the given geometry. The wave image
inside the fibre can no longer be considered a plane wave as we find it in vacuum far
from the source and from disturbing boundary conditions. The boundary conditions
imply a completely different solution. We will come back to this when we deal with
waveguides in Chap. 16.

Single-mode fibres are challenging to work with because the cross section of the
fibre is very small and the light entering the fibre must have a direction very close to the
fibre direction. It is therefore difficult to get light into the fibre without too much loss.
Standardization of coupling devices, however, makes it easy for telecommunication
equipment, but it is quite a challenge to connect light into a fibre from a beam in air
in a laboratory.

It is much easier to get light into multimode fibres because they have larger cross
sections and the direction of the incoming light is not as critical. Multimode fibres,
however, are not suitable for long-distance communications since pulses “fade out”
after travelling relatively short distances.

10.3.3 More Thorough Analysis of Reflection

We will now look more closely at reflection and transmission when a (more or less)
plane electromagnetic wave strikes obliquely an interface between two media. We
make the same assumptions as mentioned in the beginning of the chapter that the
interface is plane, “infinitely large and infinitely thin”.

A major challenge in the derivation that will follow consists of keeping track of
geometry. Waves are inclined towards the interface, and the outcome depends
on whether the electric field that meets the interface is parallel to the interface
or inclined obliquely with respect to it. You may want to spend some time to
understand the decomposition of the electric field vector E in Fig. 10.4 before
reading further.
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Incoming ray
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Fig. 10.4 Geometrical details for discussing the propagation of an electromagnetic ray inclined
obliquely towards a plane interface between two media. The electrical field vector of the ray is
resolved into a component normal to the incidence plane and a component parallel to this plane
(lying in the plane of incidence). The latter component is further resolved into a component that is
parallel to the interface and one that is normal to the interface. See the text for details

We draw a “ray” travelling obliquely towards the interface. We draw a normal to
the interface at the point where the ray meets the interface. The plane containing the
incident ray and the normal will be called the plane of incidence. The angle between
the incident beam and the normal will be denoted by 6;. See Fig. 10.4.

The reflected beam will lie in the input plane and have the same angle with the
incident ray as the incident beam, i.e. ; = 0,. The transmitted beam will also be in
the same plane as the other rays, but it makes an angle 6, with the normal (extended
into medium 2).

We shall not go into any detailed proof that the three rays are in the same plane, but Maxwell’s
equations are symmetrical with regard to time. It is believed that if one solution of Maxwell’s
equations is an incident beam that divides into a reflected and a transmitted beams, then another
solution is that where the reflected and transmitted waves can be considered as two incident rays
coming against the interface and combining into a single output ray (similar to the original incident
ray, but with the opposite direction of motion).

Since we can reverse, at least hypothetically, the time course for what is happening, it means
that the solution must have a certain degree of symmetry. One consequence is that the three rays
must lie in the incidence plane.

We start by assuming that all three rays lie in the incidence plane and 6; = 6, in
Fig. 10.4, and then use Maxwell’s equations to determine how much of the incoming
energy that is reflected and transmitted at the interface.

H()_V)vever, the wave has an arbitrary polarization. This means that the electric
field E, which is perpendicular to the incident beam, may have any angle relative to
the incidence plane. The result for the component of electric field which lies in the
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incidence plane E| is slightly different from that for the component perpendicular
to the incidence plane E | .

First step: £

We start by treating the component of electric field perpendicular to the incidence
plane. This component will at the same time be parallel to the interface, which was
also the case for the wave incident at the interface (discussed in the previous section).
Faraday’s law used as in Fig. 10.2 gives as before:

Ei,.+E. . =E_

where i, r and ¢ again represents incoming, reflected and transmitted. _L indicates
the component that is perpendicular to the incident plane, which in turn is parallel
to the interface. However, we do not pursue this component in detail.

It is more interesting to look at the component that lies in the incidence plane, but
the treatment here is a little more complicated. The component lying in the incidence
plane can be resolved into a component that is normal to the interface and one that
is parallel to the interface.

In Fig. 10.4, we have tried to indicate that the electric field of the incoming
wave has components both normal and parallel to the incidence plane, and that
the latter component, E|j, can in turn be resolved into a component E| | parallel to
and a component £ | perpendicular to the interface/boundary surface (Note: For
simplicity reasons, we drop the vector notation for all components of the electric
fields.).

In Fig. 10.5, only the component of the electric field parallel to the incident plane
is drawn. Decomposition of this component is, respectively, £ ; and E ;. The first

Ei,IIxII LILI
- _T:__>_ -
: dl R
] L]
|_____<d.]_____' It
—
E

L

l Et,II.L

Fig. 10.5 Components of the electric field in the incoming plane for incoming, reflected and
transmitted rays. The field decomposition on the left is drawn separately for the incoming, reflected
and transmitted rays so as to avoid clutter. The diagrams on the right specify the positive directions
of the components in the mathematical treatment. See also the text for details
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part of the subscript indicates component relative to the incidence plane, and the
second part indicates the component with respect to the interface.

From Fig. 10.4, we see that E| | is perpendicular to £ | (the component of electric
field normal to the incidence plane), although both are parallel to the interface. Also
note that E| | is perpendicular to the interface and thus parallel to the normal (defining
the plane of incidence).

Second step: £

We can apply Faraday’s law to the £ components of incident, reflected and trans-
mitted waves, and we find, just as for waves incident normally on the interface:

Eijy+ Erji = Evjy -
The positive direction is defined in the right part of the figure. It follows then that:
E;ijcost; + E,cosb. = E; | cost; .
Since 6; = 6,, we are finally led to state:

cos 6;

Eiyt+ Ery =g Eun-
1

(10.10)

Third step: Gauss’ law

We need yet another equation to eliminate one of the three quantities in order to
find a relation between the other two. For the case where the ray was normal to the
interface, we used an energy balance sheet to get an equation. In the present case of
oblique incidence, it will not be so easy, since we have to take into account many
components at the same time. Instead, we choose to use Gauss’s law for electric
fields on a small cube with surfaces parallel to the interface and the incidence plane.
The cube has sides with area A and normal to the d A, and we write:

— —
D-dA = eree,enclosed .

The advantage of this choice is that all components of the electric field that are
parallel to the interface will give zero net contribution to the integral. They enter
and leave the side surfaces in the same medium, and these field components are
approximately constant along the surface as long as we allow the cube to have a side
length small compared with the wavelength. On the other hand, we get contributions
from the component that is normal to the end faces of the cube that are parallel to
the interface; see Fig. 10.5. By specifying how we define positive field directions in
the right part of the same figure, follow:
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DijL+ Dy =Dy,
coer1 Ei ), L + €0&r1Er), L = €0€r2Er )1 .
We use now the relation n ~ ,/e,, and get:
M Ei L +miEy o =n3E; 1.

Using the definition of positive directions for the vectors in the right part of Fig. 10.5,
it follows that:

—niE; | sing; + niE,sind, = —n3E, siné, .
We invoked Snel’s law of refraction (derived above):
n; sin6; = n, sin 6;
and moreover 6; = 6,. We then eliminate 6, and get:
—niE; ) sin6; + niE, sin6; = —nyE, yn; sin6; .

Dividing throughout by n? sin 6;, we get:

n,
Eiy—E., =—E, . (10.11)
ny

Fourth step: Combining

We now have two equations that connect E for incoming, reflected and transmit-
ted waves. One equation can be used for eliminating one of the three quantities
and obtaining the relationship between the two others. For example, if we subtract
Eq. (10.10) from Eq. (10.11), we get:

9
2E. = <COS - — 2) E . (10.12)

Details, Brewster angle

Equation (10.12) is in fact interesting in itself, because it shows that the contents of
the parenthesis can be made to vanish. When this happens, no part of the incident
wave will be reflected if E lies in the incidence plane (because then E£; = 0). The
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incident angle 6; where this happens is called the Brewster angle. Let us explore this
special case in some detail. The condition is that:

cos 6, ny

cos6;, n;
Using Snel’s law once again, we get:

cos 6; sin 6;

cos®;  sin6;
sin 6; cos 6; = sin 6; cos 6; .
We know that sin(2x) = 2 sin x cos x, thus
sin(26;) = sin(26,) .
We also know that sin x = sin(w — x), which implies
sin(26;) = sin(wr — 26,) .
This relation will be satisfied if
20; = — 20, or 6;=m/2-6,.
With 6; = 6,, we are finally led to the result:
If
0, +6,=m/2 (10.13)

there will be no reflected light with polarization parallel to the incidence plane.
Then, the angle between the reflected and transmitted rays equals /2 as
indicated in Fig. 10.6.

Since the angles of incidence and reflection are equal, it is easy to show that the
angle where we have no reflected light with polarization in the incidence plane
is characterized by the angle between reflected and transmitted rays being 90°.

We wish to find an expression for the angle (6; = 6p) for which this holds,

and start with:
ny,  coso;

ni cos 6;
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Fig. 10.6 When the angle
between the reflected and
transmitted rays is 90°, there
is no electric field parallel to
the incident plane in the
reflected ray

and combine this with cos 8, = cos(z/2 — 6;) = sin6; to get:

tané; = 2 = tanfp . (10.14)
nj

The angle 0 is called Brewster’s angle. At the interface between air and
glass with refractive index 1.54, we find:

1.54
tanfp = ——
1.00

0p ~ 57°

Since 6, 4+ 0; = /2, we can easily determine 0;. The result is about 33°.

It may be worth noting that there will also be no reflection (for light with
electric vector parallel to the incidence plane) if the light goes from glass to
air. For this case, we have:

g — 100
B~ 154
Op ~ 33°

In other words, the Brewster effect can occur when light enters a new medium,
regardless of whether the refractive index becomes higher or lower! By com-
parison, total reflection (which we will return to if a little) occurs only when
the light hits a medium with a lower refractive index.
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Fig. 10.7 Unpolarized light reflected at an air—glass interface can be fully polarized when the angle
of incidence is equal to the Brewster angle. These photographs show this. The picture on the left is
taken without a polarization filter. The picture on the right is taken with a polarization filter oriented
so as to let only light polarized parallel to the incidence plane. All reflection is removed at the
Brewster angle, and we look directly at the curtains behind the glass window practically without
any reflection. This means that, at the Brewster angle, all the reflected light is fully polarized
in a direction perpendicular to the incidence plane (parallel to the air—glass interface). Note that
reflections on the painted surface are affected similarly to reflections from the glass. NB: Many
modern windows are now surface treated in different ways. Then, we do not get any direct interface
between air and glass, and the Brewster effect as described disappears totally or in part

10.3.4 Brewster Angle Phenomenon in Practice

It is actually relatively easy to observe that light reflected from a surface at some
angles is fully polarized.

The essential point is that ordinary unpolarized light can be decomposed into
light with polarization parallel to the incidence plane and perpendicular to it. For the
component parallel to the incidence plane, we can achieve zero reflection if the light
comes in at the Brewster angle. In that case, the reflected light will be completely
polarized normal to the incidence plane. We can observe this by using a polarization
filter that only lets through light polarized in a certain direction. Figure 10.7 shows
an example of this effect.

10.3.5 Fresnel’s Equations

Inorder to arrive at relations involving reflection and transmission, we used Maxwell’s
equations, but these laws were derived long before Maxwell systematized electro-
magnetic phenomena in his equations. Fresnel derived equations which describe
reflection and transmission already in the first half of the nineteenth century. You can
read more about this e.g. in Wikipedia under the keyword “Fresnel equations”. Here
we will present only two formulas and a graph. In Egs. (10.15) and (10.16), and in
Fig. 10.8, the reflection coefficient is given for light fully polarized perpendicular to
the incidence plane (R;) and fully polarized parallel to the incidence plane (R,) [The
suffixes s and p are from German: Senkrecht (vertical) and parallel, respectively.].
The reflection coefficient refers to intensities, so in our language use, for example,
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Fig. 10.8 Reflection and 100
transmission coefficients of
electromagnetic waves
directed obliquely at an
interface between two media
with refractive index

np = 1.0 and np, = 2.0. The
subscript s indicates that the
electric field component of
the wave is normal to the
incidence plane, and the
index p that the component
is parallel to the incidence
plane
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ni cos 9,‘ —np
R, = , (10.15)
ny cos6; + ny
and 5
np CoS 91' —np
R, = (10.16)

n, cos 6; + ny

The transmission can be found by using the relations 7y, = 1 — R and
T,=1-R,.

If the light falling on the surface is totally unpolarized (with all polarizations
equally present), the total reflection is given by R = (R; + R} /2.

Figure 10.8 gives the reflection as a percentage for different angles of incidence.
The figure applies ton; = 1.0 and n, = 2.0. For a wave that approaches the interface
normally, the reflection is about 11% and of course independent of the polarization
direction. The Brewster angle for these refractive indices is about 63°, and for this
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angle, the reflection is about 36% for waves polarized normally to the incidence
plane.

Note further that the reflection coefficient goes to 1.0 (100%) when the angle of
incidence goes to 90°. This applies to both components of the electric field.

10.4 Polarization

We have already mentioned polarization a great deal in this chapter, meaning the
direction of the electric field vector when an electromagnetic wave travels through
space.

However, polarization is not always in a particular plane. The electric field
of an electromagnetic wave may change direction in a systematic manner as
the wave moves. If we draw an electric field vector at closely spaced points
along the line of propagation, the tip of all the field vectors may describe, for
example, a helix with one turn per wavelength. In that case, the wave is said
to be circularly polarized.

Figure 10.9 shows four different forms for polarization, where elliptical polariza-
tion is intermediate between linear polarization (polarization in a plane) and circular
polarization.

It might seem that linear polarization is very different from circular, but the fact
is that it is quite simple to switch from one to the other. Start by considering a plane

(]

(@ = (b)

() £ d =
4
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y : x Y : X y - X y : X

Fig. 10.9 Four different polarizations of a plane electromagnetic wave travelling in the z-direction.
The green bars perpendicular to the z-axis indicate the size and the direction of the electric field at
some z-values, all at the same time. The blue curves mark the tip of the electric field vector drawn
from every point along the z-axis. The red curve shows the projection of the blue curve onto the
xy-plane. a Plane polarized wave with the polarization plane —60° relative to the xz-plane. b Left-
handed circular polarized wave. ¢ Right-handed circular polarized wave. d Elliptically polarized
wave, in this case 45% circular, 55% linear, the plane for the linear polarization is —30° relative to
the xz-plane
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linearly polarized electromagnetic wave moving in the z-direction. The polarization
lies in a plane between the xz-plane and the yz-plane (similar orientation as in part
a of Fig. 10.9). We can say that E,(f) and E,(t) vary “in step” or “in phase”.

Mathematically, we can describe the wave on the left of Fig. 10.9 in the following
way:

E = E, cos(kz — a)t)? + E, cos(kz — a)t)7

where E, < E,.

If we delay the x-component by a quarter period compared to y-component (e.g.
by using a quarter wave plate), and the amplitudes are equally large, polarization
is circular (similar to c in Fig. 10.9), and the polarization follows a spiral as on a
normal screw. We say that we have a right-handed circular polarization because the
polarization direction follows our fingers on the right hand if we grasp the axis that
indicates the direction of propagation, with the thumb pointing in this direction.

However, if we advance x-component by a quarter of a period compared to y-
component, the polarization is left-handed circular (as for b in Fig. 10.9).

Mathematically, we can describe a left-handed circularly polarized wave (as
b in Fig. 10.9) as follows:

E = E, cos(kz — wt)? + Eysin(kz — cot)}'>

where E, = E,. The electric field in the x-direction is, as we see, shifted a
quarter period (or a quarter wavelength) relative to the electric field in the
y-direction.

The polarization of a plane electromagnetic wave can be specified either
in terms of two plane polarized waves with orthogonal polarizations as basis
vectors, or with a right-handed and a left-handed circularly polarized wave as
basis vectors.

Be sure that you understand what is meant by a “plane, electromagnetic wave
with (e.g. right-handed) circular polarization”.

10.4.1 Birefringence

In the previous section, we claimed that it is easy to change from linear polarization to
circular or vice versa. All that is needed is to change the phase of the time variation of
one component of the electric field with respect to the other. But how do we achieve
such a phase change in practice? Change in phase corresponds to a time delay, and
a delay can be achieved if the wave moves more slowly when the electric field
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vector has one direction in space compared to when the field vector has a direction
perpendicular to the first.

There exist materials in which waves polarized in one direction have a different
velocity than waves polarized in a direction perpendicular to the first. This
means that the refractive index is different for the two polarizations. Such
materials are called birefringent (meaning doubly refracting).

A glass cannot be birefringent because it is matter in a disordered state, where
bonds between atoms have all possible directions in space. To get a birefringent
material, there must be a systematic difference between one direction and another, and
this difference must be constant within macroscopic parts of the material (preferably
an entire piece of the material). A birefringent material is therefore most often a
crystal. Calcite crystals are a well-known example of birefringent material and will
be described in some detail in the next sub-chapter.

It is interesting to note that birefringence was first described by Danish scientist
Rasmus Bartholin in 1669.

It is possible to make a thin slice of a calcite crystal that has just the thickness
required to delay the waveform by a quarter period in one component of electric field
vector as compared to the perpendicular component perpendicular. Such a disc is
called a “quarter wave plate”. A quarter wave plate will ensure that linearly polarized
light is transformed into circularly polarized or vice versa. A quarter wave plate will
only work optimally for a relatively narrow wavelength range. When such a plate is
bought, the wavelength for which it is to be used must be specified.

Two different refractive indices in one and the same material give rise to a peculiar
phenomenon. The upper part of Fig. 10.10 shows how a straight line looks when we
see it through a calcite crystal oriented in a special way. The orientation is such
that we see two lines instead of one. It is easy to understand the term “birefringent
material” when we see such a splitting of an image.

We can imagine that the light from the line (surrounding area) has all possible
linear polarization directions. Light with a particular polarization travels at a differ-
ent speed compared to light polarized along a perpendicular direction. That is, the
refractive indices for light with these two polarizations are different, which is why
we see two lines through the crystal.

The last two pictures in the figure show how the line looks when we interpose a
polarization filter between the crystal and our eyes. For a specific orientation of the
filter, we allow the passage of light with only one polarization direction. By rotating
the filter in one direction, we only see one line through the crystal. If we rotate the
filter 90°, we only see the other line through the crystal. This is a good indication
that the two refractive indices are linked to the polarization of the light through the
crystal.
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Fig. 10.10 Upper part of the figure shows a straight line viewed through a birefringent substance
(oriented in a well-chosen manner). We see fwo lines! These are due to the fact that light with
different polarization has different refractive indexes through the crystal. This can be demonstrated
by holding a linear polarization filter in front of the crystal. If we orient the polarization filter in one
way, we only see one of the two lines, but if we rotate the polarization filter by 90°, we see only the
other line. A mark is made on the filter to show the rotation made between the two lower pictures

Remark: So far, we have set the re_l)ationship between electric field strength E and electric flux
density (or the displacement vector) D as follows:

— -
D =¢pe E

where & is the permittivity in empty space, and &, is the relative permittivity (also called the
diele_c)tric constant). Both of these quantities have been simple scalars, and therefore, the vectors D
and E have been parallel.

In terms of the components, the equation can be written as:

D; = s0e, Ei (10.17)

where i = x,y, orz.

In birefringent materials, this simple description no longer holds. Electric field directed in one
direction could provide the polarization of a material (e.g. calcite) also in a different direction. To
incorporate this behaviour into mathematical formalism, the scalar £, must be replaced with a tensor
with elements ¢,; ; where i and j correspond to x, y and z. Then, Eq. (10.17) is replaced by:

Dj = 808r,i,jEi . (1018)

This is just one example of how a simple description needs refinement when a physical system
displays properties that lie beyond the realms of the most elementary.

‘We mention these details to remind you that one of the tasks of physics is to provide math-
ematical modelling of the processes we observe. When the processes in nature are complicated,
correspondingly complicated mathematical formalism is needed.
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10.4.2 The Interaction of Light with a Calcite Crystal

Alllight originates in some process involving matter. When it is created, light acquires
a polarization determined by the geometric constraints that are a part of the process
whereby light is created. When light passes through vacuum, its polarization does not
change, but as soon as it interacts with matter again, polarization can change. There
are many different mechanisms that affect the polarization of light. This means that
by studying change of polarization that accompanies the passage of light through
matter, we can gain more knowledge of the material. A collective name for all such
studies is “polariometry”.

To get an idea of the mechanism responsible for the change in the state of polar-
ization, let us discuss what happens when light is sent through a piece of mineral
calcite. The chemical formula of calcite is CaCOj3, and we will consider calcite crys-
tals. These are “birefringent”; that is, when we consider an object through a clear
calcite crystal, the object looks double. The unit cell in a calcite crystal is relatively
complicated.! Figure 10.11 is a perspective sketch of four CaCO;3 as some of the
molecules are located within the unit cell. All the CaCO3; molecules in the crystal are
oriented so that the carbonate groups (CO?) are approximately in a plane perpen-
dicular to a preferred direction called the optic axis. The orientation of the carbonate
groups is such that there is a significant degree of rotational symmetry around the
optic axis.

In Fig. 10.11b, we have indicated what happens when light passes the crystal with
a polarization parallel to the carbonate plane. When the electric field is aligned as
shown, the electron clouds around each atomic core will undergo a slight displace-
ment relative to the core. Each atom then acquires a polarization (redistribution of
electrical charge). Energy is stolen from the electromagnetic field of the light and
temporarily stored in the polarization of the crystal. When the electric field then goes
to zero and increases again in the opposite direction, it will induce polarization of the
crystal again, but now with the opposite displacements of the electron clouds relative
to the atomic nuclei.

However, we do not build more and more polarization as time passes. The stored
energy in the polarization of the material will in some way act as “antennas” and
generate electromagnetic waves. These waves have the same frequency as those
which created the polarization originally. It is this polarization of the material and
re-emitting of electromagnetic waves from the small induced dipoles in the material
which causes light to move at a slower speed in the crystal compared with vacuum.
As soon as the wave goes out of the crystal, there is no matter to polarize (when we
ignore air) and the light velocity becomes the same as in vacuum.

Now comes something exciting! If we send light into the calcite crystal so that the
electric field in the light wave has a direction perpendicular to the carbonate planes as
in Fig. 10.11c, we will, as before, have displacement of the electron clouds relative to
the atomic nuclei. But now the electron cloud is shifted across the carbonate planes.

ISee for example Wikipedia for “calcite”.
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Fig. 10.11 Calcite is built up by the atomic groups CaCO3. Part a gives a perspective drawing that
indicates how these groups are oriented relative to each other. There is a large degree of symmetry
around the direction marked with the dashed line, the so-called optic axis. In b and ¢, a snapshot
of how an 